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Abstract:
Guided reinforcement learning (RL) presents an effective approach for robots to
acquire skills efficiently, directly in the real world environments. Recent works
indicate that incorporating hard constraints into RL can expedite the learning of
manipulation tasks, enhance safety, and reduce the complexity of the reward func-
tion. In parallel, learning from demonstration (LfD) using movement primitives is
a well-established method for initializing RL policies. In this paper, we propose a
constrained, uncertainty-aware movement primitive representation that leverages
both demonstrations and hard constraints to guide RL. By integrating hard con-
straints, our approach aims to facilitate safer and sample-efficient learning, as the
robot is not required to violate these constraints during the learning process. At
the same time, demonstrations are employed to offer a baseline policy that sup-
ports exploration. Our method enhances state-of-the-art techniques by introducing
a projector that enables state-dependent noise derived from demonstrations while
ensuring that the constraints are respected throughout training. Collectively, these
elements contribute to safe and efficient learning alongside streamlined reward
function design. We validate our framework through an insertion task involving a
torque-controlled, 7-DoF robotic manipulator.

Keywords: Learning from Demonstrations, Reinforcement Learning, Con-
strained Learning, Guided Learning

1 Introduction

Learning from Demonstration (LfD) [1] has proven to be an effective method for motion generation,
enabling a robot to imitate and adapt the demonstrated motions. Various architectures have been de-
veloped, including Dynamic Movement Primitives (DMPs) [2], Probabilistic Movement Primitives
(ProMPs) [3], and Kernelized Movement Primitives (KMPs) [4], which effectively address common
real-world challenges such as generalizing to new situations and avoiding obstacles. However, these
methods often struggle in dynamic environments where demonstrations inadequately represent task
dynamics, particularly during contact tasks. Collaborative robots aim to mitigate these challenges
by employing impedance control to remain compliant while in contact, thus reacting to the inaccu-
racies caused by kinematics and dynamics. However, learning a robust LfD policy that can adapt to
such uncertainties remains a significant challenge.

Reinforcement Learning (RL) addresses this challenge by training a reactive policy that considers
the current state of both the robot and its environment. However, the necessity of a large number of
trials, coupled with concerns about robot safety, presents a significant barrier for RL to be widely ap-
plicable in robotics. Transfer learning attempts to overcome this by learning a policy in a simulation
and then applying it to the robot, yet it is still constrained by the sim-to-real gap [6].
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Figure 1: Figure shows the BNC connector assem-
bly task from NIST assembly benchmark [5]. A1 to A4
show the male and female BNC connectors. B1 to B4
show human demonstrating the task by hand-guiding
the robot. An LfD trajectory learned from the demon-
strations was not able to solve the task as it does not
model the contact dynamics and uncertainties in the
kinematics.

A framework proposed by Padalkar et al. [7]
allows for guided RL, enabling tasks to be
learned directly on the real robot. In this
approach, available task knowledge is repre-
sented as constraints, facilitating effective pol-
icy search. Nonetheless, while this method
is promising, the manual modelling of con-
straints can be challenging, particularly in com-
plex tasks that involve contacts.

To address the above-mentioned challenges, we
propose to learn a nominal policy together with
state-dependent exploration noise, from hu-
man demonstrations. Specifically, we introduce
a novel movement primitive representation,
Linearly Constrained Null-space Kernelized
Movement Primitives (LC-NS-KMP), where a
non-parametric imitation learning framework
generates motion while adhering to the linear
constraints on the state of the robot, simultane-
ously providing a null-space projector that allows the actions generated by the RL policy to modify
the mean behavior of the imitation learning policy. The derived projector modifies the mean behav-
ior of the LfD policy in accordance with the variance in the demonstrations. Consequently, the same
null-space action will result in larger deviations in states where the variance in the demonstrations is
higher. Projector learns the variance from the demonstrations, facilitating state-dependant eploration
noise. We use this behavior for state-based exploration in RL while ensuring the safety of the robot
by respecting the constraints on the state of the robot.

To fully demonstrate the capabilities of LC-NS-KMPs, we selected the BNC connector assembly
task from the NIST assembly task board 1 [5], illustrated in Fig. 1. This task presents significant
challenges, as it requires precise insertion of the connector while maintaining compliance to prevent
damage to the components. Following the insertion, a complex series of translations and rotations
are necessary to lock the connector in position. Our method is well-suited for such tasks because it 1)
allows for the specification of constraints that ensure safe operation during state space exploration,
and 2) guarantees uncertainty-aware, state-dependent exploration for reinforcement learning, which
helps avoid unnecessary exploration in the low-variance regions of the motion.

