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ABSTRACT

Large language models (LLMs) have advanced in large strides due to the effec-
tiveness of the self-attention mechanism that processes and compares all tokens at
once. However, this mechanism comes with a fundamental issue — the predeter-
mined context window is bound to be limited. Despite attempts to extend the con-
text window through methods like extrapolating the positional embedding, using
recurrence, or selectively retrieving essential parts of the long sequence, long-text
understanding continues to be a challenge. We propose an alternative approach
which instead treats the LLM as an interactive agent, allowing it to decide how
to read the text via iterative prompting. We introduce MEMWALKER, a method
that first processes the long context into a tree of summary nodes. Upon receiv-
ing a query, the model navigates this tree in search of relevant information, and
responds once it gathers sufficient information. On long-text question answering
tasks our method outperforms baseline approaches that use long context windows,
recurrence, and retrieval. We show that, beyond effective reading, MEMWALKER
enhances explainability by highlighting the reasoning steps as it interactively reads
the text; pinpointing the relevant text segments related to the query.

1 INTRODUCTION

Large language models (LLMs) have witnessed significant advancements due to the increased model
size, expanded pretraining data, and the adoption of the Transformer architecture with self-attention
(Vaswani et al., 2017). As LLMs evolve in capability, users increasingly seek to use longer input
sequences during inference. This results in a growing demand in querying for information in long
documents, analyzing legal or scientific papers, and managing extended conversational dialogues.
These tasks involve consuming a large amount of information, highlighting the importance of longer
context processing.

Despite the rapid development, the limitation of the self-attention mechanism becomes apparent as
its memory usage increases with longer sequences, consequently limiting the size of the context
window. To address this, different approaches have been employed, such as designing lighter and
more efficient attention schemes (Zaheer et al., 2020), finetuning with extrapolated or interpolated
positional embeddings (Press et al., 2022; Chen et al., 2023), incorporating recurrence to bring
forward information from preceding text segments into the next (Rae et al., 2019; Fan et al., 2020;
Xu et al., 2022), or retrieving relevant parts of the text (Lewis et al., 2020; Izacard & Grave, 2020).
However, these approaches are still limited by design. The context window, no matter how long it is
extended, assumes a fixed size, and not all positions within it hold equivalent significance (Liu et al.,
2023). While recurrence can manage infinite-length sequences, it often misses out on retaining
information from earlier segments. Additionally, retrieving segments from the coherent long-text
might be ineffective, given that many retrieval systems are tailored to distinguish similar but distinct
documents (Chen et al., 2017).

To address these issues, we develop a fundamentally different approach which treats the model with
a finite context window as an interactive agent, rather than simply processing the entire sequence
in one go. To this end, we introduce MEMWALKER, a method that enables the model to read the
long-text interactively via iterative LLM prompting. MEMWALKER operates through a two-stage
approach: 1) memory tree construction and 2) navigation. During the first stage, the long-text is
segmented into small chunks that fit within the LLM’s context window. The LLM then subsequently

1



Under review as a conference paper at ICLR 2024
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Figure 1: The two-stage procedure of MEMWALKER. Top (stage 1): the memory tree is constructed.
The long text is split into segments of a predetermined size and each segment is first summarized into
a summary node. The summary nodes are recursively summarized into higher level nodes until it
reaches the root. Bottom (stage 2): Given a query, the LLM navigates the tree structure via iterative
prompting and finds the node that contains relevant segment to form the answer. At each node, the
LLM decides the action by first reasoning about the child summary nodes by sampling from the
distribution LLM(reasoning, action | summ, query). The LLM can choose the revert action to
return to the parent node if it chose the wrong path or the segment at hand is irrelevant (dashed red
arrow). See Table 1 for a detailed example showing the LLM prompts that enable navigation.

summarizes each segment into a textual summary node. These summary nodes are progressively
further summarized into higher-level summary nodes, thus building a tree structure (Figure 1). To
answer a user query, the LLM begins navigation from the tree’s root node. It traverses the tree,
inspecting various parts of the text to identify the path and segment relevant to answer the query. As
a result, MEMWALKER can go beyond the context limit, efficiently processing texts and localizing
the important segments of the long-text, without additional finetuning.

