Under review as a conference paper at ICLR 2026

LYNX - LIGHTWEIGHT YIELDING NETWORK EXPAN-
SION

Anonymous authors
Paper under double-blind review

ABSTRACT

Continual learning (CL) seeks to enable models to acquire new knowledge over a
sequence of tasks without catastrophic forgetting or significant parameter growth.
We propose LYNX (Lightweight Yielding Network eXpansion), a parameter-
efficient continual learning method based on spectral singular value modulation.
LYNX decomposes each weight matrix of a frozen, pretrained backbone via sin-
gular value decomposition (SVD) and introduces a compact, learnable scaling
vector for each new mask, which can represent a single task or a group of classes.
By modulating the singular values with these vectors, LYNX dynamically recon-
structs effective task-specific weights using the fixed SVD factors and the learned
scaling. This results in kilobyte-scale, swappable adapters with minimal infer-
ence overhead. The total parameter count grows only with the number of masks
and the rank of the backbone weights, which ensures scalability. Experiments on
class-incremental benchmarks including CIFAR-100 (10 tasks), ImageNet-R (40
tasks), and ImageNet-A (40 tasks) show that LYNX achieves 91.7%, 87.4%, and
79.1% average accuracy, respectively. For object detection, LYNX attains up to
69.47 mean IOU and 95.1% classification accuracy on VOC2012. These results
demonstrate that LYNX delivers competitive performance and robust forgetting
mitigation, providing a scalable spectral alternative to weight masking and low-
rank adaptation.

1 INTRODUCTION

Deep neural networks have demonstrated exceptional performance when trained on large-scale, stat-
ically distributed datasets. However, these models exhibit a fundamental limitation: when sequen-
tially trained on new tasks, they suffer from catastrophic forgetting, where performance on previ-
ously learned tasks degrades dramatically. This contrasts sharply with biological learning systems,
which seamlessly integrate new knowledge while preserving existing capabilities. Continual learn-
ing (CL) addresses this challenge by developing methods that enable neural networks to learn from
non-stationary data distributions without forgetting previous tasks |Parisi et al.| (2019); |De Lange
et al.[(2022).

The core challenge in CL is the stability-plasticity dilemma Mermillod et al.| (2013). Neural
networks require sufficient plasticity to acquire new knowledge, yet enough stability to preserve
previous learning. When naively fine-tuned on new tasks, networks catastrophically forget prior
knowledge as gradient updates overwrite the parameters encoding earlier tasks McCloskey & Co-
hen| (1989); [French| (1999). This phenomenon severely limits the deployment of deep learning in
real-world scenarios where data arrives incrementally and retraining from scratch is prohibitively
expensive.

Three dominant paradigms have emerged to address catastrophic forgetting, each with fundamental
trade-offs. Rehearsal-based methods Rebuffi et al.[(2016); [Lopez-Paz & Ranzato| (2017) maintain
a memory buffer of past examples and replay them during training on new tasks. While effective,
they raise significant concerns: privacy (storing raw user data), memory scaling (buffer size grows
with tasks), and sample efficiency (limited examples may not capture task distributions adequately).
Regularization-based approaches Kirkpatrick et al.[(2017);|Zenke et al.|(2017) identify important
parameters for previous tasks and penalize their modification. These methods elegantly avoid storing
data but struggle with long task sequences as regularization constraints accumulate and conflict,
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creating an optimization landscape that becomes increasingly difficult to navigate. Parameter-
isolation methods [Rusu et al.| (2016); Serra et al.| (2018) allocate distinct subsets of parameters
to each task, fundamentally preventing interference. However, most approaches in this category
suffer from linear parameter growth—adding a new module or subnetwork per task quickly becomes
prohibitive for long task sequences or resource-constrained deployments.

Recent work in continual learning has shifted toward leveraging pre-trained vision transformers as
frozen feature extractors, with task-specific adaptation performed through parameter-efficient mod-
ules Wang et al.| (2022bza). This paradigm inherently mitigates catastrophic forgetting by keeping
the backbone parameters fixed while introducing minimal trainable parameters per task. Low-Rank
Adaptation (LoRA) [Hu et al.| (2022) and its continual learning variants [Smith et al.| (2023); ? learn
additive low-rank updates AW = BA to frozen weights, requiring d X r + r X d’ parameters per
adapted layer. While more efficient than full fine-tuning, this still scales linearly with both the num-
ber of tasks and transformer blocks. Furthermore, the additive nature of these updates can cause
interference between tasks, as the same weight matrix receives accumulated modifications that may
conflict when tasks exhibit diverse distributions. Moreover, many adapter-based approaches still
introduce a substantial number of new parameters per task, often scaling with the layer’s hidden
dimension.

We introduce LYNX, a novel continual learning method that adapts neural networks by modulat-
ing their singular values rather than directly updating weight matrices. Our key insight is that the
singular value decomposition (SVD) naturally factorizes weight matrices into orthogonal directions
(singular vectors) and their corresponding magnitudes (singular values). By learning to scale only
the singular values while keeping the singular vectors frozen, we achieve expressive task-specific
adaptation with minimal parameters.

Formally, we precompute the SVD for each weight matrix W = UXV7 in the frozen backbone.
For each task ¢, LYNX learns a compact scaling vector s; € R" that multiplicatively modulates
the diagonal matrix ¥, yielding task-specific weights Wy = U(X ® s;)V'T. This singular value
modulation provides three key advantages: (1) Sub-linear parameter scaling: The number of
parameters per task depends only on the rank r of weight matrices, not their dimensionality d x d'.
For typical transformer architectures where r < d, this yields orders of magnitude fewer parameters
than methods that scale with hidden dimensions. (2) Direct control over feature importance:
Singular values naturally encode the importance of different feature directions. By modulating these
values, we directly control how information flows through each direction, providing an interpretable
and theoretically grounded adaptation mechanism. (3) Guaranteed task isolation: Since each task
has its own scaling vector and the backbone remains frozen, tasks cannot interfere with each other
by construction—a property that additive methods cannot guarantee.

We evaluate LYNX through comprehensive experiments across multiple continual learning bench-
marks and task configurations. We demonstrate that singular value modulation consistently outper-
forms existing parameter-efficient methods including LoRA variants and prompt-based approaches,
while requiring orders of magnitude fewer parameters per task. LYNX maintains this efficiency
advantage even under extreme conditions with up to 40 sequential tasks, where traditional meth-
ods either fail or require prohibitive memory overhead. Additionally, we validate that our ap-
proach generalizes beyond classification to complex vision tasks including object detection. Fi-
nally, we analyze the properties of our singular value adaptation mechanism, revealing that MLP
layers provide stronger task-specific plasticity than attention layers. Our analysis further reveals that
LYNX exhibits superior backward transfer properties, with minimal forgetting when learning new
tasks compared to full fine-tuning approaches. The method also demonstrates remarkable stability
across different model architectures, maintaining consistent performance gains whether applied to
transformer-based networks.

