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Multimodal single-cell technologies profile multiple modalities for each cell simul-
taneously, enabling a more thorough characterization of cell populations. Existing
dimension-reduction methods for multimodal data capture the “union of information,”
producing a lower-dimensional embedding that combines the information across
modalities. While these tools are useful, we focus on a fundamentally different task
of separating and quantifying the information among cells that is shared between
the two modalities as well as unique to only one modality. Hence, we develop
Tilted Canonical Correlation Analysis (Tilted-CCA), a method that decomposes a
paired multimodal dataset into three lower-dimensional embeddings—one embedding
captures the “intersection of information,” representing the geometric relations among
the cells that is common to both modalities, while the remaining two embeddings
capture the “distinct information for a modality,” representing the modality-specific
geometric relations. We analyze single-cell multimodal datasets sequencing RNA along
surface antibodies (i.e., CITE-seq) as well as RNA alongside chromatin accessibility
(i.e., 10x) for blood cells and developing neurons via Tilted-CCA. These analyses
show that Tilted-CCA enables meaningful visualization and quantification of the
cross-modal information. Finally, Tilted-CCA’s framework allows us to perform
two specific downstream analyses. First, for single-cell datasets that simultaneously
profile transcriptome and surface antibody markers, we show that Tilted-CCA helps
design the target antibody panel to complement the transcriptome best. Second,
for developmental single-cell datasets that simultaneously profile transcriptome and
chromatin accessibility, we show that Tilted-CCA helps identify development-
informative genes and distinguish between transient versus terminal cell types.

multimodal data | matrix factorization | canonical correlation analysis | multiview data |
single-cell genomics

High-dimensional multimodal data, where features belonging to two or more modalities
are simultaneously profiled, are becoming increasingly widespread across disciplines. In
this paper, we focus on paired multimodal data arising in the field of single-cell biology,
where technological advances have recently enabled simultaneous profiling of multiple
types of features, such as RNA expression, protein abundance, and chromatin accessibility
within the same cell and across many cells in parallel (1-4). This type of data is invaluable
because cellular processes operate on multiple molecular modalities, and observation of
any single modality offers only a partial view of an interconnected system (5-9). When
analyzing such data, a basic question is how to separate and quantify the cell-separation
geometric information shared across modalities and those unique to a particular modality.
We address this question and demonstrate how this quantification can provide scientific
insight. Despite our explicit focus on single-cell genomics, the questions and proposed
method here broadly apply to paired multimodal data. For concreteness and clarity, we
will refer to the individual data points as “cells.”

Existing dimension-reduction methods are useful to analyze paired multimodal single-
cell data by estimating a low-dimensional space spanning both modalities that captures
the “union of information” across both modalities. That is, subpopulations of cells are
separable in the low-dimensional space if they are separable in either modality. These
methods include JIVE (10), WNN (11), MOFA+ (12), scAl (13), and JSNMF (14), all
of which have helped identify nuanced cell types by combining information across both
modalities.

In contrast, there is yet no rigorous way to quantify the information shared between
both modalities. Compared to the task performed by the aforementioned methods, this
is a fundamentally different task that can be thought of as learning the “intersection of
information” between modalities. We motivate this from a geometric perspective—two
sets of cells are separated in the “common” embedding if both modalities agree that the
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sets of cells are separable. Our matrix factorization method,
Tilted-CCA, extends the Canonical Correlation Analysis (CCA)
(15) framework by decomposing the canonical score vectors in a
principled way to uncover an embedding of the cells that abides
by the aforementioned geometric perspective. We show through
examples that Tilted-CCA provides meaningful quantifications
of the overlap (or lack thereof) in information between the two
modalities at both the cell and the feature levels. However, we
note that the “union” and “intersection” embeddings comple-
ment one another when analyzing multimodal data—while the
former provides a complete view of all axes of variation supported
by ecither modality, the latter provides insight into which axes
of variation are supported by both modalities. Additionally,
Tilted-CCA’s decomposition quantifies two additional “distinct”
embeddings representing the axes of variation unique to either
modality after removing the intersection.

We further illustrate the scientific insight enabled by Tilted-
CCA through two case studies. In our first case study, we
consider the problem of antibody-panel design in paired single-
cell profiling of RNA expression and surface antibody abundance
(16, 17). Such data are becoming standard in immunology re-
search since combining both modalities enables accurate labeling
of cell identity (18-20). However, large antibody panels are
expensive for large cohorts. Toward this end, we demonstrate that
by quantifying the common and distinct information between the
RNA and protein modalities, Tilted-CCA helps to design small
antibody panels that most effectively separate immune cell types
when paired with transcriptomic data.

In our second case study, we investigate the coordination
between chromatin accessibility and gene expression during
tissue development and show that Tilted-CCA provides natural
metrics distinguishing between transient versus terminal cell
states and identifying development-associated genes (21-24).
Many existing pseudotime-estimation methods address these
questions, but they rely solely on gene expression (25-31) or
chromatin accessibility alone (32), and typically require the de-
velopmental trajectory estimate. In contrast, the relation between
Tilted-CCA’s common and distinct embeddings between both
modalities provides an alternate and more flexible approach to
answer these questions.

Results

Tilted-CCA and the Intersection of Information. We introduce
Tilted-CCA through an example of a single-cell CITE-seq
dataset, where » = 30,672 human bone marrow cells are simul-
taneously profiled along p; = 2,000 genes (RNA modality) and
a panel of py = 25 surface antibody markers (protein modality)
(18). The modality-specific Uniform Manifold Approximation
and Projection plots (UMAPs) demonstrate that while the major
immune subtypes, such as myeloid, B cells, and T cells, are
separated in both modalities, the protein modality better separates
the T cell subtypes (Fig. 1A4). This is expected since the 25
protein antibodies are chosen to separate many T cell subtypes
(11). We use this multimodal dataset to exemplify matrix
factorization methods, which strive to factorize the data matrices

