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Abstract

Federated learning (FL) is an emerging approach in machine
learning that enables large-scale distributed model train-
ing without sharing local private data. However, training a
generic global model often fails to meet the personalized de-
mands of all clients over heterogeneous networks. Gradient-
based meta-learning, especially MAML, has become a vi-
able solution for this objective. One issue with MAML is the
computational and memory burden introduced by the second-
order information needed to compute the meta-gradient.
Additionally, frequent communication between clients and
server for model update in FL systems presents a significant
communication bottleneck in wireless networks. In this pa-
per, we propose a novel personalized federated meta-learning
system that leverages only first-order information and uti-
lizes over-the-air computations to improve communication
efficiency. We prove the convergence of our algorithm un-
der non-convex conditions and demonstrate its effectiveness
through extensive numerical experiments.

Introduction
Conventional federated learning (FL) aims to train a shared
global model across all clients (Fallah, Mokhtari, and
Ozdaglar 2020). However, due to the heterogeneous nature
of networks, a single global model may fail to obtain de-
sirable performance for individual clients (Tan et al. 2022).
Specifically, when the local datasets of the users are non-
i.i.d. (where i.i.d. stands for independent identically dis-
tributed), the model tends to favor some of the users while
heavily degrading the performance of others (Li et al. 2019).
To address this issue, it is necessary to improve the per-
formance of FL models on clients with heterogeneous data
through personalized approaches (Zhang et al. 2023), a con-
cept known as personalized federated learning (PFL).

Furthermore, for modern artificial intelligence applica-
tions, the training paradigm has recently shifted to pre-
training followed by fine-tuning (Wen, Xing, and Sime-
one 2024). Motivated by this principle, by performing fine-
tuning of a unified pre-trained model on each local client,
we can naturally enhance the performance of customized FL
models on diverse client data. Specifically, the goal of the
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FL system shifts to training a pre-trained model, where each
client performs its unique local fine-tuning process by cap-
turing the local-global model relationship and cross-client
knowledge, which can be regarded as a multi-task learning
framework (Smith et al. 2017).

A general framework in which pre-training and fine-
tuning can be formalized is meta-learning. In meta-learning,
data from different tasks are used to pre-train a model with
the aim of ensuring that the pre-trained model can be effi-
ciently fine-tuned based on limited data for a new task (Chen
et al. 2023a). Model Agnostic Meta Learning (MAML) in-
troduced by (Finn, Abbeel, and Levine 2017) is a gradient-
based meta learning algorithm, which runs in two connected
stages: meta-training and meta-testing. Meta-training uses
gradient descent to learn an initial model that can quickly
adapt to a range of possible tasks. Meta-testing then involves
training this initial model on a specific task to evaluate its
performance. For FL systems, we can approximate hetero-
geneous clients as tasks in MAML (Fallah, Mokhtari, and
Ozdaglar 2020). The global model training process in FL
can be seen as meta-training in MAML, while the client-
specific personalization based on the global FL model can
be understood as meta-testing (Jiang et al. 2019).

Based on the MAML algorithm, we can restructure the
FL system by shifting its objective from finding a single
model that is optimal on average for all clients to finding
an optimal initial pre-trained model. However, the original
MAML algorithm requires calculating second-order gradi-
ents, specifically the Hessian matrix, in each update (Chayti
and Jaggi 2024). This typically consumes substantial com-
putational resources, which is especially challenging for
resource-constrained FL systems in wireless networks.

Communication efficiency serves as another issue hinder-
ing the scalability of the deployment of FL systems over
wireless networks (Yang et al. Dec. 2021,M). A typical
training process for a generic global model to converge re-
quires hundreds or even thousands of communication rounds
among the massively distributed clients and the edge server,
where the iterative exchange of model parameters incurs
substantial communication overhead (McMahan et al. Apr.
2017; Li et al. May. 2020). One way to address this issue is
to integrate analog over-the-air (OTA) computations into the
FL model training, exploiting the superposition properties of
analog transmissions, so as to achieve automatic “one-shot”
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Figure 1: An overview of gradient descent-based first-order
personalized federated meta-learning system, which do not
require the use of the Hessian matrix.

aggregation for model updates (Guo et al. Dec. 2021; Chen,
Yang, and Quek 2023). However, the random channel fading
and interference would concurrently be induced into the ag-
gregated gradients or model updates, leading to performance
degradation such as the slower convergence rate and insta-
bility (Sery and Cohen Apr. 2020; Chen et al. 2023b).