Our contributions are:

* We introduce singular value modulation as a fundamentally different approach to continual
learning that scales only the singular values of frozen weight matrices, demonstrating that
this simple mechanism can outperform complex architectural modifications and additive
update schemes.
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* We achieve unprecedented parameter efficiency by operating on rank-dimensional vec-
tors rather than full weight matrices, requiring only O(r) parameters per task compared
to O(d x d') for standard approaches, where typically r < d.

* We provide extensive empirical validation across vision benchmarks with varying task
granularities and complexities, showing that LYNX consistently maintains high accuracy
while exhibiting minimal forgetting.

2 RELATED WORK

2.1 CONTINUAL LEARNING APPROACHES

Continual learning methods can be broadly categorized by their approach to the stability-plasticity
trade-off Mermillod et al.| (2013). Regularization-based methods constrain parameter updates to
preserve previous task performance. EWC [Kirkpatrick et al.|(2017)) uses the Fisher information ma-
trix to identify important parameters, while SI|Zenke et al.| (2017) computes importance measures
online. These methods avoid data storage but suffer from accumulating constraints that create op-
timization conflicts over long task sequences. Rehearsal methods store exemplars from previous
tasks [Rebuffi et al.|(2016); |[Lopez-Paz & Ranzato| (2017), achieving strong performance at the cost
of memory overhead and potential privacy concerns. Parameter isolation methods allocate distinct
parameters to each task, preventing interference by construction. Progressive Neural Networks Rusu
et al.|(2016) add new columns per task, while PackNet|Mallya & Lazebnik! (2018)) iteratively prunes
and freezes subnetworks. HAT Serra et al.|(2018)) learns binary attention masks to gate task-specific
computations. While effective, these approaches typically exhibit linear parameter growth with the
number of tasks.

2.2 PARAMETER-EFFICIENT ADAPTATION

The success of large-scale pre-trained models has shifted focus toward parameter-efficient fine-
tuning (PEFT) methods that adapt frozen backbones with minimal additional parameters. Adapter
modules Houlsby et al.| (2019) insert bottleneck layers between transformer blocks, while prompt-
based methods like L2PWang et al.|(2022b)) and DualPrompt Wang et al.|(2022a) prepend learnable
tokens to inputs. LoRA Hu et al.| (2022)) learns additive low-rank updates AW = BA, requir-
ing O(rd) parameters per layer. Recent continual learning variants include CL-LoRA |Smith et al.
(2023)), which applies LoRA incrementally across tasks, and InfLoRA |[Liang & Li|(2024])), which ad-
dresses inter-task interference through orthogonal subspaces. SD-LoRA Wu et al.| (2025)) introduces
scalable decoupled adaptation for class-incremental settings. However, these methods still require
parameters proportional to hidden dimensions and rely on additive updates that can accumulate in-
terference.

2.3 SVD IN NEURAL NETWORKS

Singular value decomposition has been extensively studied for neural network compression |Denton
et al.| (2014); Xue et al| (2013)), where low-rank approximations reduce model size post-training.
In continual learning, CACL [Teja & Pandal (2020) trains networks in SVD-factorized form to en-
courage low-rank solutions, then compresses via singular value pruning. Recent work on ”Sculpting
Subspaces”|Nayak et al.|(2025) uses SVD to identify critical parameter directions and constrains up-
dates to orthogonal subspaces, though still updating full weight matrices. SVD has also been used
for identifying important weights in regularization [Saha et al.| (2021)) and generating synthetic re-
hearsal data|Van de Ven et al.|(2022)). For fine-tuning, LoORA-XS [Batazy et al.|(2024) trains singular
values directly but outside the continual learning context.

3 METHODS

3.1 PRELIMINARIES

Singular Value Decomposition: Singular value decomposition (SVD) provides a principled mathe-
matical framework for understanding linear transformations in neural networks. Any weight matrix
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W e R™*™ can be factorized as:
W =UxvT 1)

where U € R™ " and V' € R™*" are matrices with orthonormal columns, and > € R"*" is a
diagonal matrix containing the singular values oy > 09 > ... > o, > 0 in descending order. The
parameter = min(n, m) represents the rank of the decomposition.

This factorization reveals the fundamental structure underlying matrix-vector multiplication. When
applying W to an input vector x, the operation can be expressed as:

Wx = Zazul (vIx) (2)
i=1

where u; and v; are the i-th columns of U and V, respectively. This decomposition shows that
the linear transformation consists of r independent components, each defined by a rank-1 matrix
u,;v, . The orthogonality of the singular vectors ensures that these components operate in distinct
subspaces while the singular values o; control the magnitude of each component’s contribution
to the final output. From this perspective, the singular values act as learnable scaling factors that
modulate the importance of different orthogonal directions in the weight matrix, providing a natural
parameterization for adaptive neural network modifications.

3.2 LYNX
3.2.1 SPECTRAL ADAPTER ARCHITECTURE
Decomposition Modification Reconstruction
- @1 @ -
AN
@I* g’ : :

Figure 1: Overview of the LYNX. Input weights are decomposed via singular value decomposition,
the singular values are modulated using spectral adapters, and the weights are then reconstructed.

=

—

We introduce spectral adapters, a novel class of parameter-efficient modules that enable task-
specific adaptation through singular value modulation. Spectral adapters offer an extremely efficient
parameterization for continual learning and provide inherent task isolation. By modulating singu-
lar values, spectral adapters adapt neural networks for different tasks through reweighting the im-
portance of different transformation directions. When applied to pre-trained models, this reweights
learned features. When applied to randomly initialized models, it learns task-specific scalings within
the subspace defined by the initial weights.

Formally, for each task ¢, we instantiate a spectral adapter A; = {mgl) }ier consisting of learnable
modulation parameters, where £ denotes the set of eligible layers (excluding normalization, bias,
and embedding operations). Each mgl) € R"™ is a compact parameter vector with dimensionality

equal to the rank 7, = rank(W ") of the corresponding weight matrix.

