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ABSTRACT

Mathematical reasoning presents a significant challenge for Large Language Mod-
els (LLMs) due to the extensive and precise chain of reasoning required for accuracy.
Ensuring the correctness of each reasoning step is critical. To address this, we
aim to enhance the robustness and factuality of LLMs by learning from human
feedback. However, Direct Preference Optimization (DPO) has shown limited
benefits for long-chain mathematical reasoning, as models employing DPO strug-
gle to identify detailed errors in incorrect answers. This limitation stems from
a lack of fine-grained process supervision. We propose a simple, effective, and
data-efficient method called Step-DPO, which treats individual reasoning steps as
units for preference optimization rather than evaluating answers holistically. Addi-
tionally, we have developed a data construction pipeline for Step-DPO, enabling
the creation of a high-quality dataset containing 10K step-wise preference pairs.
We also observe that in DPO, the data generated by the policy model is more effec-
tive than that produced by humans or GPT-4, due to the former’s in-distribution
nature. Our findings demonstrate that as few as 10K preference data pairs and
fewer than 500 Step-DPO training steps can yield a nearly 3% gain in accuracy on
MATH for models with over 70B parameters. Notably, Step-DPO, when applied
to Qwen2-72B-Instruct, achieves scores of 70.8% and 94.0% on the test sets of
MATH and GSM8K, respectively, surpassing a series of closed-source models,
including GPT-4-1106, Claude-3-Opus, and Gemini-1.5-Pro.

1 INTRODUCTION
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Figure 1: Accuracy on the MATH test set across models fine-tuned by Step-DPO and other state-of-
the-art models. †: reproduced result using our prompt.
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Figure 2: Left: Accuracy of judging preferred or undesirable outputs on the validation set during
training. Right: Reward margins between preferred and undesirable outputs on the validation set
during training. More details about these experiments are given in Appendix A.3.

Mathematical reasoning is recognized as a critical long-chain reasoning ability in Large Language
Models (LLMs). This task is particularly challenging due to the often extensive chain of thought
required, which can include numerous reasoning steps. Any error in these steps can lead to an
incorrect final answer.

Numerous studies (Yu et al., 2023; Luo et al., 2023; Yue et al., 2023; Liu & Yao, 2024; Lu et al.,
2024; Li et al., 2024; Shao et al., 2024; Xin et al., 2024; Yue et al., 2024; Tang et al., 2024) have
proposed various data augmentation techniques during the supervised fine-tuning (SFT) stage to
enhance alignment. However, models in the SFT process are prone to hallucinations, resulting in
saturated performance. A potential reason for this, as highlighted in Hong et al. (2024), is that as
the probability of preferred outputs increases, so does the probability of undesirable ones. This
phenomenon makes the model more likely to make errors in long-chain reasoning. Therefore, it is
essential to develop methods to suppress the likelihood of undesirable outputs.

Recently, Direct Preference Optimization (DPO) (Rafailov et al., 2024) has been proposed for
alignment using pair-wise preference data and is popular due to its simplicity. Despite its effectiveness
in chat benchmarks (Tunstall et al., 2023; Zheng et al., 2024), DPO offers minimal benefits for long-
chain mathematical reasoning. As shown in Fig. 2 (left), models using vanilla DPO perform poorly
in distinguishing between preferred and undesirable outputs, failing to identify errors in rejected
answers. Additionally, Fig. 2 (right) shows that the reward margin (i.e., the gap between the rewards
of preferred and undesirable outputs) is limited for models using vanilla DPO and plateaus with
further training. These findings indicate that models fine-tuned with vanilla DPO cannot pinpoint
detailed errors in incorrect answers, hindering the improvement of reasoning abilities.

In this work, we introduce Step-DPO, where each intermediate reasoning step is treated as the basic
unit for preference optimization. As illustrated in Fig. 3, unlike vanilla DPO, which only considers
preference optimization between complete answers (i.e., p(ywin|x) and p(ylose|x)), Step-DPO
examines the step-by-step answer (i.e., y = [s1, ..., sn]) and specifically targets the first erroneous
reasoning step. Step-DPO aims to select a correct reasoning step and reject an incorrect one, given a
math problem and several initial correct reasoning steps (i.e., maximize p(swin|x; s1, s2, ..., sk−1)
and minimize p(slose|x; s1, s2, ..., sk−1)). This transition allows the model to easily locate erroneous
tokens for effective optimization, significantly enhancing long-chain reasoning.

Moreover, we present an effective and economical pipeline to collect pair-wise preference data,
resulting in a high-quality dataset for Step-DPO. This dataset contains approximately 10K samples,
each consisting of: 1) a mathematical problem, 2) prior reasoning steps, 3) the chosen step, and 4)
the rejected step. Our three-step pipeline for dataset construction includes: 1) Error collection, 2)
Step localization, and 3) Rectification. Notably, the chosen reasoning step is generated by the policy
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Figure 3: Comparison between DPO and Step-DPO.

model1 itself, as we find that in-distribution data (i.e., self-generated data) is more effective than
out-of-distribution data (e.g., data written by humans or GPT-4) for Step-DPO, as shown in Table 4.

With this curated dataset, mathematical reasoning performance can be significantly boosted with
only hundreds of training steps, as demonstrated in Fig. 1. For instance, fine-tuning Qwen-72B-
Instruct with Step-DPO results in a model achieving 70.8% accuracy on MATH and 94.0% on
GSM8K, surpassing a series of closed-source models, including GPT-4-1106, Claude-3-Opus, and
Gemini-1.5-Pro.

2 RELATED WORKS

2.1 MATHEMATICAL REASONING

Large Language Models (LLMs) have exhibited substantial reasoning capabilities, primarily due
to their auto-regressive nature, which allows them to predict the next token based on contextual
information. However, these models still struggle with long-chain reasoning tasks, particularly in
mathematical contexts. Several prior studies (Yao et al., 2024; Chen et al., 2024; Yoran et al., 2023;
Li et al., 2023; Tong et al., 2024; Fu et al., 2022; Zhou et al., 2022) have attempted to enhance the
Chain-of-Thought (CoT) inference framework (Wei et al., 2022) to address this issue. While these
efforts have led to significant improvements in certain tasks, they have not fully mitigated common
hallucinations and have limited generalizability across all reasoning tasks.

