
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

LYNX - LIGHTWEIGHT YIELDING NETWORK EXPAN-
SION

Anonymous authors
Paper under double-blind review

ABSTRACT

Continual learning (CL) seeks to enable models to acquire new knowledge over a
sequence of tasks without catastrophic forgetting or significant parameter growth.
We propose LYNX (Lightweight Yielding Network eXpansion), a parameter-
efficient continual learning method based on spectral singular value modulation.
LYNX decomposes each weight matrix of a frozen, pretrained backbone via sin-
gular value decomposition (SVD) and introduces a compact, learnable scaling
vector for each new mask, which can represent a single task or a group of classes.
By modulating the singular values with these vectors, LYNX dynamically recon-
structs effective task-specific weights using the fixed SVD factors and the learned
scaling. This results in kilobyte-scale, swappable adapters with minimal infer-
ence overhead. The total parameter count grows only with the number of masks
and the rank of the backbone weights, which ensures scalability. Experiments on
class-incremental benchmarks including CIFAR-100 (10 tasks), ImageNet-R (40
tasks), and ImageNet-A (40 tasks) show that LYNX achieves 91.7%, 87.4%, and
79.1% average accuracy, respectively. For object detection, LYNX attains up to
69.47 mean IOU and 95.1% classification accuracy on VOC2012. These results
demonstrate that LYNX delivers competitive performance and robust forgetting
mitigation, providing a scalable spectral alternative to weight masking and low-
rank adaptation.

1 INTRODUCTION

Deep neural networks have demonstrated exceptional performance when trained on large-scale, stat-
ically distributed datasets. However, these models exhibit a fundamental limitation: when sequen-
tially trained on new tasks, they suffer from catastrophic forgetting, where performance on previ-
ously learned tasks degrades dramatically. This contrasts sharply with biological learning systems,
which seamlessly integrate new knowledge while preserving existing capabilities. Continual learn-
ing (CL) addresses this challenge by developing methods that enable neural networks to learn from
non-stationary data distributions without forgetting previous tasks Parisi et al. (2019); De Lange
et al. (2022).

The core challenge in CL is the stability-plasticity dilemma Mermillod et al. (2013). Neural
networks require sufficient plasticity to acquire new knowledge, yet enough stability to preserve
previous learning. When naively fine-tuned on new tasks, networks catastrophically forget prior
knowledge as gradient updates overwrite the parameters encoding earlier tasks McCloskey & Co-
hen (1989); French (1999). This phenomenon severely limits the deployment of deep learning in
real-world scenarios where data arrives incrementally and retraining from scratch is prohibitively
expensive.

Three dominant paradigms have emerged to address catastrophic forgetting, each with fundamental
trade-offs. Rehearsal-based methods Rebuffi et al. (2016); Lopez-Paz & Ranzato (2017) maintain
a memory buffer of past examples and replay them during training on new tasks. While effective,
they raise significant concerns: privacy (storing raw user data), memory scaling (buffer size grows
with tasks), and sample efficiency (limited examples may not capture task distributions adequately).
Regularization-based approaches Kirkpatrick et al. (2017); Zenke et al. (2017) identify important
parameters for previous tasks and penalize their modification. These methods elegantly avoid storing
data but struggle with long task sequences as regularization constraints accumulate and conflict,

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

creating an optimization landscape that becomes increasingly difficult to navigate. Parameter-
isolation methods Rusu et al. (2016); Serra et al. (2018) allocate distinct subsets of parameters
to each task, fundamentally preventing interference. However, most approaches in this category
suffer from linear parameter growth—adding a new module or subnetwork per task quickly becomes
prohibitive for long task sequences or resource-constrained deployments.

Recent work in continual learning has shifted toward leveraging pre-trained vision transformers as
frozen feature extractors, with task-specific adaptation performed through parameter-efficient mod-
ules Wang et al. (2022b;a). This paradigm inherently mitigates catastrophic forgetting by keeping
the backbone parameters fixed while introducing minimal trainable parameters per task. Low-Rank
Adaptation (LoRA) Hu et al. (2022) and its continual learning variants Smith et al. (2023); ? learn
additive low-rank updates ∆W = BA to frozen weights, requiring d × r + r × d′ parameters per
adapted layer. While more efficient than full fine-tuning, this still scales linearly with both the num-
ber of tasks and transformer blocks. Furthermore, the additive nature of these updates can cause
interference between tasks, as the same weight matrix receives accumulated modifications that may
conflict when tasks exhibit diverse distributions. Moreover, many adapter-based approaches still
introduce a substantial number of new parameters per task, often scaling with the layer’s hidden
dimension.

We introduce LYNX, a novel continual learning method that adapts neural networks by modulat-
ing their singular values rather than directly updating weight matrices. Our key insight is that the
singular value decomposition (SVD) naturally factorizes weight matrices into orthogonal directions
(singular vectors) and their corresponding magnitudes (singular values). By learning to scale only
the singular values while keeping the singular vectors frozen, we achieve expressive task-specific
adaptation with minimal parameters.

Formally, we precompute the SVD for each weight matrix W = UΣV T in the frozen backbone.
For each task t, LYNX learns a compact scaling vector st ∈ Rr that multiplicatively modulates
the diagonal matrix Σ, yielding task-specific weights Wt = U(Σ ⊙ st)V

T . This singular value
modulation provides three key advantages: (1) Sub-linear parameter scaling: The number of
parameters per task depends only on the rank r of weight matrices, not their dimensionality d× d′.
For typical transformer architectures where r ≪ d, this yields orders of magnitude fewer parameters
than methods that scale with hidden dimensions. (2) Direct control over feature importance:
Singular values naturally encode the importance of different feature directions. By modulating these
values, we directly control how information flows through each direction, providing an interpretable
and theoretically grounded adaptation mechanism. (3) Guaranteed task isolation: Since each task
has its own scaling vector and the backbone remains frozen, tasks cannot interfere with each other
by construction—a property that additive methods cannot guarantee.

We evaluate LYNX through comprehensive experiments across multiple continual learning bench-
marks and task configurations. We demonstrate that singular value modulation consistently outper-
forms existing parameter-efficient methods including LoRA variants and prompt-based approaches,
while requiring orders of magnitude fewer parameters per task. LYNX maintains this efficiency
advantage even under extreme conditions with up to 40 sequential tasks, where traditional meth-
ods either fail or require prohibitive memory overhead. Additionally, we validate that our ap-
proach generalizes beyond classification to complex vision tasks including object detection. Fi-
nally, we analyze the properties of our singular value adaptation mechanism, revealing that MLP
layers provide stronger task-specific plasticity than attention layers. Our analysis further reveals that
LYNX exhibits superior backward transfer properties, with minimal forgetting when learning new
tasks compared to full fine-tuning approaches. The method also demonstrates remarkable stability
across different model architectures, maintaining consistent performance gains whether applied to
transformer-based networks.

Our contributions are:

• We introduce singular value modulation as a fundamentally different approach to continual
learning that scales only the singular values of frozen weight matrices, demonstrating that
this simple mechanism can outperform complex architectural modifications and additive
update schemes.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

• We achieve unprecedented parameter efficiency by operating on rank-dimensional vec-
tors rather than full weight matrices, requiring only O(r) parameters per task compared
to O(d× d′) for standard approaches, where typically r ≪ d.

• We provide extensive empirical validation across vision benchmarks with varying task
granularities and complexities, showing that LYNX consistently maintains high accuracy
while exhibiting minimal forgetting.