Given the pre-computed SVD decomposition W) = UOxOV (T the spectral adapter produces
task-adapted weights through singular value scaling:
W =vWSPvOT where T = diag(o("3!), ..., 05"} 3)

1>

Here, sg ) e Rm represents the modulation coefficients derived from m through a bounded trans-

formation function, with each singular value 0‘( ) being scaled by its corresponding coefficient sg )

This formulation ensures that adaptation occurs solely through reweighting singular values while
maintaining the orthogonal transformation directions encoded in U(*) and V.
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This provides three fundamental benefits:

Negligible parameters: Learning only a vector mgl) for each weight matrix allows for very ef-

ficient continual learning with orders of magnitude fewer parameters. For example, LoRA re-
quires (din + doyut) X ' learnable parameters per weight matrix, where r’ is a hyperparameter
that generally needs to be set large enough for expressivity. In contrast, spectral adapters need only
T = rank(W(l)) parameters. While this scaling of only the singular values may seem to lead to lim-
ited expressiveness, the ability to affect the weight matrix in a full-rank manner technically provides
more flexibility than low-rank approaches.

Complete task isolation: Each spectral adapter uses completely independent parameters with no
shared components. This guarantees zero interference between tasks by construction—a property
that additive methods cannot ensure. When learning task ¢, the spectral adapters for all other tasks
remain completely untouched.

Principled regularization: Exclusively modifying the magnitude of pre-existing singular compo-
nents provides a principled and effective form of regularization. In practice, this property enables
spectral adapters to adapt to new tasks with minimal data without risk of catastrophic forgetting or
overfitting.

3.2.2 PREPROCESSING PHASE

Given a neural network model, we perform a one-time SVD decomposition for all eligible linear
layers. For each weight matrix W(®) e R™>":

w® = gOnOyOT )
We store these decomposition factors permanently. The matrices U") and V) remain frozen

throughout all subsequent training, preserving the transformation directions. We exclude layer nor-
malizations, biases, and embedding layers from decomposition.

3.2.3 TASK-SPECIFIC LEARNING

For each task ¢, the spectral adapter A, = {mgl)} transforms its learnable parameters into singular
value scaling factors through three steps:

Step 1: Bounded scaling generation
st =7 a(m) 5)

where o(+) is the sigmoid function and 7 controls the maximum scaling factor (typically 1.0). The
sigmoid provides smooth gradients while bounding the scaling factors to [0, 7].

Step 2: Energy-preserving normalization

. »(®)
FONNOY - 2] ©
Is¢” ©@ XDl +e

This normalization serves two critical purposes. First, it prevents gradient explosion during back-
propagation by constraining the effective operator norm of adapted weights. Without this constraint,
the gradient magnitude can grow exponentially as HzL:1 max; sq(;l) , causing numerical instability—a
well-known issue in deep network optimization |Pascanu et al.|(2013)).

Second, it maintains the pretrained network’s activation scale, ensuring that downstream layers re-
ceive inputs within their expected operating range. This is conceptually similar to gradient clipping
in recurrent networks and reward normalization in reinforcement learning, where maintaining stable
optimization dynamics is crucial for convergence |Schulman et al.| (2017).

The L1 norm specifically provides gradient smoothness while preserving sparsity-inducing proper-
ties. Unlike L2 normalization which equally penalizes all deviations, L1 allows selective amplifi-
cation of important singular values while suppressing others, enabling more decisive task-specific
adaptation. This choice aligns with recent continual learning methods like CL-LoRA [Smith et al.
(2023), which employ similar magnitude constraints to prevent parameter drift.
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Step 3: Weight reconstruction
W =u0(E0 e gyror (7

The reconstruction uses cached SVD factors, incurring minimal computational overhead. This pro-
duces the task-specific weights through the spectral adapter.

3.3 TRAINING AND OPTIMIZATION

Training for task ¢ involves optimizing only the spectral adapter parameters {mgl)} while keeping
all SVD components frozen. The gradient flow follows:

a(0)
oL _ oL NOMOMOk .ast,’i (8)
aml)  N\ow® om)

where the first term represents the gradient with respect to the reconstructed weights projected onto
the i-th singular component, and the second term is the derivative through the modulation func-
tion. The energy-preserving normalization introduces beneficial coupling between singular values,
preventing any single value from dominating and ensuring balanced updates across all dimensions.

Initialization strategy: Spectral adapter parameters mgl) are initialized from A(0,0.12). With
7 = 1.0, this yields initial scaling factors §§l2 ~ 0.5 after sigmoid transformation, providing a

balanced starting point that neither completely suppresses nor fully activates any singular direction.

3.4 INFERENCE AND TASK MANAGEMENT

LYNX supports flexible deployment through two inference modes:

Task-aware inference: When task identity is known, we directly apply the corresponding spectral
adapter. This incurs negligible overhead—requiring only the reconstruction of weights using cached
SVD factors and the adapter’s scaling vectors.

Task-free inference: For unknown tasks, we employ confidence-based selection:

= argmax,c(y gy maxp(clos A) ©)

We evaluate the input with each task’s spectral adapter and select based on maximum class proba-
bility. This process is efficient as it only requires swapping lightweight spectral adapters.

4 EXPERIMENTS

We conduct comprehensive experiments to evaluate LYNX across diverse continual learning bench-
marks with three primary objectives: (1) demonstrating the parameter efficiency and performance of
spectral adapters compared to existing continual learning methods; (2) validating the method’s ef-
fectiveness across different task complexities, dataset scales, and model architectures; (3) analyzing
the properties of singular value modulation through ablation studies and interpretability experiments
to understand why spectral adaptation provides effective task isolation and knowledge preservation.

Table 1: Direct comparison under controlled experimental conditions. All methods adapt frozen
ViT-B/16 with identical hyperparameters.

Model CIFAR-100 (10) ImageNet-R (20)
Frozen + Linear 33.61 28.87
LoRA (r=8) 88.27 —

LoRA (r=16) 87.84 —
SD-LoRA 88.01 75.26

L2P 83.86 61.57
DualPrompt 86.51 68.13
LYNX (ours) 91.71 87.40
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4.1 EXPERIMENTAL SETUP

Datasets. We evaluate LYNX on three established continual learning benchmarks with distinct
characteristics. CIFAR-100 |Krizhevsky et al.| (2009) provides 100 fine-grained object categories
at 32x32 resolution, testing basic incremental learning capabilities. ImageNet-R [Hendrycks et al.
(2021a) contains 200 ImageNet classes rendered in diverse artistic styles (sketches, paintings, sculp-
tures), evaluating robustness to domain shift during incremental learning. ImageNet-A [Hendrycks
et al| (2021b) comprises 200 naturally occurring ImageNet images that consistently fool trained
models, testing adaptation to adversarially-challenging examples. We construct task sequences by
partitioning each dataset into 7" disjoint, equal-sized tasks, varying granularity from coarse (10 tasks)
to fine (20 tasks).

Evaluation Protocol. We follow the class-incremental learning (CIL) paradigm where models learn
disjoint class subsets sequentially without rehearsal. After training on all 7" tasks, we measure Top-1
accuracy on each task’s test set independently, then report the average as our primary metric. This
task-wise evaluation exposes forgetting patterns obscured by aggregate metrics. For object detection,
we adapt the protocol to incremental category learning while maintaining consistent evaluation.

