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Abstract
Deep reinforcement learning policies, which are
integral to modern control systems, represent valu-
able intellectual property. The development of
these policies demands considerable resources,
such as domain expertise, simulation fidelity, and
real-world validation. These policies are poten-
tially vulnerable to model stealing attacks, which
aim to replicate their functionality using only
black-box access. In this paper, we propose
Stealthy Imitation, the first attack designed to
steal policies without access to the environment
or knowledge of the input range. This setup has
not been considered by previous model stealing
methods. Lacking access to the victim’s input
states distribution, Stealthy Imitation fits a reward
model that allows to approximate it. We show
that the victim policy is harder to imitate when
the distribution of the attack queries matches that
of the victim. We evaluate our approach across
diverse, high-dimensional control tasks and con-
sistently outperform prior data-free approaches
adapted for policy stealing. Lastly, we propose a
countermeasure that significantly diminishes the
effectiveness of the attack.1

1. Introduction
Neural networks trained with reinforcement learning (RL),
known as deep RL policies, are increasingly employed in
control systems due to the exceptional performance and au-
tomation capabilities. Examples include DeepMind’s use
of RL in cooling control systems (Luo et al., 2022), throttle
valve control in combustion engines (Bischoff et al., 2013),
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Figure 1. Traditional data-free model extraction fails in control
systems due to the unknown environment with varying sensors.
Stealthy Imitation effectively extracts policies by stealing the envi-
ronment first.

and Festo Robotino XT robot control (Bischoff et al., 2014).
Developing a reliable deep RL policy requires substantial
resources, including expertise in training, precise simula-
tion, and real-world testing; the resulting policy becomes
important intellectual property. However, neural network
models are vulnerable to stealing attacks (Tramèr et al.,
2016; Orekondy et al., 2019b; Truong et al., 2021) that at-
tempt to copy the functionality of the model via black-box
query access. The risks posed by such attacks in control
systems are multifaceted, including unauthorized model us-
age, exposure of sensitive information, and further attacks
that can lead to denial of service, operational failures, or
even physical damage on the equipment or surroundings.

Model theft typically consists of two steps. First, a trans-
fer dataset is created by querying the victim model with
publicly available data (Orekondy et al., 2019b), random
noise (Tramèr et al., 2016), or samples synthesized by a neu-
ral network (Truong et al., 2021), and recording the model
predictions as pseudo-labels. The latter two methods fall
under the category of data-free model stealing. After this
querying phase, the attackers train their own model via su-
pervised learning, treating the pseudo-labels as ground truth
for their samples.

Control systems, such as industrial automation, remotely
controlled drones or robots, pose additional challenges for
model stealing. A policy perceives states and rewards (also
known as the environment), based on which it decides the
next action to take. In this context, the attacker can poten-
tially send queries to the system, but does not have access to
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the environment. Data-free stealing attacks hold the promise
of environment-free policy stealing. While existing data-
free attacks have proven effective in the image domain, they
operate under the assumption that the attacker knows the
valid input range. For instance, valid image pixels are as-
sumed to be in the range of [0, 255]. However, such prior
knowledge is difficult to acquire in control systems or other
applications, due to the distinct semantics and scales of
components within the measured state. As a consequence,
policy stealing becomes more difficult.

To address this challenge, we introduce Stealthy Imita-
tion (SI), the first environment-free policy stealing attack.
Our method solves the two fundamental difficulties of this
task: (i) the necessity of accurately estimating the input
range and distribution of the states visited by the victim
policy, and (ii) the identification of a metric that allows the
attacker to evaluate the estimated distribution, and thus its
own performance in stealing the policy. These advance-
ments collectively enable a more robust and efficient policy
stealing attack. Notably, the derived distribution remains ap-
plicable even when the victim updates their policy without
altering the training distribution, offering potential savings
in query budget for subsequent attacks. Furthermore, it en-
ables the attacker to access confidential information, like
sensor types or preprocessing methods. The information
could potentially aid in the development of their own con-
trol system. The superior performance of our method over
traditional data-free model extraction is shown in Figure 1.

Contributions. (i) We introduce a more general and realistic
threat model adapted to control systems, where the attacker
lacks access to the environment and to the valid input ranges
of the policy. (ii) We propose Stealthy Imitation (SI), the
first reward-guided environment-free policy stealing method
under minimal assumptions. We show our attack to be ef-
fective on multiple control tasks. (iii) We introduce the first
proxy metric to measure the quality of the estimated distribu-
tion. We empirically and statistically validate its correlation
with the divergence between the estimated distribution and
the actual state distribution of the victim policy. (iv) We
develop a defense that is able to counter the proposed attack,
thus offering a practical solution for practitioners.

2. Related Work
Knowledge distillation. Knowledge distillation (KD) was
initially designed for model compression, aiming to ap-
proximate a large neural network (commonly referred to
as the teacher model) with a more compact model (the
student model). This facilitates deployment on hardware
with limited computational capabilities (Ba & Caruana,
2014; Hinton et al., 2015). Unlike our work, which adopts
an adversarial view, KD typically presumes access to the
teacher model’s original training dataset, enabling the stu-

dent model to learn under the same data distribution. When
the dataset is large or sensitive, some methods opt for sur-
rogate datasets (Lopes et al., 2017). Others eliminate the
need for it by employing data generators in data-free KD
approaches (Fang et al., 2019; Micaelli & Storkey, 2019).
These methods often assume white-box access to the teacher
model for backpropagation, which is a major difference with
our setup.

Model stealing. Model stealing focuses on adversarial
techniques for the black-box extraction of a victim model
(equivalent to the teacher model in KD) (Tramèr et al., 2016;
Orekondy et al., 2019b). The attacker, who aims to create
a surrogate model (analogous to the student in KD), lacks
access to the original training dataset of the victim model.
Most existing methods explore data-free stealing, draw-
ing inspiration from data-free knowledge distillation, but
lacking the means to use the victim model to train a data
generator. These techniques estimate the gradient of the vic-
tim model for training their generator and encourage query
exploration by synthesizing samples that maximize the dis-
agreement between victim and attacker model (Sanyal et al.,
2022; Beetham et al., 2022; Truong et al., 2021). While
much work has been conducted in image-based domains,
limited research exists on model stealing in the context of
reinforcement learning (Behzadan & Hsu, 2019; Chen et al.,
2021). Our approach sidesteps the need for environment
access and specific knowledge of the RL algorithm em-
ployed by the victim. Existing defenses primarily focus
on detecting stealing attacks (Juuti et al., 2019; Kesarwani
et al., 2018) or perturbing model predictions (Tramèr et al.,
2016; Orekondy et al., 2019a). Our proposed defense falls
in the latter category: the policy perturbs its outputs when
the query falls outside the valid input range.