We evaluate MEMWALKER on three long context question answering tasks and show superior per-
formance against recurrence, retrieval, and vanilla LLM baselines. MEMWALKER also outperforms
other open long context systems that can take 8, 000 to 16, 000 tokens. We provide an analysis of
the effectiveness of MEMWALKER, and show it can reason about navigation decisions, incorporate
working memory during traversal, and recover from errors made in early navigational steps.

2 RELATED WORK

Context window scaling. A straightforward approach to enable a longer context sequence is to
tune the pre-trained language models and extrapolate their positional embeddings on longer text se-
quences (Press et al., 2022; Chen et al., 2023). Another direction is modified self-attention (Beltagy
et al., 2020; Zaheer et al., 2020; Guo et al., 2022; Ainslie et al., 2023). This approach has advanced
in large strides thanks to training techniques such as Flash Attention (Dao et al., 2022) that greatly
reduce the memory footprint. Despite the recent advances, this approach comes with two natu-
ral limitations: 1) to enable models to take in longer sequences, the model needs to be fine-tuned,
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incurring a non-negligible cost and 2) the attention mechanism may become less effective due to
positional biases as the sequence length becomes very long (Liu et al., 2023).

Recurrence. Recurrent architectures have been extensively studied to tackle long sequence prob-
lems, from recurrent neural network based models Hochreiter & Schmidhuber (1997); Miller et al.
(2016) to the modern Transformer based models (Dai et al., 2019; Rae et al., 2019; Fan et al., 2020;
Xu et al., 2022; Bulatov et al., 2023; Chevalier et al., 2023). However, each recurrence step incurs
information loss and the training objective does not guide “how to compress” with regard to down-
stream tasks. Typically this compression means that recall of older sequence information is weaker
compared to recent information.

Retrieval. Retrieval systems are commonly used to select relevant documents from a large pool of
documents, and have been incorporated into neural models in various ways (Chen et al., 2017; Dinan
et al., 2018; Lewis et al., 2020). For long sequence reading, retrieval based methods typically first
embed the text segments into vector representations and retrieve them based on the query instead of
feeding the entire sequence into the model such as in Fusion-in-Decoder Izacard & Grave (2020) or
kNN variants that attend to external memory such as Memorizing Transformers (Wu et al., 2022).

Reasoning agents. Instead of taking the long text as a single monolithic input, a model can act as
an agent that reads part of the text and takes flexible actions. Work such as WebGPT (Nakano et al.,
2021) and WebShop (Yao et al., 2022) allow the model to scroll through the internet and search for
the requested answer or item. While their atomic actions allow for interactive search for relevant
content, the models were not designed for understanding long and coherent texts. On the other
hand, PEARL (Sun et al., 2023) prompts the model to generate pseudo APIs for the model to call in
order to focus on the right parts of the long text. However, the method operates within the LLM’s
context window, rather than being a memory-access approach that goes beyond the context limit.
Other works leveraged iterative prompting to reason and plan for long text generation tasks such as
Re3 (Yang et al., 2022) and RecurrentGPT (Zhou et al., 2023). Self-Notes (Lanchantin et al., 2023)
interleaved self-generating notes and the input data to perform better reasoning. Prior to current
LLMs, LSTMs were also applied to searching through document structures (titles, subsections) Geva
& Berant (2018). Recursive tree structure has also been explored in the context of summarization of
long text such as books in (Wu et al., 2021), but was not used for memory navigation in that work.
Llamaindex (Liu) provides practitioners who aim to use LLMs as building blocks to quickly build
applications. In particular, the Tree Index shares similarity to MemWalker in terms of using trees to
process documents. We operatoinalize and extend this idea by analyzing the the reasoning capability
threshold and the necessity of working memory go beyond simple tree building and querying and
focuses on how this leads to better models to understand long context.

