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Abstract

Recent reinforcement learning approaches have shown surprisingly strong capa-1

bilities of bang-bang policies for solving continuous control benchmarks. The2

underlying coarse action space discretizations often yield favorable exploration3

characteristics, while final performance does not visibly suffer in the absence of4

action penalization in line with optimal control theory. In robotics applications,5

smooth control signals are commonly preferred to reduce system wear and im-6

prove energy efficiency, while regularization via action costs can be detrimental to7

exploration. Our work aims to bridge this performance gap by growing discrete8

action spaces from coarse to fine control resolution. We take advantage of recent9

results in decoupled Q-learning to scale our approach to high-dimensional action10

spaces up to dim(A) = 38. Our work indicates that an adaptive control resolution11

in combination with value decomposition yields simple critic-only algorithms that12

enable surprisingly strong performance on continuous control tasks.13

1 Introduction14

Reinforcement learning for continuous control applications commonly leverages policies param-15

eterized via continuous distributions. Recent works have shown surprisingly strong performance16

of discrete policies in the actor-critic and critic-only setting [Tang and Agrawal, 2020, Tavakoli17

et al., 2021, Seyde et al., 2021]. While discrete critic-only methods promise simpler controller18

designs than their continuous actor-critic counterparts, applications such as robot control tend to19

favor smooth control signals to maintain stability and prevent system wear [Hodel, 2018]. It has20

previously been noted that coarse action discretization can provide exploration benefits early during21

training [Czarnecki et al., 2018, Farquhar et al., 2020], while converged policies should increasingly22

prioritize controller smoothness [Bohez et al., 2019].23

Our work aims to bridge the gap between these two objectives while maintaining algorithm simplicity.24

We introduce Growing Q-Networks (GQN), a simple discrete critic-only agent that combines the25

scalability benefits of fully decoupled Q-learning [Seyde et al., 2022b] with the exploration benefits26

of dynamic control resolution [Czarnecki et al., 2018, Farquhar et al., 2020]. Introducing an adaptive27

action masking mechanism into a value-decomposed Q-Network, the agent can autonomously decide28

when to increase control resolution. This approach enhances learning efficiency and balances29

the exploration-exploitation trade-off more effectively, improving convergence speed and solution30

smoothness. The primary contributions of this paper are threefold:31

• A framework for adaptive control resolution: we grow control resolution from coarse to32

fine within decoupled Q-learning. This reconciles coarse exploration during early training33

with smooth control at convergence, retaining the scaling properties of decoupled control.34
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• Insights into the scalability of discretized control: our research provides valuable insights35

into overcoming exploration challenges in soft-contrained continuous control settings via36

simple discrete Q-learning methods, studying applicability in challenging control scenarios.37

• Comprehensive experimental validation: we validate the effectiveness of our GQN38

algorithm on a diverse set of continuous control tasks, highlighting the benefits of adaptive39

control resolution over static DQN variations and recent continuous actor-critic methods.40

The remainder of the paper is organized as follows: Section 2 reviews related work, Section 341

introduces preliminaries, Section 4 details the proposed GQN methodology, Section 5 presents42

experimental results, and Section 6 concludes with a discussion on future research directions.43

2 Related Works44

In the following, we discuss several key related works grouped by their primary research thrust.45

Discretized Control Learning continuous control tasks commonly relies on policies with continu-46

ous support, primarily Gaussians with diagonal covariance matrices [Schulman et al., 2017, Haarnoja47

et al., 2018, Abdolmaleki et al., 2018a, Hafner et al., 2020, Wulfmeier et al., 2020]. Recent works48

have shown that competitive performance is often attainable via discrete policies [Tavakoli et al.,49

2018, Neunert et al., 2020, Tang and Agrawal, 2020, Seyde et al., 2022a] with bang-bang control at50

the extreme [Seyde et al., 2021]. Bang-bang controllers have been extensively investigated in optimal51

control research [Sonneborn and Van Vleck, 1964, Bellman et al., 1956, LaSalle, 1959, Maurer52

et al., 2005] as well as early works in reinforcement learning [Waltz and Fu, 1965, Lambert and53