Another research direction (Yu et al., 2023; Luo et al., 2023; Yue et al., 2023; Liu & Yao, 2024; Lu
et al., 2024; Xu et al., 2024; Li et al., 2024; Shao et al., 2024; Xin et al., 2024; Zhou et al., 2024; Liu
et al., 2023; Ying et al., 2024; Yue et al., 2024; Tang et al., 2024; Mitra et al., 2024; Yuan et al., 2023)
focuses on various data augmentation techniques, such as rephrasing, extension, and evolution, for
supervised fine-tuning (SFT). These methods have significantly enhanced the reasoning abilities of
LLMs, but their performance plateaus once the data reaches a certain volume. Additionally, methods
like those proposed by Wang et al. (2023a); Liao et al. (2024); Toshniwal et al. (2024); Gou et al.
(2023) employ external tools, such as Python, to substantially reduce calculation errors.

Other approaches (Azerbayev et al., 2023; Shao et al., 2024; Lin et al., 2024; Ying et al., 2024; Wang
et al., 2023c) involve continued pre-training on extensive, high-quality math-related datasets, which
markedly improve mathematical reasoning capabilities. Recent studies (Xu et al., 2024; Ying et al.,
2024) have explored reinforcement learning to mitigate hallucinations in mathematical reasoning.
Works like Lightman et al. (2023); Shao et al. (2024); Wang et al. (2023b); Jiao et al. (2024); Hwang
et al. (2024) emphasize the importance of step-by-step verification in reinforcement learning for
mathematical problems. However, these methods still rely on the quality of the reward model and
require the complex training pipelines of RLHF. Building on this line of research, we propose
Step-DPO, a simpler, more effective, and more efficient method.

2.2 REINFORCEMENT LEARNING FROM HUMAN FEEDBACK

Supervised fine-tuning (SFT) can align models with human preferences. However, as the probability
of preferred outputs increases, so does the likelihood of undesirable ones, leading to hallucinations. To
generate more reliable outputs, Reinforcement Learning from Human Feedback (RLHF) (Christiano
et al., 2017; Ouyang et al., 2022) has been introduced for LLM alignment. This approach involves

1The policy model refers to the model that we are optimizing, and it is usually initialized with the SFT model.
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training a reward model with comparison data and then using this reward model to optimize the policy
model. The final performance heavily depends on the quality of the reward model, and the training
pipeline is quite complex.

To simplify this process, Direct Preference Optimization (DPO) (Rafailov et al., 2024) was proposed,
which directly uses pair-wise preference data for model optimization. This transition significantly
streamlines the training pipeline. While DPO has proven effective in chat benchmarks, it offers
only marginal benefits for mathematical reasoning. Inheriting the principles of DPO, Step-DPO is
specifically designed for long-chain reasoning and has shown significant performance improvements
in solving math word problems.

3 STEP-DPO

In this section, we elaborate on the proposed Step-DPO. First, we present step-wise formulation
in Sec. 3.1, a novel approach designed to enhance long-chain reasoning abilities by building on
DPO. Next, in Sec. 3.2, we illustrate a pipeline for constructing the step-wise preference dataset for
Step-DPO. Both components are essential for achieving the desired performance improvements.

3.1 STEP-WISE FORMULATION

Preliminary. Reinforcement Learning from Human Feedback (RLHF) (Christiano et al., 2017) is
an effective approach for enhancing the robustness, factuality, and safety of LLMs (Ouyang et al.,
2022). RLHF consists of two training phases: 1) reward model training, and 2) policy model training.
However, the final performance of RLHF is highly sensitive to various hyperparameters in both
phases, necessitating meticulous tuning.

To avoid this complex training pipeline, Rafailov et al. (2024) proposed Direct Preference Opti-
mization (DPO), which directly uses pair-wise preference data to optimize the policy model with an
equivalent optimization objective. Specifically, given an input prompt x, and a preference data pair
(ywin, ylose), DPO aims to maximize the probability of the preferred output ywin and minimize that
of the undesirable output ylose. The optimization objective is formulated as:

LDPO(θ) = −E(x,ywin,ylose)∼D[log σ(β log
πθ(ywin|x)
πref (ywin|x)

− β log
πθ(ylose|x)
πref (ylose|x)

)], (1)

where D is the pair-wise preference dataset, σ is the sigmoid function, πθ(·|x) is the policy model to be
optimized, πref (·|x) is the reference model kept unchanged during training, and the hyperparameter
β controls the distance from the reference model.

Our Solution. While DPO has proven effective in chat benchmarks, it brings only marginal
improvements for long-chain reasoning tasks such as mathematical problems, as shown in Fig. 2
and Table 3. This limitation arises because most undesirable answers in these tasks may not contain
errors initially; the first error often appears midway through the reasoning process. Rejecting an
entire undesirable answer in DPO may also discard preceding correct reasoning steps, introducing
significant noise and negatively impacting training.

Analogous to how teachers correct students by pinpointing specific errors rather than dismissing
entire answers, our proposed Step-DPO provides more detailed supervision by identifying the specific
erroneous reasoning step. This granular focus allows the model to swiftly locate, rectify, and further
avoid erroneous steps.

Specifically, the answer y can be decomposed into a sequence of reasoning steps y = [s1, . . . , sn],
where si is the i-th reasoning step. As illustrated in Fig. 3, given a prompt x and a series of initial
correct reasoning steps s1∼k−1 = [s1, . . . , sk−1], Step-DPO aims to maximize the probability of
the correct next reasoning step swin and minimize the probability of the incorrect one slose. This
objective can be formulated as:

L(θ) = −E(x,s1∼k−1,swin,slose)∼D[log σ(β log
πθ(swin|x; s1∼k−1)

πref (swin|x; s1∼k−1)
− β log

πθ(slose|x; s1∼k−1)

πref (slose|x; s1∼k−1)
)].

(2)
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### Response:
Let's think step by step. 
Step 1: We know that 𝑥 +

4609 ≡ 2104 (mod 12).
Step 2: …
Step 3: …
Step 4: …
Step 5: …
Step 6: …
The answer is: 6

### Instruction:
Determine the least 
positive integer 𝑥 for 
which the sum of 𝑥 and 4609 
gives a remainder of 2104 
when divided by 12.
### Response:
Let's think step by step.
Step 1:

### Response:
Let's think step by step. 
Step 1: We know that 𝑥 + 4609 ≡

2104 (mod 12).
Step 2: We can rewrite the given 

congruence as 𝑥 ≡ 2104 −
4609 (mod 12).