X and X of both modalities into the product of modality-

specific loading matrices (L(l) or L(z)) and score matrices that
decompose into a common embedding C and a modality-specific

distinct embedding (D(l) or D(z)) (Fig. 1B). However, their
mathematical properties and biological interpretations can vary
dramatically depending on which axes of variation are represented

by C and D.
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Broadly speaking, existing unsupervised methods define C in
Fig. 1B to capture the “union of information” (10). A prototyp-
ical method is Consensus Principal Component Analysis (PCA)
(33-35), which finds a low-dimensional embedding to best
approximate both modalities simultaneously. This embedding
aggregates the axes of variation in each modality, regardless of
whether or not those axes are common to both modalities or
unique to a specific modality. This is demonstrated in our CITE-
seq dataset, where Consensus PCA simultaneously separates all
of the progenitor cell types, CD4+, CD8+, and NK T cells from
each other (Fig. 1C), a quality that neither modality had alone. To
explain how Consensus PCA yields a decomposition in the form
of Fig. 1B, consider the leading principal components of each
modality, each having information to differentiate a different set
of cell types (Fig. 1D). The common embedding C defined by
Consensus PCA is the linear subspace that bisects both principal
components, hence retaining the cell-type separation patterns in

each modality. Then, the modality-specific distinct embeddings

D) and D@ are the residuals orthogonal to C (Fig. 1E). Other
linear methods such as JIVE (10), MOFA+ (12), scAl (13) and
JSNMEF (14), and nonlinear methods such as WNN (11) share
similar qualities to Consensus PCA (see SI Appendix, Fig. S4, for
more details).

In contrast to the aforementioned methods, Tilted-CCA is an
unsupervised method that estimates a common embedding C
that quantifies axes of variation supported by both modalities,
i.e., the “intersection of information.” This is a fundamentally
different goal and yields different insights. This embedding aims
to represent the geometric relations shared between the two
modalities—two sets of cells should be separable in C if and
only if they were separable in each modality alone. For example,
in this CITE-seq data, Tilted-CCA’s common embedding C
separates the myeloid, B-, and T cells from one another, since this
separation is supported by both modalities but does not separate
the CD4+ and CD8+ T cell subtype, since their separation is
unique to the protein modality (Fig. 1F). Then, by imposing
appropriate mathematical properties onto the decomposition in
Fig. 1B, Tilted-CCA could then be also able to estimate axes of
variation unique to each modality via the distinct embeddings
D) and D@,

To achieve these goals, Tilted-CCA builds upon CCA, a

method that finds linear transformations for each modality to
yield the canonical score matrices Z(1) and Z(2) € R that
have high cross-correlation. Here, the leading pair of canonical
vectors in Z(1) and Z(2) exemplifies the shared pattern between
both modalities that separate the most major cell types (Fig.
1G). However, CCA, by itself, only provides two canonical
score matrices Z(1) and Z(®) and does not imply an explicit
decomposition of the common and distinct axes of variation in
the framework of Fig. 1B. Tilted-CCA fills this gap by starting
from CCA and then decomposing Z() and Z(2),

ZW=c+DpM, and z® =c+D®,

where 1) the common embedding C encapsulates the geometric
relations of the “intersection of information” and 2) the two
distinct embeddings (D(1)) T D(2) = 0. The latter orthogonality
constraint was first proposed in D-CCA (36), and enables
us to interpret D) and D@ as capturing modality-specific
variation. This constraint restricts the common vector in each
latent dimension of C to lie along a semicircle defined by the

canonical score vectors in Z() and Z(2) (Fig. 1H). Along
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Embedding methods for multimodal data that learn the “intersection” of information differ from those that learn the “union”. (A) Summary of the bone

marrow CITE-seq dataset, showing either the UMAP of the RNA or protein modality, where cells are colored by the annotated cell types. Note that the coloring
scheme of cells is shared among (A, C, D, F, and G). (B) Schematic of a matrix factorization of single-cell paired multiomic data, where x(1) ¢ RP1*N denotes
the n cells measured on p; features and X(1) e RP2*" denotes the same n cells measured on p, features, already preprocessed to be low-rank. Here, Z(1)
and Z(2) denote matrices of score vectors, where the specific definition of these score vectors depends on the context. (C) UMAP of the global embedding
between the RNA and protein modalities estimated by Consensus PCA, showing the “union of information.” (D) The pair of leading principal score vectors, one
from each modality. (F) Mathematical illustration of the decomposition of Z(1) and Z(2) (the two sets of principal score vectors) to achieve a decomposition as
shown in (B) as used by methods like JIVE. (F) UMAP of the common embedding C between the RNA and protein modality estimated by Tilted-CCA, showing
the “intersection of information.” (G) The pair of leading canonical score vectors, one from each modality. (H) Mathematical illustration of the decomposition of
z(1) and 22 (the two sets of canonical score vectors) used by Tilted-CCA to achieve a decomposition as shown in (B).

this semicircle, if a latent dimension of C tilts in the direction
of Z (1), the common embedding would resemble Modality 1,
leading to the interpretation that Modality 2 has more distinct

information represented by large magnitudes in D@, and vice
versa (Fig. 24). Thus, Tilted-CCA optimizes for the appropriate
“tilt” of C along this semicircle for each latent dimension to
yield the desired geometric relations among the cells. Specifically,
Tilted-CCA first computes the nearest-neighbor graph of each
modality where each node is a cell (Fig. 2B). Then, a target
common manifold is constructed from both graphs in order
to encapsulate the “intersection of information.” Tilted-CCA
optimizes the tilt of the common vector for each latent dimension
so that the resulting common embedding’s nearest neighbor
graph approximates this target manifold (Fig. 2C). Once the
appropriate common embedding C is estimated, we recover the

PNAS 2023 Vol. 120 No. 32 e2303647120

estimated matrix decomposition of both distinct embeddings in
the framework of Fig. 1B (Methods). (Details in SI Appendix,
along with simulations in S7 Appendix, Figs. S1-S3.) As we will
demonstrate in later sections, the linear framework in Tilted-
CCA aids in addressing various cell- or feature-level scientific
questions.