Levine, 1970, Anderson, 1988], while the extreme switching behavior was often observed to naturally54

emerge even under continuous policy distributions [Huang et al., 2019, Novati and Koumoutsakos,55

2019, Thuruthel et al., 2019]. The direct application of discrete action-space algorithms then harbors56

potential benefits for reducing model complexity [Metz et al., 2017, Sharma et al., 2017, Tavakoli,57

2021, Watkins and Dayan, 1992], although control resolution trade-offs and scalability may require58

computational overhead [Van de Wiele et al., 2020].59

Scalability The scalability of Q-learning approaches has been studied extensively in the context60

of mitigating coordination challenges and system non-stationarity [Tan, 1993, Claus and Boutilier,61

1998, Matignon et al., 2012, Lauer and Riedmiller, 2000, Matignon et al., 2007, Foerster et al., 2017,62

Busoniu et al., 2006, Böhmer et al., 2019]. Exponential coupling can be avoided by information-63

sharing [Schneider et al., 1999, Russell and Zimdars, 2003, Yang et al., 2018], composition of local64

utility functions [Sunehag et al., 2017, Rashid et al., 2018, Son et al., 2019, Wang et al., 2020, Su et al.,65

2021, Peng et al., 2021], and considering different levels of interaction [Guestrin et al., 2002, Kok and66

Vlassis, 2006]. Centralization can further be facilitated via high degrees of parameter-sharing [Gupta67

et al., 2017, Böhmer et al., 2020, Christianos et al., 2021, Van Seijen et al., 2017, Chu and Ye,68

2017]). Decoupled control via Q-learning was proposed for Atari [Sharma et al., 2017] and extended69

to mixing across higher-order action subspaces [Tavakoli et al., 2021], with decoupled bang-bang70

control displaying strong performance on continuous control tasks [Seyde et al., 2022b]. While71

coarse discretization can benefit exploration, particularly in the presence of action penalties, it may72

also reduce steady-state performance. Conversely, fine discretization can exacerbate coordination73

challenges [Seyde et al., 2022b, Ireland and Montana, 2024]. Here, we consider adapting the control74

resolution over the course of training to achieve the best of both worlds.75

Expanding Action Spaces Smith et al. [2023] present an adaptive policy regularization approach76

that introduces soft constraints on feasible action regions, growing continuous regions linearly over77

the course of training with adjustments based on dynamics uncertainty. They focus on learning78

quadrupedal locomotion on hardware and expand locally around joint angles of a stable initial79

pose. In discrete action spaces, one can instead leverage iterative resolution refinement. Czarnecki80

et al. [2018] consider DeepMind Lab navigation tasks [Beattie et al., 2016] with a natively discrete81

action space that avoids reasoning about system dynamics stability. Their policy-based method82

formulates a mixture policy optimized under a distillation objective to facilitate knowledge transfer,83

adjusting the mixing weights via Population Based Training (PBT) [Jaderberg et al., 2017]. Similarly,84

Synnaeve et al. [2019] consider multi-agent coordination in StarCraft and adjust spatial command85

resolution via PBT. Farquhar et al. [2020] grow action resolution under a linear growth schedule86
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while showing limited application to simple continuous control tasks, as they enumerate the action87

space and do not consider decoupled optimization. Beyond control applications, Yang et al. [2023]88

demonstrate adaptive mesh refinement strategies that reduce the errors in finite element simulations.89

Their refinement policy recursively adds finer elements, expanding the action space.90

Constrained Optimization Reward-optimal bang-bang policies may not be desirable for real-world91

applications as they can be less energy efficient and increase wear and tear on physical systems,92

e.g., Hodel [2018]. In the past, this behavior was generally avoided by employing penalty functions93

as soft constraints at the cost of potentially hindering exploration or enabling reward hacking [Skalse94

et al., 2022]. The rewards and costs are automatically re-balanced to combat this issue in Bohez95

et al. [2019]. Similarly, undesirable behaviors are avoided by automatically balancing soft chance96

constraints with the primary rewards in Roy et al. [2021]. Here, we do not assume access to explicit97

penalty terms and efficiently learn controllers directly based on environment reward.98