Step 3: Calculating 2104 − 4609 = −2505.
Step 4: We want to find the positive 

integer 𝑥, so we add 12 until 
we get a positive number. 
− 2505 + 12 ⋅ 210 = 30.

Step 5: So 𝑥 ≡ 30 (mod 12).
Step 6: The least positive integer 𝑥

that satisfies this congruence 
is 𝑥 = 6.

The answer is: 6

Step 4: Now we need to find the 
equivalent positive integer for 
−2505 mod 12 .
To do this, we divide −2505 by 
12 and find the remainder.
−2505÷ 12 = −208⋯⋯−9.
However, we want a positive 
remainder, so we add 12 to −9 to 
get a positive remainder.
−9 + 12 = 3.
So, −2505 ≡ 3 (mod 12).

Step 5: …
Step 6: …
The answer is: 3

1. Error Collection

2. Step Localization 3. Rectification

𝑦789: ~ 𝜋;<=(𝑦|𝑥; 𝑠>~@A>)

𝑦 ~ 𝜋;<=(𝑦|𝑥)
math problem preparation model completion wrong answer collection

step-by-step 
verification correct answer 

collection model completion

Figure 4: Data construction pipeline for Step-DPO.

prompt: 
Determine the least positive integer 𝑥 for which the sum of 𝑥 and 4609 gives a remainder of 2104 when divided by 12.

initial_reasoning_steps: 
Let's think step by step.
Step 1: We know that 𝑥 + 4609 ≡ 2104 (mod 12).
Step 2: We can rewrite the given congruence as 𝑥 ≡ 2104 − 4609 (mod 12).
Step 3: Calculating 2104 − 4609 = −2505.
Step 4:

chosen_step: 
Now we need to find the equivalent positive integer for − 2505 (mod 12).
To do this, we divide -2505 by 12 and find the remainder. −2505 ÷ 12 = −208 remainder −9. 
However, we want a positive remainder, so we add 12 to -9 to get a positive remainder. −9+12=3. 
So, − 2505 ≡ 3 (mod 12).

rejected_step:
We want to find the positive integer 𝑥, so we add 12until we get a positive number. −2505 + 12 0 210 = 30.

Figure 5: An example of preference data sample for Step-DPO.

3.2 IN-DISTRIBUTION TRAINING DATA CONSTRUCTION

According to the optimization target of Step-DPO, we need to create a corresponding high-quality
pair-wise preference dataset. Each data sample should comprise four entries: 1) prompt x; 2) initial
reasoning steps s1∼k−1 = [s1, . . . , sk−1]; 3) preferred reasoning step swin; 4) undesirable reasoning
step slose, as shown in Fig. 5. To obtain a high-quality dataset, we propose a data construction
pipeline illustrated in Fig. 4, which includes the following three steps.

Error collection. First, we collect a set D0 = {(x, ŷ)} of mathematical problems x with ground-
truth answers ŷ. Each mathematical problem x is then used as a prompt to infer answers using
the initial model πref . Before inference, we add the step-wise Chain-of-Thought (CoT) prefix for
prompting, i.e., "Let’s think step by step. Step 1:". This ensures that the model’s
inference results are structured into multiple reasoning steps, with each step explicitly starting with
"Step i:". Upon completion of inference, we obtain the model answers y for each mathematical
problem x. We then select instances where the final answer y differs from the ground truth ŷ, resulting
in a dataset of erroneous inference results, denoted as D1 = {(x, ŷ, y)|x ∈ D0}.
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Step localization. Given that each erroneous inference result is explicitly presented as a sequence
of reasoning steps y = [s1, s2, . . . , sn], we proceed to verify the correctness of each reasoning step
until we find the first error and record its step number k. This process can be done manually or using
GPT-4. We select sk as the erroneous reasoning step slose, resulting in a dataset that contains the
erroneous steps, denoted as D2 = {(x, ŷ, s1∼k−1, slose)|x ∈ D1}.

Rectification. To obtain the corresponding correct reasoning step for each sample in D2, we need
to sample multiple outputs ycont by inferring the model πref with the prompt x and the preceding
correct reasoning steps s1∼k−1. This process is formulated as:

ycont ∼ πref (y|x; s1∼k−1). (3)

We retain those outputs where the final answer matches the ground truth. Among the remaining
outputs, we select the first reasoning step in ycont as swin, resulting in the final dataset D =
{(x, s1∼k−1, slose, swin)|x ∈ D2}. An example of a resulting data sample is shown in Fig. 5.

Notably, some cases may have correct final answers but erroneous intermediate reasoning steps.
Therefore, we may need to further filter out samples where swin is incorrect, which can be done
manually or by GPT-4. We omit this process in the notations for simplicity, and more details are
provided in Appendix A.1.

It is important to note that the data pipeline is user-friendly. In this data pipeline, humans or GPT-4
are only required to locate errors and verify the correctness of reasoning steps, and they do not need
to write answers or rectifications by themselves.

We also note that the use of in-distribution data is crucial. When selecting swin, we use outputs
generated by the model πref rather than answers rectified by humans or GPT-4. Since human or GPT-
4 rectified answers soodwin are out-of-distribution (OOD) regarding the model πref , the log-probability
of outputting soodwin (i.e., log πref (s

ood
win|x)) is significantly lower than that of an in-distribution (ID)

output log πref (s
id
win|x). Moreover, it is challenging for the policy model πθ to learn to increase the

probability of soodwin due to gradient decay issues (detailed in Appendix A.4). Consequently, adopting
self-generated in-distribution data as the preferred answer proves to be a more effective way of
aligning with human preferences.

4 EXPERIMENTS

In this section, we first introduce the experimental setup in Sec. 4.1. Then, we present the main
results in Sec. 4.2, which include an exhaustive performance comparison. Moreover, we conduct an
extensive ablation study in Sec. 4.3. Finally, a few demonstrations are shown in Sec. 4.4 to further
understand Step-DPO.

4.1 EXPERIMENTAL SETUP

Network Architecture. Our experiments are based on various base models, including the Qwen2
and Qwen1.5 series (Bai et al., 2023), Meta-Llama-3-70B (Touvron et al., 2023), and deepseek-math-
7b-base (Shao et al., 2024).

Datasets. In supervised fine-tuning (SFT), we use augmented mathematical problems from Meta-
Math (Yu et al., 2023) and MMIQC (Liu & Yao, 2024) to infer step-by-step responses with DeepSeek-
Math, as the SFT data used in DeepSeekMath (Shao et al., 2024) is not publicly available. After
filtering out responses with erroneous final answers, we obtain 374K SFT data. Of these, 299K are
used for SFT, and the remainder is used for further Step-DPO training.