Model Architectures. Our primary experiments employ Vision Transformer Base (ViT-B/16) Doso-
vitskiy et al.| (2020) pre-trained on ImageNet-21K, aligning with recent continual learning literature.
We additionally validate on ResNet-50 |He et al.|(2016)) to demonstrate generalization across archi-
tectural paradigms. For object detection, we integrate spectral adapters into Faster R-CNN Ren et al.
(2015) with ViT backbones. When benchmarking against prior work, we report their best published
configuration to ensure conservative comparison.

4.2 IMAGE CLASSIFICATION RESULTS

Table 2] presents the classification accuracy of LYNX across diverse continual learning benchmarks.
Our method demonstrates competitive performance across varying task granularities 7" while main-
taining exceptional parameter efficiency. Each spectral adapter requires only O(r) parameters per
layer (where r denotes the rank), compared to O(d;, + dout) X k for LoRA-based approaches,
achieving compression ratios between 10x and 100x with superior accuracy.

We observe three key findings from our experimental evaluation:

Scalability to high task granularity. Unlike prior methods that typically evaluate on 5-20 tasks,
LYNX maintains robust performance at extreme granularities. On ImageNet-R with 7'=40, our
method achieves 87.40% accuracy, exceeding CL-LoRA by 5.82 percentage points. This improve-
ment demonstrates that spectral adapters effectively address the stability-plasticity dilemma that
conventionally degrades performance as the number of tasks increases.

Enhanced robustness under distribution shift. The most substantial improvement occurs on
ImageNet-A, where LYNX achieves 79.10% accuracy—an 8.95 point improvement over CL-LoRA,
representing a 12.8% relative gain. Given that ImageNet-A comprises natural adversarial examples,
this result suggests that singular value modulation confers inherent robustness to challenging inputs.
The consistent improvements across both ImageNet-R (artistic renditions) and ImageNet-A indi-
cate that spectral adapters capture robust task-specific representations rather than overfitting to clean
training distributions.

Cross-architecture generalization. Our approach demonstrates strong performance across both
transformer and convolutional architectures. On CIFAR-100 with ResNet-50, LYNX achieves
95.4% accuracy with 20 tasks, confirming that spectral adaptation provides a general framework
for continual learning beyond transformer-specific implementations.

4.2.1 CONTROLLED COMPARISON WITH BASELINE METHODS

To ensure a rigorous evaluation, we conduct controlled experiments comparing LYNX against LoRA
and other adaptation methods under identical conditions. All methods utilize the same frozen ViT-
B/16 backbone pretrained on ImageNet-21K, with matched hyperparameters: learning rate (10~3),
batch size (128), and training epochs (50 per task).

Table [T] demonstrates that LYNX consistently outperforms LoRA variants despite utilizing 16x
fewer parameters per layer. The performance differential is particularly pronounced on ImageNet-R
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Table 2: Classification accuracy on continual learning benchmarks. LYNX maintains superior per-
formance at extreme task granularities (40 tasks) while utilizing orders of magnitude fewer parame-
ters per task compared to existing approaches.

Method Dataset Tasks Metric  Accuracy (%)
CIFAR-100

iCaRL ( CIFAR-100 10 Top-1 64.1
EWC (Kirkpatrick et al.| CIFAR-100 20  Top-1 67.15
HAT (Serra et al.[[2018] CIFAR-100 20 Top-1 71.23
SupSup (Wortsman et al. CIFAR-100 20  Top-1 71.44
CoDyRA (Lu et al.|[20 CIFAR-100 5 Top-1 76.6
CPG lMIE&T}'ﬂ CIFAR-100 20 Top-1 81.7
LoRA (Hu et al.[[2022] CIFAR-100 1 Top-1 88.27
CL-LoRA (Smith et al.|[2023 CIFAR-100 20 Top-1  91.02£0.12
LYNX (Vi CIFAR-100 10 Top-1 91.71 £1.14
LYNX (ResNet-50) CIFAR-100 20 Top-1 95.4 + 1.57

ImageNet-R

ImageNet-R 5 Top-5 82.01 £0.12
ImageNet-R 5 Top-1  83.01 £0.42
ImageNet-R 40 Top-1  81.58 £0.59
ImageNet-R 40 Top-1  87.40 + 0.84

ImageNet-A

CL-LoRA (Smith et al.|[2023 ImageNet-A 10 Top-1  70.15 +£2.23
LYNX

ImageNet-A 40 Top-1 79.10 £ 1.2

(+13.1 percentage points compared to SD-LoRA), which contains artistic renditions requiring robust
feature adaptation. While LoRA with rank-8 decomposition requires 12,288 parameters per 768 X
768 weight matrix, LYNX achieves superior performance using only 768 parameters through direct
spectral modulation. These results validate our hypothesis that operating in the spectral domain
provides a more parameter-efficient adaptation mechanism compared to learning explicit low-rank
matrix factorizations.

100 96.60

Model Number of splits Avg Acc (%) *
LYNX (ours) 5 91.2 60
LYNX (ours) 10 91.71 8
LYNX (ours) 20 93.8 °
LYNX (ours) 50 96.6 i
Table 3: Results of various number splits on CIFAR-100 0 s " » ©

using LYNX. For each split we report the Average Accuracy. Tosk splis
Figure 2: A Bar chart showing the

Average accuracy on CIFAR-100
across different splits using LYNX

4.3 OBJECT DETECTION RESULTS

We extend our evaluation to object detection to demonstrate the generality of spectral adapters be-
yond classification tasks. Following the class-incremental detection protocol, we partition PASCAL
VOC 2012 [Everingham et al.| (2010) into 4 disjoint tasks. During training on task ¢, only annota-
tions for classes in ) are provided, with instances from future classes treated as background. We
employ OWL-ViT Minderer et al.| (2022), an open-vocabulary detector with a ViT-B/32 backbone
pre-trained on ImageNet-21K.

Table 4 demonstrates that spectral adapters effectively handle the dual challenges of incremental
object detection: maintaining classification accuracy (95.06%) while preserving localization quality
(69.47 IoU, 72.79 GloU). These metrics are computed per-task and averaged, revealing minimal
forgetting across both recognition and localization components. The strong detection performance
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Table 4: Object detection results on PASCAL VOC 2012 with 4 incremental tasks. LYNX maintains
strong classification accuracy while preserving localization quality without rehearsal.

Method Dataset Tasks AvgloU Avg GloU Avg Cls. Acc (%)
LYNX  VOC?2012 4 69.47 72.79 95.06

is notable given that spectral adapters were designed primarily for classification, suggesting that sin-
gular value modulation preserves the geometric properties needed for spatial reasoning. While com-
prehensive baselines for continual detection remain limited, these results validate spectral adapters
as a general framework applicable across vision tasks.