2 Methodology

2.1 Background

Kernelized movement primitives (KMP). Huang et al. [4] presented an approach to learn prob-
abilistic trajectories from demonstrations called Kernelized Movement Primitives (KMP). Consider
M demonstrations D = {{sn,m,ηn,m}Nn=1}Mm=1 where N is the length of a trajectory comprised of
state s and corresponding output η. A probabilistic policy can be learned from these demonstrations
using GMM such that, P(s,η) ∼

∑C
c=1 pcN (µc,Σc), where, pc, µc,and Σc are the prior proba-

bility, mean and variance of the cth Gaussian. We can employ GMR to obtain reference trajectory
Tr = {µ̂n, Σ̂n}Nn=1 from above learned GMM. At the same time, a parametric trajectory can also
be learned from the same demonstrations,

η(s) = Θ(s)⊤w, Θ(s) =


φ(s) 0 . . . 0
0 φ(s) . . . 0
...

...
. . .

...
0 . . . 0 φ(s)

 , (1)
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where matrix Θ ∈ RBO×O, weight vector w ∈ RBO, with φ(s) being a B-dimensional
basis function. Consider weights w drawn from N (µw,Σw), hence we can write η(s) ∼
N (Θ(s)⊤µw,Θ(s)⊤ΣwΘ(s)). Huang et al. [4] proposed to minimize the KL-divergence between
above-mentioned two Gaussian distributions, represented by Tr and N (Θ(s)⊤µw,Θ(s)⊤ΣwΘ(s))
leading to a mean minimization subproblem with cost function

argmin
µw

N∑
n=1

1

2
(Θ⊤(sn)µw − µ̂n)

⊤Σ̂−1
n (Θ⊤(sn)µw − µ̂n) +

1

2
λµ⊤

wµw. (2)

The prediction of a KMP is given by E(η(s)) = k∗(K + λΣ)−1µ, where µ = [µ̂⊤
1 , µ̂

⊤
2 , ... , µ̂

⊤
N ],

Σ = blockdiag(Σ̂1, Σ̂2, ... , Σ̂N ), and k∗ and K are kernel matrices obtained after applying kernel
treatment to the basis functions, which will be discussed in detail in Section 2.2. It should be noted
that in this paper, we only focus on the mean minimization subproblem as our goal is to extract a
policy that a robot can track.

Linearly-constrained KMP. Huang and Caldwell [8] formulated a linearly constrained imitation
learning framework which incorporates linear inequality constraints on the state of the robot, and
applied the same method to minimize the KL-divergence between two distributions as Huang et al.
[4], to obtain a constrained mean minimization subproblem

argmin
µw

N∑
n=1

1

2
(Θ⊤(sn)µw − µ̂n)

⊤Σ̂−1
n (Θ⊤(sn)µw − µ̂n) +

1

2
λµ⊤

wµw

s.t. g⊤
n,fη(sn) ≥ cn,f ,∀f ∈ {1, 2, . . . , F},∀n ∈ {1, 2, . . . , N},

(3)

where F is the number of constraints imposed on a state. The mean prediction of LC-KMP is given
by

E(η(s∗)) = k∗(K + λΣ)−1µ+ k∗(K + λΣ)−1ΣḠα, (4)

where,

Gn = [gn,1 gn,2 gn,3 ... gn,F ],∀n ∈ {1, 2, 3, ..., N},
Ḡ = blockdiag(G1, G2, G3, ...GN ),

α = [α1,1, α1,2, . . . , α1,F . . . . . . αN,1, αN,2, . . . , αN,F ].

The Lagrange multiplier vector α is obtained by solving a convex optimization problem [8]. Pre-
diction given by Eq. (4) respects the constraints defined in Eq. (3).

2.2 LC-NS-KMP formulation

In this paper, we derive an unified method which combines null-space modifier for KMPs proposed
by Silvério and Huang [9] and linear constraints proposed by Huang and Caldwell [8]. Combining
the desirable properties of these methods, our framework allows RL to modulate a mean trajectory
predicted by KMPs adhering to linear constraints and variance in the demonstrations. It helps RL
conduct an effective search by modulating the exploration noise in accordance with the variance and
constraints.