In the Step-DPO phase, alongside the remaining SFT data, we also incorporate a subset of AQuA (Ling
et al., 2017). These datasets are processed as described in Sec. 3.2, resulting in 10K pair-wise
preference data for Step-DPO.

For evaluation, we use the widely adopted MATH (Hendrycks et al., 2021) and GSM8K (Cobbe
et al., 2021) datasets. Accuracy in these datasets serves as the evaluation metric. The MATH test
set contains 5000 mathematical problems spanning 5 difficulty levels and 7 subjects, including

6
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Table 1: Math reasoning performance comparison on MATH and GSM8K across various models.
general: general-purpose model. open: open-source.

Model size general open MATH (%) GSM8K (%)

GPT-3.5-Turbo - ! % 42.5 92.0
Gemini-1.5-Pro (Feb) (Reid et al., 2024) - ! % 58.5 91.7
Gemini-1.5-Pro (May) (Reid et al., 2024) - ! % 67.7 90.8
Claude-3-Opus - ! % 60.1 95.0
GPT-4-1106 (Achiam et al., 2023) - ! % 64.3 91.4
GPT-4-Turbo-0409 (Achiam et al., 2023) - ! % 73.4 93.7
GPT-4o-0513 - ! % 76.6 95.8

Llama-3-8B-Instruct (Touvron et al., 2023) 8B ! ! 30.0 79.6
Qwen2-7B-Instruct (Bai et al., 2023) 7B ! ! 49.6 82.3
Llama-3-70B-Instruct (Touvron et al., 2023) 70B ! ! 50.4 93.0
DeepSeek-Coder-V2-Instruct (Zhu et al., 2024) 236B % ! 75.7 94.9

Code-Llama-7B (Roziere et al., 2023) 7B % ! 13.0 25.2
MAmooTH-CoT (Yue et al., 2023) 7B % ! 10.4 50.5
WizardMath (Luo et al., 2023) 7B % ! 10.7 54.9
MetaMath (Yu et al., 2023) 7B % ! 19.8 66.5
MetaMath-Mistral-7B (Yu et al., 2023) 7B % ! 28.2 77.7
MathScale-Mistral Tang et al. (2024) 7B % ! 35.2 74.8
InternLM-Math-7B (Ying et al., 2024) 7B % ! 34.6 78.1
Xwin-Math-Mistral-7B (Li et al., 2024) 7B % ! 43.7 89.2
MAmmoTH2-7B-Plus (Yue et al., 2024) 7B % ! 45.0 84.7
MathGenieLM-Mistral (Lu et al., 2024) 7B % ! 45.1 80.5
InternLM-Math-20B (Ying et al., 2024) 20B % ! 37.7 82.6
MathGenieLM-InternLM2 (Lu et al., 2024) 20B % ! 55.7 87.7

DeepSeekMath-Instruct (Shao et al., 2024) 7B % ! 46.8 82.9
DeepSeekMath-RL (Shao et al., 2024) 7B % ! 51.7 88.2
DeepSeekMath-RL + Step-DPO 7B % ! 53.2 (+1.5) 88.7 (+0.5)

Qwen2-7B-Instruct (Bai et al., 2023) 7B ! ! 49.6 82.3
Qwen2-7B-Instruct‡ 7B ! ! 53.0 85.5
Qwen2-7B-Instruct + Step-DPO 7B ! ! 58.6 (+5.6) 87.9 (+2.4)

Qwen2-7B-SFT† 7B % ! 54.8 88.2
Qwen2-7B-SFT + Step-DPO 7B % ! 55.8 (+1.0) 88.5 (+0.3)

Qwen1.5-32B-SFT† 32B % ! 54.9 90.0
Qwen1.5-32B-SFT + Step-DPO 32B % ! 56.9 (+2.0) 90.9 (+0.9)

Qwen2-57B-A14B-SFT† 57B % ! 54.6 89.8
Qwen2-57B-A14B-SFT + Step-DPO 57B % ! 56.5 (+1.9) 90.0 (+0.2)

Llama-3-70B-SFT† 70B % ! 56.9 92.2
Llama-3-70B-SFT + Step-DPO 70B % ! 59.5 (+2.6) 93.3 (+1.1)

Qwen2-72B-SFT† 72B % ! 61.7 92.9
Qwen2-72B-SFT + Step-DPO 72B % ! 64.7 (+3.0) 93.9 (+1.0)

Qwen2-72B-Instruct (Bai et al., 2023) 72B ! ! 59.7 91.1
Qwen2-72B-Instruct ‡ 72B ! ! 69.4 92.4
Qwen2-72B-Instruct + Step-DPO ‡ 72B ! ! 70.8 (+1.4) 94.0 (+1.6)
† Supervised fine-tuned models with our 299K SFT data based on the open-source base model.
‡ Reproduced using our prompt
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Table 2: Math reasoning performance comparison on compitition-level math problems, i.e., AIME
2024 and Odyssey-MATH. Note that the training data for Step-DPO is the same as before.

Model size open AIME Odyssey-MATH (%)

Gemini-1.5-Pro (Reid et al., 2024) - % 2 / 30 45.0
Claude-3-Opus - % 2 / 30 40.6
GPT-4-1106 (Achiam et al., 2023) - % 1 / 30 49.1
GPT-4-Turbo-0409 (Achiam et al., 2023) - % 3 / 30 46.8
GPT-4o-0513 - % 2 / 30 53.2

DeepSeek-Coder-V2-Lite-Instruct (Zhu et al., 2024) 16B ! 0 / 30 44.4
Llama-3-70B-Instruct (Touvron et al., 2023) 70B ! 1 / 30 27.9
DeepSeek-Coder-V2-Instruct (Zhu et al., 2024) 236B ! 4 / 30 53.7

Qwen2-72B-SFT† 72B ! 1 / 30 44.2
Qwen2-72B-SFT + Step-DPO 72B ! 3 / 30 47.0 (+2.8)

Qwen2-72B-Instruct (Bai et al., 2023) 72B ! 5 / 30 47.0
Qwen2-72B-Instruct + Step-DPO 72B ! 4 / 30 50.1 (+3.1)

† Supervised fine-tuned models with our 299K SFT data based on the open-source base model.

Table 3: Performance comparison between DPO and Step-DPO. We use only 5K data for training in
this ablation study.