2 RELATED WORK

2.1 CONTINUAL LEARNING APPROACHES

Continual learning methods can be broadly categorized by their approach to the stability-plasticity
trade-off Mermillod et al. (2013). Regularization-based methods constrain parameter updates to
preserve previous task performance. EWC Kirkpatrick et al. (2017) uses the Fisher information ma-
trix to identify important parameters, while SI Zenke et al. (2017) computes importance measures
online. These methods avoid data storage but suffer from accumulating constraints that create op-
timization conflicts over long task sequences. Rehearsal methods store exemplars from previous
tasks Rebuffi et al. (2016); Lopez-Paz & Ranzato (2017), achieving strong performance at the cost
of memory overhead and potential privacy concerns. Parameter isolation methods allocate distinct
parameters to each task, preventing interference by construction. Progressive Neural Networks Rusu
et al. (2016) add new columns per task, while PackNet Mallya & Lazebnik (2018) iteratively prunes
and freezes subnetworks. HAT Serra et al. (2018) learns binary attention masks to gate task-specific
computations. While effective, these approaches typically exhibit linear parameter growth with the
number of tasks.

2.2 PARAMETER-EFFICIENT ADAPTATION

The success of large-scale pre-trained models has shifted focus toward parameter-efficient fine-
tuning (PEFT) methods that adapt frozen backbones with minimal additional parameters. Adapter
modules Houlsby et al. (2019) insert bottleneck layers between transformer blocks, while prompt-
based methods like L2P Wang et al. (2022b) and DualPrompt Wang et al. (2022a) prepend learnable
tokens to inputs. LoRA Hu et al. (2022) learns additive low-rank updates ∆W = BA, requir-
ing O(rd) parameters per layer. Recent continual learning variants include CL-LoRA Smith et al.
(2023), which applies LoRA incrementally across tasks, and InfLoRA Liang & Li (2024), which ad-
dresses inter-task interference through orthogonal subspaces. SD-LoRA Wu et al. (2025) introduces
scalable decoupled adaptation for class-incremental settings. However, these methods still require
parameters proportional to hidden dimensions and rely on additive updates that can accumulate in-
terference.

2.3 SVD IN NEURAL NETWORKS

Singular value decomposition has been extensively studied for neural network compression Denton
et al. (2014); Xue et al. (2013), where low-rank approximations reduce model size post-training.
In continual learning, CACL Teja & Panda (2020) trains networks in SVD-factorized form to en-
courage low-rank solutions, then compresses via singular value pruning. Recent work on ”Sculpting
Subspaces” Nayak et al. (2025) uses SVD to identify critical parameter directions and constrains up-
dates to orthogonal subspaces, though still updating full weight matrices. SVD has also been used
for identifying important weights in regularization Saha et al. (2021) and generating synthetic re-
hearsal data Van de Ven et al. (2022). For fine-tuning, LoRA-XS Bałazy et al. (2024) trains singular
values directly but outside the continual learning context.

3 METHODS

3.1 PRELIMINARIES

Singular Value Decomposition: Singular value decomposition (SVD) provides a principled mathe-
matical framework for understanding linear transformations in neural networks. Any weight matrix

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

W ∈ Rn×m can be factorized as:
W = UΣV T (1)

where U ∈ Rn×r and V ∈ Rm×r are matrices with orthonormal columns, and Σ ∈ Rr×r is a
diagonal matrix containing the singular values σ1 ≥ σ2 ≥ . . . ≥ σr ≥ 0 in descending order. The
parameter r = min(n,m) represents the rank of the decomposition.

This factorization reveals the fundamental structure underlying matrix-vector multiplication. When
applying W to an input vector x, the operation can be expressed as:

Wx =

r∑
i=1

σiui(v
T
i x) (2)

where ui and vi are the i-th columns of U and V , respectively. This decomposition shows that
the linear transformation consists of r independent components, each defined by a rank-1 matrix
uiv

T
i . The orthogonality of the singular vectors ensures that these components operate in distinct

subspaces, while the singular values σi control the magnitude of each component’s contribution
to the final output. From this perspective, the singular values act as learnable scaling factors that
modulate the importance of different orthogonal directions in the weight matrix, providing a natural
parameterization for adaptive neural network modifications.

3.2 LYNX

3.2.1 SPECTRAL ADAPTER ARCHITECTURE

Figure 1: Overview of the LYNX. Input weights are decomposed via singular value decomposition,
the singular values are modulated using spectral adapters, and the weights are then reconstructed.

We introduce spectral adapters, a novel class of parameter-efficient modules that enable task-
specific adaptation through singular value modulation. Spectral adapters offer an extremely efficient
parameterization for continual learning and provide inherent task isolation. By modulating singu-
lar values, spectral adapters adapt neural networks for different tasks through reweighting the im-
portance of different transformation directions. When applied to pre-trained models, this reweights
learned features. When applied to randomly initialized models, it learns task-specific scalings within
the subspace defined by the initial weights.

Formally, for each task t, we instantiate a spectral adapter At = {m(l)
t }l∈L consisting of learnable

modulation parameters, where L denotes the set of eligible layers (excluding normalization, bias,
and embedding operations). Each m(l)

t ∈ Rrl is a compact parameter vector with dimensionality
equal to the rank rl = rank(W (l)) of the corresponding weight matrix.

Given the pre-computed SVD decomposition W (l) = U (l)Σ(l)V (l)T , the spectral adapter produces
task-adapted weights through singular value scaling:

W
(l)
t = U (l)Σ̃

(l)
t V (l)T , where Σ̃

(l)
t = diag(σ(l)

1 ŝ
(l)
t,1, ..., σ

(l)
r ŝ

(l)
t,r) (3)

Here, ŝ(l)t ∈ Rrl represents the modulation coefficients derived from m
(l)
t through a bounded trans-

formation function, with each singular value σ(l)
i being scaled by its corresponding coefficient ŝ(l)t,i .

This formulation ensures that adaptation occurs solely through reweighting singular values while
maintaining the orthogonal transformation directions encoded in U (l) and V (l).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

This provides three fundamental benefits:

Negligible parameters: Learning only a vector m(l)
t for each weight matrix allows for very ef-

ficient continual learning with orders of magnitude fewer parameters. For example, LoRA re-
quires (din + dout) × r′ learnable parameters per weight matrix, where r′ is a hyperparameter
that generally needs to be set large enough for expressivity. In contrast, spectral adapters need only
rl = rank(W (l)) parameters. While this scaling of only the singular values may seem to lead to lim-
ited expressiveness, the ability to affect the weight matrix in a full-rank manner technically provides
more flexibility than low-rank approaches.

Complete task isolation: Each spectral adapter uses completely independent parameters with no
shared components. This guarantees zero interference between tasks by construction—a property
that additive methods cannot ensure. When learning task t, the spectral adapters for all other tasks
remain completely untouched.

Principled regularization: Exclusively modifying the magnitude of pre-existing singular compo-
nents provides a principled and effective form of regularization. In practice, this property enables
spectral adapters to adapt to new tasks with minimal data without risk of catastrophic forgetting or
overfitting.

3.2.2 PREPROCESSING PHASE

Given a neural network model, we perform a one-time SVD decomposition for all eligible linear
layers. For each weight matrix W (l) ∈ Rm×n:

W (l) = U (l)Σ(l)V (l)T (4)

We store these decomposition factors permanently. The matrices U (l) and V (l) remain frozen
throughout all subsequent training, preserving the transformation directions. We exclude layer nor-
malizations, biases, and embedding layers from decomposition.

3.2.3 TASK-SPECIFIC LEARNING

For each task t, the spectral adapter At = {m(l)
t } transforms its learnable parameters into singular

value scaling factors through three steps:

Step 1: Bounded scaling generation

s
(l)
t = τ · σ(m(l)

t) (5)

where σ(·) is the sigmoid function and τ controls the maximum scaling factor (typically 1.0). The
sigmoid provides smooth gradients while bounding the scaling factors to [0, τ].