Imitation learning. Imitation learning aims to train agents
to emulate human or expert model behavior. Within this
domain, there are two main methodologies. The first is
behavioral cloning (BC), which treats policy learning as a
supervised learning problem, focusing on state-action pairs
derived from expert trajectories (Pomerleau, 1991). The
second is inverse reinforcement learning, which seeks to
discover a cost function that renders the expert’s actions
optimal (Russell, 1998; Ng et al., 2000). Another method of
interest is generative adversarial imitation learning (GAIL),
which utilizes adversarial training to match the imitating
agent’s policy to that of the expert. Notably, GAIL achieves
this alignment using collected data and does not need further
access to the environment (Ho & Ermon, 2016). Our work
deviates from these imitation learning approaches, as we do
not require access to the interaction data between the expert
policy, i.e., the victim for us, and its environment.
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3. Threat Model
In this section, we formalize the threat model for black-box
policy stealing in the context of deep RL policies used in
control systems. First, we introduce preliminary concepts
and notations. Then, we formalize the victim’s policy. Fi-
nally, we outline the attacker’s knowledge and the relevance
of this threat model to real world attacks.

Notations. In the context of deep RL, a policy or agent,
is denoted by π with accepting state s, and predicting an
action a, such that a = π(s). A trajectory τ ∼ π consists
of a sequence of states and actions collected from the inter-
action between policy and environment. We represent the
initial state distribution as ρ0, and the environment’s state
transition function as f , such that st+1 = f(st,at). The
return, or cumulative reward, for a trajectory is represented
as R(τ), while S is the distribution of states visited by the
deployed policy.

Victim policy. We consider a victim operating a deep RL
policy, πv , trained to optimize a particular control objective,
accepting a state s ∈ Rn and predicting the action a∗ ∈ Rk

within the range of [−1, 1] at each time step. Note that
victim policies accepting images as input are out of scope,
since their input range is typically known (e.g., [0, 255]).
The environment is fully observable by the victim policy.
The performance of the policy is quantified using the ex-
pected return Eτv∼πv [R(τv)] in the deployed setting. Sv

represents the distribution of states visited by πv .

Goal and knowledge of the attacker. We take on the role
of the attacker, with the goal of training a surrogate policy
πa, predicting action â, to replicate the functionality of the
victim policy πv for similar return in the environment. The
attacker possesses black-box access to πv by querying states
and obtaining actions as responses. The total amount of
queries is represented as B. However, the attacker lacks
knowledge on several key aspects: (i) the internal architec-
ture and RL training algorithm of πv, (ii) the environment
setup, including the initial state distribution ρ0, the state-
transition function f , and the reward function R, (iii) the
semantics associated with the input and output spaces, (iv)
the range of the inputs, as well as the state distribution Sv,
and (v) the confidence score of all possible actions from the
victim policy. This lack of knowledge makes policy stealing
particularly challenging.

Real-world relevance. Our threat model highlights the ur-
gency of addressing vulnerabilities in deep RL policy-based
control systems and targets two scenarios where attackers
opt for an environment-free policy stealing method to ex-
ploit these systems. Firstly, the attacker might not know the
environment when they access a networked victim policy
they don’t own. Secondly, there are cases where interacting
with the environment is possible but impractical and ineffi-

cient due to the risk of being detected, time, cost and damage
concerns. With the widespread adoption of the Internet of
Things (IoT) and control systems’ physical world impact,
these scenarios are common. Once the policy is stolen, it
can lead to additional system attacks, causing service de-
nial, operational failures, or equipment damage. Moreover,
successful state distribution estimation can reveal sensitive
information like sensor types or preprocessing methods,
helping attackers develop their own systems and posing fu-
ture security threats. Therefore, it is important to investigate
how attackers can steal policies without environment access
and create defenses to safeguard control systems.

4. Approach: Stealthy Imitation
This section introduces the details of Stealthy Imitation. The
method overview in Section 4.1 is followed by an explana-
tion of each of its components in Section 4.2. Section 4.3
shows how to use the estimated distributions from prior
steps to steal the target policy. Lastly, we propose a defense
that can make the attacker’s goal more difficult to reach.

4.1. Method Overview

We introduce Stealthy Imitation as attacker that steals a
policy without access to the environment or to the valid
input range. To achieve their goal, the attacker aims to
optimize the surrogate policy πa to minimize the expected
return difference between their own policy πa and that of
the victim πv in the environment:

argmin
πa

∣∣∣∣ E
τa∼πa

[R(τa)]− E
τv∼πv

[R(τv)]

∣∣∣∣ (1)

However, the attacker does not have access to the environ-
ment or the reward function. Instead, they can minimize the
action difference between their policy and that of the victim
on an estimated state distribution Sa using a loss function
L as a proxy for the reward:

argmin
πa

E
s∼Sa

[L(πv(s), πa(s))] (2)

The attacker’s goal is thus to find both the victim policy and
the appropriate distribution of states. The Stealthy Imita-
tion objective encourages exploration by maximizing the
disagreement between the victim and attacker models:

II
argmin

πa

III & IV
argmax

Sa

E
s∼Sa

[
L(πa(s),

I
πv(s))

]
. (3)

The core of Stealthy Imitation consists of four main steps
repeated iteratively until the attacker query budget is con-
sumed: (I) transfer dataset construction by querying the
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Figure 2. Overview of Stealthy Imitation that iteratively refines the
estimated state distribution Sa.

victim policy with states sampled from the estimated dis-
tribution Sa; (II) training the attacker policy πa via behav-
ioral cloning to mimic the victim policy on the transfer
dataset; (III) reward model training R̂ to discriminate the
behaviours of the victim and current attacker policy, and (IV)
reward-guided distribution refinement to closer match
the victim’s state distribution using the proxy reward score
on each query state. Once the attacker’s budget is exhausted,
we train πa from scratch only on the best estimated distribu-
tion with the help of a distribution evaluator. The approach
overview is depicted in Figure 2. We detail each step in the
following.

4.2. State Distribution Estimation

I. Transfer dataset construction. As the attacker has no
knowledge of the state distribution of the victim Sv, we
choose a diagonal Gaussian distribution N (µ,σ2) as
estimate of the attacker distribution Sa (Sa(s;µ,σ) from
here on). States s are sampled from this distribution and
passed to the victim policy to obtain corresponding actions
a∗. The transfer dataset Dv described below is split into
training and validation for use in the subsequent method
steps:

Dv = {(s,a∗)},
where s ∼ Sa(s;µ,σ),

and a∗ = πv(s).

(4)

Lacking prior knowledge, Sa is initialized with µ = 0n

and σ = 1n. In each iteration, we use a dynamic query
budget by multiplying a base budget bv with the average of
σ. This ensures sufficient learning in mimicking the actions
of the victim policy, especially when the estimated σ is
large, thereby stabilizing the refinement process.