Titled-CCA Quantifies the Overlapping versus Distinct Informa-
tion Each Modality Contributes Toward the Separation of Cell
Types. As proof of concept, we start with a pervasive question
for multimodal single-cell data: Which cell types are separable in
both modalities or only one modality? We use the provided cell-
type annotations to investigate this. For example, the UMAPs of
the RNA and protein modalities for the aforementioned CITE-
seq bone marrow dataset suggest that the protein modality better

https://doi.org/10.1073/pnas.2303647120
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embedding’s nearest-neighbor graph is similar to the target common manifold.

differentiates the T cell subtypes than the RNA modality (Fig.
1A). Can we rigorously quantify how much the cell types are
separated based on the overlapping (i.e., shared) information
between both modalities or distinct information unique to a
specific modality?

We start by qualitatively exploring the UMAPs of DU and

D(z), the distinct components derived from the orthogonal
remainder terms after removing the common component C. For
the bone marrow CITE-seq data, we see that T cells are mixed

in the RNA’s distinct component D(1), while the progenitor
cell types are well separated (Fig. 34). On the other hand, the
progenitor cell types mixed in the protein’s distinct component

D@, while the T cells are well separated. These observations
match our initial intuitions from a side-by-side comparison of
each modality’s UMAP in Fig. 14 alone. The major cell types,
such as myeloid cells, B cells, and T cells, are also distinguishable
in both distinct UMAPs, indicating that there are remaining axes
of variation in both modalities that separate these cell types but
are orthogonal to each other.

We design enrichment scores for each cell type and modality
pairing to formally quantify the amount of distinct information
that modality contributes toward separating the cell type. These
scores do not rely on UMAPs. First, we compute the nearest-

neighbor graph for either D) and D). Then, we define the
enrichment score of a cell type by selecting all cells of said type
and computing the proportion of their neighbors that share
their type, normalized by the baseline proportion (Methods).

4of 12 https://doi.org/10.1073/pnas.2303647120

A higher enrichment score signifies that the modality contains
more distinct information to define said cell type. We see that
for the CITE-seq data, the RNA modality has roughly 3 times
more distinct information for the progenitors than the protein
modality, while the protein modality has roughly 2.5 more
distinct information for the CD4+ and CD8+ T cells than
the RNA modality (Fig. 3B). This makes biological sense since
progenitor cell populations involve transcriptome-level changes
not expected to be captured by the 25 antibody markers. We
also define the enrichment score for the common embedding,
which demonstrates that the overlapping information between
both modalities clearly defines the B cells (S7 Appendix, Fig. S5
A and B).

Tilted-CCA Quantifies the Degree of Cross-Modality Alignment
of Features. Now consider the features in each modality, such
as the genes in the RNA modality and the surface antibody
markers in the protein modality, for the bone marrow CITE-seq
data. How much of each feature’s variation lie in the common
space versus its modality’s distinct space? Compared to standard
PCA analysis, this is analogous to asking which features are most
aligned with each principal component, which can be addressed
via the principal loadings. Here, we propose an intuitively
similar metric for Tilted-CCA: For each feature, we quantify
its alignment score, defined as the R? of regressing its observed
expression onto its common component. A higher R? implies that
the feature’s variation lies mainly in the shared common space.

pnas.org
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marked in purple and black respectively, with the median and quantiles among these sets of genes shown along the y-axis.

As proof of principle, we hypothesize that cell-type marker
genes should be highly aligned with the common space since
these genes’ expressions should correlate with antibody markers.
To investigate this, we plot the common-alignment R of each
gene against its differentiability, a meta-statistic that summarizes
its differential expression across all pairs of a priori defined cell
types. A higher differentiability implies that the gene is a strong
marker for certain cell type(s). We see that highly differentiable
genes, such as the markers for CD4+ T cells, are indeed highly
aligned with the protein modality (Fig. 3C). In contrast, genes
belonging to processes which do not differentiate cell types, such
as cell cycling, have low alignment with common space (Fig. 3C
and SI Appendix, Fig. S5C). The feature-level alignments to
the common space follow our expectations. See SI Appendix for
analogous analyses, but focusing on the antibodies.

The alignment-differentiability plots also provide a bird’s-
eye view of the amount of overlapping information between
modalities when comparing across different technologies and
biological systems (Fig. 3D). Genes in the Upper-Right quadrant
(blue) of the alignment-differentiability plot are cell-type markers
that coordinate with the other modality. In contrast, genes in
the Lower-Right quadrant (purple) are cell-type markers that
complement the other modality. As an example, we examine two
multiomic experiments profiling PBMC: a CITE-seq experiment
pairing full-transcriptome RNA-seq with 224 antibody markers
(11), and a 10x Multiome experiment pairing full-transcriptome
RNA-seq with ATAC (37), which measures chromatin acces-
sibility across the genome (Fig. 3E). The median alignment
of differentially expressed genes with the protein modality is
remarkably lower than their alignment with the ATAC modality

PNAS 2023 Vol. 120 No. 32 e2303647120

(0.83 and 0.93, respectively). These results demonstrate that
for PBMC, the transcriptome provides additional cell-type
separation patterns not present among the antibodies, but the
transcriptome and chromatin accessibility predominately capture
the same axes of variation.

Next, we compare two tissues, PBMC and the developing
brain, sequenced using 10x Multiome. The cross-modality
alignment is much higher in PBMC compared to the developing
brain (0.93 and 0.8, respectively). Although this difference could
be partially explained by slight differences in ATAC sequencing
coverage (SI Appendix, Fig. S5D), we hypothesize that the
main driver is biological—the developing brain contains mostly
differentiating cell populations, where RNA expression is less in
sync with chromatin-level changes as cells are changing cell states.
This contrasts PBMC, a terminally differentiated population
where RNA-chromatin relations have stabilized. Our observation
is supported by examining neurogenesis-related genes (purple) in
the developing brain. Many of these genes have low alignment
with the common space, which suggests that the degree of
feature alignment with Tilted-CCA’s common embedding may
contain developmental information. We examine this in more
detail in a later section through the construction of synchrony
scores.