In view of the above challenges and considerations, we
propose a first-order federated meta-learning framework in
the context of analog transmissions. Unlike other OTA FL
frameworks (Wen, Xing, and Simeone 2024), we adopt
the FOMAML (First-Order MAML) approach (Chen et al.
2018), which does not require second-order information.
This significantly reduces computational complexity during
the training phase with minimal impact on the model’s fi-
nal performance. We also provide a convergence analysis of
our algorithm under non-convex conditions. Both theoretical
and numerical results validate the gain of our design.

System model
We consider a federated edge learning system consisting of
an edge server and N clients. The clients communicate with
the edge server through wireless channels. Each client n,
n ∈ {1, · · · , N}, holds a local dataset Dn = {(xi, yi)}mn

i=1,
where xi ∈ Rd and yi ∈ R represent the input data sample
and the corresponding response, respectively.

The goal of each device n is to minimize the emprical loss
function constructed by the local dataset of client n, given by

fn(w) =
1

mn

mn∑
i=1

ℓ(w;xi, yi) (1)

in which ℓ(·) represents the loss evaluated at one pair of
input data samples. In a conventional FL system, the edge
server needs to coordinate clients to jointly optimize the fol-
lowing objective function:

min
w∈Rd

f(w) =
1

N

N∑
n=1

fn(w). (2)

However, in contrast to the traditional setting, the goal in
meta-learning is not finding a model which performs well

on all the tasks in expectation. Instead, we assume that we
have a limited computational budget to update our model
after a new task arrives, and in this new setting, we look for
an initialization which performs well after it is updated with
respect to this new task, possibly by one or a few steps of
gradient descent (Finn, Abbeel, and Levine 2017). In this
paper, we assume the use of a single-step gradient descent
to simplify the analysis. Then problem (2) changes to

min
w∈Rd

F (w) =
1

N

N∑
n=1

fn(w − α∇fn (w)) (3)

where α ≥ 0 is the inner stepsize. By solving (3), we can
find an initial model (meta-model) which is trained in a way
that after one step of local gradient leads to a good person-
alized model for each individual clients. In the next section,
we will describe how to solve the above optimization prob-
lem in wireless networks.

Model training procedure
This section details the meta model training process based
on OTA computing schemes. First, note that (3) can be
rewritten as the average of meta-functions F1, ..., Fn, where
the meta-function Fn associated with n is defined as

Fn(w) = fn(w − α∇fn (w)). (4)

Then, the meta-gradient ∇Fn(w) is given by

∇Fn(w) =
(
I−α∇2fn (w)

)
∇fn(w−α∇fn (w)). (5)

Using meta-gradients, we can solve optimization prob-
lem (2) through gradient descent method. However, comput-
ing the Hessian matrix in each iteration is usually compu-
tationally expensive. For example, the computational com-
plexity of calculating the gradient ∇fn (w) can be con-
sidered O(d), while the computational complexity of cal-
culating the second-order gradient ∇2fn (w) is typically
O(d2) (Nocedal and Wright 1999). For high-dimensional
machine learning models, computing the Hessian matrix un-
doubtedly increases the computational complexity, thereby
prolonging the training time. Therefore, it is meaningful to
adopt a first-order method that does not significantly reduce
the final training accuracy to avoid this issue.