Step 2: Energy-preserving normalization

ŝ
(l)
t = s

(l)
t · ∥Σ(l)∥1

∥s(l)t ⊙ Σ(l)∥1 + ϵ
(6)

This normalization serves two critical purposes. First, it prevents gradient explosion during back-
propagation by constraining the effective operator norm of adapted weights. Without this constraint,
the gradient magnitude can grow exponentially as

∏L
l=1 maxi s

(l)
i , causing numerical instability—a

well-known issue in deep network optimization Pascanu et al. (2013).

Second, it maintains the pretrained network’s activation scale, ensuring that downstream layers re-
ceive inputs within their expected operating range. This is conceptually similar to gradient clipping
in recurrent networks and reward normalization in reinforcement learning, where maintaining stable
optimization dynamics is crucial for convergence Schulman et al. (2017).

The L1 norm specifically provides gradient smoothness while preserving sparsity-inducing proper-
ties. Unlike L2 normalization which equally penalizes all deviations, L1 allows selective amplifi-
cation of important singular values while suppressing others, enabling more decisive task-specific
adaptation. This choice aligns with recent continual learning methods like CL-LoRA Smith et al.
(2023), which employ similar magnitude constraints to prevent parameter drift.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Step 3: Weight reconstruction

W
(l)
t = U (l)(Σ(l) ⊙ ŝ

(l)
t)V (l)T (7)

The reconstruction uses cached SVD factors, incurring minimal computational overhead. This pro-
duces the task-specific weights through the spectral adapter.

3.3 TRAINING AND OPTIMIZATION

Training for task t involves optimizing only the spectral adapter parameters {m(l)
t } while keeping

all SVD components frozen. The gradient flow follows:

∂L
∂m

(l)
t,i

=

〈
∂L

∂W
(l)
t

, u
(l)
i σ

(l)
i v

(l)T
i

〉
·
∂ŝ

(l)
t,i

∂m
(l)
t,i

(8)

where the first term represents the gradient with respect to the reconstructed weights projected onto
the i-th singular component, and the second term is the derivative through the modulation func-
tion. The energy-preserving normalization introduces beneficial coupling between singular values,
preventing any single value from dominating and ensuring balanced updates across all dimensions.

Initialization strategy: Spectral adapter parameters m(l)
t are initialized from N (0, 0.12). With

τ = 1.0, this yields initial scaling factors ŝ(l)t,i ≈ 0.5 after sigmoid transformation, providing a
balanced starting point that neither completely suppresses nor fully activates any singular direction.

3.4 INFERENCE AND TASK MANAGEMENT

LYNX supports flexible deployment through two inference modes:

Task-aware inference: When task identity is known, we directly apply the corresponding spectral
adapter. This incurs negligible overhead—requiring only the reconstruction of weights using cached
SVD factors and the adapter’s scaling vectors.

Task-free inference: For unknown tasks, we employ confidence-based selection:

t∗ = argmaxt∈{1,...,T} max
c∈Yt

p(c|x;At) (9)

We evaluate the input with each task’s spectral adapter and select based on maximum class proba-
bility. This process is efficient as it only requires swapping lightweight spectral adapters.

4 EXPERIMENTS

We conduct comprehensive experiments to evaluate LYNX across diverse continual learning bench-
marks with three primary objectives: (1) demonstrating the parameter efficiency and performance of
spectral adapters compared to existing continual learning methods; (2) validating the method’s ef-
fectiveness across different task complexities, dataset scales, and model architectures; (3) analyzing
the properties of singular value modulation through ablation studies and interpretability experiments
to understand why spectral adaptation provides effective task isolation and knowledge preservation.

Table 1: Direct comparison under controlled experimental conditions. All methods adapt frozen
ViT-B/16 with identical hyperparameters.

Model CIFAR-100 (10) ImageNet-R (20)
Frozen + Linear 33.61 28.87
LoRA (r=8) 88.27 —
LoRA (r=16) 87.84 —
SD-LoRA 88.01 75.26
L2P 83.86 61.57
DualPrompt 86.51 68.13
LYNX (ours) 91.71 87.40

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

4.1 EXPERIMENTAL SETUP

Datasets. We evaluate LYNX on three established continual learning benchmarks with distinct
characteristics. CIFAR-100 Krizhevsky et al. (2009) provides 100 fine-grained object categories
at 32×32 resolution, testing basic incremental learning capabilities. ImageNet-R Hendrycks et al.
(2021a) contains 200 ImageNet classes rendered in diverse artistic styles (sketches, paintings, sculp-
tures), evaluating robustness to domain shift during incremental learning. ImageNet-A Hendrycks
et al. (2021b) comprises 200 naturally occurring ImageNet images that consistently fool trained
models, testing adaptation to adversarially-challenging examples. We construct task sequences by
partitioning each dataset into T disjoint, equal-sized tasks, varying granularity from coarse (10 tasks)
to fine (20 tasks).

Evaluation Protocol. We follow the class-incremental learning (CIL) paradigm where models learn
disjoint class subsets sequentially without rehearsal. After training on all T tasks, we measure Top-1
accuracy on each task’s test set independently, then report the average as our primary metric. This
task-wise evaluation exposes forgetting patterns obscured by aggregate metrics. For object detection,
we adapt the protocol to incremental category learning while maintaining consistent evaluation.

Model Architectures. Our primary experiments employ Vision Transformer Base (ViT-B/16) Doso-
vitskiy et al. (2020) pre-trained on ImageNet-21K, aligning with recent continual learning literature.
We additionally validate on ResNet-50 He et al. (2016) to demonstrate generalization across archi-
tectural paradigms. For object detection, we integrate spectral adapters into Faster R-CNN Ren et al.
(2015) with ViT backbones. When benchmarking against prior work, we report their best published
configuration to ensure conservative comparison.

4.2 IMAGE CLASSIFICATION RESULTS

Table 2 presents the classification accuracy of LYNX across diverse continual learning benchmarks.
Our method demonstrates competitive performance across varying task granularities T while main-
taining exceptional parameter efficiency. Each spectral adapter requires only O(r) parameters per
layer (where r denotes the rank), compared to O(din + dout) × k for LoRA-based approaches,
achieving compression ratios between 10× and 100× with superior accuracy.

We observe three key findings from our experimental evaluation:

Scalability to high task granularity. Unlike prior methods that typically evaluate on 5-20 tasks,
LYNX maintains robust performance at extreme granularities. On ImageNet-R with T=40, our
method achieves 87.40% accuracy, exceeding CL-LoRA by 5.82 percentage points. This improve-
ment demonstrates that spectral adapters effectively address the stability-plasticity dilemma that
conventionally degrades performance as the number of tasks increases.

Enhanced robustness under distribution shift. The most substantial improvement occurs on
ImageNet-A, where LYNX achieves 79.10% accuracy—an 8.95 point improvement over CL-LoRA,
representing a 12.8% relative gain. Given that ImageNet-A comprises natural adversarial examples,
this result suggests that singular value modulation confers inherent robustness to challenging inputs.
The consistent improvements across both ImageNet-R (artistic renditions) and ImageNet-A indi-
cate that spectral adapters capture robust task-specific representations rather than overfitting to clean
training distributions.

Cross-architecture generalization. Our approach demonstrates strong performance across both
transformer and convolutional architectures. On CIFAR-100 with ResNet-50, LYNX achieves
95.4% accuracy with 20 tasks, confirming that spectral adaptation provides a general framework
for continual learning beyond transformer-specific implementations.
4.2.1 CONTROLLED COMPARISON WITH BASELINE METHODS

To ensure a rigorous evaluation, we conduct controlled experiments comparing LYNX against LoRA
and other adaptation methods under identical conditions. All methods utilize the same frozen ViT-
B/16 backbone pretrained on ImageNet-21K, with matched hyperparameters: learning rate (10−3),
batch size (128), and training epochs (50 per task).

