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Le Petit Prince multilingual 
naturalistic fMRI corpus
Jixing Li  1,2,10 ✉, Shohini Bhattasali  3,10, Shulin Zhang4, Berta Franzluebbers4,  
Wen-Ming Luh5, R. Nathan Spreng  6, Jonathan R. Brennan7, Yiming Yang8, 
Christophe Pallier  9 & John Hale4 ✉

Neuroimaging using more ecologically valid stimuli such as audiobooks has advanced our 
understanding of natural language comprehension in the brain. However, prior naturalistic stimuli have 
typically been restricted to a single language, which limited generalizability beyond small typological 
domains. Here we present the Le Petit Prince fMRI Corpus (LPPC–fMRI), a multilingual resource for 
research in the cognitive neuroscience of speech and language during naturalistic listening (OpenNeuro: 
ds003643). 49 English speakers, 35 Chinese speakers and 28 French speakers listened to the same 
audiobook The Little Prince in their native language while multi-echo functional magnetic resonance 
imaging was acquired. We also provide time-aligned speech annotation and word-by-word predictors 
obtained using natural language processing tools. The resulting timeseries data are shown to be of 
high quality with good temporal signal-to-noise ratio and high inter-subject correlation. Data-driven 
functional analyses provide further evidence of data quality. This annotated, multilingual fMRI dataset 
facilitates future re-analysis that addresses cross-linguistic commonalities and differences in the neural 
substrate of language processing on multiple perceptual and linguistic levels.

Background & Summary
In the cognitive neuroscience of language, there is a growing consensus that using more ecologically valid stim-
uli such as audiobooks might extend our understanding of language processing in the brain1–3. Compared to tra-
ditional factorial designs with a large number of repetitive trials, naturalistic paradigms use stories and dialogues 
with a rich context and produce results that are generalizable to everyday language use3,4. However, prior natu-
ralistic studies have typically been restricted to a single language, which limited neurobiological frameworks for 
language processing to small typological domains. Here we present Le Petit Prince fMRI Corpus (LPPC-fMRI)5, 
a multilingual fMRI dataset where English, Chinese and French speakers listened to the same audiobook Le Petit 
Prince (The Little Prince) in their native language (see Fig. 1 for a Schematic overview of the LPPC-fMRI data 
collection, preprocessing, technical validation and annotation procedures). Our parallel corpus facilitates future 
research on cross-linguistic commonalities and differences in the neural processes for language comprehension.

In naturalistic designs such as story listening, linguistic processes on multiple levels (e.g., word, phrase, sen-
tence, discourse) unfold naturally at different timescales. Such a rich contextual setting extends the range of 
linguistic phenomena that can be examined in parallel, and allows for testing assumptions on the neural mecha-
nisms of language processing. For example, whether different linguistic levels coincide with different frequencies 
of oscillatory activity in the brain6,7, and whether these levels correspond to a hierarchically organized predictive 
coding architecture8. In addition, naturalistic approaches to neurolinguistics are in synergy with natural lan-
guage processing (NLP), where using ecologically valid language corpora for training models has been com-
mon practice for the past quarter-century. Accordingly, NLP models can be leveraged to understand linguistic 
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processes at an algorithmic level by comparing model predictions against brain data during naturalistic compre-
hension. For example, syntactic structure-building as predicted by the bottom-up or left-corner parsing strate-
gies9–11 and recurrent neural network grammars (RNNG)12 has been shown to fit well with left temporal activity. 
Recent neural network architectures such as bidirectional LSTMs13 and Transformers14,15 have also been shown 
to correlate with neural responses during naturalistic comprehension, suggesting construction-specific varia-
tions in the understanding of linguistic expressions.

While naturalistic designs opened up a host of new research questions that are not possible to study under 
tightly controlled experimental designs, the majority of prior naturalistic studies have been restricted to a single 
language. This limited our understanding of the neural processes of language comprehension to small typo-
logical domains. To complement monolingual datasets such as the Narrative Brain Dataset (NBD)16, the Alice 
Dataset17, the Narratives dataset18 and the Mother of Unification Studies19, we collected a multilingual fMRI 
dataset consisted of Antoine de Saint-Exupéry’s The Little Prince in English, Chinese and French. A total of 112 
subjects (49 English speakers, 35 Chinese speakers and 28 French speakers) listened to the whole audiobook for 
about 100 minutes in the scanner (see Tables 2 and 4 for the demographics of the participants, data collection 
procedures, and stimuli information for the English, Chinese, and French datasets).

This stimulus is considerably longer than other datasets (i.e., 6 minutes on average for the NBD dataset 
and 12 minutes for the Alice dataset), allowing for testing linguistic phenomena that may not be sufficiently 
attested in smaller samples. This dataset includes time-aligned speech segmentation, prosodic information and 
word-by-word predictors obtained using natural language processing tools, ranging from lexical semantics 
to syntax to discourse information (see Fig. 2 for the annotations available for an example sentence from the 
English audiobook). The neuroimaging data, as well as the annotations and information about the experimental 
procedure are shared in a standardized BIDS format on OpenNeuro5.