From Fig. 3E, it is also worth noting that cell cycle genes
generally have high differentiability and low common space
alignment. Specifically, this signal is unique to the RNA modality
and not shared with ATAC (SI Appendix, Fig. S5E). This
observation is a recurring theme in developing tissues since
biologically, the cell cycle is a transient process and is not a
permanent aspect of cell identity encoded at the chromatin level.
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Designing Minimally Sized Antibody Panels for CITE-seq Data
with Tilted-CCA. Multiomic sequencing technologies for joint
assay of RNA expression and surface protein abundancy, such as
CITE-seq (16) or Abseq (17), require practitioners to select the
antibody panel (see ST Appendix, Fig. S6 for additional examples).
Large antibody panels are expensive, making them impractical
for large cohort studies. Hence, we desire to design a small
panel of antibodies that provide the most distinct information,
complementary to RNA, to separate cell types. We hypothesize
that Tilted-CCA is suitable for achieving this since quantifying
the intersection, and difference between two modalities can aid
in selecting the features that best contribute to their union.

For illustration, we consider an Abseq dataset of 461 genes
and 97 surface antibodies of cells from human bone marrow (20)
(Fig. 4A). Fig. 4B previews the panel of 10 antibodies selected by
Tilted-CCA (SI Appendix, Fig. S7A). The 10 antibodies do not
separate the cell types well by themselves. However, when these
antibodies are paired with the RNA modality via Consensus PCA,
the cell types are almost as separable as the original multimodal
data (87 Appendix, Fig. S7B). At a high level, our antibody-panel
design strategy greedily finds a set of antibodies whose protein’s
distinct components are differentially expressed across cell types
and are as uncorrelated as possible to each other and to the
common embedding (SI Appendix, Fig. S7C). As a diagnostic,
we plot the correlation network among the 97 antibodies,
where edges connect pairs of antibodies with highly correlated
distinct components (Fig. 4C). Here, the node color and size
reflect differentiability and alignment with common space,
respectively. The 10 selected antibodies are spread out across
this network, demonstrating their uncorrelated nature, while
having highly differentiable distinct components that are lowly
aligned with the common subspace. In contrast, conventional
immune markers such as CD11b+, CD14+, and CD16+ are
not selected since their protein expressions are already aligned
with RNA.

To quantify the benefits of using Tilted-CCA, we also consider
two other strategies for antibody-panel design: selecting the

A Human bone marrow (Abseq) (Triana et al., 2021): n=49,057 cells
RNA's UMAP Protein's UMAP Consensus PCA's UMAP
(p, = 461 genes) (p, = 97 antibodies) (i.e., "Union" of information)

Using original data

Consensus PCA's UMAP
(i.e., "Union" of information)

w

high distinct DE

Using our
antibody-panel
selection procedure

10 antibodies that are most differentially expressed or the 10
antibodies that are least correlated with the RNA modality.
These methods yield Consensus PCA embeddings that have
poorer separation among cell types, as quantified by using the
aforementioned enrichment scores (Fig. 4D, S Appendix, Fig. S7
Dand E). This is particularly evident among CD4+/CD8+ T cells
and B cells. The former strategy suffers since highly differentiable
antibodies might have expression patterns already prevalent in the
gene expression and thus provides redundant information when
paired with the RNA modality. The latter strategy suffers since
antibodies not correlated with gene expressions do not necessarily
provide high cell-type separation.

Tilted-CCA Reveals Transient Cell States and Development-In-
formative Genes in Developing Cell Populations. Joint profiling
of gene expression and chromatin accessibility at the single-cell
level enables the study of the coordination between chromatin
remodeling and transcriptome reprogramming during cellular
differentiation (23, 38). Toward this end, we explore the use of
the common and distinct embeddings of Tilted-CCA to answer
two questions: First, can we identify which cells are in a transient
or terminal cell state? Second, can we identify genes associated
with development and characterize the temporal coordination be-
tween the genes’ chromatin activity and RNA expression? Many
pseudotime-estimation methods, based on RNA or ATAC alone,
have been developed to address these questions. These methods
typically start by estimating the underlying cell trajectory and/or
RNA velocity fields (25-27, 29, 32, 39, 40). Estimating either cell
trajectories or velocity fields requires strong cell differentiation
signals and is often difficult to recover with confidence in
practice. Hence, complementing existing pipelines, we take an
alternative approach to address the above two questions that do
not depend on the estimation of cell trajectory or RNA velocity
field.

We start with the premise that development is characterized by
a coordinated change between the transcriptome and chromatin
accessibility. Hence, we posit that the geometry of cells in

D % enrichment using different
strategies of 10 ABs

Graph of highly correlated
(compared to using all 97 ABs)

pairs among 97 antibodies

Color of antibody
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Fig. 4. Tilted-CCA enables targeted antibody panel design for RNA+protein multiome assays. (A) UMAP of the RNA and protein modalities, as well as the
Consensus PCA capturing the union of information. (B) UMAP of the protein modality restricted to the 10 selected antibodies using our procedure showing
poor separation among annotated cell types, and the resulting Consensus PCA when combined with the RNA modality showing many of the axes of variations
compared to (A). (C) Correlation graph among the 97 antibodies, where the size of a node denotes the antibody's alignment with Tilted-CCA’'s common subspace
and the color denotes the significance of the antibody’s distinct component. All 10 selected antibodies are marked, as well as other conventional immune
markers that were not selected by our procedure. (D) Percent enrichment of different cell types (either various CD4+/CD8+ T cells or B cells) of the Consensus
PCA obtained by combining the RNA modality with different panels of 10 antibodies (obtained either using our Tilted-CCA, the most differentially expressed
antibodies, or the least correlated with the transcriptome), when compared to the enrichment of the Consensus PCA obtained by combining the RNA modality
with all 97 antibodies. A higher enrichment percent denotes less information is lost when using 10 antibodies.

6 of 12 https://doi.org/10.1073/pnas.2303647120

pnas.org


https://www.pnas.org/lookup/doi/10.1073/pnas.2303647120#supplementary-materials-v2
https://www.pnas.org/lookup/doi/10.1073/pnas.2303647120#supplementary-materials-v2
https://www.pnas.org/lookup/doi/10.1073/pnas.2303647120#supplementary-materials-v2
https://www.pnas.org/lookup/doi/10.1073/pnas.2303647120#supplementary-materials-v2
https://www.pnas.org/lookup/doi/10.1073/pnas.2303647120#supplementary-materials-v2
https://www.pnas.org/lookup/doi/10.1073/pnas.2303647120#supplementary-materials-v2

Downloaded from https://www.pnas.org by UNIVERSITY OF WASHINGTON LIBRARIES; ARCS - SERIALS on January 26, 2026 from |P address 205.175.118.50.