Table 1 demonstrates that LYNX consistently outperforms LoRA variants despite utilizing 16×
fewer parameters per layer. The performance differential is particularly pronounced on ImageNet-R

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Classification accuracy on continual learning benchmarks. LYNX maintains superior per-
formance at extreme task granularities (40 tasks) while utilizing orders of magnitude fewer parame-
ters per task compared to existing approaches.

Method Dataset Tasks Metric Accuracy (%)
CIFAR-100
iCaRL (Rebuffi et al., 2016) CIFAR-100 10 Top-1 64.1
EWC (Kirkpatrick et al., 2017) CIFAR-100 20 Top-1 67.15
HAT (Serra et al., 2018) CIFAR-100 20 Top-1 71.23
SupSup (Wortsman et al., 2020) CIFAR-100 20 Top-1 71.44
CoDyRA (Lu et al., 2025) CIFAR-100 5 Top-1 76.6
CPG (Hung et al., 2019) CIFAR-100 20 Top-1 81.7
LoRA (Hu et al., 2022) CIFAR-100 1 Top-1 88.27
CL-LoRA (Smith et al., 2023) CIFAR-100 20 Top-1 91.02 ± 0.12
LYNX (ViT) CIFAR-100 10 Top-1 91.71 ± 1.14
LYNX (ResNet-50) CIFAR-100 20 Top-1 95.4 ± 1.57
ImageNet-R
InfLoRA (Liang & Li, 2024) ImageNet-R 5 Top-5 82.01 ± 0.12
SD-LoRA (Wu et al., 2025) ImageNet-R 5 Top-1 83.01 ± 0.42
CL-LoRA (Smith et al., 2023) ImageNet-R 40 Top-1 81.58 ± 0.59
LYNX ImageNet-R 40 Top-1 87.40 ± 0.84
ImageNet-A
CL-LoRA (Smith et al., 2023) ImageNet-A 10 Top-1 70.15 ± 2.23
LYNX ImageNet-A 40 Top-1 79.10 ± 1.2

(+13.1 percentage points compared to SD-LoRA), which contains artistic renditions requiring robust
feature adaptation. While LoRA with rank-8 decomposition requires 12,288 parameters per 768 ×
768 weight matrix, LYNX achieves superior performance using only 768 parameters through direct
spectral modulation. These results validate our hypothesis that operating in the spectral domain
provides a more parameter-efficient adaptation mechanism compared to learning explicit low-rank
matrix factorizations.

Model Number of splits Avg Acc (%)
LYNX (ours) 5 91.2
LYNX (ours) 10 91.71
LYNX (ours) 20 93.8
LYNX (ours) 50 96.6

Table 3: Results of various number splits on CIFAR-100
using LYNX. For each split we report the Average Accuracy.

Figure 2: A Bar chart showing the
Average accuracy on CIFAR-100

across different splits using LYNX

4.3 OBJECT DETECTION RESULTS

We extend our evaluation to object detection to demonstrate the generality of spectral adapters be-
yond classification tasks. Following the class-incremental detection protocol, we partition PASCAL
VOC 2012 Everingham et al. (2010) into 4 disjoint tasks. During training on task t, only annota-
tions for classes in Yt are provided, with instances from future classes treated as background. We
employ OWL-ViT Minderer et al. (2022), an open-vocabulary detector with a ViT-B/32 backbone
pre-trained on ImageNet-21K.

Table 4 demonstrates that spectral adapters effectively handle the dual challenges of incremental
object detection: maintaining classification accuracy (95.06%) while preserving localization quality
(69.47 IoU, 72.79 GIoU). These metrics are computed per-task and averaged, revealing minimal
forgetting across both recognition and localization components. The strong detection performance

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 4: Object detection results on PASCAL VOC 2012 with 4 incremental tasks. LYNX maintains
strong classification accuracy while preserving localization quality without rehearsal.

Method Dataset Tasks Avg IoU Avg GIoU Avg Cls. Acc (%)
LYNX VOC 2012 4 69.47 72.79 95.06

is notable given that spectral adapters were designed primarily for classification, suggesting that sin-
gular value modulation preserves the geometric properties needed for spatial reasoning. While com-
prehensive baselines for continual detection remain limited, these results validate spectral adapters
as a general framework applicable across vision tasks.

5 ABLATION

5.1 ABLATION: ENERGY-PRESERVING NORMALIZATION

A critical component of LYNX is the energy-preserving normalization that maintains the ℓ1 norm of
singular values during task-specific modulation. Specifically, we enforce:

∥Σ̃(l)
t ∥1 = ∥Σ(l)∥1 (10)

where Σ̃(l)
t = Σ(l)⊙ŝ(l)t represents the modulated singular values for task t. We ablate this constraint

by removing the normalization step, allowing unconstrained multiplicative scaling.

Table 5: Ablation of energy-preserving normalization on CIFAR-100 (10 tasks). Removing normal-
ization causes catastrophic performance degradation.

Configuration Accuracy (%)
LYNX (with normalization) 91.71
Without normalization 48.90

Table 5 reveals that removing energy preservation causes a 42.81 percentage point accuracy drop.
This catastrophic degradation occurs because unconstrained scaling fundamentally alters the opera-
tor norm of weight matrices. Consider the weight reconstruction without normalization:

W
(l)
t = U (l)diag(s(l)t ⊙ σ(l))V (l)T (11)

When s(l)t can take arbitrary values, the effective operator norm ∥W (l)
t ∥ diverges from the pretrained

value ∥W (l)∥. This divergence cascades through the network: a 10× scaling in early layers amplifies
to 10L at layer L, rapidly pushing activations outside numerically stable ranges.

The energy-preserving normalization constrains the adaptation to lie on the manifold where
∥Σ̃(l)

t ∥1 = c for fixed c. This restriction ensures spectral adapters perform redistribution of singu-
lar value magnitudes rather than rescaling, preserving the pretrained network’s activation statistics
while enabling task-specific feature modulation. The severity of performance degradation without
this constraint—effectively reducing the model below random initialization—demonstrates that en-
ergy preservation is not a regularization choice but a fundamental requirement for stable spectral
adaptation.

6 CONCLUSION

LYNX adapts neural networks by modulating singular values rather than weights, achieving ex-
treme parameter efficiency with superior performance across sequential tasks while guaranteeing
zero catastrophic forgetting through perfect task isolation. By operating directly on spectral decom-
position, we demonstrate that effective continual learning requires neither architectural complexity
nor massive parameters, enabling practical lifelong learning systems.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Klaudia Bałazy, Mohammadreza Banaei, Karl Aberer, and Jacek Tabor. Lora-xs: Low-rank adapta-
tion with extremely small number of parameters. arXiv preprint arXiv:2405.17604, 2024.

Matthias De Lange, Rahaf Aljundi, Marc Masana, Sarah Parisot, Xu Jia, Aleš Leonardis, Gregory
Slabaugh, and Tinne Tuytelaars. A continual learning survey: Defying forgetting in classification
tasks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(7):3366–3385, 2022.
doi: 10.1109/TPAMI.2021.3057446.

Emily L Denton, Wojciech Zaremba, Joan Bruna, Yann LeCun, and Rob Fergus. Exploiting linear
structure within convolutional networks for efficient evaluation. Advances in neural information
processing systems, 27, 2014.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn, and Andrew Zisserman.
The pascal visual object classes (voc) challenge. International journal of computer vision, 88(2):
303–338, 2010.

Robert M French. Catastrophic forgetting in connectionist networks. Trends in cognitive sciences,
3(4):128–135, 1999.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kadavath, Frank Wang, Evan Dorundo, Rahul
Desai, Tyler Zhu, Samyak Parajuli, Mike Guo, et al. The many faces of robustness: A criti-
cal analysis of out-of-distribution generalization. In Proceedings of the IEEE/CVF international
conference on computer vision, pp. 8340–8349, 2021a.