The LPPC-fMRI facilitates cross-linguistic generalization and helps overcome current statistical and typo-
logical limitations in the neurobiology of language. We stress the importance of considering multiple languages 
when building and testing neurobiological models of language processing, assuming that the neural substrates 
and processes of language are shared among speakers of all languages. As shown in previous work examining 
coreference resolution using the English and Chinese subset of this corpus, the computational model that best 
explains the neural signature for pronoun processing is generalizable for both English and Chinese20. These 
data can be reused to address different research questions with a variety of analytical methods. Future work 
envisions an expanded LPPC, one that incorporates data from additional neuroimaging modalities, such as 
electrocorticography (EEG) and magnetoencephalography (MEG). For instance, LPPC-EEG dataset aspires to 
26 languages4. Our vision is for the LPPC to become an open infrastructure to which researchers from various 
communities can contribute by adding further modalities, languages and annotations.

Methods
Participants. A total of 112 subjects listened to the whole audiobook for about 100 minutes in the scanner. 
Tables 2 and 4 show the summary of the data collection procedure, the stimuli and participants information for 
the three datasets.

English participants were 49 young adults (30 females, mean age = 21.3, SD = 3.6) with no history of psychi-
atric, neurological or other medical illness that might compromise cognitive functions. (A subset of prior work 

Fig. 1 Schematic overview of the LPPC-fMRI data collection procedures, preprocessing, technical validation 
and annotation. During data collection (blue), anatomical MRI was first acquired, followed by functional MRI 
while participants listened to 9 sections of the audiobook. After preprocessing the data (green), behavioral and 
overall data quality were examined (yellow). Audio and text annotations were extracted using NLP tools.
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using the LPP English fMRI dataset used 51 participants’ data21–23. Due to concerns about head movement, 
only 49 participants’ data is released in this corpus.) They self-identified as native English speakers, and strictly 
qualified as right-handed on the Edinburgh handedness inventory24. All participants were paid, and gave written 
informed consent prior to participation, in accordance with the IRB guidelines of Cornell University.

Chinese participants were 35 healthy, right-handed young adults (15 females, mean age = 19.3, SD = 1.6). 
They self-identified as native Chinese speakers, and had no history of psychiatric, neurological, or other medical 
illness that could compromise cognitive functions. All participants were paid, and gave written informed con-
sent prior to participation, in accordance with the IRB guidelines of Jiangsu Normal University.

French participants were 28 healthy, right-handed adults (15 females, mean age = 24.4, SD = 4.6). They 
self-identified as native French speakers and had no history of psychiatric, neurological, or other medical illness 
that could compromise cognitive functions. All participants gave written informed consent prior to participa-
tion, in accordance with the Regional Committee for the Protection of Persons involved in Biomedical Research.

Procedures. After giving their informed consent, participants were familiarized with the MRI facility and 
assumed a supine position on the scanner. They were instructed to not move as best as they could throughout 
scanning as movement would make the scans unusable. Next, participants were put in the head-coil with pillows 
under and on the sides of their head and under the knees for comfort and to reduce movement over the scanning 

Language

Participants Data Collection Stimuli

Number Mean Age Female Location Material Length (s) N Words N Sentences

English 49 21.3 30 Cornell University, United 
States

The little prince 
EN audiobook 5632 15376 1499

Chinese 35 19.9 15 Jiangsu Normal 
University, China

The little prince 
CN audiobook 5954 16009 1577

French 28 24.4 15 NeuroSpin, France The little prince 
FR audiobook 5828 15391 1480

Table 2. Demographics of the participants, data collection procedures, and stimuli information for the English, 
Chinese, and French datasets.

Original file Renamed file

sub-EN084_task-lppEN_run-09_echo-1_bold.nii.gz sub-EN084_task-lppEN_run-01_echo-1_bold.nii.gz

sub-EN084_task-lppEN_run-09_echo-2_bold.nii.gz sub-EN084_task-lppEN_run-01_echo-2_bold.nii.gz

sub-EN084_task-lppEN_run-09_echo-3_bold.nii.gz sub-EN084_task-lppEN_run-01_echo-3_bold.nii.gz

sub-EN084_task-lppEN_run-10_echo-1_bold.nii.gz sub-EN084_task-lppEN_run-02_echo-1_bold.nii.gz

sub-EN084_task-lppEN_run-10_echo-2_bold.nii.gz sub-EN084_task-lppEN_run-02_echo-2_bold.nii.gz

sub-EN084_task-lppEN_run-10_echo-3_bold.nii.gz sub-EN084_task-lppEN_run-02_echo-3_bold.nii.gz

sub-EN084_task-lppEN_run-13_echo-1_bold.nii.gz sub-EN084_task-lppEN_run-03_echo-1_bold.nii.gz