Absolute relative OCells in sync.
difference between (indicating not in transition)
common RNA 5. - —/\/\—/ /\——\ \/\___\ /\/\
and its prediction @Cells notin sync.

from ATAC —==r——— (indicating in transition) T T | i T 2 T : y T T S I . i
0.0 0.5 1.0 0.0 05 1.0 00 05 1.0 00 05 10 00 0.5 1.0 00 05 1.0
Pseudotime ordering of cells
B Mouse embryo development (E7.5-8.75) D Mouse brain development (E18) F Human brain development (PCW21)
(Argelaguet et al., 2022), n = 60,118 cells (10x Genomics), n = 3248 cells (Trevino et al., 2021), n = 5926 cells
Tilted-CCA common embedding's UMAP Tilted-CCA common embedding's UMAP Tilted-CCA common embedding's UMAP
@ @ @ 1 RNA @ ATAC
2000 HV genes) (173,037 peaks 2000 HV genes) (155,387 peaks (2000 HV genes) (269,616 peaks)
& Encircling younger cells . :"22
0 @ Encircling older cells sgoré
¢ ‘;éi\\//‘ Root
UMAP &Slingshot- UMAP &Slingshot-
inferred trajectories inferred trajectories
OPrim Str - © Ant Prim Str @Neuro OC/H Glu OF GABA OGIu3  @Glutl &nIPC
ONas mes OBlood prog OR Glia OGlio ©O0ligo OGlu2 OCP
@EXE endo @Par endo OGlu4 O@Glu5
@Erythroid @Endothe OR Glia
@ Cardiom
Other cells
[’
X Low
Synchrony Synchrony Synchrony sync.
score score score score
C Synchrony score by cell-type E Synchrony score by cell-type G Synchrony score by cell-type
1.00 1.00 —
0.75 T T ‘ 0.75 Y T 075 I l
0.50 0.50 0.50
0.25 0.25 0.25
0.00 : 0.00 0.00
J Synchrony score & RNA expr. across lineages K Synchrony score & RNA expr. across lineages
R of each gene (RNA expression or v"’ % / '\/
| chromatin activity) onto common ‘ High
' i i ene
_ subspace's graph Laplacian basis B | comtypre -llIIIlIIIIIIIIII\IINII‘ll\IIIIIH\IHIHHHI\ w1 — &7
% | — O \"i\ﬁ\'ﬂn I COES it A ‘”,l”
c o H\ DSCAML1 i 1 et il
o< S fill Mmmnu ‘ | m.u ;
5z _| " NedroDz =l 7 ! ‘W
o }; \ cuxa Ui i |
I ‘ " Sz " c
— i
[ 1
T T T T 1 ‘J 1‘ M il b
_ ...4...,\.... Habel ‘\Wu"""':’i”
5 W e \‘ b |
o CAS?=, \\-u‘lllu ur‘u ‘ ‘ Ml”M”“" Lt
o | Greedily select _ itan i A A - -
B2 uncorrelated genes Asl;h;fﬂ_'m I IiM gl | “”‘ W“l‘ . ! ! -J
2 with the highest f score Qa0 ZSEMIUELTELEHLTH AT H I ““ Tt HIIHI\M R LA |
58 across both modalities oEXiZ | ol i T i
< ot 20 | Rt SN o
L E Roof’ Glutamatergic GABA- Root Glutamatergic 4 gGlutama- Low
o _| lineage lineage ergic lineage lineage tegric5 gene
S lineage lineage  expr.
- | | I | | | Cells (ordered by Slingshot pseudotime) Cells (ordered by Slingshot pseudotime)
Low R? High R? Fisher enrichment p-value for GO term neurogenesis: Fisher enrichment p-value for GO term neurogenesis:
1.9 x 10° (14/50 genes) 4.6 x 107 (15/50 genes)

Fig. 5. Tilted-CCA infers the cell's developmental status and development-associated genes based on the common embedding between the RNA and ATAC
modality. (A) Asynchrony between the ATAC and RNA measured by the residual of predicting the common RNA with the ATAC modality, plotted against Slingshot's
pseudotime ordering of the cells in the glutamatergic 4 lineage of the human brain development dataset. (B) UMAP of a mouse embryo dataset where cells
are colored based on annotated cell types (where regions of young cells are circled in purple, and regions of older cells are circled in yellow) or Tilted-CCA's
synchrony scores. (C) Corresponding violin plot of the synchrony scores across cell types for the mouse embryo development dataset. (D) UMAP of a mouse
brain development system shown with the Slingshot trajectories where the cells are colored based on annotated cell types or Tilted-CCA's synchrony scores. (E)
Corresponding violin plot of the synchrony scores across cell types for the mouse brain development dataset. (F) UMAP of a human brain development system,
analogous to (D). (G) Corresponding violin plot of the synchrony scores across cell types for the human brain development dataset. (H) Schematic illustrating
the selection procedure for development-associated genes. (/ and /) Heatmaps of selected genes and cells in the glutamatergic lineage or the GABAergic lineage
in the mouse brain development system or selected genes and cells in the glutamatergic 4 or 5 lineage in the human brain development system. The genes in
(/) and (K) are ordered to visualize the developmental cascade, and the exact Fisher enrichment of the enrichment of the selected 50 genes for the GO term
“neurogenesis” is marked. The cells are ordered based on the pseudotimes estimated by Slingshot for visual clarity, and the pseudotimes are not needed when
constructing the synchrony scores or selecting the development-associated genes.