3 MEMWALKER: AN INTERACTIVE READER

We study tasks related to long-context question answering – given a long-text x and a query q, the
model aims to generate the response r.

MEMWALKER follows two steps: 1) memory tree construction, where the long-context is broken
down into a tree data structure. This construction does not depend on the query, and can hence be
computed in advance if the sequence data is available beforehand. 2) navigation, in which the model
navigates this structure upon receiving a query, gathering information to craft a suitable response.
MEMWALKER assumes access to an underlying LLM, and both construction and navigation are
achieved through iterative LLM prompting.

Memory tree construction. MEMWALKER first creates a tree data structure, T (x), from the
long-text x. Each node is represented by text that encapsulates the summaries of all its child
nodes below it. Specifically, the long-text x is divided into segments (c1, . . . , cn). The LLM
then summarizes each segment into a summary at the first level, represented as sl=1

i = LLM(ci),
i = 1..n. The initial summary nodes are subsequently summarized further into higher level nodes,
sl+1
j = LLM(sli, . . . , s

l
i+Mt

) where Mt denotes the number of nodes in the t-th grouping at level l.
This process continues until the topmost root node, sL is generated. The complete tree generation
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Table 1: Example trajectory from the QuALITY dataset. The LLM first sees the content of the
children nodes at the root node (summ 9 in Figure 1) and generates the response (takes action 0
to enter summ 7). When arriving at the leaf node (summ 2), the LLM determines that there is
not enough information, therefore takes the action to revert (action -1) to the parent node. After
hopping back-and-forth between nodes, the LLM commits to a Leaf node (summ 3) and answers
the question. Yellow indicates triage prompt and purple indicates leaf prompt described in §3. Text
after // denotes comments that are not processed by the LLM.

Navigation Trajectory
summ 9 The following passage(s) are the summaries of the different parts of a story.

To answer the question: Why did Ro change his mind about the people on Mars being backwards?
Which of the following summary is MOST LIKELY to contain information about the answer?
First provide reasoning to compare the summaries before you make the decision.

Summary 0: The story is set on Mars and follows the adventures of Ro, [...] // summ 7
Summary 1: Ro, a young Martian, is climbing down a cliff to rescue [...] // summ 8

Relpy with the passage number as your action.
You MUST choose one summary number and you should reply with the following format:
###################################
Reasoning: ...
Action: 0 / 1 / 2, ...
###################################

Response Reasoning: Summary 0 is most likely to contain information about why Ro changed his mind about the
people on Mars being backwards, as it mentions Ro’s interactions with the people from Earth and their
advanced method of communication.
Action: 0

LLM enters summ 7 then enters summ 2

summ 2 Read the text in triple quotes and answer a question:
Story background information: Ro, a young Martian who has returned from his travels to find his home
overrun by the Oan, a tribe of rat-like creatures. [...] // [WORKING MEMORY] carried from summ 7
Main text: In his left hand and under his armpit Ro carried stones. They were of a good weight and would
make short work of any Oan who was foolish enough to cross his path. [...] // seg 2

Why did Ro change his mind about the people on Mars being backwards?
(A) He realized that despite human’s technological advancements, they have over-complicated marriage.
(B) He realized that while the humans are physically vulnerable without their weapons, the red people have
formidable strength in their arms.
(C) He realized that human males suppress public affection when they are intimidated by other males,
whereas male Martians don’t hide their affection.
(D) He realized that male humans were petty and even brute when it came to rivalry over women, whereas
male Martians were much more civilized.
If the answer CANNOT be inferred from the text above, reply with action -1.
If the answer CAN be inferred from the text above, reply with action -2, and also provide your reasoning,
and the final answer.
You are ONLY allowed to reply with action -2 or -1.
Your should reply with the following format:
###################################
Reasoning: ...
Action: -2 or -1
Answer: (A) ...
###################################

Response Reasoning: The text does not explicitly mention Ro changing his mind about the people on Mars being
backwards. Therefore, the answer cannot be inferred from the text.
Action: -1

LLM reverts to summ 7 then enters summ 3

summ 3 [...] Main text: “Last night I thought that we on Mars are backward. Now I’m not so sure.” [...] // seg 3
Response Reasoning: Ro initially sees Earth’s customs as backward compared to Mars, However, after discussing [...]