Model Qwen2-7B-SFT Qwen2-7B-SFT + DPO (5K) Qwen2-7B-SFT + Step-DPO (5K)
MATH (%) 54.8 55.0 55.8

Model Qwen2-72B-SFT Qwen2-72B-SFT + DPO (5K) Qwen2-72B-SFT + Step-DPO (5K)
MATH (%) 61.7 62.5 64.1

algebra, counting and probability, geometry, intermediate algebra, number theory, prealgebra, and
precalculus. The GSM8K test set includes 1319 mathematical problems, each with a step-by-step
solution and a ground-truth answer. The problems in GSM8K are generally easier than those in
MATH. Besides, we also use completition-level problems in American Invitational Mathematics
Examination (AIME) (MAA, 2024) and Odyssey-MATH (Netmind.AI, 2024) to evaluate the math
reasoning capabilities in solving hard problems.

Implementation Details. First, we use the 299K SFT data for supervised fine-tuning on the base
models, obtaining the SFT models. We train 7B models for 3 epochs and models larger than 30B for
2 epochs. The global batch size is set to 256, and the learning rate is set to 5e-6. We use the AdamW
optimizer with a linear decay learning rate scheduler, setting the warmup ratio to 0.03. DeepSpeed
ZeRO3 with CPU offload is used to reduce GPU memory usage during training.

Next, we perform Step-DPO based on the SFT models. For Step-DPO, we train 7B models for 8
epochs and models larger than 30B for 4 epochs. The global batch size is set to 128, and the learning
rate is set to 5e-7. The hyperparameter β is set to 0.5 for the 72B model and 0.4 for others. We use
the AdamW optimizer and a cosine learning rate scheduler, with the warmup ratio set to 0.1.

4.2 RESULTS

Applying on open-source instruct models. Table 1 presents a comprehensive comparison of
various models, encompassing both open-source and closed-source models. Notably, Step-DPO
can be directly integrated into open-source instruction models, such as DeepSeekMath-RL and
Qwen2-72B-Instruct, leading to significant performance enhancements even after their prior RLHF
training phase. This indicates that Step-DPO complements RLHF effectively. Specifically, when
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Table 4: Performance comparison between out-of-distribution and in-distribution data. OOD: out-of-
distribution data. ID: in-distribution data.

Model Qwen2-7B-SFT Qwen2-7B-SFT + Step-DPO (OOD) Qwen2-7B-SFT + Step-DPO (ID)
MATH (%) 54.8 55.1 55.8

applied to Qwen2-72B-Instruct, Step-DPO achieves scores of 70.8% and 94.0% on the MATH and
GSM8K test sets, respectively, surpassing a series of closed-source models, including GPT-4-1106,
Claude-3-Opus, and Gemini-1.5-Pro.

Applying on SFT models. To further substantiate the efficacy of Step-DPO, we applied it to
SFT models. Initially, we performed supervised fine-tuning on the 299K SFT dataset mentioned in
Sec. 4.1, resulting in models such as DeepSeekMath-Base-SFT, Qwen2-7B-SFT, Qwen1.5-32B-SFT,
Llama3-70B-SFT, and Qwen2-72B-SFT. Step-DPO proved highly effective, yielding significant
improvements across various model sizes. Particularly, for models exceeding 70B parameters (i.e.,
Llama-3-70B-SFT and Qwen-2-72B-SFT), Step-DPO achieved approximately a 3% performance
boost on the MATH test set.

Interestingly, larger models exhibited greater performance gains from Step-DPO. We hypothesize
that larger models have untapped potential that Step-DPO can exploit. If the performance ceiling is
not reached through supervised fine-tuning (SFT), Step-DPO can help models approach their optimal
performance.

Results on math competition problems. To further illustrate the superiority of Step-DPO in
mathematical reasoning, we evaluated the models on competition-level math problems, specifically
AIME 2024 and Odyssey-MATH, as shown in Fig. 2. Despite the increased difficulty of these
problems compared to MATH and GSM8K, Step-DPO significantly enhanced performance. On
Odyssey-MATH, Step-DPO applied to Qwen2-72B-Instruct achieved 50.1% accuracy, narrowing the
performance gap with GPT-4o.

Notably, the models used the same Step-DPO training data for these competition-level problems as
for problems of normal difficulty, highlighting Step-DPO’s robust generalization capability.

4.3 ABLATION STUDY

To validate the effectiveness of Step-DPO and its data construction process, we conducted extensive
ablation studies as follows.

DPO vs. Step-DPO. As discussed in Sec. 3.1, models utilizing vanilla DPO struggle to accurately
identify errors in incorrect answers, providing only marginal benefits to mathematical reasoning
performance. To verify this, we compared vanilla DPO and Step-DPO in terms of both accuracy in
judging preferred versus undesirable outputs (left side of Fig. 2) and the reward margin between them
(right side of Fig. 2). We also reported the final mathematical reasoning performance on the MATH
test set in Table 3. The results indicated that the benefits of DPO are limited and significantly less
than those of Step-DPO. In this experiment, we used only 5K Step-DPO training data and 3K for
evaluation in Fig. 2.

Out-of-Distribution vs. In-Distribution Data. The use of in-distribution data was highlighted
in Sec. 3.2. To illustrate its effectiveness, we compared out-of-distribution and in-distribution data
in Table 4. Out-of-distribution data was generated by GPT-4 to rectify erroneous reasoning steps
in incorrect answers, whereas in-distribution data was generated through the pipeline described in
Sec. 3.2. The results in Table 4 underscore the critical role of in-distribution data.

4.4 DEMONSTRATIONS

As shown in Fig. 6, we demonstrate an example of comparison between Qwen2-72B-Instruct and
Qwen2-72B-Instruct-Step-DPO. It turns out that Step-DPO does well in correcting mistakes in
previous models. It is also notable that the bottom example is a competition-level math problem, and

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Problem: 
The square root of 𝑡 is greater than 2 and less than 3.5. How many integer values of 𝑡 satisfy this condition?

Qwen2-72B-Instruct :
To find the integer values of 𝑡 that satisfy the condition

that the square root of 𝑡 is greater than 2 and less than 3.5,
we can follow these steps.

1. Translate the condition into inequalities:
2 < 𝑡 < 3.5

2. Square all parts of the inequality to eliminate the
square root:

(2)!< 𝑡 < (3.5)!
3. Calculate the squares: 4 < 𝑡 < 12.25.
4. Determine the integer values of 𝒕 that satisfy the

inequality: The integers that fall strictly between 4 and
12.25 are 5, 6, 7, 8, 9, 10, 11, 12 . However, since
𝑡 must be strictly less than 12.25, 12 is not included in the
solution set because it is not strictly less than 12.25.