II. Behavioral cloning. We follow the conventional step in
model stealing to mimic the victim policy’s behavior using
the training split of the transfer dataset Dv. To this end,
we employ behavioral cloning using Huber loss (Huber,
1964), which is robust to outliers like L1 and smooth and

differentiable near the minimum like L2:

Lb(â,a
∗) =

{
0.5(â− a∗)2, if |â− a∗| < 1

|â− a∗| − 0.5, otherwise
(5)

III. Reward model training. Our approach is driven by
the intuition that the victim policy, while complex within its
domain, behaves more simply outside it due to insufficient
training. This simpler behavior can be more easily mim-
icked. Based on this intuition, we hypothesize that as the
estimated state distribution Sa approaches the victim’s state
distribution Sv , the complexity of the victim’s responses in-
creases. This makes it more difficult for the attacker policy
πa to accurately imitate the victim. This hypothesis is sup-
ported empirically by the results in Section 5.3. To evaluate
the difficulty of imitation from the state-action pairs from
πa and πv, we introduce a reward model R̂, inspired by
GAIL (Ho & Ermon, 2016). The role of R̂ is to distinguish
between state-action pairs generated by the victim and at-
tacker policy. A more effective distinction suggests that the
attacker’s policy is more challenging to imitate accurately.
To this end, we construct a dataset Da using actions â gen-
erated by πa(s) after BC, and train a reward model R̂ by
minimizing the loss function:

Lr(s,a) = E
(s,â)∼Da

[− log(R̂(s, â))]

+ E
(s,a∗)∼Dv

[− log(1− R̂(s,a∗))].
(6)

IV. Reward-guided distribution refinement. We use the
trained reward model from the previous step R̂ to generate
proxy reward values r̂(s,a∗) = − log(R̂(s,a∗)) for each
state-action pair. A high reward value r̂(s,a∗) indicates
that the attacker policy fails to effectively mimic the victim,
suggesting that the state has higher probability in Sv . These
reward values serve as weights for the corresponding sam-
ples s, which we use to recompute the parameters µ′ and
σ′ of the distribution for the next iteration, as follows:

µ′ =

∑
(s,a∗)∈Dv

r̂(s,a∗) · s∑
(s,a∗)∈Dv

r̂(s,a∗)
,

σ′2 =

∑
(s,a∗)∈Dv

r̂(s,a∗) · (s− µ′)2∑
(s,a∗)∈Dv

r̂(s,a∗)
.

(7)

4.3. Policy Stealing on the Estimated Distribution

Since the attacker has no knowledge of the victim states’
distribution Sv, we introduce a model πe, which we term
distribution evaluator. This model helps assess the closeness
between the attacker and victim distributions Sa and Sv.
πe is trained via behavioral cloning and is reinitialized in
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Algorithm 1 Stealthy Imitation
1: Input: Victim policy πv (blackbox access), total budget B,

reserved budget Br , base query budgets bv and ba for victim
and attacker victims respectively in each iteration

2: Output: Trained attacker policy πa

3: Initialize attacker policy πa, distribution evaluator πe, reward
model R̂, µ← 0n, σ ← In

4: Initialize proxy metric L̃ ← −∞, consumed budget Bc ← 0,
and to be consumed budget bc ← bv

5: repeat
6: // I. Transfer dataset construction
7: Dv ← QueryAction(πv,µ,σ, bc)
8: // Evaluate current estimated distribution
9: L̄b ← DistributionEvaluate(Dv, πe, bv)

10: // Update parameters if current loss exceeds max loss
11: if L̄b > L̃ then
12: D̃, L̃, µ̃, σ̃ ← Dv, L̄b,µ,σ
13: end if
14: // II. Behavioral cloning
15: πa ← BehavioralCloning(Dv, πa, bv · σ̄)
16: // III. Reward model training
17: Da ← QueryAction(πa,µ,σ, ba)

18: R̂ ← TrainReward(Da,Dv, R̂, bv · σ̄)
19: // IV. Reward-guided distribution refinement
20: µ,σ ← DistRefine(Dv, R̂, bv · σ̄)
21: Bc ← Bc + bc
22: bc ← max(bv, bv · σ̄)
23: until Bc + bc ≥ B −Br

24: D̃ ← D̃ ∪ QueryAction(πv, µ̃, σ̃, B −Bc)

25: πa ← BehavioralCloning(D̃, πa, |D̃|) with reinitialized πa

26: return πa

each iteration to ensure its validation loss L̄b measures only
the error of the current estimated distribution. Based on
our hypothesis, a higher loss L̄b is indicative of Sa closely
mirroring Sv . We only use bv samples of the transfer dataset
Dv to train πe instead of bv × σ̄. This ensures it is only
affected by the distribution divergence without the influence
of training data size. The total query budget B comprises
two parts: the budget used to refine the distribution and
the reserved budget Br for training the final attacker policy
on the best-estimated distribution. Once the first part of
budget is exhausted, i.e., the algorithm is done iterating over
steps I-IV, the parameters µ̃ and σ̃ from the iteration that
yielded the highest loss value are used to create an optimized
transfer dataset using the reserved query budget Br. Finally,
πa is subsequently retrained from scratch via BC using
this optimized dataset. Algorithm 1 outlines the complete
method; all the functions used are defined in Appendix A.

4.4. Stealthy Imitation Countermeasure

Although this work focuses on the attacker’s perspective, we
also propose an effective defense against Stealthy Imitation.
The idea is to leverage the victim’s exclusive knowledge
of the correct input range; the defender can respond with
random actions to invalid queries. We argue that ignoring

queries outside the valid range is not advisable for the victim,
as it would leak information about the valid range itself.
This approach serves to obfuscate the attacker’s efforts to
estimate the input range. This defense does not degrade
the utility of the victim policy, as it still provides correct
answers to valid queries.

5. Experiments
This section presents our empirical results for Stealthy Imi-
tation. We discuss the experimental setup (Section 5.1), fol-
lowed by a comparison of our proposed method to baselines
(Section 5.2) and analyses and ablation studies (Section 5.3).
Finally, we show the real-world robot policy stealing in
Section 5.4 and the defense performance in Section 5.5.

5.1. Experimental Setup

Victim policies. We demonstrate our method on three con-
tinuous control tasks from Mujoco (Todorov et al., 2012):
Hopper, Walker2D, and HalfCheetah. The victim policy is
trained using soft actor-critic (SAC) (Haarnoja et al., 2018).
The victim architecture is a three-layer fully-connected net-
works (256 hidden units, ReLU activation). The models
output a normal distribution from which actions are sam-
pled. These sampled actions are then constrained to the
range [-1,1] using tanh. After training, the prediction action
given a query state is determined only by the mean of this
output distribution. See Appendix B for a complete descrip-
tion of all the tasks and performance of the victim policies.
All information about compute resources are summarised in
Appendix C.