3 Preliminaries99

We formulate the learning control problem as a Markov Decision Process (MDP) described by the100

tuple {S,A, T ,R, γ}, where S ⊂ RN and A ⊂ RM denote the state and action space, respectively,101

T : S ×A → S the transition distribution, R : S ×A → R the reward function, and γ ∈ [0, 1) the102

discount factor. Let st and at denote the state and action at time t, where actions are sampled from103

policy π(at|st). We define the discounted infinite horizon return as Gt =
∑∞

τ=t γ
τ−tR(sτ , aτ ),104

where st+1 ∼ T (·|st, at) and at ∼ π(·|st). Our objective is to learn the optimal policy that105

maximizes the expected infinite horizon return E[Gt] under unknown dynamics and reward mappings.106

Conventional algorithms for continuous control settings leverage actor-critic designs with a continuous107

policy πϕ(at|st) maximizing expected returns from a value estimator Qθ(st, at) or Vθ(st). Recent108

studies have shown strong results with simpler methods employing discretized actors [Tang and109

Agrawal, 2020, Seyde et al., 2021] or critic-only formulations [Tavakoli et al., 2018, 2021, Seyde110

et al., 2022b]. Here, we focus on the light-weight critic-only setting and increase control resolution111

over the course of training to bridge the gap between discrete and continuous control.112

3.1 Deep Q-Networks113

We consider the general framework of Deep Q-Networks (DQN) [Mnih et al., 2013], where the114

state-action value function Qθ(st, at) is represented by a neural network with parameters θ. The115

parameters are updated to minimize the temporal-difference (TD) error, where we leverage several116

performance enhancements based on the Rainbow agent [Hessel et al., 2018]. These include target117

networks to improve stability in combination with double Q-learning to mitigate overestimation [Mnih118

et al., 2015, Van Hasselt et al., 2016], prioritized experience replay (PER) to focus sampling on more119

informative transitions [Schaul et al., 2015], and multi-step returns to improve stability of Bellman120

backups [Sutton and Barto, 2018]. The resulting objective function is given by121

L(θ) =
B∑

b=1

Lδ(yt −Qθ(st, at)), (1)

where action evaluation employs the target yt =
∑n−1

j=0 γjr(st+j , at+j) + γnQθ−
(
st+n, a

∗
t+n

)
,122

action selection uses a∗t+1 = argmaxa Qθ(st+1, a), Lδ(·) is the Huber loss and the batch size is B.123

Here, we leverage a target network with parameters Qθ− to further enhance learning stability.124

3.2 Decoupled Q-Networks125

Traditional DQN-based agents enumerate the entire action space and do not scale well to high126

dimensional control problems. Decoupled representations address scalability issues by treating127

subsets of action dimensions as separate agents and coordinating joint behavior in expectation [Sharma128

et al., 2017, Sunehag et al., 2017, Rashid et al., 2018, Tavakoli et al., 2021, Seyde et al., 2022b].129

The Decoupled Q-Networks (DecQN) agent introduced in Seyde et al. [2022b] employs a complete130

decomposition with the critic predicting univariate utilities for each action dimension aj conditioned131
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Figure 1: Schematic of a GQN agent with decoupled 5-bin discretization and 3-bin active subspace.
The available actions are highlighted in green while the masked actions are depicted in gray. The
predicted state-action values Q(s, a0, ..., aM ) are computed via linear composition of the univari-
ate utilities Q(s, aj) by selecting one action per dimension (red). We consider a homogeneous
discretization across action dimensions for simplicity, heterogeneous discretization are also feasible.

on the global state s. The corresponding state-action value function is recovered as132

Qθ(st,at) =

M∑
j=1

Qj
θ(st, a

j
t )