sub-EN084_task-lppEN_run-13_echo-2_bold.nii.gz sub-EN084_task-lppEN_run-03_echo-2_bold.nii.gz

sub-EN084_task-lppEN_run-13_echo-3_bold.nii.gz sub-EN084_task-lppEN_run-03_echo-3_bold.nii.gz

sub-EN084_task-lppEN_run-14_echo-1_bold.nii.gz sub-EN084_task-lppEN_run-04_echo-1_bold.nii.gz

sub-EN084_task-lppEN_run-14_echo-2_bold.nii.gz sub-EN084_task-lppEN_run-04_echo-2_bold.nii.gz

sub-EN084_task-lppEN_run-14_echo-3_bold.nii.gz sub-EN084_task-lppEN_run-04_echo-3_bold.nii.gz

sub-EN084_task-lppEN_run-15_echo-1_bold.nii.gz sub-EN084_task-lppEN_run-05_echo-1_bold.nii.gz

sub-EN084_task-lppEN_run-15_echo-2_bold.nii.gz sub-EN084_task-lppEN_run-05_echo-2_bold.nii.gz

sub-EN084_task-lppEN_run-15_echo-3_bold.nii.gz sub-EN084_task-lppEN_run-05_echo-3_bold.nii.gz

sub-EN084_task-lppEN_run-16_echo-1_bold.nii.gz sub-EN084_task-lppEN_run-06_echo-1_bold.nii.gz

sub-EN084_task-lppEN_run-16_echo-2_bold.nii.gz sub-EN084_task-lppEN_run-06_echo-2_bold.nii.gz

sub-EN084_task-lppEN_run-16_echo-3_bold.nii.gz sub-EN084_task-lppEN_run-06_echo-3_bold.nii.gz

sub-EN084_task-lppEN_run-17_echo-1_bold.nii.gz sub-EN084_task-lppEN_run-07_echo-1_bold.nii.gz

sub-EN084_task-lppEN_run-17_echo-2_bold.nii.gz sub-EN084_task-lppEN_run-07_echo-2_bold.nii.gz

sub-EN084_task-lppEN_run-17_echo-3_bold.nii.gz sub-EN084_task-lppEN_run-07_echo-3_bold.nii.gz

sub-EN084_task-lppEN_run-18_echo-1_bold.nii.gz sub-EN084_task-lppEN_run-08_echo-1_bold.nii.gz

sub-EN084_task-lppEN_run-18_echo-2_bold.nii.gz sub-EN084_task-lppEN_run-08_echo-2_bold.nii.gz

sub-EN084_task-lppEN_run-18_echo-3_bold.nii.gz sub-EN084_task-lppEN_run-08_echo-3_bold.nii.gz

sub-EN084_task-lppEN_run-19_echo-1_bold.nii.gz sub-EN084_task-lppEN_run-09_echo-1_bold.nii.gz

sub-EN084_task-lppEN_run-19_echo-2_bold.nii.gz sub-EN084_task-lppEN_run-09_echo-2_bold.nii.gz

sub-EN084_task-lppEN_run-19_echo-3_bold.nii.gz sub-EN084_task-lppEN_run-09_echo-3_bold.nii.gz

Table 1. Example of renaming convention using symbolic links to keep run numbers consistent across 
participants.
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session. Participants were given a bulb in their right hand and told to squeeze if something was wrong or they 
needed a break during scanning. Once in place, participants chose an optimal stimulus volume by determining a 
level that was loud but comfortable. Auditory stimuli were delivered through MRI-safe, high-fidelity headphones 
inside the head coil (English: Confon HP-VS01, MR Confon, Magdeburg, Germany; Chinese: Ear Bud Headset, 
Resonance Technology, Inc, California, USA; French: Magnacoil TIM headset, Siemens, Germany). The head-
phones were secured against the plastic frame of the coil using foam blocks.

The English and Chinese participants went through one scanning session, which was divided into 9 runs, and 
each lasted for about 10 minutes. Participants listened passively to 1 section of the audiobook in each run and 
completed 4 quiz questions after each run (36 questions in total). These questions were used to confirm their 
comprehension and were viewed by the participants via a mirror attached to the head coil and they answered 
through a button box. During scanning, participants were monitored by a camera over their left eye. If they 
appeared drowsy or seemed to move too much during the movie, the operator of the scanner gave them a warn-
ing over the intercom by producing a beep or speaking to them. During breaks between the runs, participants 
were told that they could relax but not move. Finally, participants were paid and sent home. The entire ses-
sion lasted for around 2.5 hours. In French, due to a legal limitation, participants could not stay for longer than 
1.5 hours inside the scanner; therefore, the acquisition was split into two sessions separated by a period of 1 to 
2 hours out of the scanner.