5 ABLATION

5.1 ABLATION: ENERGY-PRESERVING NORMALIZATION

A critical component of LYNX is the energy-preserving normalization that maintains the ¢; norm of
singular values during task-specific modulation. Specifically, we enforce:
XU
1201 = 12Ol (10)
where iﬁ” =x0 ®§§Z) represents the modulated singular values for task ¢. We ablate this constraint
by removing the normalization step, allowing unconstrained multiplicative scaling.

Table 5: Ablation of energy-preserving normalization on CIFAR-100 (10 tasks). Removing normal-
ization causes catastrophic performance degradation.

Configuration Accuracy (%)
LYNX (with normalization) 91.71
Without normalization 48.90

Table [5] reveals that removing energy preservation causes a 42.81 percentage point accuracy drop.
This catastrophic degradation occurs because unconstrained scaling fundamentally alters the opera-
tor norm of weight matrices. Consider the weight reconstruction without normalization:

W = UWdiag(s)” © o)y OT (1n

When sgl) can take arbitrary values, the effective operator norm HWt(l) || diverges from the pretrained
value HW(Z) ||I- This divergence cascades through the network: a 10x scaling in early layers amplifies
to 10 at layer L, rapidly pushing activations outside numerically stable ranges.

The energy-preserving normalization constrains the adaptation to lie on the manifold where

Hfl,(fl) |1 = c for fixed c. This restriction ensures spectral adapters perform redistribution of singu-
lar value magnitudes rather than rescaling, preserving the pretrained network’s activation statistics
while enabling task-specific feature modulation. The severity of performance degradation without
this constraint—effectively reducing the model below random initialization—demonstrates that en-
ergy preservation is not a regularization choice but a fundamental requirement for stable spectral
adaptation.

6 CONCLUSION

LYNX adapts neural networks by modulating singular values rather than weights, achieving ex-
treme parameter efficiency with superior performance across sequential tasks while guaranteeing
zero catastrophic forgetting through perfect task isolation. By operating directly on spectral decom-
position, we demonstrate that effective continual learning requires neither architectural complexity
nor massive parameters, enabling practical lifelong learning systems.
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A APPENDIX

A.1 LYNX PROPERTIES DETAILED

Negligible parameters arise directly from our SVD-based parameterization. For a weight matrix
W € R™*™ with rank r, LYNX requires exactly r learnable parameters—one scaling factor per
singular value. This is fundamentally more efficient than LoRA, which requires (m + n) x 7’ pa-
rameters to construct rank-r’ updates. For a typical 768 x 768 weight matrix, LoRA with rank
8 requires 12,288 parameters while LYNX requires only 768 (assuming full rank), a 16x reduc-
tion. Despite fewer parameters, LYNX can modulate all r singular directions, providing full-rank
adaptability within the subspace spanned by the singular vectors.

Complete task isolation is achieved through our parameter allocation strategy. Each task ¢ main-
tains its own set of scaling parameters {mgl)}le with no overlap between tasks. During forward

passes, task-specific weights are reconstructed as Wt(l) =00 e §El))V(l)T using only task
t’s parameters. During backpropagation, gradients flow exclusively to the current task’s parame-
ters while all other tasks’ parameters remain untouched. This architectural choice guarantees zero
gradient interference between tasks—a property that additive methods cannot ensure since they ac-
cumulate modifications on shared base weights.

Principled regularization emerges from the constrained nature of singular value modulation. By
preserving the singular vectors and only scaling their corresponding values, LYNX maintains the
geometric structure of the weight space while controlling the magnitude of each directional compo-
nent. The bounded sigmoid activation sgl) =7 o(mgl)) limits scaling factors to [0, 7], preventing
extreme modifications. The spectral normalization further regularizes by maintaining constant L1
norm of scaled singular values, preventing trivial solutions and ensuring stable optimization dynam-
ics across tasks.

A.2 PARAMETER COMPARISON

LYNX achieves unprecedented parameter efficiency for continual learning:

This represents a 16x reduction compared to LoRA and 768 x reduction compared to full fine-
tuning.
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Method Parameters per Task  Example (768 x 768 matrix)
Full Fine-tuning O(mn) 589,824

LoRA (r = 8) O((m+n)r') 12,288

Adapters O(d?) ~100K

LYNX O(r) 768

Table 6: Parameter comparison across methods for a single weight matrix.

A.3 COMPUTATIONAL OVERHEAD
Preprocessing (one-time):

* SVD decomposition: O(mn?) per matrix

» Performed once during model initialization
Runtime overhead (per forward pass):

» Weight reconstruction: O(mr + nr + r) per layer

* Additional computation: < 3% compared to standard inference
A.4 MEMORY FOOTPRINT

Each task adapter requires only the singular value scaling vectors:

* Storage: Zlel r; parameters where r; is the rank of layer [
* Total overhead: For ViT-B/16, approximately 0.59M parameters per task
* Deployment efficiency: 100+ task adapters require less memory than storing a single

model copy

This extreme efficiency makes LYNX practical for edge deployment and resource-constrained envi-
ronments where traditional methods would be prohibitive.

Table 7: Runtime and memory comparison on ViT-B/16. Forward/backward passes measured on
A100 80GB GPU (batch size 1). Task switching measures time to swap adapter parameters.

Method Params/Task  Fwd (ms) Bwd (ms) Memory (MB) Task Switch (ms)
LYNX (ours) 56K 102 4+04 18.1+0.7 0.218 31.3+04
LoRA (r=8) 31.1M 11.9+£05 198+0.8 118.6 235.0 + 83.1
LoRA (r=16) 31.4M 124+06 203409 119.8 236.6 + 82.8

SVD Storage Overhead. While each task adapter requires only 56K parameters, LYNX requires
one-time storage of the SVD decomposition factors. For ViT-B/16 with 148 eligible weight matrices,
storing U, %, and V factors requires approximately 340MB (assuming float32 precision). This
overhead is amortized across all tasks:
 Total storage for T tasks: 340MB + (0.224MB x T
* Break-even point: AtT" = 3 tasks, total LYNX storage becomes more efficient than LoORA
e At T = 10: LYNX uses 342.2MB total (34.2MB per task amortized) vs LoRA’s 1,244MB
e At T = 100: LYNX uses 362.4MB total (3.62MB per task amortized) vs LoRA’s
12,440MB

For deployment scenarios with >3 tasks, LYNX provides substantial storage savings. The efficiency
gains scale dramatically with task count—reaching 34 x reduction at 100 tasks compared to LoRA.
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A.5 COMPUTATIONAL EFFICIENCY

We evaluate the computational and memory characteristics of LYNX compared to existing
parameter-efficient methods to validate our theoretical efficiency claims.