M
, (2)

where the objective is analogous to Eq. 1, enabling centralized training with decentralized execution.133

4 Growing Q-Networks134

Discrete control algorithms have demonstrated competitive performance on continuous control135

benchmarks [Tang and Agrawal, 2020, Tavakoli et al., 2018, Seyde et al., 2021]. One potential benefit136

of these methods is the intrinsic coarse exploration that can accelerate the generation of informative137

environment feedback. Robot control applications favor smooth controllers at convergence to limit138

hardware stress. We aim to bridge the gap between coarse exploration capabilities and smooth control139

performance while retaining sample-efficient learning. We leverage insights from the growing action140

space literature [Czarnecki et al., 2018, Farquhar et al., 2020] and consider a decoupled critic that141

increases its control resolution over the course of training. To this end, we define the discrete action142

sub-space at iteration g as Ag ⊂ A and modify the TD target to yield143

yt =

n−1∑
j=0

γjr(st+j , at+j) + γn
M∑
j=1

max
aj
t+1∈Ag

Qj
θ−(st+n, a

j
t+n)

M
, (3)

where ϵ-greedy action sampling is constrained to Ag. The network architecture accommodates the144

full discretized action space from the start and constrains the active set via action masking, enabling145

masked action combinations to profit from information propagation in the shared torso [Van Seijen146

et al., 2017]. A schematic of a decoupled agent with 5-bin discretization and active 3-bin subspace is147

provided in Figure 1. In order to deploy such an agent, we require a schedule for when to expand the148

active action space Ag → Ag+1. Here, we consider two simple variations to limit engineering effort.149

First, we consider a linear schedule that doubles control resolution every 1
N+1 of training episodes,150

where N indicates the number of subspaces Ag. Second, we formulate an adaptive schedule based151

on an upper confidence bound inspired threshold over the moving average returns152

Gthreshold,t =
(
1.00− 0.05 sgnµG

MA,t−1

)
µG

MA,t−1 + 0.90σG
MA,t−1, (4)

where µMA and σMA are the moving average mean and standard deviation of the evaluation returns,153

respectively. The objective underestimates the mean by 5% and expands the action space whenever154

the current mean return falls below the threshold µG
t < Gthreshold,t, signifying performance stagnation.155

This parameterization can avoid pre-mature expansion when exploring under sparse rewards, but156

alternative formulations are also applicable. A qualitative example of our approach is provided in157

Figure 2, where we visualize the state-action value function over the course of training on a pendulum158

swing-up task. We consider a GQN agent with discretization 2 → 9 (meaning {2, 3, 5, 9}) and159

provide learned values for each action bin starting at initialization and adding a row every time the160

action space is grown (top to bottom). The active bins are framed in green, where we observe the161

accurate representation of the state-action value function for active bins, while the inactive bins still162

provide structured output due to the high degree of weight sharing provided by our architecture.163
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Figure 2: State-action values for a pendulum swing-up task over the course of training (top to bottom).
The active bins are outlined in green. The value predictions transition from random at initialization to
structured upon activation. Inactive bins profit from the emergent structure within the shared network
torso to warm-start their optimization.

In the following section, we provide quantitative results on a range of challenging continuous control164

tasks. We use the same set of hyperparameters throughout all experiments, unless otherwise indicated,165

following the general parameterization of Seyde et al. [2022b] with a simple multi-layer perceptron166

architecture and dimensionality [512, 512]. We evaluate mean performance with standard deviation167

across 4 seeds and 10 evaluation episodes for each task. Our implementation builds on the codebase168

of Seyde et al. [2022b] and we provide hyperparameter values in Table 1 of the Appendix.169

5 Experiments170

We evaluate our approach on a selection of tasks from the DeepMind Control Suite [Tunyasuvunakool171

et al., 2020], MetaWorld [Yu et al., 2020], and MyoSuite [Vittorio et al., 2022]. The former two172

benchmarks generally do not consider action penalties and have previously been solved with bang-173

bang control [Seyde et al., 2022b]. Therefore, we focus on action-penalized task variations to174

encourage smooth control and highlight exploration challenges in the presence of penalty terms.175