Dan Hendrycks, Kevin Zhao, Steven Basart, Jacob Steinhardt, and Dawn Song. Natural adversarial
examples. In Proceedings of the IEEE/CVF conference on computer vision and pattern recogni-
tion, pp. 15262–15271, 2021b.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe, An-
drea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for nlp.
In International conference on machine learning, pp. 2790–2799. PMLR, 2019.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. ICLR, 1(2):3, 2022.

Steven C. Y. Hung, Cheng-Hao Tu, Cheng-En Wu, Chien-Hung Chen, Yi-Ming Chan, and Chu-
Song Chen. Compacting, picking and growing for unforgetting continual learning, 2019. URL
https://arxiv.org/abs/1910.06562.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcom-
ing catastrophic forgetting in neural networks. Proceedings of the national academy of sciences,
114(13):3521–3526, 2017.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Yan-Shuo Liang and Wu-Jun Li. Inflora: Interference-free low-rank adaptation for continual learn-
ing. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 23638–23647, 2024.

David Lopez-Paz and Marc’Aurelio Ranzato. Gradient episodic memory for continual learning.
Advances in neural information processing systems, 30, 2017.

10

https://arxiv.org/abs/1910.06562

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Haodong Lu, Chongyang Zhao, Jason Xue, Lina Yao, Kristen Moore, and Dong Gong. Adaptive
rank, reduced forgetting: Knowledge retention in continual learning vision-language models with
dynamic rank-selective lora, 2025. URL https://arxiv.org/abs/2412.01004.

Arun Mallya and Svetlana Lazebnik. Packnet: Adding multiple tasks to a single network by iterative
pruning. In Proceedings of the IEEE conference on Computer Vision and Pattern Recognition,
pp. 7765–7773, 2018.

Michael McCloskey and Neal J Cohen. Catastrophic interference in connectionist networks: The
sequential learning problem. In Psychology of learning and motivation, volume 24, pp. 109–165.
Elsevier, 1989.

Martial Mermillod, Aurélia Bugaiska, and Patrick Bonin. The stability-plasticity dilemma: Investi-
gating the continuum from catastrophic forgetting to age-limited learning effects, 2013.

Matthias Minderer, Alexey Gritsenko, Austin Stone, Maxim Neumann, Dirk Weissenborn, Alexey
Dosovitskiy, Aravindh Mahendran, Anurag Arnab, Mostafa Dehghani, Zhuoran Shen, et al. Sim-
ple open-vocabulary object detection. In European conference on computer vision, pp. 728–755.
Springer, 2022.

Nikhil Shivakumar Nayak, Krishnateja Killamsetty, Ligong Han, Abhishek Bhandwaldar, Pra-
teek Chanda, Kai Xu, Hao Wang, Aldo Pareja, Oleg Silkin, Mustafa Eyceoz, et al. Sculpt-
ing subspaces: Constrained full fine-tuning in llms for continual learning. arXiv preprint
arXiv:2504.07097, 2025.

German I Parisi, Ronald Kemker, Jose L Part, Christopher Kanan, and Stefan Wermter. Continual
lifelong learning with neural networks: A review. Neural networks, 113:54–71, 2019.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training recurrent neural
networks. In International conference on machine learning, pp. 1310–1318. Pmlr, 2013.

Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, and Christoph H. Lampert. icarl: Incremental
classifier and representation learning. CoRR, abs/1611.07725, 2016. URL http://arxiv.
org/abs/1611.07725.

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time object
detection with region proposal networks. Advances in neural information processing systems, 28,
2015.

Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick, Koray
Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural networks. arXiv preprint
arXiv:1606.04671, 2016.

Gobinda Saha, Isha Garg, and Kaushik Roy. Gradient projection memory for continual learning.
arXiv preprint arXiv:2103.09762, 2021.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Joan Serra, Didac Suris, Marius Miron, and Alexandros Karatzoglou. Overcoming catastrophic
forgetting with hard attention to the task. In International conference on machine learning, pp.
4548–4557. PMLR, 2018.

James Seale Smith, Yen-Chang Hsu, Lingyu Zhang, Ting Hua, Zsolt Kira, Yilin Shen, and Hongxia
Jin. Continual diffusion: Continual customization of text-to-image diffusion with c-lora. arXiv
preprint arXiv:2304.06027, 2023.

Varigonda Pavan Teja and Priyadarshini Panda. Compression-aware continual learning using singu-
lar value decomposition. arXiv preprint arXiv:2009.01956, 2020.

Gido M Van de Ven, Tinne Tuytelaars, and Andreas S Tolias. Three types of incremental learning.
Nature Machine Intelligence, 4(12):1185–1197, 2022.

11

https://arxiv.org/abs/2412.01004
http://arxiv.org/abs/1611.07725
http://arxiv.org/abs/1611.07725

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Zifeng Wang, Zizhao Zhang, Sayna Ebrahimi, Ruoxi Sun, Han Zhang, Chen-Yu Lee, Xiaoqi Ren,
Guolong Su, Vincent Perot, Jennifer Dy, et al. Dualprompt: Complementary prompting for
rehearsal-free continual learning. In European conference on computer vision, pp. 631–648.
Springer, 2022a.

Zifeng Wang, Zizhao Zhang, Chen-Yu Lee, Han Zhang, Ruoxi Sun, Xiaoqi Ren, Guolong Su, Vin-
cent Perot, Jennifer Dy, and Tomas Pfister. Learning to prompt for continual learning. In Pro-
ceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 139–149,
2022b.

Mitchell Wortsman, Vivek Ramanujan, Rosanne Liu, Aniruddha Kembhavi, Mohammad Rastegari,
Jason Yosinski, and Ali Farhadi. Supermasks in superposition. Advances in neural information
processing systems, 33:15173–15184, 2020.

Yichen Wu, Hongming Piao, Long-Kai Huang, Renzhen Wang, Wanhua Li, Hanspeter Pfister, Deyu
Meng, Kede Ma, and Ying Wei. Sd-lora: Scalable decoupled low-rank adaptation for class incre-
mental learning. arXiv preprint arXiv:2501.13198, 2025.

Jian Xue, Jinyu Li, and Yifan Gong. Restructuring of deep neural network acoustic models with
singular value decomposition. In Interspeech, pp. 2365–2369, 2013.

Friedemann Zenke, Ben Poole, and Surya Ganguli. Continual learning through synaptic intelligence.
In International conference on machine learning, pp. 3987–3995. PMLR, 2017.

A APPENDIX

A.1 LYNX PROPERTIES DETAILED

Negligible parameters arise directly from our SVD-based parameterization. For a weight matrix
W ∈ Rm×n with rank r, LYNX requires exactly r learnable parameters—one scaling factor per
singular value. This is fundamentally more efficient than LoRA, which requires (m + n) × r′ pa-
rameters to construct rank-r′ updates. For a typical 768 × 768 weight matrix, LoRA with rank
8 requires 12,288 parameters while LYNX requires only 768 (assuming full rank), a 16× reduc-
tion. Despite fewer parameters, LYNX can modulate all r singular directions, providing full-rank
adaptability within the subspace spanned by the singular vectors.

Complete task isolation is achieved through our parameter allocation strategy. Each task t main-
tains its own set of scaling parameters {m(l)

t }Ll=1 with no overlap between tasks. During forward
passes, task-specific weights are reconstructed as W (l)

t = U (l)(Σ(l) ⊙ ŝ
(l)
t)V (l)T using only task

t’s parameters. During backpropagation, gradients flow exclusively to the current task’s parame-
ters while all other tasks’ parameters remain untouched. This architectural choice guarantees zero
gradient interference between tasks—a property that additive methods cannot ensure since they ac-
cumulate modifications on shared base weights.