5. Count the integer values: The integers that satisfy
the condition are 5, 6, 7, 8, 9, 10, 11, which gives us a total
of 7 integer values of 𝑡.

Qwen2-72B-Instruct + Step-DPO:
To find the integer values of 𝑡 that satisfy the condition

that the square root of 𝑡 is greater than 2 and less than 3.5,
we can follow these steps.

1. Translate the inequality into mathematical terms:
The given condition can be written as: 2 < 𝑡 < 3.5.

2. Square all parts of the inequality to eliminate the
square root: Squaring all parts of the inequality gives:

(2)!< 𝑡 < (3.5)!
4 < 𝑡 < 12.25

3. Find the integer values of 𝒕 that satisfy the
inequality: The inequality 4 < 𝑡 < 12.25 means that 𝑡 is
greater than 4 and less than 12.25. Since 𝑡 must be an
integer, the possible values of 𝑡 are are
5, 6, 7, 8, 9, 10, 11, 12. However, since 𝑡 must be strictly less
than 12.25, the value 12 is included in the range.

4. Count the integer values: The integers that satisfy
the condition are 5, 6, 7, 8, 9, 10, 11, 12. There are 8 integer
values of 𝑡 that satisfy the given condition.

Problem: 
Considering all non-increasing functions 𝑓: {1, 2, … , 10} → {1,2,⋯ ,10}, some of these functions have fixed points, while others do not. The difference in the number of these two types of functions is ?

Qwen2-72B-Instruct :
To solve this problem, we need to understand the nature of non-increasing functions and how they

behave with respect to fixed points. A non-increasing function 𝑓 from a set A to itself satisfies the
property that for any 𝑥, 𝑦 ∈ A with 𝑥 ≤ 𝑦, we have 𝑓 𝑥 ≥ 𝑓(𝑦). In our case, A = {1, 2, … , 10}.
    A fixed point of a function 𝑓 is an element 𝑥 in the domain of 𝑓 such that 𝑓(𝑥) = 𝑥. We are
asked to find the difference in the number of non-increasing functions with at least one fixed point
and those without any fixed points.

Step 1: Counting all non-increasing functions
    First, let's count all non-increasing functions from {1, 2, … , 10} to itself. This is equivalent to
finding the number of ways to distribute 10 indistinguishable balls into 10 distinguishable boxes
with the condition that the number of balls in each box is non-increasing from left to right. This is a
classic problem of combinatorics, and the solution can be found using the stars and bars method.
    The number of ways to distribute 𝑛 indistinguishable balls into 𝑘 distinguishable boxes is given
by !"#$%

#$% . However, since we need the distribution to be non-increasing, we need to adjust our
approach. For 10 balls and 10 boxes, we can think of this as choosing the number of balls in each
box from the set {1, 2, … , 10}, but with the constraint that the sequence of numbers chosen is non-
increasing. This is equivalent to choosing a sequence of 10 numbers from {1, 2, … , 10} with
repetition allowed, but in non-increasing order.
    The number of such sequences is given by the number of ways to place 9 "bars" to separate 10
"stars" (representing the balls) into 10 groups (representing the boxes), which is %&"'

' = %'
' .

Step 2: Counting non-increasing functions with no fixed points
Next, we need to count the number of non-increasing functions with no fixed points. This means

that for every 𝑥 ∈ {1, 2, … , 10}, 𝑓 𝑥 ≠ 𝑥. Since 𝑓 is non-increasing, if 𝑓 𝑥 ≠ 𝑥, then 𝑓(𝑥) > 𝑥
for all 𝑥. However, this is impossible for a function from {1, 2, … , 10} to itself, because if 𝑓 𝑥 > 1,
then 𝑓(1) must be at least 2, and since 𝑓 is non-increasing, 𝑓 2 ≥ 𝑓(1), which contradicts the fact
that 𝑓 2 ≠ 2. Therefore, there are no non-increasing functions from {1, 2, … , 10} to itself with no
fixed points.

Step 3: Calculating the difference
Since there are no non-increasing functions with no fixed points, the difference in the number of

non-increasing functions with at least one fixed point and those without any fixed points is simply
the total number of non-increasing functions, which is %'

' .
     Final Answer
    The difference in the number of non-increasing functions with at least one fixed point and those
without any fixed points is %'

' .

Qwen2-72B-Instruct + Step-DPO:
To solve this problem, we need to consider two types of non-increasing functions from the set

{1, 2, … , 10} to itself: those with at least one fixed point and those without any fixed points. Let's denote
the total number of non-increasing functions as 𝑁, the number of non-increasing functions with at least
one fixed point as 𝑁(, and the number of non-increasing functions without any fixed points as 𝑁!(. We
are asked to find 𝑁( − 𝑁!(.
    Step 1: Counting Total Non-Increasing Functions (N)
    A non-increasing function from {1, 2, … , 10} to itself can be represented by a sequence of 10 numbers,
each from the set {1, 2, … , 10}, where each number is greater than or equal to the one before it. This is
equivalent to placing 9 "dividers" among 10 "objects" (the function values), which can be done in
%&"'
' = %'

' ways. Thus, 𝑁 = %'
' .

    Step 2: Counting Non-Increasing Functions with at Least One Fixed Point (𝑵𝒇)
    To count the functions with at least one fixed point, we can use the principle of inclusion-exclusion.
For each i ∈ {1, 2, … , 10}, let A* be the set of non-increasing functions with 𝑓(𝑖) = 𝑖. We want to count
the size of the union of these sets.