We first evaluate performance on tasks from the DeepMind Control Suite with action dimensionality176

up to dim(A) = 38. We consider 2 penalty weights ca ∈ {0.1, 0.5}, such that rewards are computed177

as rt = rot − ca
∑M

j=1 a
j
t

2
/M from original reward rot . We consider GQN agents that grow their178

action space discretization from 2 to 9 bins in each action dimension, where we evaluate both the179

linear and adaptive growing schedules discussed in Section 4. We compare performance against180

the state-of-the-art continuous control D4PG [Barth-Maron et al., 2018] and DMPO [Abdolmaleki181

et al., 2018b] agents while providing two discrete control DecQN agents with stationary action space182

discretization of 2 or 9 for reference. The results in Figures 3 and 4 indicate the strong performance of183

GQN agents, with the adaptive schedule improving upon the linear schedule in terms of convergence184

rate and variance. Growing control resolution further provides a clear advantage over the stationary185

DecQN agents both in terms of final performance (vs. DecQN 2) and exploration abilities (vs. DecQN186

9). These observations mirror findings by Czarnecki et al. [2018], where coarse control resolution187

was beneficial for early exploration, a characteristic amplified by action penalties. We further observe188

strong performance of discrete GQN agents compared to the continuous D4PG and DMPO agents.189
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Figure 3: Performance on tasks from the DeepMind Control Suite with action penalty −0.1|a|2. Our
GQN agent grows its action space resolution via a 2 → 3 → 5 → 9 bin sequence, where the linear
and adaptive expansion schedules yield similar results. The GQN agent performs competitive to
the discrete DecQN as well as the continuous D4PG and DMPO baselines, achieving noticeable
improvements on the Humanoid Stand and Walk tasks.

Figure 4: Performance on tasks from the DeepMind Control Suite with action penalty −0.5|a|2. Our
GQN agent grows its action space resolution via a 2 → 3 → 5 → 9 bin sequence, where we observe
benefits of the adaptive variant over the linear schedule. GQN yields performance improvements over
the discrete DecQN as well as the continuous D4PG and DMPO baselines, with particularly strong
deltas on the Humanoid and Finger tasks.

The non-stationary optimization objective inherent to GQN may not be necessary on simpler tasks190

with limited exploration requirements such as Cartpole Swinup or Reacher Hard, while it significantly191

improves performance on complex domains such as Humanoid or Dog.192

In order to provide additional quantitative motivation for the presence of action penalties, we compare193

the smoothness of the converged policies in Figure 5. We consider the adaptive GQN agent with194

action penalties ca ∈ {0.1, 0.5} and the continuous D4PG agent with action penalty ca = 0.5. The195

metrics we consider are original non-penalized task performance, R, incurred action penalty, P ,196

action magnitude, |a|, instantaneous action change, |∆a|, and the Fast Fourier Transform (FFT) based197

smoothness metric from Mysore et al. [2021], SM. All metrics are normalized by the corresponding198

value achieved by the unconstrained GQN agent with ca = 0.0. The results indicate that increasing199

the action penalty yields noticeably smoother control signals while only having a minor impact on200

the original task performance as measured by the unconstrained reward, R. We further find that201

smoothness of the discrete GQN agent is at least as good as for the continuous D4PG agent on the202

tasks considered (note that D4PG is unable to solve the Humanoid tasks, R ≈ 0).203
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Figure 5: Comparison of control smoothness and reward performance, relative to GQN without action
penalties. Increasing the action penalty coefficient yields smoother control while only having a minor
impact on the original task performance as measured by unconstrained reward R. The discrete GQN
further improves upon the continuous D4PG agent.

Figure 6: Performance on manipulation tasks from MetaWorld with action penalty −0.5|a|2. These
tasks require control at the velocity level and are therefore more challenging to solve with extremely
coarse discretization. We therefore investigate the scalability of our GQN agent and consider growing
discretizations via a 9 → 17 → 33 → 65 bin sequence. The resulting policy achieves stable learning
and performs competitively with the continuous D4PG baseline while improving on the stationary 9
bins DecQN agent.