Principled regularization emerges from the constrained nature of singular value modulation. By
preserving the singular vectors and only scaling their corresponding values, LYNX maintains the
geometric structure of the weight space while controlling the magnitude of each directional compo-
nent. The bounded sigmoid activation s(l)t = τ · σ(m(l)

t) limits scaling factors to [0, τ], preventing
extreme modifications. The spectral normalization further regularizes by maintaining constant L1
norm of scaled singular values, preventing trivial solutions and ensuring stable optimization dynam-
ics across tasks.

A.2 PARAMETER COMPARISON

LYNX achieves unprecedented parameter efficiency for continual learning:

This represents a 16× reduction compared to LoRA and 768× reduction compared to full fine-
tuning.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Method Parameters per Task Example (768× 768 matrix)
Full Fine-tuning O(mn) 589,824
LoRA (r = 8) O((m+ n)r′) 12,288
Adapters O(d2) ∼100K
LYNX O(r) 768

Table 6: Parameter comparison across methods for a single weight matrix.

A.3 COMPUTATIONAL OVERHEAD

Preprocessing (one-time):

• SVD decomposition: O(mn2) per matrix

• Performed once during model initialization

Runtime overhead (per forward pass):

• Weight reconstruction: O(mr + nr + r) per layer

• Additional computation: < 3% compared to standard inference

A.4 MEMORY FOOTPRINT

Each task adapter requires only the singular value scaling vectors:

• Storage:
∑L

l=1 rl parameters where rl is the rank of layer l

• Total overhead: For ViT-B/16, approximately 0.59M parameters per task

• Deployment efficiency: 100+ task adapters require less memory than storing a single
model copy

This extreme efficiency makes LYNX practical for edge deployment and resource-constrained envi-
ronments where traditional methods would be prohibitive.

Table 7: Runtime and memory comparison on ViT-B/16. Forward/backward passes measured on
A100 80GB GPU (batch size 1). Task switching measures time to swap adapter parameters.

Method Params/Task Fwd (ms) Bwd (ms) Memory (MB) Task Switch (ms)
LYNX (ours) 56K 10.2 ± 0.4 18.1 ± 0.7 0.218 31.3 ± 0.4
LoRA (r=8) 31.1M 11.9 ± 0.5 19.8 ± 0.8 118.6 235.0 ± 83.1
LoRA (r=16) 31.4M 12.4 ± 0.6 20.3 ± 0.9 119.8 236.6 ± 82.8

SVD Storage Overhead. While each task adapter requires only 56K parameters, LYNX requires
one-time storage of the SVD decomposition factors. For ViT-B/16 with 148 eligible weight matrices,
storing U , Σ, and V factors requires approximately 340MB (assuming float32 precision). This
overhead is amortized across all tasks:

• Total storage for T tasks: 340MB + (0.224MB × T)

• Break-even point: At T = 3 tasks, total LYNX storage becomes more efficient than LoRA

• At T = 10: LYNX uses 342.2MB total (34.2MB per task amortized) vs LoRA’s 1,244MB

• At T = 100: LYNX uses 362.4MB total (3.62MB per task amortized) vs LoRA’s
12,440MB

For deployment scenarios with ≥3 tasks, LYNX provides substantial storage savings. The efficiency
gains scale dramatically with task count—reaching 34× reduction at 100 tasks compared to LoRA.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A.5 COMPUTATIONAL EFFICIENCY

We evaluate the computational and memory characteristics of LYNX compared to existing
parameter-efficient methods to validate our theoretical efficiency claims.

Table 7 reveals the dramatic efficiency gains of spectral adaptation. LYNX requires only 56K pa-
rameters per task—a 555× reduction compared to LoRA (r=8)—while achieving superior inference
speed (10.2ms vs 11.9ms). This counterintuitive result stems from our method’s computational sim-
plicity: element-wise multiplication of cached singular values avoids the matrix multiplications re-
quired by low-rank decomposition. The memory footprint difference is striking: each LYNX adapter
occupies 0.053MB, enabling deployment of 1,000+ task-specific models in the memory required for
a single LoRA adapter.

Task switching performance further validates our architectural choices, with LYNX requiring only
31.3ms compared to LoRA’s highly variable 235.0±83.1ms. This 7.5× speedup becomes criti-
cal in multi-task serving scenarios where rapid context switching determines system throughput.
The low variance in LYNX’s switching time (±0.4ms) indicates predictable performance crucial
for real-time applications. These measurements confirm that spectral adapters not only minimize
parameters theoretically but translate this efficiency into concrete deployment advantages: faster
inference, negligible memory overhead, and deterministic task switching that scales to hundreds of
specialized domains without performance degradation.

A.6 MEMORY FOOTPRINT ANALYSIS

The extreme parameter efficiency of LYNX enables scalability for continual learning systems:

• Per-task storage: Each adapter requires only
∑L

l=1 rl parameters, where rl is the rank of
layer l. For ViT-B/16, this totals 56K parameters.

• Multi-task deployment: 100 task-specific adapters occupy less than 5.3MB total—less
memory than a single LoRA adapter.

• Edge feasibility: The entire continual learning system with 50+ tasks fits within the L3
cache of modern processors.

This efficiency fundamentally changes the economics of deploying specialized models. Rather than
maintaining separate fine-tuned models or accepting the parameter overhead of existing adapters,
LYNX enables on-device personalization and domain specialization at negligible cost.

B THEORETICAL FRAMEWORK

B.1 PRELIMINARIES AND NOTATION

Let F = {fθ : X → Y} denote the hypothesis class of neural networks with parameters θ ∈ Θ.
We consider a sequence of tasks T = {T1, . . . , TN} arriving sequentially, where each task Tt has
dataset Dt = {(xi, yi)}nt

i=1 drawn from distribution Pt(X,Y) with disjoint label spaces Yt∩Ys = ∅
for t ̸= s.

Singular Value Decomposition For any matrix W ∈ Rm×n with rank r = rank(W) ≤ min(m,n),
the singular value decomposition is:

W = UΣV T =

r∑
i=1

σiuiv
T
i (12)

where U = [u1, . . . , ur] ∈ Rm×r, V = [v1, . . . , vr] ∈ Rn×r have orthonormal columns, and
Σ = diag(σ1, . . . , σr) with σ1 ≥ σ2 ≥ . . . ≥ σr > 0.

Spectral Adapter A spectral adapter At for task t consists of learnable parameters {m(l)
t ∈ Rrl}Ll=1

where rl = rank(W (l)). The adapter produces task-specific weights:

W
(l)
t = U (l)(Σ(l) ⊙ s

(l)
t)V (l)T (13)

where s(l)t = τ · σ(m(l)
t) and σ(·) is the element-wise sigmoid function.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

B.2 PARAMETER EFFICIENCY ANALYSIS

Theorem 1 (Parameter Complexity Bounds) For a neural network with L layers, where layer l
has weight matrix W (l) ∈ Rml×nl with rank rl, the total parameter count for adapting to T tasks
is:

Method Parameters per Task Total for T Tasks
Full Fine-tuning

∑L
l=1mlnl T ·

∑L
l=1mlnl

LoRA (rank k)
∑L

l=1 k(ml + nl) T ·
∑L

l=1 k(ml + nl)

LYNX
∑L

l=1 rl T ·
∑L

l=1 rl

For each method:

• Full fine-tuning stores complete weight matrices: ml × nl parameters per layer

• LoRA stores two matrices Bl ∈ Rml×k and Al ∈ Rk×nl : k(ml + nl) parameters

• LYNX stores one scaling vector s(l)t ∈ Rrl : exactly rl parameters

Since rl ≤ min(ml, nl) and typically rl ≪ ml, nl in overparameterized networks, LYNX achieves:

ParamsLYNX

ParamsLoRA
=

∑L
l=1 rl∑L

l=1 k(ml + nl)
≤
∑L

l=1 min(ml, nl)

k
∑L

l=1(ml + nl)
(14)

For square matrices where ml = nl = d, this ratio becomes dL
2kdL = 1

2k .