the common embedding between RNA and ATAC captures  and chromatin-level signals. The coordinated yet asynchronous
the differentiation trajectory and that large deviations from the =~ change between chromatin remodeling and gene transcription
common embedding capture the asynchrony between RNA-level ~ has been characterized by numerous recent studies on tran-
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scription priming (23, 41-45). To measure the synchrony of
the RNA and ATAC modalities along a latent developmental
trajectory (without knowledge of that trajectory), we design a
linear regression to predict the RNA common-space component
of each gene using the ATAC modality, where large absolute
residuals indicate a lack of synchrony between that gene’s RNA
and ATAC (Methods). The absolute residuals of this prediction
are plotted against developmental pseudotime for specific genes
relevant to cortical neurogenesis based on a 10x Multiome
dataset of developing human brain (37) (Fig. 54). Note that the
pseudotime is used only for comparison and not for computing
the regression. We see that, indeed, for the neurogenesis-related
genes, the residuals are small in terminal cells (i.e., pseudotime
close to 1) and large for cells in transition. Encouraged, we design
a cell-wise synchrony score, which summarizes the magnitude
of these residuals across all genes for each cell, to distinguish
between cells in terminal versus transient state without the
reliance on trajectory reconstruction and pseudotime estimation

(Methods).

We apply the synchrony score to three 10x Multiome datasets
of developing tissues. First, consider the developing mouse
embryo (46), equipped with cell-type labels delineating the
youngest cell types such as primitive streak and blood progenitors
as well as the terminal cell types such as cardiomyocytes and
erythroids. We see that the synchrony scores are indeed low
for the former group while high for the latter group (Fig. 5 B
and C). Next, consider the developing mouse brain, where cell-
type labels were transferred from an independent RNA reference
(47) using SAVERCAT (48). Here, cell lineages originate
from the radial glia and differentiate into oligodendrocytes,
cortical/hippocampal glutamatergic, and forebrain GABAergic
cells. We see that both the radial glia and the cells at terminal
fates have high synchrony scores (Fig. 5 D and E). In contrast,
the neuroblast cells and cells in the earlier stages of glutamatergic
differentiation have lower synchrony scores. Last, consider the
developing human brain (37). Here, development originates
from the cycling progenitors and differentiates into either the
radial glia or different types of cortical glutamatergic neurons.

RNA-Gene activity relations via Tilted-CCA in Glu4 lineage in Trevino et al. (2021)
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Fig. 6. The relation between a gene's expression and cis-chromatin activity is clarified by Tilted-CCA. (A) Time series showing the mean gene expression
and cis-chromatin activity across pseudotime after applying Tilted-CCA for NTRK2, illustrating increasing expressions in both modalities. (B) Phase portrait
showing the mean gene expression plotted against cis-chromatin activity for NTRK2 after applying Tilted-CCA, where cells are colored by the pseudotime. A
corresponding inset shows the phase portrait if Tilted-CCA were not performed, illustrating noisier relationships between the two modalities. (C) Additional
phase portraits for other important genes with increasing trends for both gene expression and cis-chromatin activity, where the phase portraits are shown with
(Top) and without (Bottom) applying Tilted-CCA. (D, E, F) Plots for ASCL1, illustrating decreasing expressions in both modalities, analogous to (A, B, C) respectively.
(G, H, I) Plots for NEUROD?1, illustrating a cycling relation between both modalities, analogous to (4, B, C) respectively. The genes NTRK2, ASCLT and NEUROD1
in (A B, D, E, G, H) are showcased due to their importance for cortical neurogenesis.
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The synchrony scores are high for both the cycling progenitors,
radial glia, and the mature terminal cell types (Fig. 5 F and
G) and low for the cells in transition. Thus, the Tilted-CCA
synchrony score reliably distinguished between cells in a transient
or terminal cell state for all three datasets from developing tissues.
Notably, the synchrony score uses RNA-ATAC relationships
not used by existing methods and does not require the a
priori estimation of cell trajectory or RNA velocity, hence
providing orthogonal information that complements existing
methods.

We move on to the second question—without a priori
knowledge of the developmental trajectory, can we identify the
development-associated genes and characterize the relationship
between their ATAC-derived chromatin activity and their RNA
expression? Here, we define chromatin activity as the total read
coverage in peak regions from the ATAC modality that is 500
base pairs from the gene’s transcription start sites. We apply
Tilted-CCA to these RNA and chromatin activity modalities,
yielding embeddings similar to those in Fig. 5 D and F (87
Appendix, Figs. S8 C and E and S9A). Based on the premise
that development-associated processes should be captured in
Tilted-CCA’s common embedding, we measure how well each
gene’s expression and chromatin activity conform to the geometry
of the common embedding’s nearest-neighbor graph. To get a
representative list of gene markers for all stages and branches
of development, we greedily select genes that highly conform
to the common embedding’s geometry in both modalities and
are uncorrelated with each other (Fig. 5H, Methods). The 50
genes identified in this way for both the mouse and human
developing brain systems are highly enriched for neurogenesis
and display varied expression profiles across pseudotime and
lineages (Fig. 5 I and J, and SI Appendix, Fig. S9B). Notably,
the ordering of cells in the shown heatmaps is chosen based on
Slingshot’s pseudotime and is used only for visualization but
not selection. We also show the synchrony score of each cell
against its ordered pseudotime, indicating that, as expected, the
synchrony is indeed low for the transitioning cells. These findings
demonstrate that Tilted-CCA’s common embedding provides
an alternative method of selecting development-associated genes
that do not require the prior estimation of the developmental
trajectory (30, 49).

Among the development-associated genes, we observe a diverse
collection of relations between a gene’s expression and its
chromatin activity, and importantly, the cross-modal relationship
is clarified in Tilted-CCA’s common embedding. As expected,
for many genes activated during development, their chromatin-
level activity precedes their expression activation. An example
gene for this along the glutamatergic 4 (Glu4) lineage in
the human embryonic brain, such as NTRK2 (Fig. 6 A4 and
B). This “priming” effect can be visualized as a time series
across pseudotime, where chromatin activity increases gradually,
preceding and foretelling the steep increase in gene expression
much later (Fig. 6A4). The phase portrait for the common
components of RNA expression versus chromatin activity makes
this relationship more apparent with a chromatin-activity to RNA
curve that “runs before rising” (Fig. 6B). Next, consider a gene
whose expression decreases over development, such as ASCLI.
We find that for these genes, chromatin activity drops much
more gradually than RNA expression (Fig. 6 D and E). The cis-
peaks remain open after transcription of the gene has terminated,
hinting at short-term cellular memory of the previous state. Last,
and perhaps most curiously, we see evidence of genes that do
not follow these aforementioned patterns but instead have a
cyclical trend (Fig. 6 G and H). Phase portraits for the other
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selected genes in Fig. 5K are shown in ST Appendix, Fig. S8C.
In almost all cases, the relationship between RNA expression
and chromatin activity is clarified in the Tilted-CCA common
embedding. This is shown by comparing Fig. 6 B, E, and H to
their insets.