Next, we extend our study to velocity-level control tasks for the Sawyer robot in MetaWorld. While204

acceleration-level control often provides sufficient filtering to interact favorably with highly dis-205

cretized bang-bang exploration, velocity-level control tends to require more fine-grained inputs. We206

investigate the scalability of growing action spaces within decoupled Q-learning representations. To207

this end, we consider GQN agents with 2 → 9 and 9 → 65 (meaning {9, 17, 33, 65}) discretization as208

well as a stationary DecQN agent with 9 bins. The results in Figure 6 indicate that initial bang-bang209

action selection is not well-suited for generating velocity-level actions, with the agent achieving210

good performance once transitioning to more fine-grained discretization (GQN 2 → 9). Interestingly,211

considering a larger growing action space with GQN 9 → 65 can surpass the performance of a212

stationary DecQN 9 agent, despite the non-stationary optimization objective induced by the addition213

of finer action discretizations over the course of training. The performance of GQN 9 → 65 is214

furthermore competitive with the continuous D4PG agent on average.215

Lastly, we stress-test our approach by considering a selection of tasks from the MyoSuite benchmark.216

The tasks require control of biomechanical models that aim to be physiologically accurate with217

dim(A) = 39 and up to dim(O) = 115 and should constrain the applicability of simple decoupled218

Q-learning approaches such as GQN. Indeed, we find that the agent capacity becomes a limiting219

factor yielding overestimation errors further exacerbated by the large magnitude reward signals. We220

therefore extend the network capacity to [512, 512] → [2048, 2048] and lower the discount factor221

γ = 0.99 → 0.95 (alternatively, increasing multi-step returns 3 → 5 worked similarly well). With222

these parameter adjustments, we observe good performance as measured by task success at the final223

step of an episode, comparing favorably to the continuous D4PG agent in Figure 7. This further224

underlines the surprising effectiveness that decoupled discrete control can yield in continuous control225

settings and the benefit of adaptive control resolution change over the course of training.226
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Figure 7: Performance for controlling biomechanical models from the MyoSuite as measured by task
success at termination. These continuous control tasks stress test growing decoupled discrete action
spaces, due to their dimensionality and inherent complexity. Increasing the network capacity and
adjusting the discount factor to mitigate overestimation, we observe strong performance for growing
action spaces up to a discretization of 65 bins.

6 Conclusion227

This work investigates the application of growing action spaces within decoupled Q-learning to228

efficiently solve continuous control tasks. Our Growing Q-Networks (GQN) agent leverages a linear229

value decomposition along actuators to retain scalability in high-dimensional action spaces and adap-230

tively increases control resolution over the course of training. This enables coarse exploration early231

during training without reduced control smoothness and accuracy at convergence. The resulting agent232

is robust and performs well even for very fine control resolutions despite inherent non-smoothness233

in the optimization objective arising at the transition between resolution levels. While GQN as a234

critic-only method displays very strong performance compared to recent continuous actor-critic235

methods on the tasks considered, we also investigate scenarios that prove challenging for decoupled236

discrete controllers as exemplified by velocity-level control of simulated manipulators or applications237

to control of biomechanical models. Interesting avenues for future work include addressing coordina-238

tion challenges in increasingly high-dimensional action spaces and mitigating overestimation bias.239

Generally, GQN provides a simple yet capable agent that efficiently bridges the gap between coarse240

exploration and solution smoothness through adaptive control resolution refinement.241
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Throughout our experiments, we use the hyperparameter values in Table 1 unless otherwise indicated.423

Table 1: GQN hyperparameters.

Parameter Value

Optimizer Adam
Learning rate 1× 10−4

n-step returns 3
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Gradient clipping 40
Target update period 100
Imp. sampling exponent 0.2
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Exploration ϵ 0.1
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