Fig. 2 Annotation information for the stimuli. (a) Word boundaries in the audio files, included in files: lpp<EN/
CN/FR>_section[1–9].TextGrid. (b) f0 and RMS intensity for every 10 ms of the audios, included in files: 
lpp<EN/CN/FR>_prosody.csv (c) Tokenization, lemmatization, log-tranformed word frequency and POS 
tagging, included in files: lpp<EN/CN/FR>_word_information.csv. (d) GloVe and BERT embeddings 
for every word in the audiobooks, included in files: lpp<EN/CN/FR>_word_embeddings_GloVe.csv 
and lpp<EN/CN/FR>_word_embeddings_BERT.csv (e) Parsed syntactic trees based on constituency 
grammar with node counts using top-down, bottom-up, and left-corner parsing strategies31, included in files: 
lpp<EN/CN/FR>_trees.csv. (f) Dependency relations for each words in each sentence, included in files: 
lpp < EN/CN/FR > _dependency.csv. (g) Named entity recognition and coreference relations for the English and 
Chinese texts, included in files: lpp<EN/CN>_coreference.csv.

https://doi.org/10.1038/s41597-022-01625-7
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Stimuli. The English The Little Prince audiobook is 94 minutes long, translated by David Wilkinson and read 
by Karen Savage. The Chinese audiobook http://www.xiaowangzi.org/ is 99 minutes long, read by a professional 
female Chinese broadcaster hired by the experimenter. The French audiobook is 97 minutes long, read by Nadine 
Eckert-Boulet and published by the now-defunct Omilia Languages Ltd. The original French text is copyrighted 
by Gallimard 1946.

One of the central themes in the story is the difference between adults and children, especially the lack of 
imagination in the former. The narrator uses the visual cues of different drawings to emphasize this message 
and these drawings are present in the original text. In the English and Chinese study, to help the participants 
understand this point, these visual cues were incorporated during the audio presentation for the first chapter 
and are included in the OpenNeuro repository. In order to control for the visual stimuli and its associated neu-
ral activation, “picture events” conditions and “picture blocks” conditions are also included in the analysis to 
account for the visual stimuli presented to participants and its associated neural activation. The “picture events” 
occur at the 10 s, 35 s, and 60 s timepoints in the first section of the story while the “picture blocks” also occur at 
the 10 s, 35 s, and 60 s timepoints in the first section and last for 15 s, 20 s, and 15 s respectively. These conditions 
match the presentation and duration of the visual stimuli and are aligned with particular plot points in the story.

acquisition. Data acquisition parameters are listed in Table 3 for ease of comparison across English, Chinese, 
and French. The scanner parameters were the same for English and Chinese with some differences for French. 
There was a trigger at the beginning of each section and a delay of 8 s (4 TRs) between the trigger and onset of 
stimulus presentation for all three languages.

Preprocessing. MRI data files were converted from DICOM to NIfTI format and preprocessed using AFNI 
version 1625.

Anatomical. The anatomical/structural MRI scans were deskulled using 3dSkullStrip. The resulting anatomical 
images were nonlinearly aligned to the Montreal Neurological Institute (MNI) N27 template brain. Resulting 
anatomical images were used to create grey matter masks.

Functional. The first 4 volumes in each run were excluded from analyses to allow for T1-equilibration effects. 
The fMRI timeseries were then corrected for slice-timing differences (3dTshift) and despiked (3dDespike). Next, 
volume registration was done by aligning each timepoint to the mean functional image of the centre timeseries 
(3dvolreg). Then the volume-registered and anatomically-aligned functional data were nonlinearly aligned to 
the MNI template brain. Multi-echo independent components analysis (ME-ICA)26 were used to denoise data 
for motion, physiology and scanner artifacts. Images were then resampled at 2 mm cubic voxels (3dresample).

annotations. Apart from the fMRI timeseries data, we also provide audio and text annotations ranging from 
time-aligned speech segmentation and prosodic information to word-by-word predictors obtained using natural 
language processing tools, including lexical semantics, syntax and discourse-level information. See Fig. 2 for a 
summary of our annotations. These annotations are available on OpenNeuro too (see the Data records section).

Speech segmentation. Word boundaries in the audio were identified and aligned to the transcripts using 
Forced Alignment and Vowel Extraction (FAVE) (https://www.research.ed.ac.uk/portal/en/publications/
fave-forced-alignment-and-vowel-extraction-suite-version-113(bbc2046d-6768-47c5-b574-2987895b0307).
html) and were manually checked by two native speakers each of the three languages.

Prosodic information. Root mean square intensity and the fundamental frequency (f0) for every 10 ms of each 
audio section of the three languages were extracted using the Voicebox toolbox (http://www.ee.ic.ac.uk/hp/staff/
dmb/voicebox/voicebox.html).