Attacker policies. Similar to Papernot et al. (2016);
Orekondy et al. (2019b;a), we employ the architecture of
πv for πa, while omitting the prediction of the standard
deviation and incorporating tanh activation. Our choice of
architecture does not significantly influence the refinement
of Sa (see Appendix D), although it does introduce greater
variance in the cumulative reward. This phenomenon is
attributed to compounding errors, a known issue in imita-
tion learning (Syed & Schapire, 2010; Ross et al., 2011; Xu
et al., 2020), where minor training deviations can amplify
errors. We set the reserved training budget Br = 106 and
the base query budget bv = 105. Both πa and πe share the
same architecture and are trained for one epoch per iteration.
We use the Adam optimizer (Kingma & Ba, 2015) with a
learning rate of η = 10−3 and batch size of 1024. The
final training employs early stopping with a patience of 20
epochs for 2000 total epochs. The reward model R̂ is a two-
layer fully-connected network (256 hidden neurons, tanh
and sigmoid activations). R̂ is trained with a learning rate
of 0.001 for 100 steps. Prior to training, we apply a heuristic
pruning process to Dv. Specifically, we remove any state-
action pairs (s,a) where any component of a equals ±1,
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corresponding to the maximum and minimal action values.
This is due to the tanh activation function in victim policy
mapping extreme logit values to these limits, which may not
reflect typical decision-making but rather the extremes of
the function’s output range. This pruning step further assists
the reward model in correctly identifying the victim policy’s
state-action pattern.

Baseline attacks. Since our method is the first policy
stealing without environment access or prior input range
knowledge, we compare it against two approaches: (i) Ran-
dom: transfer datasets are based on three normal distribu-
tions with varying scales, namely N (0n,1

2
n), N (0n,10

2
n),

and N (0n,100
2
n); the attacker policy πa is trained using

BC; (ii) data-free model extraction (DFME): we adapt the
generator-based DFME (Truong et al., 2021) from image
classification to control tasks. Convolutional layers are
replaced with fully-connected ones, and tanh activation is
replaced by batch normalization with affine transformations.

Evaluation. We consider two performance metrics:
Kullback-Leibler (KL) divergence and return ratio. The
KL divergence DKL(Sv∥Sa) measures the discrepancy be-
tween the estimated state distribution Sa and the victim’s
state distribution Sv , an aspect not previously quantified in
model stealing. We represent Sv with a reference normal
distribution N (µ∗, (σ∗)2) estimated from a dataset of 1
million states, Sv, collected from the interaction between
the victim policy πv and the environment. The return ratio,
denoted as rr, assesses the stealing performance by dividing
the average return generated by the attacker policy in the
environment by the average return of the victim policy. The
return ratio is the average one derived from eight episodes
with random initial state. To account for any variability of
SI, we report results with five random seeds in Appendix E.

5.2. Stealthy Imitation Attack Performance

We assess various policy stealing methods, as shown in Fig-
ure 3. The measure of DKL(Sv∥Sa) is specific to our ap-
proach (top row), as the Random strategy does not refine
a distribution, and DFME focuses on fine-tuning samples.
We observe that the gap between Sa and Sv becomes consis-
tently smaller and achieves convergence, even when starting
from a high value in HalfCheetah. On average, we achieve
an 81% reduction in DKL(Sv∥Sa) across all environments.
Our method substantially outperforms other attacks in terms
of return ratio (Figure 3, bottom row). In the Hopper en-
vironment, we achieve a return ratio of 97% with just 5
million queries. In contrast, the best competing method,
N (0n,10

2
n), under the same query budget reaches only

70% and quickly falls below 25%. Further details on the
performance of the reward discriminator can be found in Ap-
pendix F. While the Random N (0n,1

2
n) baseline shows

promise in the Hopper environment with 35 million queries,

it does not maintain this performance as consistently as
ours across varying query budgets. DFME fails to steal the
victim policy, as it focuses on the near-infinite adversarial
samples, restricting exploration. Our method, emphasizing
regions instead of individual samples, leads to a more exten-
sive and efficient exploration of the unknown input range.
More adaptations of DFME are in Appendix G.

5.3. Analysis

Diagonal Gaussian approximation for complex input
distributions. The success of our approach, which uses a
diagonal Gaussian distribution to approximate real inputs,
is robust to complex input distributions. To support this,
we analyze the correlation matrices and the distributions
of all variables using real state data from MuJoCo environ-
ments. The illustrations in Appendix L disclose significant
correlations and non-Gaussian distributions among these
variables. These findings substantiate the effectiveness of
our method in the presence of coupled input variables and
complex distributions. Furthermore, in Section 5.4, we show
a high return ratio when applying our method to more realis-
tically modeled robots with higher-dimensional inputs. This
provides additional evidence supporting the applicability of
our approach across a broad spectrum of input complexities.
In Appendix K, we examine the impact of the probabilistic
state distribution model and find that a diagonal Gaussian
distribution yields better results than a full Gaussian distri-
bution due to the fewer optimized parameters. We also show
in Appendix I that RL-trained policies in control systems
can be easily compromised using supervised learning when
the input distribution is exposed, even through a diagonal
Gaussian distribution. Moreover, Appendix H experimen-
tally shows that the diagonal Gaussian approximation is
robust to estimation errors on µ and σ.

Correlation between difficulty of imitation and distri-
bution divergence. To empirically evaluate the hypothesis
that the difficulty of imitation is correlated with the diver-
gence between Sa and Sv, we create 600 estimated state
distributions Sa. These distributions are parameterized as
Sa(s; zσ

∗+µ∗,σ∗), where each element of z is randomly
sampled from a uniform distribution over [0, 4], and its
sign is chosen randomly. As a result, the KL divergences
DKL(Sv∥Sa) for these estimated state distributions range
approximately from 0 to 8. For each Sa, we construct a
transfer dataset of 105 points and train the attacker’s pol-
icy πa using BC for one epoch. We measure the average
validation loss L̄b as a proxy for the difficulty of imitation.
We apply Spearman’s rank correlation test to these measure-
ments, and the results are summarized in Table 1. These
results demonstrate a statistically significant correlation for(
L̄b, DKL

)
, thus supporting the use of πe as a reliable dis-

tribution evaluator in Section 4.3.
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Figure 3. Distribution estimation capacity measured by DKL(Sv∥Sa) (top) and return ratio (bottom) as a function of the attacker budget.