We start from the same constrained mean optimization problem as Eq. (3), and introduce an addi-
tional cost term 1

2β(µw− µ̂w)
⊤(µw− µ̂w) which results in a soft null space projector that modifies

the mean trajectory (see [9] for details), to obtain,

argmin
µw

N∑
n=1

1

2
(Θ⊤(sn)µw − µ̂n)

⊤Σ̂−1(Θ⊤(sn)µw − µ̂n)

+
1

2
λµ⊤

wµw +
1

2
β(µw − µ̂w)

⊤(µw − µ̂w),

s.t. g⊤
n,fη(sn) ≥ cn,f ,∀f ∈ {1, 2, . . . , F},∀n ∈ {1, 2, . . . , N}.

(5)
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The term 1
2λµ

⊤
wµw regularizes the solution and the cost term 1

2β(µw − µ̂w)
⊤(µw − µ̂w) inspired

from [9] keeps the solution close to a desired one. Similarly to [8], we propose to solve Eq. (3) by
introducing Lagrange multipliers αn,f ≥ 0, with the Lagrange function

L(µw, α) =

N∑
n=1

1

2
(Θ⊤(sn)µw − µ̂n)

⊤Σ̂−1
n (Θ⊤(sn)µw − µ̂n) +

1

2
λµ⊤

wµw

+
1

2
β(µw − µ̂w)

⊤(µw − µ̂w)−
N∑

n=1

F∑
f=1

αn,f (g⊤n,fΘ(sn)
⊤µw − cn,f ).

(6)

For a desired output ξ = Φ̂⊤µ̂w, we can estimate the optimal weight vector µ̂w given the target
trajectory ξ, using the right pseudo-inverse of Φ̂⊤, hence, µ̂w = Φ̂(Φ̂⊤Φ̂)−1ξ.

With further simplification, we obtain,

L̃(α) = α⊤Ḡ⊤ΣAAAΣḠα+ (2µ⊤AAAΣḠ− βξ⊤(Φ̂⊤Φ̂)−1Φ̂⊤ΦAΣḠ+ C̄⊤)α+ const,
(7)

and
E(η(s∗)) = Θ(s∗)(ΦAµ+ΦAΣḠα+

β

γ
(I −ΦAΦ⊤)Φ̂(Φ̂⊤Φ̂)−1ξ), (8)

respectively, where γ = λ + β, and C̄ = [C⊤
1 C⊤

2 . . . C⊤
N ]⊤ with Cn =

[cn,1 cn,2 . . . cn,F ]
⊤,∀n ∈ {1, 2, . . . , N}.

Huang et al. [4] proposed to kernelize the above equation using the kernel treatment, i.e. inner
product of basis functions φ(si) and φ(sj) is defined as φ(si)⊤φ(sj) = k(si, sj), where k(., .) is
a kernel function. With the kernel treatment, we can write

L̃(α) = α⊤Ḡ⊤ΣAAAΣḠα+ (2µ⊤AAAΣḠ− βξ⊤K−1K̂AΣḠ+ C̄⊤)α+ const, (9)

E(η(s∗)) = k∗Aµ+ k∗AΣḠα+
β

γ
(k̂∗ − k∗AK̂)K−1ξ, (10)

with A = (K + λΣ)−1, and A = − 1
2KΣ−1K − γ

2K, where,

k∗ = [k(s∗, s1), . . . ,k(s
∗, sN )], (11)

K =

k(s1, s1) . . . k(s1, sN )
...

. . .
...

k(sN , s1) . . . k(sN , sN ))

 ,k(si, sj) = k(si, sj)I, (12)

K = Φ̂⊤Φ̂, K̂ = Φ⊤Φ̂, k̂ = Φ(s∗)⊤Φ̂. (13)

We substitute B1 = Ḡ⊤ΣAAAΣḠ, and B2 = 2µ⊤AAAΣḠ− βξ⊤K−1K̂(−A)ΣḠ+ C̄⊤, in
Eq. (9) to obtain a quadratic function

L̃(α) = α⊤B1α+ B2α,

s.t. α ≥ 0.
(14)

Here AAA = (AAA)⊤ ≼ 0 and −A = −A⊤ ≼ 0, hence Eq. (14) presents a classical quadratic
optimization problem with linear constraints. After computing the value of α with quadratic pro-
gramming, Eq. (10) can be used to make constrained predictions while taking into account modula-
tions generated by ξ.

2.3 Properties of LC-NS-KMP

We evaluated the properties of LC-NS-KMP using synthetically generated 2D time trajectories,
shown in Fig. 2 (A1), alongside the learned Gaussian Mixture Model (GMM). We use GMM/GMR
method for generating the reference trajectories and covariances in all of our experiments.