Discussion

Tilted-CCA extends CCA to decompose multimodal data into
a sum of axes of variations that are shared between modalities
and patterns that are distinct to each modality. We demonstrate
the utility of Tilted-CCA on single-cell data, where we analyze
multiomic datasets measuring the RNA and protein modalities
or the RNA and ATAC modalities. For multimodal RNA and
protein data, we show that Tilted-CCA aids in the design
of targeted antibody panels that are complementary to the
RNA modality. For multimodal RNA and ATAC data, we
show how Tilted-CCA’s common embedding, which captures
variation supported by both the RNA and ATAC modal-
ities, can be used to estimate quantities related to cellular
differentiation.

Tilted-CCA complements existing dimension-reduction
methods for multiomic datasets because Tilted-CCA captures
the intersection of information between modalities while existing
methods aim to capture the union of information. While these
“union”-type methods, such as Consensus PCA, WNN, scAl,
and MOFA+, help aggregate information across modalities to
improve cell-type discovery, these methods are not suitable
for understanding how the two modalities are related to each
other. The decomposition of multimodal data into common
and distinct components is a fundamentally different question
requiring new statistical methodology. Tilted-CCA answers this
question by first defining what is common information via
the shared geometry of the two high-dimensional matrices and
then adapting the linear framework of CCA to encapsulate
this information. Importantly, this linear framework enables
biologists to address cell-centric or variable-centric questions in
downstream analyses.

Materials and Methods

Tilted-CCA consists of five steps: 1) constructing nearest-neighbor graphs
from each modality, 2) defining the target common manifold that encodes
the common geometry between the two modalities, 3) performing CCA,
4) optimizing the appropriate tilt in the decomposition of CCA's canonical
score matrices such that the common space approximates the target common
manifold,and5)derivingthefina|decompositiontoestimateC,D(U,and D).

Let X(1) € RM<P1 and X(2) & RM*P2 be the two matrices that form the
multiomic dataset, where the same n cells are measured across pq features in
Modality 1 and p, features in Modality 2. We assume that both X(1) and x2)
are preprocessed beforehand to have centered features. We also assume that
both X(1) and X(2) are low-rank, i.e., rank(X(U) = rank(X(z)) = r, where
r < min{n, pq, p2}. See SI Appendix for a generalization of this assumption
and its discussion.

Step 1: Construct Nearest-Neighbor Graphs. The intent of the first step is
to quantify what cell-separation information is contained within each modality.
Specifically, Tilted-CCA constructs two nearest-neighbor graphs, one for each

X(M and X(Z), the data matrix for each modality. Let k denote the number of
nearest neighbors, where k < n. Let the SVD of X(1) and X(2) be denoted as

XD~ YOAD VYT ang x@ — y@ADGOYT, g
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where, for both ¢ e {1,2}, U) e R"™ " and V(©) e RPXTt gre
orthonormal matrices, and A(6) e Rrex7e are diagonal matrices. Consider the
low-dimensional embeddings UM A() e R and U AQ2) e RM*72,
We normalize each cell's embedding by constructing matrices p(O) ¢ rnxre
where

2
fore € {1,2}andi € {1, ..., n}. Then, we construct two k-nearest-neighbor
graphs 6(M, 6@ e {0,137", where these graphs are represented as
symmetric binary adjacency matrices among all n cells. See SI Appendix for
its explicit construction.

The benefit of using nearest-neighbor graphs is that they are flexible
mathematical objects to represent the cell-separation information in each
modality. They also enable a principled procedure to define the information
shared between both modalities in the next step.

P(?) - [U(K)A(Z)]i,/” [U(‘Z)A(l)}

i, I

Step 2: Construct Target Common Manifold. The intent of the second
step is to define what information is shared between the two modalities.
Here, Tilted-CCA determines the target common manifold based on the two
aforementioned nearest-neighbor graphs 6(1) and 6. This target common
manifold G € {0, 1} is also represented as a symmetric binary adjacency
matrix. Ideally, the manifold G (represented as a graph) enumerates which
groups of cells are far in both modalities (i.e., both modalities agree that two
groups of cells are distinct). Stated differently, as an example, if two groups
of cells are far in Modality 1 (dictated by G()) but are close in Modality 2
(dictated by 6(2)), we would intuit this as information unique to Modality
1 and, hence, would not this cell-separation information be encoded in G.
We design the construction of G to operationalize this idea. This construction
of G is at the heart of Tilted-CCA since afterward, Tilted-CCA will estimate a
linear decomposition that best approximates G's nearest-neighbor structure in
Step 3.

We have two different procedures for constructing G, based on whether or

nota clustering is provided a priori for each of X(!) and X(2).

e Scenario with no global clustering structure: When no global structure is
provided, constructing G is relatively straightforward. Intuitively, we include
an edge between two cells in G if there is an edge present between the two
cells in either G(1) or G(2).

e Scenario with global clustering structure: When global structure is provided,
the procedure to construct G is more involved. For cell i, we use a
quadratic optimization program to determine how many edges from 6(M

or 6(2) to downsample so both modalities contribute the same amount of
information.

For example, the former setting is more suitable for developmental datasets
where this is a smooth continuum of cells in X(1) and X(2), meaning there
are no well-defined clusters. The latter setting is more suitable for PBMCs,
where immune cells form prominent clusters of cells. See SI Appendix for
further motivation and explicit mathematical construction of G. Intuitively,
if Modality 2 contains little geometric information in G(2) compared to
Modality 1, then G should also not contain much geometric information. We
verify this via pseudoreal experiments based on the CITE-seq bone marrow
dataset (18). There, we artificially make the protein modality have less and
less cell-type separation and demonstrate the impacts on G, the resulting
Tilted-CCA embedding, and the downstream alignment scores (S/ Appendix,
Fig. $12).