Table [/ reveals the dramatic efficiency gains of spectral adaptation. LYNX requires only 56K pa-
rameters per task—a 555 reduction compared to LoRA (r=8)—while achieving superior inference
speed (10.2ms vs 11.9ms). This counterintuitive result stems from our method’s computational sim-
plicity: element-wise multiplication of cached singular values avoids the matrix multiplications re-
quired by low-rank decomposition. The memory footprint difference is striking: each LYNX adapter
occupies 0.053MB, enabling deployment of 1,000+ task-specific models in the memory required for
a single LoRA adapter.

Task switching performance further validates our architectural choices, with LYNX requiring only
31.3ms compared to LoRA’s highly variable 235.0£83.1ms. This 7.5x speedup becomes criti-
cal in multi-task serving scenarios where rapid context switching determines system throughput.
The low variance in LYNX’s switching time (40.4ms) indicates predictable performance crucial
for real-time applications. These measurements confirm that spectral adapters not only minimize
parameters theoretically but translate this efficiency into concrete deployment advantages: faster
inference, negligible memory overhead, and deterministic task switching that scales to hundreds of
specialized domains without performance degradation.

A.6 MEMORY FOOTPRINT ANALYSIS

The extreme parameter efficiency of LYNX enables scalability for continual learning systems:

* Per-task storage: Each adapter requires only Z{;l r; parameters, where r; is the rank of
layer . For ViT-B/16, this totals 56K parameters.

* Multi-task deployment: 100 task-specific adapters occupy less than 5.3MB total—less
memory than a single LoRA adapter.

* Edge feasibility: The entire continual learning system with 50+ tasks fits within the L3
cache of modern processors.

This efficiency fundamentally changes the economics of deploying specialized models. Rather than
maintaining separate fine-tuned models or accepting the parameter overhead of existing adapters,
LYNX enables on-device personalization and domain specialization at negligible cost.

B THEORETICAL FRAMEWORK

B.1 PRELIMINARIES AND NOTATION

Let F = {fy : X — Y} denote the hypothesis class of neural networks with parameters § € ©.
We consider a sequence of tasks 7 = {71, ...,Tn} arriving sequentially, where each task 7} has
dataset D; = {(z;,y;)};, drawn from distribution P;(X,Y") with disjoint label spaces }; N Y, = ()
fort # s.

Singular Value Decomposition For any matrix W € R™*" with rank = rank(W/) < min(m,n),
the singular value decomposition is:

w=UxvT = Zaiuiv? (12)
i=1
where U = [ug,...,u,] € R™*", V = [vy,...,v,] € R" " have orthonormal columns, and
¥ = diag(o1,...,0.) withoy > 09 > ... > 0, > 0.

Spectral Adapter A spectral adapter A, for task ¢ consists of learnable parameters {mil) eRM
where r; = rank(W(l)). The adapter produces task-specific weights:
wl =W (O o syoOr (13)

where sgl) =T- a(mgl)) and o (-) is the element-wise sigmoid function.
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B.2 PARAMETER EFFICIENCY ANALYSIS

Theorem 1 (Parameter Complexity Bounds) For a neural network with L layers, where layer [
has weight matrix W& € R™>™ with rank 1, the total parameter count for adapting to T tasks
is:

Method Parameters per Task Total for 7" Tasks
Full Fine-tuning ZlL:1 myny T- Zlel myny
LoRA (rank k) S k(my ) TSR k(g + )
LYNX ST T-Y

For each method:

* Full fine-tuning stores complete weight matrices: m; X n; parameters per layer
* LoRA stores two matrices B; € R™ %% and A; € RF*™: k(m; + n;) parameters

* LYNX stores one scaling vector sgl) € R™: exactly r; parameters

Since r; < min(my,n;) and typically r; < my,n; in overparameterized networks, LYNX achieves:

L L i
Params;ynx e < ity min(m, n) (14)
= T > L
Paramspora 377 k(my+ng) kYL (my +my)
For square matrices where m; = n; = d, this ratio becomes iz = 5.

Corollary 1.1 For typical transformer architectures where d = 768 and k = 8, LYNX requires at
least 16X fewer parameters than LoRA per task.

B.3 TASK ISOLATION AND NON-INTERFERENCE GUARANTEES

Theorem 2 (Perfect Task Isolation) Let L, be the loss function for task t and 6, = {m{}£_, be
the parameters for task s. Then:
Vo.Lr=0 Vst (15)

The forward pass for task ¢ uses weights:

Wt(l) _ U(l)(z(l) o SEZ))V(l)T (16)

0 (
t

( @ and not on m ) for s # t, we have:

where stl) =71-0(my;"’). Since Wt(l) depends only on m

8W(l)
5 t(l) =0 Vs#t (17)
ms
By the chain rule:
OL: <~ 0L, WS, "
P B Deees ) el (18)
mg i,j Wt,ij 3ms

Therefore, Vg L, = 0 for all s # t.

Theorem 3 (Zero Catastrophic Forgetting at Parameter Level) Ler A,(D,) denote the accuracy
of the model with adapter A; on dataset D;. After training on task sequence {T}, ..., Tn}:

where A} is the accuracy immediately after training on task t.
Since each task maintains independent parameters and Vg Ly = 0 for s # ¢ (Theorem [2)), training

on task ¢ cannot modify parameters 0, for any s # t. Therefore, the function fy, remains unchanged
after training on subsequent tasks.
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B.4 EXPRESSIVITY ANALYSIS

Spectral Adaptation Space The set of weight matrices achievable through spectral adaptation from
base matrix W is:

S(W) = {Udiag(sy071,...,5.0.) VT : s, € [0,7),i=1,...,7} (20)
Theorem 4 (Expressivity Characterization) The spectral adaptation space S(W) satisfies:
1. dim(S(W)) =r = rank(W)
2. S(W) C {M : colspan(M) C colspan(W), rowspan(M) C rowspan(W)}
3. S(W) is a bounded convex set in the space of matrices

1. Each spectral adapter is parameterized by r independent scaling factors, giving dimension
T

2. Forany W € S(W), we have W = UXVT where ¥ is diagonal. Thus:
colspan(TW) = colspan(U) = colspan(WW) (1)

rowspan(W) = rowspan(VT) = rowspan(W) (22)
3. Convexity: For Wy, Wy € S(W) with scaling vectors s(1), s(), and A € [0, 1]:
AW+ (1 = M)Wy = Udiag(As™Y) + (1 = N)s@ @ 0)VT € S(W) (23)
Boundedness follows from s; € [0, 7].