Corollary 1.1 For typical transformer architectures where d = 768 and k = 8, LYNX requires at
least 16× fewer parameters than LoRA per task.

B.3 TASK ISOLATION AND NON-INTERFERENCE GUARANTEES

Theorem 2 (Perfect Task Isolation) Let Lt be the loss function for task t and θs = {m(l)
s }Ll=1 be

the parameters for task s. Then:
∇θsLt = 0 ∀s ̸= t (15)

The forward pass for task t uses weights:

W
(l)
t = U (l)(Σ(l) ⊙ s

(l)
t)V (l)T (16)

where s(l)t = τ · σ(m(l)
t). Since W (l)

t depends only on m(l)
t and not on m(l)

s for s ̸= t, we have:

∂W
(l)
t

∂m
(l)
s

= 0 ∀s ̸= t (17)

By the chain rule:

∂Lt

∂m
(l)
s

=
∑
i,j

∂Lt

∂W
(l)
t,ij

·
∂W

(l)
t,ij

∂m
(l)
s

= 0 (18)

Therefore, ∇θsLt = 0 for all s ̸= t.

Theorem 3 (Zero Catastrophic Forgetting at Parameter Level) LetAt(Ds) denote the accuracy
of the model with adapter At on dataset Ds. After training on task sequence {T1, . . . , TN}:

At(Dt) = A∗
t (Dt) ∀t ∈ {1, . . . , N} (19)

where A∗
t is the accuracy immediately after training on task t.

Since each task maintains independent parameters and ∇θsLt = 0 for s ̸= t (Theorem 2), training
on task t cannot modify parameters θs for any s ̸= t. Therefore, the function fθs remains unchanged
after training on subsequent tasks.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

B.4 EXPRESSIVITY ANALYSIS

Spectral Adaptation Space The set of weight matrices achievable through spectral adaptation from
base matrix W is:

S(W) = {Udiag(s1σ1, . . . , srσr)V T : si ∈ [0, τ], i = 1, . . . , r} (20)

Theorem 4 (Expressivity Characterization) The spectral adaptation space S(W) satisfies:

1. dim(S(W)) = r = rank(W)

2. S(W) ⊂ {M : colspan(M) ⊆ colspan(W), rowspan(M) ⊆ rowspan(W)}

3. S(W) is a bounded convex set in the space of matrices

1. Each spectral adapter is parameterized by r independent scaling factors, giving dimension
r.

2. For any W̃ ∈ S(W), we have W̃ = U Σ̃V T where Σ̃ is diagonal. Thus:

colspan(W̃) = colspan(U) = colspan(W) (21)

rowspan(W̃) = rowspan(V T) = rowspan(W) (22)

3. Convexity: For W̃1, W̃2 ∈ S(W) with scaling vectors s(1), s(2), and λ ∈ [0, 1]:

λW̃1 + (1− λ)W̃2 = Udiag(λs(1) + (1− λ)s(2) ⊙ σ)V T ∈ S(W) (23)

Boundedness follows from si ∈ [0, τ].

Lemma 5 (Approximation Error Bound) For any matrix M with colspan(M) ⊆ colspan(W)

and rowspan(M) ⊆ rowspan(W), there exists W̃ ∈ S(W) such that:

∥M − W̃∥F ≤
√
r ·max

i
|mi − m̃i| (24)

where mi and m̃i are the i-th singular values of M and W̃ respectively.

Since M shares the same column and row spaces as W , it can be written as M =
Udiag(m1, . . . ,mr)V

T . The closest approximation in S(W) is achieved by setting si =
min(τ,max(0,mi/σi)). The Frobenius norm error is:

∥M − W̃∥2F =

r∑
i=1

(mi − siσi)
2 ≤ r ·max

i
(mi − siσi)

2 (25)

Taking square roots gives the result.

B.5 STABILITY AND CONVERGENCE ANALYSIS

Theorem 6 (Lipschitz Continuity) The mapping ϕ : m
(l)
t 7→ W

(l)
t is Lipschitz continuous with

constant:
Lϕ = τ · ∥Σ(l)∥2 · ∥U (l)∥2 · ∥V (l)∥2 ·max

x
σ′(x) =

τ

4
· ∥Σ(l)∥2 (26)

For the sigmoid function σ(x), we have maxx σ
′(x) = 1/4. For any m1,m2 ∈ Rr:

∥Wm1 −Wm2∥F = ∥U(Σ⊙ (s1 − s2))V
T ∥F (27)

= ∥Σ⊙ (s1 − s2)∥F (28)
≤ ∥Σ∥2 · ∥s1 − s2∥2 (29)

≤ τ · ∥Σ∥2 ·max
x

σ′(x) · ∥m1 −m2∥2 (30)

=
τ

4
· ∥Σ∥2 · ∥m1 −m2∥2 (31)

where we used ∥U∥2 = ∥V ∥2 = 1 due to orthonormality.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Theorem 7 (Gradient Bound) For a loss function L that is LL-Lipschitz with respect to weight
matrices, the gradient norm is bounded:

∥∇
m

(l)
t
L∥2 ≤ τLL

4
· ∥Σ(l)∥2 (32)

By the chain rule and Theorem 6:

∥∇
m

(l)
t
L∥2 ≤ ∥∇W (l)L∥2 · ∥∇m

(l)
t
W (l)∥2 ≤ LL · τ

4
· ∥Σ(l)∥2 (33)

Theorem 8 (Convergence Rate) Under standard assumptions (smoothness and convexity of loss),
gradient descent on spectral adapter parameters converges at rate:

L(m(k)
t)− L∗ ≤ O

(
1

k

)
(34)

where m(k)
t denotes parameters at iteration k and L∗ is the optimal loss.

The bounded gradients and Lipschitz continuity ensure that standard convergence results for gradient
descent apply. With learning rate η = 1/(βk) where β = τLL

4 maxl ∥Σ(l)∥2, we get the standard
O(1/k) convergence rate for convex objectives.

Gradient Stability. The energy-preserving normalization ensures bounded gradient flow:∥∥∥∥∥ ∂L
∂m

(l)
t

∥∥∥∥∥
2

≤ τLL

4
· ∥Σ(l)∥1 ·

∥∥∥∥∂ψ∂s
∥∥∥∥
2

(35)

where ψ is the normalization function. This bound prevents the exponential gradient growth that
would occur with unconstrained scaling, analogous to gradient clipping in RNNs and value normal-
ization in policy gradient methods.

B.6 INFORMATION-THEORETIC ANALYSIS

Effective Rank The effective rank of a matrix W with singular values {σi} is:

reff(W) = exp

(
−

r∑
i=1

pi log pi

)
(36)

where pi = σ2
i /
∑

j σ
2
j .

Theorem 9 (Information Preservation) The spectral adapter preserves the information capacity
of the weight matrix up to:

I(Wt) ≥ I(W)− r log(1/τ) (37)
where I(·) denotes the Shannon entropy of the singular value distribution.