Fig. 2 (A2) illustrates the impact of various null-space actions ξ applied at t=3.2 on the trajectories.
Despite the local modulation in the trajectory, smoothness is preserved while respecting the linear
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inequality constraints defined in LC-NS-KMP, similar to the approach of Huang and Caldwell [8].
Finally, Fig. 2 (A3) shows trajectories generated using Eq. (8), where ξ is randomly sampled from a
normal distribution at each time step. ξ modulates the trajectory in accordance with the variance in
the demonstrations and hence it demonstrates the uncertainty aware exploration through null-space
actions. The modulated trajectory also satisfies the constraints despite the noise amplitude which
leads to the safe exploration in RL.

A1 A2 A3

Figure 2: LC-NS-KMP properties: (A1) shows the demonstrations and the
learned GMM; (A2) shows the modulations due to different ξ adhering to the
linear constraints; (A3) shows the effect of randomly sampled ξ.

2.4 RL
with LC-NS-KMP

In our RL framework, we
use null-space actions ξ ob-
tained from a RL policy
π(ξ|s), to introduce mod-
ulations in the LfD tra-
jectory learned from the
demonstrations. LC-KMP
[8] in Eq. (4) predicts a tra-
jectory which respects the linear inequality constraints defined in Eq. (3). Our proposed method
LC-NS-KMP in Eq. (10) allows modifications in the prediction using null-space action ξ, whose
magnitude depends on the variance in the demonstrations, while respecting the constraints in Eq. (3).
This important property allows us to conduct efficient and safe RL search using null-space actions.
Particularly, we obtain null-space actions from a RL policy π(ξ|s) modifying the prediction for
further refinement as

E(η(s∗)) = k∗Aµ+ k∗AΣḠα+
β

γ
(k̂ − kAk̂)π(ξ|s). (15)

3 Evaluation

3.1 Experiments in simulation

We evaluate the performance of our proposed framework against a baseline where an agent learns a
residual RL policy to adapt the mean LfD trajectory. For this evaluation, we developed a simulation
involving a robot that navigates a 2D environment with the primary objective of reaching a goal
position while passing through a narrow passage and a secondary objective of avoiding an obstacle
in its path. The setup for the simulation is depicted in Fig. 3.

We selected KMP, as described in Section 2.1, as the baseline LfD method, which produces the
necessary time-based trajectory pkmp

t = E(η(t)) to reach the goal, along with a residual RL pol-
icy πres(∆pt|t) that modifies mean trajectory pt for avoiding the obstacle. The robot follows the
resultant 2D pose pt = pkmp

t +∆pt derived from the combined output of the policies.

We then compare the baseline residual RL solution to our LC-NS-KMP-RL algorithm outlined in
Eq. (15), where an RL policy π(ξ|t) generates null space actions ξ that modify the trajectory using
null-space projector in LC-NS-KMP. In both cases, the reward function for the robot is given by,

rt = ra + ro + rT , ra = −5δp⊤
t δpt, (16)

ro =

{
−100(0.04− dt), if dt ≤ 0.04

0 otherwise
(17)

rT =

{
200 at terminal step T if successful
0 otherwise

(18)

where dt is the distance of the robot from the obstacle, the terminal reward rT is given if the episode
terminates successfully, ro is obstacle avoidance cost, and ra is the action cost.
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Figure 4: Comparison of the performance of residual RL with LfD to LC-NS-KMP-RL.
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Figure 5: Performance of LC-NS-KMP-RL on BNC connector assembly task. The robot learns to solve the
task in 15 episodes, simultaneously minimizing the interaction force.
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Figure 3: Simulated 2D environment where the robot
navigates through a narrow passage to reach the goal.
A trajectory for navigation can be learned from demon-
stration. Then an RL policy learns to avoid the obstacle
in the path of the robot.

The episode is considered successful if the
robot reaches the goal within 400 time steps.
Conversely, it is deemed unsuccessful if the
robot becomes blocked in the narrow passage
for 20 or more time steps, or if the maxi-
mum limit of 400 time steps is reached with-
out achieving the goal. As illustrated in Fig. 3,
trajectories were demonstrated to the robot. In
each scenario, the mean trajectory consistently
intersects with the obstacle. Consequently,
the reinforcement learning policy must learn to
navigate the environment by avoiding the ob-
stacle while adhering to the hard constraints.