Language Scanner
Head 
coil

Anatomical/Structural Scans Functional Scans

Pulse 
sequence

in-plane  
resolution

slice 
thickness

Pulse 
sequence TRs TEs

Flip 
angle

Matrix 
size FoV

Image 
acceleration

N axial 
slices

in-plane  
resolution

slice 
thickness

English
3 T MRI GE 
Discovery 
MR750

32 
channel

T1W  
MPRAGE

1.0 mm ×  
1.0 mm 1.0 mm ME-EPI 2000 ms 2.8, 27.5, 

43 ms 77 72 × 72 240.0 mm ×  
240.0 mm 2x 33 3.75 mm ×  

3.75 mm 3.8 mm

Chinese
3 T MRI GE 
Discovery 
MR750

32 
channel

T1W 
MPRAGE

1.0 mm ×  
1.0 mm 1.0 mm ME-EPI 2000 ms 2.8, 27.5, 

43 ms 77 72 × 72 240.0 mm ×  
240.0 mm 2x 33 3.75 mm ×  

3.75 mm 3.8 mm

French
3 T Siemens 
Magnetom 
Prisma Fit 
230

64 
channel

T1W 
MPRAGE

1.0 mm ×  
1.0 mm 1.0 mm ME-EPI 2000 ms 10, 25, 

38 ms 77 72 × 72 240.0 mm ×  
240.0 mm 2x 34 3.75 mm ×  

3.75 mm 3.8 mm

Table 3. Scanner parameters for structural and functional scans across English, Chinese, and French datasets.
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Word frequency. Log-transformed unigram frequency of each word in The Little Prince in English, Chinese and 
French was estimated using Google Books Ngram Viewer, Version 20120701 (http://storage.googleapis.com/
books/ngrams/books/datasetsv2.html).

English Chinese French

Participant ID Age Sex Participant ID Age Sex Participant ID Age Sex

sub-EN057 20 F sub-CN001 18 F sub-FR001 40 M

sub-EN058 22 M sub-CN002 18 F sub-FR002 23 M

sub-EN059 21 F sub-CN003 22 F sub-FR003 26 F

sub-EN061 25 F sub-CN004 18 M sub-FR004 20 M

sub-EN062 23 M sub-CN005 18 F sub-FR005 23 F

sub-EN063 22 M sub-CN006 19 F sub-FR006 30 M

sub-EN064 19 M sub-CN007 20 F sub-FR007 20 M

sub-EN065 21 F sub-CN008 21 F sub-FR008 23 M

sub-EN067 21 F sub-CN009 20 M sub-FR009 18 F

sub-EN068 19 M sub-CN010 22 M sub-FR010 28 F

sub-EN069 21 F sub-CN011 20 M sub-FR011 26 F

sub-EN070 20 F sub-CN013 20 F sub-FR012 28 F

sub-EN072 18 F sub-CN014 19 M sub-FR013 23 F

sub-EN073 19 F sub-CN015 19 F sub-FR014 20 F

sub-EN074 18 F sub-CN016 18 F sub-FR015 23 F

sub-EN075 18 M sub-CN017 22 M sub-FR016 22 M

sub-EN076 20 M sub-CN018 21 M sub-FR017 24 M

sub-EN077 22 M sub-CN019 20 M sub-FR018 23 F

sub-EN078 19 F sub-CN020 21 M sub-FR019 25 F

sub-EN079 21 F sub-CN021 19 F sub-FR020 25 F

sub-EN081 22 F sub-CN022 20 F sub-FR022 20 F

sub-EN082 28 F sub-CN023 20 F sub-FR023 19 M

sub-EN083 20 F sub-CN024 19 F sub-FR024 20 M

sub-EN084 28 F sub-CN025 18 M sub-FR025 22 M

sub-EN086 19 M sub-CN026 20 M sub-FR026 32 F

sub-EN087 22 M sub-CN027 18 M sub-FR028 22 M

sub-EN088 21 M sub-CN028 24 M sub-FR029 30 F

sub-EN089 33 M sub-CN029 19 M sub-FR030 27 M

sub-EN091 20 M sub-CN030 19 M

sub-EN092 21 M sub-CN031 21 M

sub-EN093 20 F sub-CN032 21 M

sub-EN094 21 F sub-CN033 22 M

sub-EN095 20 F sub-CN034 18 F

sub-EN096 18 F sub-CN036 22 M

sub-EN097 21 F sub-CN037 22 M

sub-EN098 24 F

sub-EN099 37 F

sub-EN100 19 F

sub-EN101 23 M

sub-EN103 18 F

sub-EN104 19 F

sub-EN105 19 F

sub-EN106 20 M

sub-EN108 18 M

sub-EN109 19 M

sub-EN110 21 F

sub-EN113 21 F

sub-EN114 20 M

sub-EN115 23 F

Table 4. List of subjects in the data collection with basic demographic information.
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Word embeddings. Static GloVe embeddings27 and contextualized BERT embeddings for each word (given 
its sentential context) in the The Little Prince in the three languages were extracted using the SpaCy package 
(https://spacy.io/). Words that are divided into subwords by BERT used the average embedding of the subwords.