While G captures the information shared between both modalities, this graph
does not address feature-level questions (for example, which genes coordinate
the most with the other modality?). Hence, the following steps aim to estimate
a low-dimensional embedding whose common component best approximates
the cell-separation information in G.

Step 3: Perform CCA. Theintentofthe third step is to compute the CCAbetween
XD and X(2), as the resulting canonical score matrices enable a principled

https://doi.org/10.1073/pnas.2303647120

decomposition in the framework of Fig. 1B. We briefly review CCA here to lay
out the notation. Let =(V) = (X(NMTx( /p () = (x(@)Tx(2) / and
=(12) = (X(”)TX(Z)/n. Recall that rank(XU)) = rank(X(z)) = r.Then,
a rank-r CCA solves the optimization problem:

{A B} = argmax tr ((A/)TE(”)(B’)) [2]
A/GRP‘I xr
B,ERPZ xXr
suchthat (@) =M@y =1, and (8)T=@(B) =1,
where I, is the r-dimensional identity matrix. Equipped with the solution to
Eq. 2, we can compute the canonical score matrices for £ € {1, 2},

70 = x@Op,n. 3]

Note that by the identity constraints of CCA in Eq. 2, Z(9) is an orthonormal
)||2 = 1forallj € {1,...,r}. See SI Appendix for a more
thorough review of the explicit solution of Eq. 2.

matrix, i.e., ||Z,(;Z

Step 4: Optimize the Common and Distinct Scores. The intent of the fourth
step is to decompose the canonical scores Z(M and 22 into a common score
matrix C (also called the common embedding) and the distinct score matrices
HON= R™" for Modality £ € {1, 2} (also called the distinct embeddings), in
such away that the geometric relations among the n cells in C best approximate
those in the target common manifold G. Additionally, Tilted-CCA imposes the
constraint that for £ € {1, 2},

70 = c+p®),

where (D())Tp(2) = 0 e R,

To construct €, (), and D), we first describe how the proposed tilts
for each latent dimension's common vector enables us to construct these
three matrices. The construction is done column-wise, for latent dimension

j € {1,...,r. Consider atilt 7; € [0, 1], where if z; = Othen C,; = Z.(;)

andif7j = Tthen C,; = 72 Specifically, there is a unique construction

of Cji DF}),DFf) € R based on Z_(;),Z_(jz) € R"and 7; € [0,1], such
that

C.j € span {Z(]) Z(Jz)}

cos™" ((C.,,')T(Z_(j)))/||C_,j||2 =17 cos”! ((ZE/,Z))T(Z_(I]))),

(M _ (M . p@ _ 5,2
C,J+D.J *Z-,j’ and C-,j+D.,j fZ.J,

)T 0?) =0,

IC 2 < 1.

The first relation ensures that we are only considering common vectors in
the same hyperplane as the two canonical score vectors—this ensures that the
resulting columnvectors C are orthogonal after this construction is complete. The
second relation is why we call ; the "tilt"-we are ensured that C_jis a vector that

has an angle of zj-percent between 7 and Zl(z).Thethird and fourth relations

(1)
o

the two distinct vectors D_(J.) and D.(f) are orthogonal, which is why we call
these the “distinct” vectors. The last relation ensures a unique decomposition.
The vectors C_, D(}), and 0¥

‘L,

ensure a valid decomposition of Z*;” and Z_(f). The fifth equation ensures that

can be constructed to satisfy these constraints

using straightforward geome{ry and linearalgebra. (See Fig. 1H for the intuition
on the details of the calculation).
Next, we describe how we measure the quality of a proposed tilt z; based on

its similarity to the target common manifold G. (This is reflected by "Measure
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similarity between two graphs” in Fig. 2C.) Consider the common manifold G
described in Step 2 and the k-nearest-neighbor graph constructed from C with
tilt z;, denoted as 6(G9). Equipped with Gand 6(Ga), oursimilarity is defined
by the Grassmannian distance between two sets of eigenvectors, each derived
from the normalized random-walk Laplacian graph basis (50) for either of these
graphs. Specifically, considering the common manifold G, let A € R"*" denote
the degree matrix which is a diagonal matrix where

n
ZI',I' = ZG’/’ foralli e {1, .. .,n},
j=1

and define the normalized Laplacian as I’ = A—1GA~", and then define the
normalized random-walk Laplacian as

[ = (Z/)JL/ c ]Rnxn/

for A is a diagonal matrix where
n
Al = ZL; forallie {1,...,n}.
j=1

Using this construction, let W and W) be the leading-K; eigenvectors of [
and L(G%) normalized random-walk Laplacian basis matrices constructed from
the graphs G and 6(Gm), respectively, for some tuning parameter K;. Since

both W and W(G%) are points along the Grassmannian manifold, we use
the Grassmannian distance (51, 52) to measure the distance between W and

w(G5), Specifically, consider the SVD of
wTwGn) — upyT e rKxK,
where D = diag(ay, . . ., ok, ). The Grassmannian distance is then defined as

K

(Z (cos_1(0,~))2)

i=1

1/2
2 [4]

A smaller Grassmannian distance implies a higher similarity between G

and G(C?T/), and we wish to find the ; that minimizes this Grassmannian
distance.

We now have all the necessary ingredients for an optimization procedure.
After an appropriate initialization of all the tilts 71, . . ., 7/, we use a zero-order
cyclical (either using Nelder-Mead ora grid-search) optimization over z; & [0, 1]
for each latent dimensionj € {1, ..., r} to minimize the distance between the

target manifold G and the common embedding 6(5%), and we cycle through
each latent dimension iteratively (i.e., many epochs) until we reach convergence
ora maximal epoch limit. See SI Appendix for additional statistical perspectives
on this step.

Step 5: Compute the Final Decomposition. The last step is to determine the

decomposition of X and X(2) based on the common and distinct scores.
Specifically, for Modality € € {1, 2}, let
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