Lemma 5 (Approximation Error Bound) For any matrix M with colspan(M) C colspan(W)
and rowspan(M) C rowspan(W), there exists W € S(W) such that:

M = W|p < Vr-max|m; — ] (24)
where m; and m; are the i-th singular values of M and W respectively.

Since M shares the same column and row spaces as W, it can be written as M =
Udiag(my,...,m,)VT. The closest approximation in S(W) is achieved by setting s; =
min(7, max(0,m;/o;)). The Frobenius norm error is:

M — W2 = Z(mi — 5;04)% <r-max(m; — 5;0;)> (25)

1
=1
Taking square roots gives the result.
B.5 STABILITY AND CONVERGENCE ANALYSIS

Theorem 6 (Lipschitz Continuity) The mapping ¢ : mgl) — Wt(l) is Lipschitz continuous with
constant:

-
Ly =750}z JU |2 [VOl2 - maxo’(x) = - [S@] (26)

For the sigmoid function o(x), we have max, o’ (x) = 1/4. For any my, mg € R":

[Winy = Win, lr = [[UE © (s1 — s2)) V7 || (27)
=2 ® (s1 = s2)|IF (28)
<Xz - [Is1 = s2]l2 (29)
<7122 'mjxgl(x) “[[ma — mall2 (30
.
=1 12]2 - [[m1 — mal|2 @31

where we used ||U||2 = ||V]|2 = 1 due to orthonormality.
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Theorem 7 (Gradient Bound) For a loss function L that is L.-Lipschitz with respect to weight
matrices, the gradient norm is bounded:

TL
IV, Lll2 < =5 150]l2 (32)

By the chain rule and Theorem [6}
-
IV, Lll2 < IVww Ll IV, 0 WOl2 < Le- 1 152 (33)

Theorem 8 (Convergence Rate) Under standard assumptions (smoothness and convexity of loss),
gradient descent on spectral adapter parameters converges at rate:

cm*y—cr<o <]1€> (34)

where mgk) denotes parameters at iteration k and L* is the optimal loss.

The bounded gradients and Lipschitz continuity ensure that standard convergence results for gradient
descent apply. With learning rate n = 1/(8k) where § = Tiﬁ max; ||2? |2, we get the standard
O(1/k) convergence rate for convex objectives.

Gradient Stability. The energy-preserving normalization ensures bounded gradient flow:
oL
7 =<
8m§ ) 9 4

where 1) is the normalization function. This bound prevents the exponential gradient growth that
would occur with unconstrained scaling, analogous to gradient clipping in RNNs and value normal-
ization in policy gradient methods.

TLe

O], - \

oY
o, o

B.6 INFORMATION-THEORETIC ANALYSIS

Effective Rank The effective rank of a matrix W with singular values {o;} is:

Tett(W) = exp ( Zpi 10gpi> (36)
i1

where p; = 02/ > 3.

Theorem 9 (Information Preservation) The spectral adapter preserves the information capacity
of the weight matrix up to:
I(Wy) 2 I(W) —rlog(1/7) 37)

where 1(-) denotes the Shannon entropy of the singular value distribution.

The entropy of the adapted singular values is:
H(5)=—> pilogp (38)
i=1

where p; = (s;04)%/ > j(SjO'j)Q. Since s; € [0, 7], the worst-case entropy reduction occurs when
all s; = 7 or all s; = 0. In the non-degenerate case:

H(5) > H(o) —rlog(1l/T) (39)
B.7 SAMPLE COMPLEXITY

Theorem 10 (Sample Complexity Bound) For a task with C classes, achieving error € with prob-

ability 1 — § requires at most:

samples, where r = max; r; is the maximum rank across layers.
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Using Rademacher complexity analysis, the complexity of the spectral adapter hypothesis class is:

TT L
Ra(8) < == 150 41
=1
By standard generalization bounds:
A log(1/6
E[L] < £ + 2R (S) + Lén/ ) 42)

Setting the right-hand side equal to € and solving for n gives the result.

B.8 COMPARISON WITH LOW-RANK ADAPTATION

Theorem 11 (Relative Expressivity) For a given parameter budget B, the expressivity ratio be-
tween LYNX and LoRA is: 5
S B d
Sume(B)| _ <> )
|SLora(B)] B
for square d x d matrices.

With budget B:

* LYNX can modulate B singular values, giving a B-dimensional manifold
* LoRA with rank k = B/(2d) spans a B-dimensional subspace

However, LYNX operates on the eigenspace directly while LoORA must learn both the subspace and
the transformation. The volume ratio of the respective parameter spaces gives the expressivity ratio.

B.9 ENERGY-PRESERVING NORMALIZATION ANALYSIS

Energy-Preserving Map The normalization function ¢ : R™ — R" defined by:

1=l
V()i =si T (44)
()= s oo,
preserves the ¢; norm of the scaled singular values.
Theorem 12 (Normalization Properties) The energy-preserving normalization satisfies:
1. Invariance: ||{(s) ® 3|1 = ||X||1 forall s € R,
2. Smoothness: ) is continuously differentiable with bounded Jacobian
3. Non-expansive: ||1)(s1) — ¥(s2)|2 < K||s1 — s2]|2 for some constant K
1. By construction: ||1(s) ® X[y = [|s ©® 3|y - |\SHGZ>£1H1 =X
2. The Jacobian elements are:
- {a ( _E) e (45)
AN Gttt s sy B R

where o = [|X]]1/]|s @ Z||1. All elements are bounded.

3. The non-expansive property follows from the bounded Jacobian.

Theorem 13 (Necessity of Normalization) Without energy-preserving normalization, the operator
norm can grow exponentially with depth:

L
Wy o oWys < Hm?xsz(l) O, (46)
=1
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For a composition of linear operators:

L L
W o oWils < [T IWillz = Hm?x(sgwgzgl)) 47
=1 =1

O]

Without normalization, if s, > 1 for multiple layers, this product grows exponentially with L.

B.10 LAYER-SPECIFIC ADAPTATION ANALYSIS

We investigate the differential contribution of attention and MLP components to continual learning
performance in Vision Transformers. This analysis provides insights into where spectral adaptation
is most effective within the ViT-B/16 architecture.

Experimental Design. We decompose the full LYNX model into component-specific variants on
CIFAR-100 (10 tasks):

* Full model: Spectral adapters on all eligible weight matrices (148 layers total)

e MLP-only: Adaptation restricted to Feed-Forward Network projections (2 per ViT block)

» Attention-only: Adaptation restricted to Q, K, V, and output projections (4 per ViT block)
All variants use identical training hyperparameters: AdamW optimizer with learning rate 1073,

batch size 128, and 50 epochs per task. The only difference is which weight matrices receive spectral
adapters.