Part-of-speech tagging. Part-of-speech (POS) tagging for each word in the book in the three languages was 
extracted using the Stanford parser for English28, Chinese29 and French30.

Constituency parsing. Syntactic tree structures of each sentence in the audiobooks was parsed using the 
Stanford parser for English28, Chinese29 and French30.

Parser actions. Syntactic node counts for each word in the audiobooks based on bottom-up, top-down and 
left-corner parsing strategies31 as applied to the Stanford-derived constituency trees described above. These 
word-by-word counts are the number of parser actions that would be taken (on a given strategy) before moving 
on to the next word in the sentence. They were calculated using custom tree-walking software.

Fig. 3 Organization of the data collection. (a) General overview of directory structure. (b) Content of subject-
specific anatomical and raw data directories. (c) Content of subject-specific preprocessed data directories. 
(d) Content of the stimuli directory. (e) Content of the quiz directory. (f) Content of the language-specific 
annotation directory.
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Dependency parsing. Dependency relations of words in each sentence of the audiobooks were parsed using the 
Stanford dependency parser for English32, Chinese33 and French30.

Coreference resolution. Antecedents for each third person pronoun in the English and Chinese audiobooks 
were manually annotated using the annotation tool brat34.

Data Records
Information and anatomical data that could be used to identify participants has been removed from all records. 
Resulting files are available from the OpenNeuro repository at https://doi.org/10.18112/openneuro.ds003643.
v2.0.05. See Fig. 3 for the organization of the data collection. A README file there provides a description of the 
available content. The scripts used for this manuscript are available on the repository and GitHub (https://github.
com/jixing-li/lpp_data).

Participant responses. Location participants.json, participants.tsv.
File format tab-separated value.
Participants’ sex, age and responses to quiz questions in tab-separated value (tsv) files. Data is structured as 

one line per participant.

audio files. Location stimuli/task-lpp<EN/CN/FR>_section_0[1–9].wav
File format wav.
The English, Chinese and French audiobooks divided into nine sections.

anatomical MRI. Location sub-<EN/CN/FR><ID>/anat/sub-<EN/CN/FR><ID>_T1w.nii.gz
File format NIfTI, gzip-compressed.
The defaced raw high-resolution anatomical image.

Functional MRI. Location sub-<EN/CN/FR><ID>/func/sub-<EN/CN/FR><ID>_
task-lpp<EN/CN/FR>_run-0[1–9]_echo-[1–3]_bold.nii.gz.

File format NIfTI, gzip-compressed.
Sequence protocol sub-<EN/CN/FR><ID>/func/sub-<EN/CN/FR><ID>_task-lpp<EN/CN/

FR>_run-0[1–9]_echo-[1–9]_bold.json.
The mutli-echo fMRI data are available as individual timeseries files, stored as:
sub-<EN/CN/FR><ID>/func/sub-<EN/CN/FR><ID>_task-lpp<EN/CN/FR>_run-0[1–

9]_echo-[1–3]_bold.nii.gz.
The MEI-CA preprocessed timeseries are also available as:
derivatives/sub<EN/CN/FR><ID>/func/sub-<EN/CN/FR><ID>_task-lpp<EN/CN/

FR>_run-0[1–9]_space-MNIColin27_desc-preproc_bold.nii.gz.

annotations. Location annotation/<EN/CN/FR>/lpp<EN/CN/FR>_section[1–9].
TextGrid,

File format TextGrid (requires Praat software; http://www.praat.org/).
Location annotation/<EN/CN/FR>/lpp<EN/CN/FR>_prosody.csv,
annotation/<EN/CN/FR>/lpp<EN/CN/FR>_word_information.csv, 

annotation/<EN/CN/FR>/lpp<EN/CN/FR>_word_embeddings_GloVe.csv, 
annotation/<EN/CN/FR>/lpp<EN/CN/FR>_word_embeddings_BERT.csv, 
a n n o t a t i o n / < E N / C N / F R > / l p p < E N / C N / F R > _ t r e e . c s v , 
annotation/<EN/CN/FR>/lpp<EN/CN/FR>_dependency.csv,annotation/<CN/EN>/
lpp<CN/EN>_coreference.csv.

File format comma-separated value.
Speech and linguistic annotations for the audio and text of the three languages.

Quiz questions. Location quiz/lpp<EN/CN/FR>_quiz_questions.csv.
File format comma-separated value.
The 36 comprehension quiz questions used in the English, Chinese and French experiments.

FD (mm) FD > 0.2 mm (%)

Mean SD Mean SD

English 0.11 0.05 9.3 10.6

Chinese 0.08 0.05 5.0 8.2

French 0.10 0.02 4.6 5.0

Table 5. Summary of framewise displacement information for the English, Chinese and French data.
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Technical Validation
Accuracy of participants’ responses to the quizzes after each section was calculated to ensure adequate com-
prehension. To assess fMRI scan quality, we calculated framewise displacement (FD), temporal signal-to-noise 
ratio (tSNR) and inter-subject correlation (ISC). We also did two whole-brain functional analyses using pitch 
(f0) and word annotations. These serve to show data quality similar to past work and provide evidence for timing 
accuracy between fMRI timeseries for participants.