In this paper, inspired by FOMAML (Chen et al. 2018),
we replace the meta-gradient ∇Fn(w) with a first-order ap-
proximation ∇F̂n(w) that ignores the Hessian term

∇F̂n(w) = ∇fn(w − α∇fn (w)). (6)

We will use this first-order approximation instead of the ac-
tual meta-gradient in the subsequent training process. In the
following sections, we will demonstrate through theoretical
analysis and experiments that this first-order algorithm can
also ensure convergence, while significantly improving the
algorithm’s running speed without notably decreasing the fi-
nal accuracy. The detailed training procedure is as follows:

1) Local Model Training: Without loss of generality, we
assume the system has progressed to the t-th round of global



training, where the clients just received the global model pa-
rameters wt from the edge server. Then, each client n per-
forms two step of gradient descent

w̃t+1
n = wt − α∇fn

(
wt

)
. (7)

wt+1
n = wt − β∇fn

(
w̃t+1

n

)
(8)

where β ≥ 0 is the outer stepsize and ∇fn
(
w̃t+1

n

)
will be

uploaded to the edge server via analog transmissions.
2) Analog Gradient Aggregation: We consider the clients

adopt analog transmissions to upload their locally trained
parameters. Specifically, once ∇fn

(
w̃t+1

n

)
is computed,

client n modulates it entry-by-entry onto the magnitudes of
a common set of orthogonal baseband waveforms, forming
the following analog signal

xn(s) =
〈
c(s),∇fn

(
w̃t+1

n

) 〉
(9)

where ⟨·, ·⟩ denotes the inner product between two vectors
and c(s) = (c1(s), ..., cd(s)), s ∈ [0, τ ] has its entries satis-
fying ∫ τ

0

c2i (s)ds = 1, i = 1, 2, ..., d (10)∫ τ

0

ci(s)cj(s)ds = 0, i ̸= j. (11)

Then, the clients transmit their analog signals concurrently
to the edge server.

Due to the superposition property of electromagnetic
waves, the signal received by the edge server takes the fol-
lowing form

y(s) =

N∑
n=1

hn,txn(s) + ξ(s), (12)

where hn,t is the channel fading experienced by client n and
ξ(s) denotes the additive noise. In this work, we assume the
channel fading is i.i.d. across clients, with mean µh and vari-
ance σ2

h. Besides, the transmit power of each client is set to
compensate for the large-scale path loss. Additionally, we
assume the noise follows a Gaussian distribution with vari-
ance σ2

g .
This received signal will be passed through a bank of

match filters, with each branch tuning to ci(s), i = 1, 2, .., d.
On the output side, the server obtains the following vector:

gt =
1

N

N∑
n=1

hn,t∇fn
(
w̃t+1

n

)
+ ξt, (13)

in which ξt is a d-dimensional random vector with each en-
try being i.i.d. and follows the Gaussian distribution.

3) Global Model Update: Using gt, the server updates the
global model as follows:

wt+1 = wt − βgt. (14)

After this, the server broadcasts the wt+1 to all the clients
for the next round of local computing. Such a process will it-
erate for T rounds until the model converges. We summarize
the proposed framework in Algorithm 1.

Algorithm 1: First-order federated meta-learning with Over-
the-Air Computations

Input: Initial global model w0, communication round T ,
inner stepsize α, outer stepsize β

Output: Global meta model wT

1: for t = 0, 1, 2 to T − 1 do
2: for n = 1, 2, to N in parallel do

# First-order local meta-model update
3: w̃t+1

n = wt − α∇fn(w
t)

4: wt+1
n = wt − β∇fn

(
w̃t+1

n

)
# Noisy aggregation via OTA computations

5: gt = 1
N

∑N
n=1 hn,t∇fn

(
w̃t+1

n

)
+ ξt

# Global model update
6: wt+1 = wt − βgt

7: return wT

Convergence analysis
In this section, we analyze the convergence rate of the pro-
posed model training framework, which quantifies the train-
ing efficiency.

To facilitate the analysis, we make the following assump-
tions.

Assumption 1. For every n ∈ {1, · · · , N}, fn is L-
Lipschitz, i.e., for any x,y ∈ Rd, it is satisfied:

∥∇fn(x)−∇fn(y)∥2 ≤ L∥x− y∥2, (15)

where L is a non-negative constant.