The size of A* for any 𝑖 is the number of non-increasing functions from {1, 2, … , 10} ∖ {𝑖} to
{1, 2, … , 10}, which is %+

+ . The size of the intersection of any two sets A* and A, (for 𝑖 ≠ 𝑗) is the
number of non-increasing functions from {1, 2, … , 10} ∖ {𝑖, 𝑗} to {1, 2, … , 10}, which is %-

- , and so on.
    Applying the principle of inclusion-exclusion, we get:

        𝑁( = ∑#.%%& −1 #"% %&
#

%'$#
'

Step 3: Counting Non-Increasing Functions Without Any Fixed Points 𝑵𝒏𝒇
Since 𝑁 = 𝑁( + 𝑁!(, we can find 𝑁!( by subtracting 𝑁( from 𝑁. However, we can also directly

calculate 𝑁!( using a similar approach to counting 𝑁(. Each function without fixed points can be
thought of as a non-increasing function from {1, 2, … , 10} to {1, 2, … , 9}, which is %+

' .
Step 4: Calculating 𝑵𝒇 − 𝑵𝒏𝒇

    We have 𝑁 = %'
' , 𝑁(calculated using the principle of inclusion-exclusion, and 𝑁!( =

%+
' . The

difference 𝑁( − 𝑁!( can be calculated directly from these values.
    Let's calculate the values:
    - 𝑁 = %'

' = 92378
    - 𝑁!( =

%+
' = 48620

To find 𝑁( we use the formula derived in Step 2. However, for the sake of this solution, we will
directly calculate the difference 𝑁( − 𝑁!( using the given values for 𝑁 and 𝑁!(:

 𝑁( − 𝑁!( = 𝑁 − 2𝑁!( = 92378 − 2×48620 = 92378 − 97240 = −4862
    However, since the question asks for the absolute difference, the answer is 4862.

Figure 6: Examples of comparison between Qwen2-72B-Instruct and Qwen2-72B-Instruct-Step-DPO.

Step-DPO could help models rectify the initial reasoning error. More comparisons are provided in
Appendix A.2.

5 CONCLUSION

In this work, we proposed a simple, effective, and data-efficient method called Step-DPO. Unlike DPO,
which compares preferences between holistic answers, Step-DPO uses a single reasoning step as the
fundamental unit for preference comparison. This transition enables fine-grained process supervision
for LLMs, facilitating the quick localization of errors within incorrect answers. Additionally, we
introduced a data construction pipeline for Step-DPO, creating a dataset with 10K preference data
pairs. Our results demonstrate the significant improvements achieved by Step-DPO and the 10K
dataset, particularly for large models. We hope that Step-DPO will provide new insights into model
alignment for long-chain reasoning problems.
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A APPENDIX

A.1 DETAILS OF DATA CONSTRUCTION

In Sec. 3.2, we introduce the data construction pipeline for Step-DPO. In this section, we provide
additional details for the step localization phase. Also, we introduce the details of further data
cleaning.

Step localization. In this process, we use GPT-4o to localize the erroneous reasoning step. Given a
math problem with its correct solution and an incorrect answer, the prompt for GPT-4o is shown in
Table. 5.

Table 5: GPT-4o prompt to localize erroneous reasoning step in incorrect answers.

### Problem:
{problem}
### Correct solution:
{solution}
### Incorrect answer:
{answer}

—

A math problem and its correct solution are listed above. We also give another incorrect answer,
where step-by-step reasoning process is shown. Please output the correctness for each reasoning step
in the given answer.

Requirements:
1. You should first output a step-by-step analysis process (no more than 200 words), and finally output
the decision (”correct”, ”neutral”, ”incorrect”) for each step following the format of ”Final Decision:
Step 1: correct; Step 2: neutral; ...”;
2. Stop when you find the first incorrect step.

Further data filtering. As described in Sec. 3.2, there exists the case where the final answer is
correct but the intermediate reasoning steps are incorrect. When formulating the chosen step, we
need to avoid such cases. We employ GPT-4o for filtering. The prompt is shown in Table. 6.

A.2 MORE EXAMPLES

As shown in Fig. 7, we show additional comparisons between Qwen2-72B-Instruct and the fine-tuned
version with Step-DPO. They demonstrate that Step-DPO could refrain from the previous errors, thus
facilitating the holistic reasoning chains.

A.3 DETAILS OF THE STEP-DPO VS. DPO EXPERIMENTS

The comparison between Step-DPO and DPO is shown in Fig. 2. Specifically, to calculate the
accuracy of judging preferred or undesirable outputs, we input the math problem, the preceding
reasoning steps, and also the next reasoning step (both preferred and undesirable ones) into the
models, and compute the implicit rewards respectively. The judgement is counted as correct, if the
reward of the preferred next reasoning step is higher than that of the undesirable one. As for the
reward margin, we simply compute the gap between the rewards.
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Table 6: GPT-4o prompt for further data filtering.

### Problem:
{problem}
### Correct solution:
{solution}
### Given answer:
{answer}

—

A math problem and its correct solution are listed above. We also give another answer, where
step-by-step reasoning process is shown. Please output the correctness for each reasoning step in the
given answer.

Requirement:
You should first output a step-by-step analysis process (no more than 200 words), and finally output
the decision (”correct”, ”neutral”, ”incorrect”) for each step following the format of ”Final Decision:
Step 1: correct; Step 2: neutral; ...”.

A.4 DETAILS OF GRADIENT DECAY ISSUE

According to Sec. 3.1, the optimization objective for Step-DPO is formulated in equation 2. For
simplicity, we use the prompt p = [x; s1∼k−1] as a whole to rewrite the original equation as:

L(θ) = −E(p,swin,slose)∼D[log σ(β log
πθ(swin|p)
πref (swin|p)

− β log
πθ(slose|p)
πref (slose|p)

)]. (4)

Let’s move one step further to see the gradient with respect to the parameters θ as follows.

∇θL(θ) =− E(p,swin,slose)∼D

[βσ(r̂θ(p, slose)− r̂θ(p, swin))[∇θ log πθ(swin|p)−∇θ log πθ(slose|p)]]
(5)

where r̂θ(p, s) = β log πθ(s|p)
πref (s|p) = β(log πθ(s|p)−log πref (s|p)) is the implicit reward function. We

empirically observe that the log-probability of an out-of-distribution output log πref (s
ood|p) ≈ −100,

whereas that of an in-distribution output log πref (s
id|p) ≈ −10.

However, if we use an out-of-distribution preferred output as swin. Since the undesirable output is
always in-distribution, then we have log πref (s

ood
win|p) ≈ −100 and log πref (s

id
lose|p) ≈ −10. So, we

have

r̂θ(p, s
id
lose)− r̂θ(p, s

ood
win) = β(log πθ(s

id
lose|p)− log πref (s

id
lose|p))− β(log πθ(s

ood
win|p)− log πref (s

ood
win|p))

≈ β(log πθ(s
id
lose|p)− log πθ(s

ood
win|p)− 90).