Action: -2
Answer: (A)

process is illustrated in Figure 1. Summarization is performed using LLM prompting. We include
the prompts for memory tree construction in Appendix A.1.
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Navigation. The language model, upon receiving a query q, starts from the root node sL to nav-
igate the tree to generate the response r. At node sl that the LLM traverses, it observes the sum-
maries of the nodes one level below {sl�1

i , . . . , sl�1
i+Mt

}. The LLM decides among |Mt|+ 1 actions
— choosing one of the child nodes to further inspect, or to revert to the parent node. At leaf node
sl=1
i , the LLM can decide one of two actions: commit to the leaf node and respond to the query or

revert to the parent node (sl+1
j ) if the information in the leaf node (i.e., ci) is insufficient. To make

a navigation decision, we can also ask the LLM (via prompting) to first generate a reason in natural
language to justify the action, followed by the action choice itself. Specifically, at each node, the
model generates a response r ⇠ LLM(r | s, q) where the response is either of the two tuples: 1)
r = (reasoning, action, answer) when the LLM is at a leaf node or 2) r = (reasoning, action)
when the LLM is at non-leaf nodes.

Navigational prompt design. We enable LLM navigation through zero-shot prompting. Our
method requires two types of prompt: 1) triage prompt and 2) leaf prompt (highlighted in Table 1).
Triage prompt contains the the query, the summaries of the children nodes, and instructions for the
LLM to follow. Triage prompt is used at non-leaf nodes. Leaf prompt contains the content of the
segment, the query (and options), and instructions that ask the LLM to either generate the answer
or revert to the parent node. Both the triage prompt and leaf prompt specify an output format that
the LLM needs to follow. Failure to conform to the format results in invalid actions and the LLM
is required to regenerate. If the LLM fails to generate parsable output three consecutive times, the
navigation terminates and returns “no answer”.

Working memory. As the LLM traverses the tree, it can keep information throughout the naviga-
tion trajectory and add it to the context. Formally, the LLM generates the response r ⇠ LLM(r |
s, q,m) where the extra working memory m 2 {Ø} [ {(si, si+1, . . . )} is either empty or con-
sists of contents from previously visited nodes. We truncate the working memory such that they
can fit in the LLM’s context window.* Table 1 illustrates the way working memory is added via
[WORKING MEMORY] in the prompt.

4 EXPERIMENTAL SETUP

4.1 DATASETS & EVALUATION

We use three datasets: QuALITY, SummScreenFD, and GovReport from the SCROLLS benchmark
(Shaham et al., 2022). We report accuracy for all datasets.

QuALITY. QuALITY is a multiple choice question answering dataset collected by Pang et al.
(2022). The dataset contains long-form stories sourced from Project Gutenberg and questions anno-
tated by human annotators. We use a subset of 187 examples for our experiments.

SummScreenFD. SummScreenFD (Chen et al., 2022) is a dataset of TV and movie scripts in the
form of dialogues among actors originally designed for summarization. We repurpose the dataset
into a question answering task where the original provided ground truth summary text is used to
generate a “who” question using Stable Beluga 2, with answers then checked by a human expert.
The question paired with the original long text becomes the repurposed QA task of 306 examples.

GovReport. The GovReport dataset aggregates documents from Congressional Research Ser-
vice and the U.S. Government Accountability Office together with summaries provided by experts
(Huang et al., 2021). We repurpose the dataset into a question answering dataset of 101 examples
the same way as for SummScreenFD.

All three datasets feature long contexts per example of varying length – some shorter examples, and
some longer sequences. We therefore both report results on the original dataset, and also report
on a subset of each task containing only longer sequences, to better evaluate memory access in the
harder, longer context case. The thresholds are above 8, 000 tokens for QuALITY, 6, 000 tokens for
SummScreenFD, and 12, 000 tokens for GovReport.