Assumption 2. The gradients of fn(w) are bounded;
namely, there exists a constant G such that

∥∇f(w)∥2 ≤ G, ∀w ∈ Rd, n = 1, ..., N. (16)

Assumption 3. The dissimilarity of fn(w) and f(w) is
bounded as follows

∥fn (w)− f (w)∥2 ≤ σ. (17)

We are now in position to present the main theoretical
finding of this paper.

Theorem 1. Define F ∗ as the optimal value of optimization
problem (3). Under the considered federated meta-learning
system, the global parameters converge as follows:

1

T

T−1∑
t=0

E
[∥∥∇F

(
wt

)∥∥2
2

]
≤ 2

βT

(
E
[
∇F (w0)

]
− F ∗)+ C1 + βLC2 (18)

in which C1,C2 is given by

C1=
8

N

(
(µh−1)

2
+α2L2

) (
1 + α2L2

) (
G2 + σ2

)
(19)

C2 =
4

N

(
µ2
h + σ2

h

) (
1 + α2L2

) (
G2 + σ2

)
+ dσg (20)

Proof. Please see Appendix.



Remark 1. Despite distortions from channel fading and in-
terference, the global meta models converge under the pro-
posed model training framework, with a convergence rate at
the order of O

(
1
T

)
.

Remark 2. Greater heterogeneity among clients, repre-
sented by a larger σ, will lead to a larger convergence error
for the global meta-model. Similarly, a larger internal learn-
ing rate α will also reduce convergence performance.

Remark 3. An increase in channel fading variance and ad-
ditive noise variance is detrimental to the convergence rate.
In contrast, a channel fading mean closer to 1 and an in-
crease in the number of participating clients contribute to
faster convergence.

Numerical results
In this section, we evaluate the performance of our proposed
framework. First, we introduce the experimental setup, fol-
lowed by the discussion of the performance evaluation re-
sults.
Experiment Setup. We evaluate the performance of our
framework by carrying out an image classification task:
training a CNN on the EMNIST dataset (Cohen et al. May.
2017). The EMNIST balanced dataset contains 131,600 data
samples collected from 47 categories. We divide the full
dataset into two portions, each with 112,800 and 18,800 im-
ages, for training and test, respectively. Throughout the ex-
periments, we set the number of clients to be N = 50. Ac-
cordingly, for the training set, we construct 50 sets of dis-
joint data samples, formed in a non-i.i.d. manner, and assign
them to the clients. Specifically, the non-i.i.d. data partitions
are implemented using a symmetric Dirichlet distribution,
where the parameter Dir (Xu et al. 2022; Wang et al. 2024)
controls the degree of data heterogeneity: the smaller the
Dir, the higher degrees of non-i.i.d.ness in the data distri-
bution. Unless otherwise stated, we set Dir = 0.1 through-
out the experiments. For performance evaluation, following
the approach of MAML, we perform a single step of gradi-
ent descent on the client’s local training set after each global
meta-learning model update. The model is then evaluated on
the client’s private local test set to assess its performance.
Note that these local test sets are kept on each client with
the same distribution as the training sets for model train-
ing. Each test set is non-i.i.d. relative to the others, simu-
lating data heterogeneity in the FL system. Since there are
multiple clients in the FL system, we use the average test
accuracy of each client as the metric for local model perfor-
mance evaluation. Throughout the experiments, unless oth-
erwise specified, we set α = 0.01, β = 0.03. Moreover,
we employ Rayleigh fading to model the channel gain and
use a Gaussian distribution to characterize the channel inter-
ference. All experiments are implemented using PyTorch on
NVIDIA RTX 3090 GPU.
Performance evaluation. In Fig 2, we first compare the
FOMAML algorithm based on analog OTA computations
with the conventional digital communication-based algo-
rithm. The purpose of this experiment is to verify the sta-
bility of the FOMAML algorithm under different communi-
cation modes. Clearly, the analog transmission method sig-
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Figure 2: Test accuracy of FOMAML under analog over-the-
air computations and conventional digital communication.
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Figure 3: Comparison of test accuracy between first-order
and second-order algorithms .
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Figure 4: Comparison of computational complexity between
first-order and second-order algorithms, where the complex-
ity is represented by the algorithm’s running time under the
same settings.
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Figure 5: Performance of OTA-FOMAML under different
inner stepsize α.

nificantly improves communication efficiency without no-
ticeably impacting model accuracy. The channel fading and
additive noise introduced by the OTA process did not sig-
nificantly affect the final performance of the personalized
federated model.