Behavioral results. Participants answered four four-choice comprehension questions after each section (36 
questions in total). An example question is shown below. Participants performed well with a mean accuracy of 
89.5% (SD = 3.8) and 86.4% (SD = 2.7) for English and Chinese participants, respectively. French participants’ 
responses were noted on paper by the experimenters during recording and were unfortunately unable to locate 
now. But the experimenters did not notice any French participant with an abnormally low accuracy (<75%) for 
the quiz questions.

Fig. 4 Voxel-wise temporal signal-to-noise ratio analysis before and after preprocessing. Cohen’s d effect sizes 
showed increase in tSNR after preprocessing.
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Why was the little prince difficult to talk to?
(a) He spoke a foreign language.
(b) He was mute.
(c) He didn’t ask enough questions.
(d) He didn’t answer questions directly.
Key: (d)

Framewise displacement. Framewise displacement is a measure of the frame-to-frame movement, 
assessed in millimetres. The six motion parameters (3 translation parameters and 3 rotation parameters) gen-
erated by MEI-CA.py were used to calculate FD, defined as the sum of the absolute temporal derivatives of the 
six motion parameters, following conversion of rotational parameters to distances by computing the arc length 
displacement on the surface of a sphere with radius 50 mm35,36:

∣ ∣ ∣ ∣∑ ∑π= − − + ⋅ ⋅ − −FD t d t d t r t r t( ) ( 1) ( ) 50 ( /180) ( 1) ( )

where d denotes translation distances x, y, z, and r denotes rotation angles α, β, γ. For each participant, a single 
(scalar) estimate of overall motion, the mean FD, can be calculated by averaging the FD time series.

For the English data, the average FD was 0.11 mm (SD = 0.05); for the Chinese data, the average FD was 
0.08 mm (SD = 0.05), and for the French data, the average FD was 0.10 mm (SD = 0.02). FD values greater than 
0.20 mm are conventionally considered high motion36, we therefore also calculated the percentage of frames 
for each subject where FD exceeded 0.20 mm. The average percentage of frames where FD was greater than 
0.20 mm was 9.3% (SD = 10.6%), 5.0% (SD = 8.2%) and 4.6% (SD = 5.0%) for the English, Chinese and French 
data, respectively (see Table 5).

Temporal signal-to-noise ratio. tSNR is a measure of signal strength at the voxel level, defined as the 
mean signal intensity of a voxel across the timeseries divided by its standard deviation. We calculated tSNR both 
before preprocessing using the middle echo image which most closely approximates standard single echo col-
lection, and after the optimal combination of the echo images with MEI-CA denoising. We compared the tSNR 
values before and after extensive preprocessing using Cohen’s d:

=
−

+
Cohen s d

M M
’

SD SD

1 2

( )
2

1
2

2
2

where M and SD are the mean and standard deviation of the tSNR in a voxel for the more (subscript one) minus 
the less preprocessed timeseries (subscript two). We applied a grey matter mask with most white matter and 
ventricle voxels removed. The tSNR values showed a clear increase after MEI-CA denoising across the three 
language groups, suggesting clearer signal compared to standard single echo acquisition (see Fig. 4).

Inter-subject correlation. To estimate what proportion of the brain signal in response to the audiobook 
was consistent across subjects, we computed the inter-subject correlation (ISC) for each voxel’s timeseries across 
subjects in each language group. Each subject’s data in a voxel was correlated to the average timeseries of the other 
subjects in the same voxel. This generated a map that quantifies the similarity of an individual subject’s response 
with the group response. The procedure was repeated for all subjects, and a median ISC map was computed at the 
group level. The ISC results showed largest correlation in brain responses across subjects in the temporal regions, 
the brain regions implicated for speech and language processing (see Fig. 5).

Fig. 5 Results of inter-subject correlation (ISC) demonstrating data quality and timing synchrony between 
participants. As expected, the temporal regions showed the largest correlation in brain responses across 
subjects.
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Network labeling. Besides demonstrating data and timing quality, here we also illustrate the general linear 
model (GLM) methods to derive the prosody and word regions using our pitch and word annotations. In par-
ticular, we calculated the f0 for every 10 ms of the audio in each language and marked 1 at the offset of each word 
in the audio (wordrate). We then convolved the f0 and wordrate annotations with a canonical hemodynamic 
response function and regressed them against the preprocessed fMRI timecourses using GLMs. At the group 
level, the contrast images for the f0 and wordrate regressors were examined by a one-sample t-test. An 8 mm 
full-width at half-maximum (FWHM) Gaussian smoothing kernel was applied on the contrast images from the 
first-level analysis to counteract inter-subject anatomical variation. Statistical significance was held at p < 0.05 
FWE with a cluster size greater than 50. Figure 6 illustrates the GLM methods to localize the pitch and word 
regions.