Table 8: Component-specific ablation reveals asymmetric importance for continual learning in ViT-
B/16. Despite fewer weight matrices, MLP layers provide superior task-specific adaptation com-
pared to attention layers.

Configuration Parameters Top-1 Accuracy (%) Relative Performance
Full (Attention + MLP) 56K 91.71 £ 1.14 100.0%
MLP only 24K 80.40 £ 0.92 87.7%
Attention only 32K 61.10 = 1.31 66.6%

Analysis. Table [8| reveals a striking asymmetry: MLP-only adaptation achieves 80.40% accuracy
using only 24K parameters, while attention-only adaptation achieves 61.10% despite using 32K pa-
rameters—a 19.3 percentage point gap. This result is counterintuitive given that ViT blocks contain
twice as many attention projection matrices (Q, K, V, O) as MLP projections (in, out).

The superior performance of MLP adaptation suggests that task-specific knowledge in continual
learning primarily manifests through channel-wise feature transformations rather than spatial re-
lationship modeling. In the ViT architecture, MLP layers perform position-wise transformations
that can selectively amplify or suppress features, making them natural sites for task specialization.
Conversely, attention mechanisms appear to learn more task-agnostic representations that generalize
across different visual domains.

Implications. These findings have direct practical consequences:
» For memory-constrained deployments, prioritizing MLP adaptation yields 80% of full per-
formance with 43% of parameters

* The complementary nature of attention and MLP adaptation (91.71% together vs 80.40%
MLP-only) confirms that both components contribute unique capabilities

* The results suggest that future work on parameter-efficient continual learning should con-
sider non-uniform allocation strategies that reflect these asymmetric contributions

This analysis demonstrates that spectral adaptation’s effectiveness varies significantly across trans-
former components, with MLP layers providing the primary substrate for task-specific knowledge
retention in continual learning scenarios.
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B.11 TRAINING

All experiments employ a ViT-B/16 backbone pretrained on ImageNet-21K, trained on an NVIDIA
A100 GPU (80GB) using Adam optimizer with learning rate 1073,

Classification: We evaluate on CIFAR-100, ImageNet-R, and ImageNet-A using cross-entropy loss.
Training uses batch size 256; evaluation uses batch size 16. Each task trains for 50 epochs.

Object Detection: We adapt OWL-ViT on PASCAL VOC 2012 using cross-entropy loss for clas-
sification and GIoU loss for bounding box regression. Training uses batch size 32; evaluation uses
batch size 16.

B.12 ANALYSIS OF SUBSPACE CONSTRAINTS IN SPECTRAL ADAPTATION
B.12.1 THEORETICAL CHARACTERIZATION

The spectral adaptation mechanism in LYNX operates within a mathematically well-defined con-
straint space. For any weight matrix W € R™*" with SVD decomposition W = UXV 7, the set of
achievable adapted weights is:

Wiynx = {Udiag(si01, ..., STUT)VT 18 €0,7]} (48)

This imposes the fundamental constraint that colspan(W;) C colspan(WW) and rowspan(W,;) C
rowspan(W) for any adapted weight W;. In contrast, methods like full fine-tuning can access the
entire space R™*"™, while LoRA accesses a rank-r’ perturbation space around V.

B.12.2 EMPIRICAL ANALYSIS OF SUBSPACE SUFFICIENCY

We investigate whether this subspace constraint limits practical performance by analyzing the sin-
gular value distributions of pretrained transformers and the adaptation requirements of downstream
tasks.

Observation 1: Pretrained weights are effectively full-rank. Analysis of ViT-B/16 pretrained on
ImageNet-21K reveals:
* 99.3% of 768 x 768 weight matrices have numerical rank > 760

* The smallest singular value oy,;,, averages 0.0031 X oy,,x, indicating no degenerate direc-
tions

e The effective rank 7 = exp(H({o2/|c||3})) averages 742.8, confirming high-
dimensional expressivity

Observation 2: Task adaptation primarily requires magnitude modulation. We project the
weight updates from full fine-tuning onto the subspace spanned by pretrained singular vectors:

AWprojected = UUTAWV)VT (49)
Across CIFAR-100, ImageNet-R, and ImageNet-A fine-tuning:

* 94.7% of the Frobenius norm of weight updates lies within the pretrained subspace
* Only 5.3% of the update magnitude is orthogonal to the original singular vectors

* This suggests task adaptation primarily involves reweighting existing features rather than
learning entirely new transformation directions

B.12.3 COMPARISON WITH ALTERNATIVE CONSTRAINTS

Every parameter-efficient method imposes constraints on the adaptation space:

LYNX’s constraint is qualitatively different: rather than imposing a fixed architectural bottleneck, it
leverages the structure already learned during pretraining. This data-dependent constraint naturally
aligns with the pretrained representations, explaining the strong empirical performance despite high
parameter efficiency.
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Method Constraint Type Dimensionality
Full fine-tuning None mn

LoRA (rank ')  Low-rank perturbation r'(m+n)
Adapters Bottleneck transformation  2d - dpottiencck
Prompt tuning  Input space modification k-d

LYNX Subspace-preserving min(m, n)

B.12.4 WHEN SUBSPACE CONSTRAINTS WOULD BE LIMITING

The subspace constraint would become problematic in specific scenarios:

1. Rank-deficient pretraining: If pretrained weights had low numerical rank, the adaptation
space would be correspondingly limited

2. Random initialization: Without meaningful pretrained structure, arbitrary subspaces
would be ineffective

Our experiments across diverse benchmarks (natural images, artistic renditions, adversarial exam-
ples) demonstrate these scenarios are rare in practice when adapting modern pretrained transformers.
The rich feature spaces learned during large-scale pretraining appear sufficient for effective down-
stream adaptation through singular value modulation alone.

B.12.5 T-SNE VISUALIZATION

t-SNE ImageNet-R on ViT before LYNX t-SNE ImageNet-R on ViT after LYNX
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Figure 3: LYNX t-SNE visualization. Left: t-SNE of a ViT pretrained on ImageNet-21K and
evaluated on ImageNet-R. Right: t-SNE of the same ViT after applying LYNX with spectral
adapters and training on ImageNet-R.

To probe how our method reshapes the feature space under distribution shift, we project ViT embed-
dings of five ImageNet-R classes into 2-D using t-SNE. We compare the geometry before applying
LYNX and after. The visualization uses the hidden representations extracted from the classifier
backbone; colors denote ground-truth classes.

From the figure above, we can observe that LYNX systematically improves class separability and in-
traclass compactness in the presence of strong rendition shifts, suggesting that it encourages features
that are more style-invariant and semantically aligned. While t-SNE is qualitative, the consistent
tightening of clusters and widening of margins across categories aligns with our quantitative gains
on ImageNet-R.
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