*Further summarizing the working memory as it accumulates would be an alternative approach, which we
have not explored in this study.
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Table 2: Results on the three question answering tasks, reporting test accuracy. Orig. denotes using
the entire dataset and Long denotes the subset of longer sequences. Top: comparison to open long
context models. Bottom: baselines and MEMWALKER performance, with all methods using the
underlying Stable Beluga 2 LLM with a maximum 4, 096-token context length. MEMWALKER out-
performs all other systems on longer sequences.

QuALITY SummScreenFD GovReport
Orig. / Long Orig. / Long Orig. / Long

MPT 13B (8k) 44.4 / 47.3 65.0 / 63.5 44.6 / 43.8
LongChat 13B (16k) 43.3 / 48.4 62.4 / 61.1 54.5 / 52.1

Recurrence 51.3 / 56.0 47.7 / 45.4 35.6 / 33.8
Retrieval 63.1 / 64.8 63.7 / 62.2 54.0 / 52.1
Full Context (keep left) 56.7 / 64.8 62.7 / 62.7 59.4 / 56.3
Full Context (keep right) 70.1 / 72.5 64.7 / 63.1 50.5 / 50.0
MEMWALKER 67.4 / 73.6 67.3 / 64.5 59.4 / 60.4

4.2 MODEL

We use Stable Beluga 2 (Mahan et al.) as the base LLM for the majority of our experiments, as
it provides state-of-the-art performance compared to several other LLM variants, as we will show.
Stable Beluga 2 is an instruction-tuned model built on top of 70B LLaMA-2(Touvron et al., 2023),
where the finetuning does not overlap with our evaluation tasks. It has a maximum 4, 096 token
context length. We use the model in a zero-shot prompting fashion without further fine-tuning or in-
context few shot examples for our tasks. We use top-p sampling for both memory tree construction
as well as generating action and reasoning for navigation. We set the maximum number of nodes
maxt Mt = 8, 5, 8 and segment size |c| = 1000, 1000, 1200 for QuALITY, SummScreenFD, and
GovReport respectively.

4.3 BASELINES

We compare with three baselines memory techniques all based on the same underlying LLM, Stable
Beluga 2: 1) full context window, 2) recurrence, and 3) retrieval. The full context window baselines
utilize the full 4, 096 tokens to process both the long input text and generation. Since the instances
in the dataset often exceed the context limit, we perform truncation of the length to the right (most
recent) or left (least recent) of the text as the input, as evaluate both approaches. For retrieval, we use
Contriever (Izacard et al., 2022) to select segments from the long context based on the query. The
highest scored segments are concatenated as the input context to the LLM until they fill the context.
Finally, we implement a baseline that recurrently carries information from previous segment tokens
to the current one through summarization (Xu et al., 2022), where each segment is 2, 500 tokens and
the maximum summary size is 500 tokens.

5 RESULTS & ANALYSIS

Main results. Table 2 shows comparisons between MEMWALKER and other baselines.
MEMWALKER outperforms both the recurrence baseline across all tasks by a large margin. This
shows the limitation of recurrence, where relevant information to the query is lost after several
steps. MEMWALKER also outperforms retrieval where the segments are from a coherent long story
instead of separate documents. On these tasks, the full context baselines can perform well in the
“Original” task setting, which can contain relatively shorter sequences, although choosing either left
or right truncate for best performance seems to be dataset dependent. Still, MEMWALKER achieves
higher performance in the Original setting against the Full Context baselines except for the keep
right variant on QuALITY and the keep left variant on GovReport, likely due to the positional bias
in the dataset where relevant segment often appears at the beginning or the end of the text. How-
ever, on the Long version of all three tasks MEMWALKER outperforms all baselines, that is it shows
strong performance when memory access becomes more critical. MEMWALKER also outperforms
other publicly available models, including LongChat (Li et al., 2023) and MPT (MosaicML, 2023).
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Table 3: MEMWALKER performance using different underlying LLMs with different reasoning
capabilities, and an ablation on their reason justification component when making a navigation deci-
sion (“w/o reasoning” simply predicts the action, with no reason generated, see e.g. Table 1). Valid
Action shows the percent of generated actions that are a valid navigation action. We find that the
strongest performing LLM (Stable Beluga 2) benefits from reasoning with improved accuracy, while
weaker performing LLMs do not (get worse in terms of accuracy and valid actions).