(6)

If πθ(s
id
lose|p) < πθ(s

ood
win|p) for the final policy model after training, we have log πθ(s

id
lose|p) −

log πθ(s
ood
win|p) < 0. So, we have

r̂θ(p, s
id
lose)− r̂θ(p, s

ood
win) < −90β (7)

Then the scale of the gradient (shown in equation 5) becomes

βσ(r̂θ(p, s
id
lose)− r̂θ(p, s

ood
win)) < βσ(−90β) = β · 1

1 + e90β
< 0.004. (8)

So, the gradient would have decayed to nearly all zeros when πθ(p, s
id
lose) < πθ(p, s

ood
win). Actually,

when πθ(p, s
id
lose) is far higher than πθ(p, s

ood
win), the gradient already decays, and it is hard to reach

the situation where πθ(p, s
id
lose) < πθ(p, s

ood
win). In other words, the out-of-distribution nature of the

data generated by GPT-4o or human hinders the optimization of the DPO objective. Overall, the use
of in-distribution matters.
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Problem: 
Suppose that ℎ(𝑥) = 𝑓!"(𝑥). If ℎ(2) = 10, ℎ(10) = 1 and ℎ(1) = 2, what is 𝑓(𝑓(10))?

Qwen2-72B-Instruct :
Given that ℎ(𝑥) = 𝑓!"(𝑥), we can use the properties of

inverse functions to find 𝑓(𝑓(10)).
First, recall that if ℎ(𝑥) = 𝑓!"(𝑥), then 𝑓(ℎ(𝑥)) = 𝑥

for all 𝑥 in the domain of ℎ. This is because 𝑓!"(𝑥) is
defined as the function that "undoes" the effect of 𝑓(𝑥).

Given:
1. ℎ(2) = 10, 2. ℎ(10) = 1, and 3. ℎ(1) = 2.
We want to find 𝑓(𝑓(10)).
From ℎ(10) = 1, we can use the property of inverse

functions to say that 𝑓(ℎ(10)) = 𝑓(1) . But since
ℎ(10) = 1, this means 𝑓(1) = 10.

Now, we need to find 𝑓(𝑓(10)) . Since we know
𝑓(1) = 10 , we can substitute 1 for 𝑓(10) (because
ℎ(10) = 1 and 𝑓(ℎ(10)) = 𝑓(1) ). Therefore,
𝑓(𝑓(10)) = 𝑓(1) = 10.

So, 𝑓(𝑓(10)) = 10.

Qwen2-72B-Instruct + Step-DPO:
Given that ℎ(𝑥) = 𝑓!"(𝑥), we can use the properties of

inverse functions to find 𝑓(𝑓(10)). The key property of
inverse functions is that 𝑓(𝑓!"(𝑥)) = 𝑥 and 𝑓!"(𝑓(𝑥)) =
𝑥 for all 𝑥 in the domain of the respective functions.

From the given information, we have:
1. ℎ(2) = 10 , which means 𝑓!"(2) = 10 . By the

property of inverse functions, this implies 𝑓(10) = 2.
2. ℎ(10) = 1 , which means 𝑓!"(10) = 1 . By the

property of inverse functions, this implies 𝑓(1) = 10.
3. ℎ(1) = 2, which means 𝑓!"(1) = 2. By the property

of inverse functions, this implies 𝑓(2) = 1.
We are asked to find 𝑓(𝑓(10)). From the information

above, we know that 𝑓(10) = 2. Therefore, 𝑓(𝑓(10)) =
𝑓(2). From the information given, we know that 𝑓(2) = 1.

Thus, 𝑓(𝑓(10)) = 1.
The answer is 1.

Problem: 
Given the data set {3, 7, 7, 2, 5}, calculate the sample mean 𝜇 and the sample standard deviation 𝜎. Present the answer as [𝜇, 𝜎].

Qwen2-72B-Instruct :
    To find the sample mean 𝜇 and the sample standard deviation 𝜎 for the
data set {3, 7, 7, 2, 5}, we follow these steps:

Step 1: Calculate the Sample Mean 𝝁
    The sample mean 𝜇 is calculated by summing all the values in the data
set and dividing by the number of values.

Given data set: {3, 7, 7, 2, 5}
𝜇 = !"#"#"$"%

%
= $&

%
= 4.8

Step 2: Calculate the Sample Standard Deviation 𝝈
The sample standard deviation 𝜎 is calculated by finding the square root

of the average of the squared differences from the Mean.
First, find the squared differences from the mean for each value:
3 − 4.8 $ = 3.24, 7 − 4.8 $ = 4.84, 7 − 4.8 $ = 4.84,

2 − 4.8 $ = 7.84, 5 − 4.8 $ = 0.04
Then, find the average of these squared differences:

Average =
3.24 + 4.84 + 4.84 + 7.84 + 0.04

5
=
20.8
5

= 4.16
Finally, take the square root of this average to get the sample standard

deviation:
𝜎 = 4.16 ≈ 2.04

Answer:
The sample mean 𝜇 and the sample standard deviation 𝜎 for the data set
3, 7, 7, 2, 5 are approximately 𝜇, 𝜎 = [4.8, 2.04].

[4.8, 2.04]

Qwen2-72B-Instruct + Step-DPO:
To find the sample mean 𝜇 and the sample standard deviation 𝜎 for the data

set {3, 7, 7, 2, 5}, we follow these steps:
1. Calculate the sample mean 𝝁:
The sample mean is the sum of all the values divided by the number of

values.

𝜇 =
3 + 7 + 7 + 2 + 5

5
=
24
5
= 4.8

2. Calculate the sample standard deviation 𝝈:
The sample standard deviation is calculated using the formula:

𝜎 =
∑ 𝑥' − 𝜇 $

𝑛 − 1
where 𝑥' are the individual values, 𝜇 is the mean, and 𝑛 is the number of
values.

First, calculate the squared deviations from the mean:
3 − 4.8 $ = 3.24, 7 − 4.8 $ = 4.84, 7 − 4.8 $ = 4.84,

2 − 4.8 $ = 7.84, 5 − 4.8 $ = 0.04
Then, sum these squared deviations and divide by $n-1$:

𝜎 =
3.24 + 4.84 + 4.84 + 7.84 + 0.04

5 − 1
=

20.8
4

= 5.2 ≈ 2.28

Therefore, the sample mean 𝜇 and the sample standard deviation 𝜎 are
approximately [4.8, 2.28].

The answer is [4.8, 2.28].

Figure 7: Examples of comparison between Qwen2-72B-Instruct and Qwen2-72B-Instruct-Step-DPO.
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