Subsequently, in Fig 3 and Fig 4, we compare the FO-
MAML algorithm with the MAML algorithm in the context
of analog transmissions, which requires second-order infor-
mation. We use the running time of the algorithm under the
same settings to represent the computational resources con-
sumed by the algorithm, i.e., the algorithm’s complexity. As
we can see, the FOMAML algorithm, which only requires
first-order information, substantially reduces computational
complexity while maintaining model performance compara-
ble to MAML. As shown in Fig 4, our algorithm reduces
the computational complexity by half compared with OTA-
MAML algorithm. At the same time, our first-order algo-
rithm consistently outperforms the second-order algorithm,
which could be due to the noise introduced by the OTA pro-
cess affecting the more sensitive second-order algorithm. A
more detailed investigation of this issue will be left for future
work.

Finally, we conduct experiments to test key parameters of
our algorithm in Fig 5 and Fig 6. Consistent with theoretical
analysis, a smaller α enhances model convergence perfor-
mance. Additionally, greater data heterogeneity, indicating
better consistency among clients’ local datasets, improves
the performance of personalized models after fine-tuning the
meta-model.

Conclusion
In this paper, we proposed a personalized federated meta-
learning system based on first-order information and OTA
computations. This system leverages analog OTA computa-
tions to address communication efficiency challenges in FL
systems and reduces the high computational demands of the
conventional MAML algorithm by avoiding second-order
information. Both theoretical analysis and experimental re-
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Figure 6: Performance of OTA-FOMAML under different
Dir.

sults demonstrate the effectiveness of this framework. To the
best of our knowledge, this is the first use of a first-order
meta-learning method in a personalized FL system based
on OTA computations. Future work may explore other ad-
vanced first-order MAML methods to enhance robustness
further.
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Appendix

We can write the update of the global parameter in a typical
communication round t+ 1 as follows:

E
[
F
(
wt+1

)]
(a)

≤ E
[
F
(
wt

)]
−βE

[〈
∇F

(
wt

)
,
1

N

N∑
n=1

hn,t∇fn
(
w̃t+1

n

) 〉]

+
β2L

2
E

[∥∥∥ 1

N

N∑
n=1

hn,t∇fn
(
w̃t+1

n

)
+ ξt

∥∥∥2
2

]

= E
[
F
(
wt

)]
+

β2L

2
E

[∥∥∥ 1

N

N∑
n=1

hn,t∇fn
(
w̃t+1

n

)
+ ξt

∥∥∥2
2

]

−βE

[〈
∇F

(
wt

)
,
1

N

N∑
n=1

hn,t∇fn
(
w̃t+1

n

)
−∇F

(
wt

)
+∇F

(
wt

)〉]

= E
[
F
(
wt

)]
+

β2L

2
E

[∥∥∥ 1

N

N∑
n=1

hn,t∇fn
(
w̃t+1

n

)
+ ξt

∥∥∥2
2

]

+ βE

[〈
−∇F

(
wt

)
,
1

N

N∑
n=1

µh∇fn
(
w̃t+1

n

)
−∇F

(
wt

) 〉]
− βE

[∥∥∇F
(
wt

)∥∥2
2

]
≤ E

[
F
(
wt

)]
− β

2
E
[∥∥∇F

(
wt

)∥∥2
2

]
+

β

2
E

[∥∥∥ 1

N

N∑
n=1

µh∇fn
(
w̃t+1

n

)
−∇F

(
wt

) ∥∥∥2
2

]
︸ ︷︷ ︸

Q1

+
β2L

2
E

[∥∥∥ 1

N

N∑
n=1

hn,t∇fn
(
w̃t+1

n

)
+ ξt

∥∥∥2
2

]
︸ ︷︷ ︸

Q2

(21)

where (a) follows from Assumption 1 and the fact that
E[ξt] = 0.