QuALITY SummScreenFD GovReport
Acc. / Valid Action (%) Acc. / Valid Action (%) Acc. / Valid Action (%)

LLaMA 2 Chat (13B) 39.6 / 73.2 20.9 / 75.5 15.8 / 69.0
w/o reasoning 48.1 / 97.4 25.8 / 95.8 21.8 / 93.1

LLaMA 2 Chat (70B) 52.0 / 86.1 55.6 / 99.5 41.6 / 97.8
w/o reasoning 59.9 / 100.0 58.5 / 100.0 42.6 / 100.0

Stable Beluga 2 (70B) 67.4 / 92.5 67.3 / 95.1 59.4 / 97.0
w/o reasoning 66.8 / 100.0 64.1 / 90.5 52.5 / 98.2
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Figure 2: Performance breakdown by context length (in tokens). Each dataset is thresholded into
two bucket of equal sizes. MEMWALKER outperforms full context baselines (truncated either left
or right, when the sequence does not fit) on longer context sequences, for all three tasks.

MEMWALKER improves performance on long sequences. We provide a breakdown of perfor-
mance by input sequence length for each task in Figure 2. MEMWALKER is not advantageous over
Full Context (with truncation left or right) baselines when the text length is short, but outperforms
both types of truncation for all tasks for longer sequences. The benefit of interactive reading emerges
after the text length is suitably large, i.e. showing better performance once the sequence length is
sufficiently larger than the LLM context length of 4, 096.

Reasoning capability is essential for memory tree navigation. The effectiveness of
MEMWALKER is highly dependent on the underlying LLM’s reasoning capability. For each nav-
igation decision, we employ an LLM prompt that requires the LLM to first generate a reason in
natural language that justifies the following predicted action, see Table 1. We show in Table 3 how
reasoning impacts performance by comparing Llama 2 Chat (13B and 70B parameter variants) and
Stable Beluga 2 (70B) with and without the reasoning justification by removing the line “First pro-
vide reasoning . . . before you make your decision” from the prompt. With the smaller, less capable
models (13B), the performance lags behind 70B models by a large margin due to its inability to
follow instructions. In fact, asking for reasoning justifications for weaker models decreases perfor-
mance, presumably due to their inability to generate and make use of such reasons. Stable Beluga
2 outperforms Llama 2 Chat for the same LLM size, and also displays heightened reasoning ability.
For Stable Beluga 2, asking for reasoning justification improves performance across all tasks. This
highlights the main characteristic of MEMWALKER: if an LLM passes a critical reasoning ability
threshold, it can reason about a long input in multiple rounds without errors cascading quickly across
rounds. For weaker LLMs that cannot make good navigation decisions, errors could compound and
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Figure 3: MEMWALKER performance comparisons between using working memory and without
(i.e., the LM only looks at the content of the children memory tree nodes, rather than memory from
all the nodes it has traversed). Inclusion of working memory yields large gains.

Table 4: MEMWALKER navigation analysis.
Stray ratio: percentage of paths that contain the
revert action. Recovery Rate: percentage of
stray paths that recover and answer the query
correctly.

Stray Recovery
Ratio Rate

QuALITY 15.0 70.0
SummScreenFD 18.6 59.6
GovReport 18.8 79.0

63.1
68.1

63.163.8
59.9 58.8

QuALITY SummScreenFD GovReport
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Figure 4: Percentage comparison of total tokens
processed against the tokens of the original exam-
ple between all paths vs. successful paths.

overall performance suffers. As LLMs will only improve in reasoning ability over the coming years,
we expect methods like MEMWALKER will become more and more effective.
Navigating the memory tree requires working memory. As MEMWALKER makes decisions to
traverse the memory tree and read relevant segments, it might lose sight of the overall context. The
model thus carries information from the nodes along the navigation path as working memory, where
the content of the working memory updates as the model selects the next path. We evaluate the
performance of MEMWALKER with and without working memory, with results given in Figure 3.
We find a significant performance degradation without working memory across all tasks, with a
5–13% drop in accuracy, showing the importance of this component.