Table 1. Spearman’s rank correlation between validation loss L̄b

and distribution divergence DKL. (
L̄b, DKL

)
Environment Correlation ρ p-value

Hopper −0.84 4.79× 10−164

Walker2D −0.78 7.59× 10−122

HalfCheetah −0.81 4.01× 10−140

Ablative analysis. We study the impact of each component
of our method by systematically removing them one at a
time, while keeping the other components unchanged. The
ablation study includes: (i) the use of bv × σ̄ instead of
bv samples of transfer dataset Dv to train the distribution
evaluator πe; (ii) bypassing the reward model training
and directly using the validation loss Lb of each sample as
weight for the reward-guided distribution refinement; (iii)
skipping the pruning step of the transfer dataset before train-
ing the reward model; and (iv) using bv instead of bv × σ̄ to
train attacker’s policy πa during behavioral cloning. The
result is depicted in Figure 4. We observe that incorporating
a reward model can more efficiently minimize the distri-
bution divergence DKL(Sv∥Sa). Additionally, employing
a fixed budget for the evaluator model helps the attacker
select a better Sa, thereby improving the return ratio. We
also note the stabilizing effect of pruning the transfer dataset
prior to training the reward model. Moreover, if a dynamic
budget is not used when constructing the transfer dataset,
we observe undesired shifts in Sa over iterations in Hopper
and this leads to a significant reduction in the return ratio.

5.4. Real-world Robot Policy Stealing

We validate Stealthy Imitation in a realistic scenario where
the victim policies are trained for the Franka Emika Panda
robot simulated by panda-gym (Gallouédec et al., 2021).

The victim policies are from HuggingFace2 and were devel-
oped by independent contributors using truncated quantile
critics (TQC) (Kuznetsov et al., 2020). TQC represents a
RL algorithm distinct from that utilized in Mujoco. The
range of returns observed spanned from -50 to 0.

Experimental setup. Initializing with N (0n,1
2
n) by

chance leaves little room for optimization, as it already
results in a very small DKL. To demonstrate efficacy, we ini-
tialize the estimated distribution withN (µ∗ +3σ∗, (σ∗)2),
thus with all initial DKL being 4.5. The training involves
five epochs for the attacker policy per iteration in the loop,
with other hyperparameters mirroring those in the Mujoco
setup. We calculate the return ratio using R(τa)−Rmin

R(τv)−Rmin
,

where Rmin is the minimal return -50. We conduct the
experiments five times, each with a different random seed.
To investigate the influence of query budget to reserve after
distribution estimation, namely Br, we include an additional
experiment in which 3 million queries are reserved.

Stealthy Imitation results. Figure 5 illustrates the results,
and the task details along with the victim return are sum-
marized in Appendix B. We observed that SI outperforms
DFME significantly in two of the Panda robot tasks. When
the Br is 1M, labeled as ”SI 1M”, SI achieves a high return
ratio with only 10M total budget for PandaPickAndPlace
and PandaReach, specifically about 70% and 100% respec-
tively. In the more challenging task of PandaSlide, although
the return ratio is only approximately 21%, the DKL value
significantly decreases by 77%. This lower return ratio
could be attributed to the unique characteristic of this task:
the robot acts mainly at the start, then waits for the object
to hit the target. Despite a good distribution estimation, the
attacker policy predominantly clones non-essential actions.
We also observe improved performance with increased re-
served query budgets for PandaPickAndPlace.

2https://huggingface.co
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Figure 4. We validate the necessity of (i) fixing the dataset size to train the evaluator model, (ii) dynamic budget, (iii) reward model, and
(iv) pruning the transfer dataset.

Figure 5. Panda: DKL(Sv∥Sa) (top) and return ratio (bottom) as a function of the attacker budget.

5.5. Stealthy Imitation Attack Countermeasure

We test the efficiency of the proposed defense to our Stealthy
Imitation attack in Mujoco. We consider the input range
to match the minimum and maximum values encountered
during training. Upon detecting a query that is outside the
predefined input range, the victim policy will uniformly
sample an action as a response. We present the results
in Table 2, evaluating the relative change in KL divergence,
denoted as ∆DKL, and the return ratio after exhausting
the entire 50M query budget. ∆DKL is calculated as
the proportional change from the initial to the final KL
value, with negative values indicating that the estimated
distribution is converging towards the actual distribution.
The results indicate that the countermeasure substantially
impedes the attacker’s ability to approximate the victim’s
distribution, consequently reducing the return ratio of the
attacker policy. More elaborations are in Appendix J.

6. Discussion
Computational efficiency. In addition to theft effective-
ness, Stealthy Imitation also demonstrates computational
efficiency. The main computational load comes from train-

Table 2. Results of defense in ∆DKL and return ratio.

Environment Setup ∆DKL Return Ratio

Hopper w/o defense −83% 98%
w/ defense 6% 0%

Walker2D w/o defense −83% 101%
w/ defense 7% 7%

HalfCheetah w/o defense −75% 47%
w/ defense 9% 4%

ing the attacker policy πa on the optimized transfer dataset
D̂. This is more computational efficient compared to utiliz-
ing all data with size of total budget B like random strategy.

Limitations and future work. The limitations in this work
present opportunities for future research and exploration.
Firstly, attackers should consider the potential effects of
initial distribution discrepancies. While our method, initial-
izing the estimated distribution with a standard Gaussian,
has proven effective, the threshold beyond which initial dis-
tribution divergence compromises effectiveness remains to
be identified. Secondly, Stealthy Imitation, being agnostic
to the victim RL algorithm, can adapt to various victim poli-
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cies trained with other RL strategies; however, performance
may vary across different RL algorithms and requires fur-
ther examination. Finally, expanding our approach to other
domains, where acquiring the input range is challenging
such as those involving feature vectors, holds considerable
promise for future research.

7. Conclusion
We show for the first time that an attacker can successfully
steal policies in control systems without requiring envi-
ronment access or prior knowledge of the input range—a
strong attack vector that has not been demonstrated or con-
sidered in prior research. Lacking access to the victim data
distribution, we show that a Gaussian assumption for the at-
tacker query data is sufficient for efficient policy extraction.
Our Stealthy Imitation attack outperforms existing methods
adapted to policy stealing for a limited-knowledge attacker.
We show that it is harder to imitate the victim policy when
the distribution of the attack queries increasingly aligns that
of the victim, thus allowing an attacker to refine their query
distribution. We encourage policy owners to consider the
risks of stealing and to use available defenses, such as the
one proposed in this paper, to protect their assets.
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A. Algorithms
We now provide a detailed description of each function in Algorithm 1, along with their pseudo code.

Query action. Query action (Algorithm 2) is the function where we obtain the transfer dataset from victim policy and
attacker policy. We sample b state vectors from a Gaussian distribution parameterized by µ and σ, and obtain responses a
from the policy π. When π = πv , the output is dataset D = Dv; otherwise, it is Da when policy is πa.