To illustrate the precise anatomical correspondence of our results with prior data, we overlaid fMRI 
term-based meta-analysis from Neurosynth37 (Retrieved September 2021) for the “pitch” area (https://neu-
rosynth.org/analyses/terms/pitch/; from 102 studies) and the “words” area (https://neurosynth.org/analyses/
terms/words/; from 944 studies). Our results are highly consistent with prior literature (see Fig. 7). MNI coordi-
nates of the significant clusters and their statistics are shown in Table 6.

Usage Notes
The LPPC-fMRI can advance our understanding of speech and language processing in the human brain during 
naturalistic listening. However, there are several limitations and usage bottlenecks, including annotations and 
analyses that we now discuss to help others use the LPPC-fMRI to make new discoveries.

annotation bottleneck. Most of the linguistic annotations were done automatically using existing NLP 
tools, which may contain errors and affect downstream annotations. For example, syntactic node counts for each 
word in the audiobooks based on bottom-up, top-down and left-corner parsing strategies were applied to the 
Stanford-derived constituency trees, and the accuracy of the tree structures will affect the number of node counts.

analysis bottleneck. Although GLM or encoding models have been commonly applied to fMRI data using 
long naturalistic stimuli like audiobooks9,10,12,23,38–40, there are no standardised approaches for analysing com-
plex and high dimensional naturalistic fMRI data. Machine learning approaches are becoming an increasingly 

Fig. 6 GLM analyses to localize the wordrate regressor. (a) Offest of each word in the audiobook was marked 
1 and was convolved with the canonical hemodynamic response function. (b) The timecourse of each voxel’s 
BOLD signals was modeled using our designmatrix at the first level At the group level, a one-sample t-test was 
performed on the distribution of the beta values for the wordrate regressor across subjects at each voxel for the 
fMRI data. Statistical significance was held at p < 0.05 FWE with a cluster size greater than 50.

https://doi.org/10.1038/s41597-022-01625-7
https://neurosynth.org/analyses/terms/pitch/
https://neurosynth.org/analyses/terms/pitch/
https://neurosynth.org/analyses/terms/words/
https://neurosynth.org/analyses/terms/words/


1 2Scientific Data |           (2022) 9:530  | https://doi.org/10.1038/s41597-022-01625-7

www.nature.com/scientificdatawww.nature.com/scientificdata/

common way to analyze fMRI data, and we encourage the development of innovative analysis approaches by 
running machine learning competitions on the LPPC-fMRI corpus.

Cross-linguistic analyses. This multilingual fMRI data is a novel cognitive neuroscience resource since it 
enables cross-linguistic research. However, there are two points we would like to highlight. Firstly, for each language 
the dataset was acquired at different sites and we look at interaction effects between sites, not main effects (as seen in 
Fig. 7). Therefore, any specific baseline effects of acquisition would be controlled for (except for potential differences 
in SNR). Secondly, a group-level analysis, pooling together the data across the three languages would be infeasible. 
Although English, Chinese, and French follow the same underlying word order (SVO), given the structural, lexical, 
and prosodic differences between them, it would not be possible to align the same words along a temporal pattern 
cross-linguistically. However, within each language it is possible to investigate the same research question and com-
pare the neural correlates cross-linguistically, as it has been done for semantic number22 and antecedent tracking41.

Miscellaneous. The file name patterns reported in the Data Records are meant to be a template. In the actual 
dataset, some of the runs for a single participant have non-consecutive numbering due to scanning issues or 

Fig. 7 GLM results showing the significant clusters for (a) the pitch and (b) word regions in the English, 
Chinese and French data using f0 and wordrate annotations. Red areas in the second column of the 3D brains 
shows meta-analyses of pitch and word regions from Neurosynth37. Statistical significance was thresholded at 
p < 0.05 FWE and k > 50.
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participants needing a break. As a workaround, we created symbolic links for each of the participants’ runs by 
using the Unix in command. As an example, Table 1 illustrates how the runs were renamed for subject 84 in 
the LPP English dataset to be consistent with the runs[1–9] pattern specified and execute our scripts across all 
participants.

Code availability
The code for LPP-fMRI corpus is publicly available at the OpenNeuro repository under code/ subdirectory, 
and also at the following GitHub repositories: https://github.com/jixing-li/lpp_data, https://github.com/chrplr/
lpp-paradigm.

The code includes the presentation scripts for all three languages, the scripts used in technical validation and 
for preparing this data paper (e.g., compute_tsnr.py), in addition to code for obtaining annotations (e.g. 
count_parser_actions.py). Code for certain annotations like word embeddings and POS tagging is not 
included since there are several publicly available toolkits available to researchers.
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