The performance comparison between residual
RL with LfD and the LC-NS-KMP-RL frame-
work is shown in Fig. 4. LC-NS-KMP-RL
quickly achieves the primary objective while
minimizing both obstacle avoidance and action costs. In contrast, residual learning takes much
longer due to isotropic noise used for exploration, which often causes the robot to become stuck
in the narrow passage. Conversely, LC-NS-KMP-RL modifies trajectories based on the variance in
demonstrations, reducing unnecessary exploration in low-variance region near the narrow passage.
Additionally, constraints in LC-NS-KMP-RL keep the robot within a safe zone, enhancing its overall
performance.

3.2 Experiments on real robot

To evaluate our framework on a real robot, we selected a task from the NIST assembly benchmark
1 [5] involving the plugging of a BNC connector. This task is particularly challenging and requires
multiple manipulation strategies for different phases: inserting, aligning, and locking the connec-
tor. The strategy learned from demonstration alone is insufficient to complete the task, and relying
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purely on RL would necessitate an impractically large number of trials. Our approach utilizes state-
dependent guided exploration, allowing the robot to explore the state-action space selectively, where
necessary. Additionally, linear inequality constraints reduce the state space and ensure the robot’s
safety.

Fig. 1 illustrates the experimental setup. Images (A1) and (A2) present side and top views of the
BNC male connector, while (A3) and (A4) show the respective views for the BNC female connector.
Images (B1) to (B4) depict the stages of picking, aligning, inserting, and locking the BNC male
connector, respectively, while human is demonstrating the task through hand-guided motion.

Demonstrations D = {{tn,m,pn,m}400n=1}5m=1 were provided for the aligning, inserting, and locking
phases. The 6D pose of the robot end-effector p = [x, y, z, az, ay, ax]

⊤ (where ax, ay, az represent
the Euler angles) is measured in the target frame, which is the end-effector position when the con-
nector is locked. For practical purposes, this target frame is assumed to be the last frame of each
successful demonstration.

A learned KMP from these demonstrations was tested but found inadequate for task completion
due to various factors, including kinematic and dynamic uncertainty and the KMP’s inability to
effectively capture the contact dynamics involved in the task.

We then formulated a LC-NS-KMP-RL problem and a RL policy π(ξ|st) was learned to complete
the task, where the state for RL policy st = [t; ft] with ft being the 6D wrench measured at the
center of compliance. We defined the linear inequality constraints in XY-plane so that RL explo-
ration does not deviate too far from the alignment pose, and a constraint on the angular pose, such
that the end-effector does not start rotation for locking before reaching a certain Z-position, which
corresponds to the completion of the insertion phase,

g⊤
n,1 = [1, 0, 0, 0, 0, 0], cn,1 = 0.002, g⊤

n,2 = [−1, 0, 0, 0, 0, 0], cn,2 = −0.002, (19)

g⊤
n,3 = [0, 1, 0, 0, 0, 0], cn,3 = 0.002, g⊤

n,4 = [0,−1, 0, 0, 0, 0], cn,4 = −0.002, (20)

g⊤
n,5 = [0, 0, 0,−1, 0, 0], cn,5 =

{
−π/2 ifz < −0.002,

0 otherwise.
(21)

The reward function for the RL agent is given by,

rt = − 1

2000
δξ⊤t δξt −

1

600
δf⊤

t δft + rT , (22)

rT =

{
200 at terminal step T if successful,
0 otherwise.

(23)

Fig. 5 illustrates the overall performance of LC-NS-KMP-RL. The robot successfully learned to in-
sert and lock the connector in under 15 episodes while significantly reducing force interactions with
the environment—an important factor for ensuring the robot’s long-term safe operation. Despite
the sample efficient learning, learning agent shows a deteriorating behaviour over time. We plan to
address this in our future work by introducing control framework with higher update rate and strict
real time control loops.

4 Conclusion

In conclusion, our paper highlights the effectiveness of the LC-NS-KMP-RL framework in learn-
ing challenging manipulation tasks involving complex contacts directly on real robot. By integrat-
ing state-dependent guided exploration and linear inequality constraints, we were able to facilitate
efficient learning and enhance the robot’s operational safety. The ability of the robot to master
the insertion and locking of the connector in fewer than 15 episodes underscores the potential of
our approach to significantly reduce the time and effort required for complex manipulation tasks.
Additionally, the reduction in force interactions with the environment indicates a pathway toward
long-term reliability and safety in robotic operations. This work contributes to the ongoing develop-
ment of adaptive robotic systems capable of performing intricate assembly tasks while prioritizing
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safety and efficiency. Future work will focus on further refining this framework and exploring its
applicability across a wider range of assembly challenges.
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