Algorithm 2 QueryAction
1: Input: Policy π, mean µ and standard deviation σ, query budget b
2: Output: Dataset D
3: Sample b data points s from N (µ,σ2)
4: a← π(s)
5: D := {(si,ai)|i = 1, ..., b}
6: return D

Behavioral cloning. We train policy π to mimic the state-action pair mapping in dataset D via supervised learning by
minimizing the Huber loss, i.e., behavioral cloning in Algorithm 3. Considering that the attacker policy πa has different
dataset size requirement as distribution evaluator πe using behavioral cloning, we use an additional demand size N to
control it.

Algorithm 3 BehavioralCloning
1: Input: Dataset D = {(si,a∗

i )}, policy π, demand size N , epochs E, learning rate η
2: Output: Updated policy π
3: Sample N data from D and split into training and validation Dt and Dv

4: for e = 1 to E do
5: for each batch (s,a∗) in Dt do
6: // Compute loss using Huber loss
7: Calculate loss Lb ← HuberLoss(π(s),a∗)
8: // Update model parameters using gradient descent
9: π ← π − η∇πLb

10: end for
11: end for
12: return π

Train reward. We use the code pipeline provided in engine Contributors (2021) to train the reward model in Algorithm 4,
except for the additional function PruneData. Reward model is trained for total 400 steps in each iteration with learning rate
η = 10−3.

Prune data. When the action is equal to maximum or minimal value, i.e., extreme action, it is less likely to be the normal
action predicted by the victim policy on the real state distribution, as most control systems do not prefer such extreme action.
Extreme action value can easily cause instability in control systems. By pruning the transfer dataset shown in Algorithm 5,
the reward model can identity the difference of state-action pairs coming from the victim and attacker policies. For instance,
if there is a state-action pair whose action is an extreme value, then the reward model tends to identity it as a state-action
pair from the attacker, as there is no such data in the transfer dataset querying the victim policy after pruning.

Distribution evaluate. The function described in Algorithm 6 is exactly the same as behavioral cloning, but the final
output of the function is the validation loss L̄b of evaluator πe.

Distribution refinement. We apply Equation (7) on the validation split of the transfer dataset to calculate the new µ and
σ, described in Algorithm 7.
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Algorithm 4 TrainReward

1: Input: dataset Da queried from attacker policy, dataset Dv queried from victim policy, reward model R̂, demand size
N , total steps T , learning rate η

2: Output: Trained reward model R̂
3: Sample N data from Dv and split into training and validation Dvt and Dvv

4: D′
vt ← PruneData(Dvt)

5: for i = 1 to T do
6: Sample batch data (sv,av) from D′

vt and (sa,aa) from Da

7: Lv ← − log(1− R̂(sv,av))
8: La ← − log(R̂(sa,aa))
9: // Compute the gradient of the total loss

10: ∇L← ∇(Lv + La)
11: // Update the reward model
12: R̂ ← R̂ − η∇L
13: end for
14: return The trained reward model R̂

Algorithm 5 PruneData
1: Input: Dataset D
2: Output: Cleaned Dataset D′

3: D′ ← ∅
4: for each (si,ai) in D do
5: if no element of ai equals 1 or −1 then
6: D′ ← D′ ∪ {(si,ai)}
7: end if
8: end for
9: return D′

Algorithm 6 DistributionEvaluate
1: Input: Dataset D = {(si,a∗

i )}, policy π, portion size N , epochs E, learning rate η
2: Output: validation loss L̄b

3: Sample N data from D and split into training and validation Dt and Dv

4: for e = 1 to E do
5: for each batch (s,a∗) in Dt do
6: Calculate loss Lb ← HuberLoss(π(s),a∗)
7: π ← π − η∇πLb

8: end for
9: end for

10: Calculate average validation loss L̄b on Dv

11: return L̄b

B. Environment and Victim Policy
We conducted our experiments on environments sourced from Gymnasium (Towers et al., 2023). The specific environments,
along with their version numbers and the performance metrics of the victim policies, are detailed in Table 3. The victim
policies are trained using the Ding repository (engine Contributors, 2021), a reputable source for PyTorch-based RL
implementations (Paszke et al., 2017). We employ SAC to train the victim policy; hence, the victim policy comprises an
actor and a critic model. The actor model receives the state as input and outputs the action distribution, while the critic
model receives a concatenated state and action as input and outputs the Q-value. During queries to the victim policy, only the
actor model is utilized, outputting the mean of the action distribution as a response. The state observations primarily consist
of the positional coordinates and velocities of various body parts. The video of victim policy is in supplementary material.

For the victim policies in the Panda robot stealing setup, we obtain them directly from HuggingFace, instead of training
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Algorithm 7 DistRefine

1: Input: dataset D, reward model R̂, demand size N
2: Output: updated µ′ and σ′

3: Sample N data from D and split into training and validation Dt and Dv

4: D′
v ← PruneData(Dv)

5: µ′ ←
∑

(s,a)∈D′
v
r̂(s,a)·s∑

(s,a)∈D′
v
r̂(s,a)

6: σ′2 ←
∑

(s,a)∈D′
v
r̂(s,a)·(s−µ′)2∑

(s,a)∈D′
v
r̂(s,a) .

7: σ′ =
√
σ′2

8: return µ′ and σ′

Table 3. Mujoco environments and performance of victim policy.

Environment Observation space Action space Victim return

Hopper-v3 11 3 3593±3
Walker2D-v3 17 6 4680±43

HalfCheetah-v3 17 6 12035±61

them ourselves, to simulate a real-world threat. The performance of these victim policies is described in Table 4.

Table 4. Panda environments and performance of victim policy.

Environment Observation space Action space Victim return

PandaPickAndPlace-v3 25 4 -7±4
PandaReach-v3 12 3 -2±1
PandaSlide-v3 24 3 -12±7

C. Compute Resources
In this section, we provide detailed information on the computational resources used for our main experiments. All
experiments were conducted on a single NVIDIA GeForce RTX 2080 Ti GPU. The time required to train the victim policies
within the Mujoco environment varied depending on the scenario. Specifically, the Hopper and HalfCheetah models were
trained in approximately 12 hours, while the Walker2D model required a more extensive duration, taking up to 2 days.
Stealthy Imitation completed within 2 hours, irrespective of the query budget. In contrast, the Random strategy’s compute
time varied from 1 to 12 hours, based on the query budget. This variability arises from the Random strategy’s approach
of using the entire dataset to train the attacker policy, unlike our method, which only uses the most effective dataset. For
DFME, the compute time is linearly related to the query budget, with a completion time of 2 hours at a 50M query budget.
Regarding the Panda task, the compute time is approximately 4 hours for each query budget checkpoint.

D. Influence of Model Architecture
We investigate the impact of various attacker policy architectures on performance when executing Stealthy Imitation. Each
victim policy utilizes a three-layer fully-connected network with 256 hidden units. To understand the effect of architecture
variations, we modify the attacker policies by adjusting the layer numbers to 4, 6, and 10. Furthermore, we conduct
experiments with the original layer structure, but reduce the hidden units to 128.