MEMWALKER can recover from stray paths. As MEMWALKER navigates the memory tree, it
needs to not only find the path towards the most pertinent segments, but also potentially to recover
from traversal errors should they occur. We report recovery statistics in Table 4. MEMWALKER
executes a revert navigation action (and hence changes path) for around 15% � 20% of examples,
but of those examples can recover and get those examples correct 70% of the time for QuALITY,
⇠ 60% for SummScreenFD, and ⇠ 80% for GovReport.

MEMWALKER enables efficient reading. Since MEMWALKER determines which parts of the
long text it needs to read, the effective content that needs to be read may be smaller than the entire
sequence. We report the percentage of the long context read averaged over all examples, for each
of the three tasks, in Figure 4. We find that between only 63%-69% of the text on average needs to
be read to answer the question including the content of the tree nodes. Among successful paths, the
reading required further reduces to 59% - 64%.
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Figure 5: Performance trade-off of different memory construction configurations on QuALITY.
x-axis: maximum number of nodes that can be connected to a parent node. Red: summarizing
1, 000-token segments. Blue: summarizing 500-token segments.

Memory tree construction trade-off. A fundamental trade-off arises as we construct the memory
tree — summarizing larger segments compresses more information into a node to reduce the depth
of the tree, but risks losing fidelity of the content. Similarly, connecting many lower level nodes to
the upper one can help flatten the tree, yet render the navigation task harder for the LLM at each
node. Figure 5 shows the performance of different configurations of the memory tree on QuALITY.
Summarizing larger segments is generally more beneficial than smaller segments as well as connect-
ing more children nodes to the parent. However, the performance plateaus as the maximum number
of nodes increases, showing the trade-off with respect to how much information can be packed into
the nodes during memory tree construction.

6 CONCLUSION

We propose MEMWALKER, an interactive reading agent which uses iterative LLM prompting to de-
cide which part of the content should be read closely based on its own reasoning. Our approach first
builds a structured memory given long context sequence data, and then makes navigation decisions
of the pertinent parts to read given a query. Our method shows superior performance against a num-
ber of baselines including various long context length models, retrieval and recurrence baselines,
in particular for longer sequence tasks. Detailed analysis highlights a number of important factors,
including our method’s ability to reason about navigation decisions, ability to revert navigation to
a different path when necessary, and incorporation of a working memory. Future work should ex-
plore many new directions that MEMWALKER opens up, in particular its application to different data
structures other than trees, and finetuning its performance specific to the interactive reading goal.

7 LIMITATIONS

MEMWALKER exhibits three major limitations. First, the memory tree generation might not scale
too well if the sequence’s length becomes extremely long. The increase in sequence length entails
more nodes in the tree and hence renders the tree construction process onerous. Workaround such
as trading off the granularity of the summary in exchange for speed might be viable. Nonetheless,
the issue of scaling remains a limit. In this setting it may make sense to generalize MEMWALKER to
a combination of tree and hash Bawa et al. (2005) or other alternative data structure, whilst retain-
ing its travesersal ability via LLM prompting. Second, MEMWALKER only works when the LLM
exhibits a strong enough reasoning capability, which according to our experiments is required to be
large (over 70B) and instruction-tuned. If the reasoning capability falls short, the error compounds
and the method would fail. Enabling a smaller model that can perform a similar instruction follow-
ing procedure could be useful for scaling the method. This could be made possible by removing
the following third limitation. Third, MEMWALKER only uses zero-shot prompting and does not
leverage fine-tuning to further improve the interactive reading capability. This could be done, for
example, by performing interactive reading and collect the successful paths for further fine-tuning.
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