Leveraging the fact that each entry of ξt is independent
and has a zero mean, we can expand Q2 as

E

[∥∥∥ 1

N

N∑
n=1

hn,t∇fn
(
w̃t+1

n

)
+ ξt

∥∥∥2
2

]

= E

[∥∥∥ 1

N

N∑
n=1

hn,t∇fn
(
w̃t+1

n

) ∥∥∥2
2

]
+ E

[∥∥ξt∥∥22]
≤ E

[
1

N

(
µ2
h + σ2

h

) ∥∥∥∇fn
(
w̃t+1

n

) ∥∥∥2
2

]
+ dσ2

g . (22)

Subsequently, we assume ŵt is a point between w̃t+1
n and



wt and apply the Mean Value Theorem to obtain

E
[∥∥∥∇fn

(
w̃t+1

n

) ∥∥∥2
2

]
= E

[∥∥∥∇fn(w
t − α∇fn

(
wt

)
)
∥∥∥2
2

]
= E

[∥∥∥∇fn(w
t)− α∇2fn

(
ŵt)∇fn(w

t)
∥∥∥2
2

]
= E

[∥∥∥ (I − α∇2fn
(
ŵt))∇fn(w

t)
∥∥∥2
2

]
(a)

≤
(
2 + 2L2α2

)
E []

=
(
2 + 2L2α2

)
E
[∥∥∥∇fn(w

t) +∇F
(
wt

)
−∇F

(
wt

) ∥∥∥2
2

]
(b)

≤ 4
(
1 + L2α2

) (
G2 + σ2

)
(23)

where (a) follows from Assumption 1, and (b) follows from
Assumption 2 and Assumption 3.

By substituting (23) into (22), Q1 can be bounded as

E

[∥∥∥ 1

N

N∑
n=1

hn,t∇fn
(
w̃t+1

n

)
+ ξt

∥∥∥2
2

]

≤ 4

N

(
µ2
h + σ2

h

) (
1 + L2α2

) (
G2 + σ2

)
+ dσ2

g (24)

For convenience, we define the above expression as C2.
Next, we bound Q1 by the following:

E

[∥∥∥ 1

N

N∑
n=1

µh∇fn
(
w̃t+1

n

)
−∇F

(
wt

) ∥∥∥2
2

]

= E

[∥∥∥ 1

N

N∑
n=1

µh∇fn
(
wt − α∇fn

(
wt

))
−
(
I − α∇2fn

(
wt

))
∇fn

(
wt − α∇fn

(
wt

)) ∥∥∥2
2

]

= E

[∥∥∥ 1

N

N∑
n=1

(µh − 1)∇fn
(
wt − α∇fn

(
wt

))
+ α∇2fn

(
wt

)
∇fn

(
wt − α∇fn

(
wt

)) ∥∥∥2
2

]

≤ 2E

[∥∥∥ 1

N

N∑
n=1

(µh − 1)∇fn(w
t − α∇fn

(
wt

)
)
∥∥∥2
2

]

+ 2E

[∥∥∥ 1

N

N∑
n=1

α∇2fn
(
wt

)
∇fn

(
wt − α∇fn

(
wt

))∥∥∥2
2

]
(a)

≤ 8

N

(
(µh − 1)

2
+ α2L2

) (
1 + α2L2

) (
G2 + σ2

)
(25)

where (a) follows from Assumption 1. For convenience, we
define the above expression as C1. To this end, by substitut-
ing (24) and (25) into (21), we have:

E
[
F (wt+1)

]
≤ E

[
F
(
wt

)]
− β

2
E
[∥∥∇F

(
wt

)∥∥2
2

]
+

β

2
C1 +

β2L

2
C2 (26)

Finally, by induction we reach:

1

T

T−1∑
t=0

E
[∥∥∇F

(
wt

)∥∥2
2

]
≤ 2

βT

(
E
[
∇F (w0)

]
− F ∗)+ C1 + βLC2. (27)

The proof is completed.