We depict the results on Figure 6. To better understand the impact, except for DKL(Sv∥Sa) and return ratio, we also
provide raw DKL(Sv∥Sa) on top row, which is the last DKL(Sv∥Sa) at the end of the iteration, rather than the one selected
by distribution evaluator πe. We observe that the raw DKL of different architecture choices exhibit similar tendencies,
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thus the architecture choice has limited impact on the distribution refinement. In the second row of Figure 6, except for
Walker2d, the selection of the DKL(Sv∥Sa) during refining by πe guarantee an appropriate estimated distribution Sa and
low DKL(Sv∥Sa), preventing the divergence of distribution approximation. However, we observe that the return ratio
exhibits higher variance in the third row. This indicates that the return ratio is sensitive when the architecture is different,
even when the estimated distribution is closed to the real state distribution. This is also a challenge in the realm of imitation
learning, known as compounding errors (Syed & Schapire, 2010; Ross et al., 2011; Xu et al., 2020). Compounding errors
imply that even minor training errors can snowball into larger decision errors. In our case, the minor training error comes
from different architecture choices.

It is essential to highlight that this issue of compounding errors is predominantly absent in image classification model
stealing, where test data points are independently evaluated. Nonetheless, the robustness of the estimation of the underlying
distribution Sv in terms of KL divergence underscores the effectiveness of our approach.

Figure 6. Influence of model architecture on stealing performance.

E. Variability of Stealthy Imitation
We report the variability of Stealthy Imitation in Figure 7 by using five random seeds to obtain five estimated distributions
Sa and train five attacker policies πa. The performance of each policy is still obtained by collecting the average return ratio
from eight episodes. We observe that the variability of DKL(Sv∥Sa) has impact on that of the return ratio, suggesting that
a reliable estimated distribution is crucial to attacker policy training. The exact experimental results of Mujoco are listed
in Table 5 and Panda in Table 6

F. Performance of the Reward Discriminator
In this section, we analyze how the reward discriminator loss defined in Equation (6) changes throughout the distribution
estimation process (Figure 8). In each iteration, we train the reward model for 400 steps; in each step, a batch of data will be
sampled from the current victim and attacker distributions, Dv and Da respectively. The x axis in Figure 8 represents the
number of steps using a total of 50 million query budget.

We observe that the reward discriminator exhibits oscillations with the variation of the estimated distribution and attacker
policy through the iterations. The discriminator’s loss may decrease when it successfully identifies attacker’s state and action
pair data but can increase again as the estimated distribution shifts to a new region where the reward model has not been
trained.
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Figure 7. Variability of policy stealing performances.

Figure 8. The reward discriminator loss in Equation (6).

G. Adaptation of DFME
Stealthy Imitation is the first method to steal a policy without the knowledge of input range, which means that there are no
baselines for this setup. However, we want to provide a comparison to prior art and adapt DFME to the best of our ability to
the present setup.

The original DFME generator used a tanh activation function, confining outputs to [-1,1], typical in image classification
model stealing. We modified the generator in DFME by either substituting tanh with batch normalization incorporating
learnable scaling and shift factors (w/ BN) to enable exploration beyond the initial N (0n,1

2
n), or by removing tanh without

batch normalization (w/o BN). Additionally, we expanded the initial state range by scaling the generator’s output by factors
of 1, 10, and 100. We conduct the experiments with five different random seeds and report results in Figure 9.

Figure 9. Attacker policy return ratios achieved by adapting DFME with modifications: batch normalization (w/ BN) and without (w/o
BN), along with output scaling by factors of 1, 10, and 100. Experiments were conducted using five distinct random seeds.

We find that all attacker policies yield low return ratios, showing DFME’s inadequacy in scenarios with unknown input
ranges. This stems from DFME’s limitation: in any initial state distribution, such as N (0n,1

2
n), it consistently synthesizes

samples, where victim and attacker policies disagree. The infinite amount of adversarial samples restrict its ability to explore
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Table 5. DKL(Sv∥Sa) and return ratio across Mujoco environments with different total budget using Stealthy Imitation.

Metric Total budget B(M) Hopper Walker2D Halfcheetah

DKL(Sv∥Sa)

0 2.68± 0.00 3.87± 0.00 19.55± 0.00
2 2.51± 0.16 4.23± 0.18 21.44± 0.32
5 0.96± 0.11 3.62± 0.53 18.07± 1.52

10 0.51± 0.06 1.12± 0.31 8.83± 1.27
15 0.51± 0.06 0.90± 0.40 6.08± 1.61
20 0.51± 0.06 0.55± 0.05 5.90± 1.27
25 0.51± 0.06 0.63± 0.10 5.69± 1.44
30 0.51± 0.06 0.65± 0.13 5.69± 1.44
35 0.51± 0.06 0.68± 0.16 5.60± 1.54
40 0.51± 0.06 0.68± 0.16 5.42± 1.49
45 0.51± 0.06 0.68± 0.16 4.74± 2.22
50 0.51± 0.06 0.68± 0.16 4.74± 2.22

Return ratio (%)

0 6.15± 0.00 2.87± 0.00 0.00± 0.00
2 54.89± 34.25 31.87± 26.44 30.96± 6.70
5 97.90± 0.55 36.21± 23.27 40.05± 7.72

10 96.25± 0.80 96.81± 1.10 39.75± 3.18
15 97.07± 1.57 90.59± 6.79 50.62± 11.00
20 97.39± 0.53 98.69± 4.42 49.83± 17.26
25 91.47± 11.51 98.27± 3.23 65.98± 9.69
30 97.87± 0.56 96.50± 2.95 60.30± 12.87
35 97.13± 0.58 96.37± 4.09 55.04± 14.75
40 97.57± 0.90 94.20± 6.15 62.32± 11.27
45 98.33± 1.28 94.31± 9.61 63.47± 7.63
50 97.00± 1.92 96.61± 6.35 63.74± 11.92

distributions with varying means and scales. In contrast, our Stealthy Imitation method uniquely tackles such problem
by analyzing entire regions through a reward model, which evaluates overall regional performance rather than individual
samples. We outline the differences between DFME and Stealthy Imitation in Table 7, highlighting how each method
addresses distinct threat models and objectives.

H. Robustness to Distribution Approximation Errors

Figure 10. Left: policy stealing performance (return ratio) when µ = µ∗ and the scale factor λ modifies σ∗ such that Sa =
N (µ∗, (λσ∗)2). Right: policy stealing performance (return ratio) with σ = σ∗ and µ = zσ∗ + µ∗, such that Sa =
N (zσ∗ + µ∗, (σ∗)2).
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Table 6. DKL(Sv∥Sa) and return ratio across Panda environments with different reserved budget and total budget using Stealthy Imitation.

Metric Reserved budget(M) Total budget(M) PandaPickAndPlace-v3 PandaReach-v3 PandaSlide-v3

DKL(Sv∥Sa)

1

0 4.50± 0.00 4.50± 0.00 4.50± 0.00
10 2.48± 0.32 2.23± 0.17 1.26± 0.06
20 2.48± 0.32 2.24± 0.24 1.05± 0.12
30 2.48± 0.32 2.25± 0.20 1.05± 0.12
40 2.48± 0.32 2.26± 0.22 1.05± 0.12
50 2.48± 0.32 2.20± 0.25 1.05± 0.12

3

0 4.50± 0.00 4.50± 0.00 4.50± 0.00
10 1.91± 0.03 2.05± 0.26 1.39± 0.00
20 1.91± 0.03 2.16± 0.28 1.30± 0.00
30 1.91± 0.03 2.22± 0.21 1.30± 0.00
40 1.91± 0.03 2.24± 0.23 1.30± 0.00
50 1.91± 0.03 2.24± 0.23 1.30± 0.00

Return ratio (%)

1

0 0.00± 0.00 0.00± 0.00 0.00± 0.00
10 69.61± 7.27 99.99± 0.08 2.98± 3.91
20 46.99± 17.03 100.00± 0.07 8.18± 3.26
30 44.73± 19.72 99.99± 0.08 20.45± 5.57
40 59.18± 9.72 100.03± 0.08 15.65± 6.15
50 41.38± 11.16 100.05± 0.08 21.14± 3.55

3

0 0.00± 0.00 0.00± 0.00 0.00± 0.00
10 72.75± 8.57 100.04± 0.04 0.00± 0.00
20 74.67± 3.99 99.99± 0.07 16.22± 4.08
30 81.08± 2.46 100.04± 0.12 16.38± 4.34
40 79.88± 4.29 99.84± 0.07 23.52± 4.22
50 80.28± 8.77 99.99± 0.08 23.22± 4.14

Table 7. Contrasting DFME and SI in high level regarding to the query data, target, focus, reusability, and advantage.

Type DFME SI

Query data Model-generated Probability distribution
Target Adversarial examples Hard-to-Imitate regions
Focus Enhancing sample difficulty using L1 loss Assessing overall difficulty via a reward model

Reusability Limited, dependent on the model High, as the state distribution is consistent
Advantage Improves data distribution with input range insight Effectively determines input range

We customize Sa with different parameters to explore the effect of discrepancy between Sa and Sv. The left of Figure 10
explores the impact of varying σ while holding µ = µ∗ constant such that Sa = N (µ∗, (λσ∗)2) with a factor λ. Conversely,
the right investigates the effect of modifying µ while keeping σ = σ∗ constant, Sa = N (zσ∗ + µ∗, (σ∗)2). Different
values of z serve as a measure of the divergence between the estimated µ and µ∗. The sign of each element in z is randomly
chosen. Transfer datasets, each containing 1 million queries, are generated from these customized distributions. These
datasets are then used to train the attacker’s policy πa through BC for up to 2000 epochs, utilizing early stopping with a
patience of 20 epochs. From Figure 10 we observe that minor variations in σ are more tolerable compared to deviations in
µ.

I. Risk of Exposing Distribution
To demonstrate the risk of exposing the input distribution, we train πa via behavioral cloning for 200 epochs on five different
distributions for Sa, each approximated directly from the real state dataset Sv: (i) and (ii) N (µ∗, (σ∗)2) and N (µ∗,Σ∗):
the mean µ∗ and variance (σ∗)2 or covariance Σ∗ are directly calculated from Sv , representing diagonal and full covariance
matrix, respectively; (iii) and (iv) Ŝv,u and Ŝv,m: these are non-parametric distribution approximations derived using kernel
density estimation (KDE), treating variables as independent and dependent, respectively; and (v) Sv: This samples data
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Figure 11. Model stealing success for different choices of Sa based on the underlying distribution Sv .

directly from the real states. Figure 11 shows that successful policy stealing is feasible even when queries are sampled from
an approximate distribution, even through a diagonal Gaussian distribution.

J. Discussion on Defense
In this section, we further elaborate on the defense method proposed in Section 4.4. We begin by explaining why the defense
works and provide potential strategies for both defenders and attackers, especially when attackers become aware of our
defense tactics. We then summarize the key lessons for defenders.

Why does the defense work? SI is used to estimate the real distribution by observing the difficulty attackers face in
mimicking actions across various estimated distributions. A simple yet effective defense against SI involves randomizing
outputs for states outside a known input range, thereby increasing the difficulty in distinguishing between different estimated
distributions.

How to enhance the defense? If attackers realize this defense strategy and begin to identify the randomness by analyzing
output variance, they might develop new methods of attack. In response, our defense can be enhanced to produce similar
variance for both in-range and out-of-range queries. For example, mapping out-of-range queries to a random or fixed point
within the range could yield consistent output variance.

What does SI teach us as defenders? Defenders should be wary of revealing their true input distributions. Such disclosure
could potentially expose RL trained policies to the risk of policy stealing via supervised learning.

K. Impact of Probabilistic State Distribution Model
To investigate the impact of the probabilistic state distribution model, we initialize the estimated distribution with not only a
diagonal Gaussian distribution but also a full Gaussian distribution, and optimize it in Stealthy Imitation. The experiments
are repeated five times with different random seeds. As shown in Figure 12, our method proves effective with different
estimated distributions, though it may result in reduced return ratios and increased variance compared with a diagonal
Gaussian distribution in Figure 7. This difference primarily stems from the fewer parameters of the diagonal Gaussian,
which simplifies the optimization process.
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Figure 12. The results of the distribution divergence and the performance of the attacker policy when the estimated distribution is initialized
with a full Gaussian distribution and optimized in Stealthy Imitation.

L. Underlying Distribution
In this section, we present a correlation matrix and the distribution shape of the real states, derived from 100k states collected
during interactions between the victim policy and the Mujoco environment. We utilize Spearman’s rank correlation matrix
to analyze the relationships among different variables, as illustrated in Figure 13, Figure 15, and Figure 17. Additionally,
we employ KDE, a non-parametric approach, to estimate the probability density functions of these variables, shown in
Figure 14, Figure 16, and Figure 18. We observe that the states are highly correlated and cannot be adequately described by
a diagonal Gaussian distribution alone. This finding supports the capability of SI to handle more complex input distributions
beyond the scope of a diagonal Gaussian.
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Figure 13. Correlation matrix of the states collected from Hopper environment.
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Figure 14. Distribution visualization using KDE for Hopper environment.
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Figure 15. Correlation matrix of the states collected from Walker2D environment.
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Figure 16. Distribution visualization using KDE for Walker2D environment.
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Figure 17. Correlation matrix of the states collected from HalfCheetah environment.
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Figure 18. Distribution visualization using KDE for HalfCheetah environment.
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