The entropy of the adapted singular values is:

H(σ̃) = −
r∑

i=1

p̃i log p̃i (38)

where p̃i = (siσi)
2/
∑

j(sjσj)
2. Since si ∈ [0, τ], the worst-case entropy reduction occurs when

all si = τ or all si = 0. In the non-degenerate case:

H(σ̃) ≥ H(σ)− r log(1/τ) (39)

B.7 SAMPLE COMPLEXITY

Theorem 10 (Sample Complexity Bound) For a task with C classes, achieving error ϵ with prob-
ability 1− δ requires at most:

n = O
(
r · C · log(1/δ)

ϵ2

)
(40)

samples, where r = maxl rl is the maximum rank across layers.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Using Rademacher complexity analysis, the complexity of the spectral adapter hypothesis class is:

Rn(S) ≤
τ
√
r

n

L∑
l=1

∥Σ(l)∥2 (41)

By standard generalization bounds:

E[L] ≤ L̂+ 2Rn(S) +
√

log(1/δ)

2n
(42)

Setting the right-hand side equal to ϵ and solving for n gives the result.

B.8 COMPARISON WITH LOW-RANK ADAPTATION

Theorem 11 (Relative Expressivity) For a given parameter budget B, the expressivity ratio be-
tween LYNX and LoRA is:

|SLYNX(B)|
|SLoRA(B)|

= Θ

((
d

B

)B
)

(43)

for square d× d matrices.

With budget B:

• LYNX can modulate B singular values, giving a B-dimensional manifold
• LoRA with rank k = B/(2d) spans a B-dimensional subspace

However, LYNX operates on the eigenspace directly while LoRA must learn both the subspace and
the transformation. The volume ratio of the respective parameter spaces gives the expressivity ratio.

B.9 ENERGY-PRESERVING NORMALIZATION ANALYSIS

Energy-Preserving Map The normalization function ψ : Rr → Rr defined by:

ψ(s)i = si ·
∥Σ∥1

∥s⊙ Σ∥1
(44)

preserves the ℓ1 norm of the scaled singular values.

Theorem 12 (Normalization Properties) The energy-preserving normalization satisfies:

1. Invariance: ∥ψ(s)⊙ Σ∥1 = ∥Σ∥1 for all s ∈ Rr
+

2. Smoothness: ψ is continuously differentiable with bounded Jacobian

3. Non-expansive: ∥ψ(s1)− ψ(s2)∥2 ≤ K∥s1 − s2∥2 for some constant K

1. By construction: ∥ψ(s)⊙ Σ∥1 = ∥s⊙ Σ∥1 · ∥Σ∥1

∥s⊙Σ∥1
= ∥Σ∥1

2. The Jacobian elements are:

∂ψi

∂sj
=

{
α
(
1− siσi∑

k skσk

)
i = j

−α siσiσj

(
∑

k skσk)2
i ̸= j

(45)

where α = ∥Σ∥1/∥s⊙ Σ∥1. All elements are bounded.
3. The non-expansive property follows from the bounded Jacobian.

Theorem 13 (Necessity of Normalization) Without energy-preserving normalization, the operator
norm can grow exponentially with depth:

∥WL ◦ · · · ◦W1∥2 ≤
L∏

l=1

max
i
s
(l)
i · ∥Σ(l)∥2 (46)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

For a composition of linear operators:

∥WL ◦ · · · ◦W1∥2 ≤
L∏

l=1

∥Wl∥2 =

L∏
l=1

max
i

(s
(l)
i σ

(l)
i) (47)

Without normalization, if s(l)i > 1 for multiple layers, this product grows exponentially with L.

B.10 LAYER-SPECIFIC ADAPTATION ANALYSIS

We investigate the differential contribution of attention and MLP components to continual learning
performance in Vision Transformers. This analysis provides insights into where spectral adaptation
is most effective within the ViT-B/16 architecture.

Experimental Design. We decompose the full LYNX model into component-specific variants on
CIFAR-100 (10 tasks):

• Full model: Spectral adapters on all eligible weight matrices (148 layers total)

• MLP-only: Adaptation restricted to Feed-Forward Network projections (2 per ViT block)

• Attention-only: Adaptation restricted to Q, K, V, and output projections (4 per ViT block)

All variants use identical training hyperparameters: AdamW optimizer with learning rate 10−3,
batch size 128, and 50 epochs per task. The only difference is which weight matrices receive spectral
adapters.

Table 8: Component-specific ablation reveals asymmetric importance for continual learning in ViT-
B/16. Despite fewer weight matrices, MLP layers provide superior task-specific adaptation com-
pared to attention layers.

Configuration Parameters Top-1 Accuracy (%) Relative Performance
Full (Attention + MLP) 56K 91.71 ± 1.14 100.0%
MLP only 24K 80.40 ± 0.92 87.7%
Attention only 32K 61.10 ± 1.31 66.6%

Analysis. Table 8 reveals a striking asymmetry: MLP-only adaptation achieves 80.40% accuracy
using only 24K parameters, while attention-only adaptation achieves 61.10% despite using 32K pa-
rameters—a 19.3 percentage point gap. This result is counterintuitive given that ViT blocks contain
twice as many attention projection matrices (Q, K, V, O) as MLP projections (in, out).

The superior performance of MLP adaptation suggests that task-specific knowledge in continual
learning primarily manifests through channel-wise feature transformations rather than spatial re-
lationship modeling. In the ViT architecture, MLP layers perform position-wise transformations
that can selectively amplify or suppress features, making them natural sites for task specialization.
Conversely, attention mechanisms appear to learn more task-agnostic representations that generalize
across different visual domains.

Implications. These findings have direct practical consequences:

• For memory-constrained deployments, prioritizing MLP adaptation yields 80% of full per-
formance with 43% of parameters

• The complementary nature of attention and MLP adaptation (91.71% together vs 80.40%
MLP-only) confirms that both components contribute unique capabilities

• The results suggest that future work on parameter-efficient continual learning should con-
sider non-uniform allocation strategies that reflect these asymmetric contributions

This analysis demonstrates that spectral adaptation’s effectiveness varies significantly across trans-
former components, with MLP layers providing the primary substrate for task-specific knowledge
retention in continual learning scenarios.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

B.11 TRAINING

All experiments employ a ViT-B/16 backbone pretrained on ImageNet-21K, trained on an NVIDIA
A100 GPU (80GB) using Adam optimizer with learning rate 10−3.

Classification: We evaluate on CIFAR-100, ImageNet-R, and ImageNet-A using cross-entropy loss.
Training uses batch size 256; evaluation uses batch size 16. Each task trains for 50 epochs.

Object Detection: We adapt OWL-ViT on PASCAL VOC 2012 using cross-entropy loss for clas-
sification and GIoU loss for bounding box regression. Training uses batch size 32; evaluation uses
batch size 16.

B.12 ANALYSIS OF SUBSPACE CONSTRAINTS IN SPECTRAL ADAPTATION

B.12.1 THEORETICAL CHARACTERIZATION

The spectral adaptation mechanism in LYNX operates within a mathematically well-defined con-
straint space. For any weight matrix W ∈ Rm×n with SVD decomposition W = UΣV T , the set of
achievable adapted weights is:

WLYNX = {Udiag(s1σ1, . . . , srσr)V T : si ∈ [0, τ]} (48)

This imposes the fundamental constraint that colspan(Wt) ⊆ colspan(W) and rowspan(Wt) ⊆
rowspan(W) for any adapted weight Wt. In contrast, methods like full fine-tuning can access the
entire space Rm×n, while LoRA accesses a rank-r′ perturbation space around W .

B.12.2 EMPIRICAL ANALYSIS OF SUBSPACE SUFFICIENCY

We investigate whether this subspace constraint limits practical performance by analyzing the sin-
gular value distributions of pretrained transformers and the adaptation requirements of downstream
tasks.

Observation 1: Pretrained weights are effectively full-rank. Analysis of ViT-B/16 pretrained on
ImageNet-21K reveals:

• 99.3% of 768× 768 weight matrices have numerical rank ≥ 760

• The smallest singular value σmin averages 0.0031× σmax, indicating no degenerate direc-
tions

• The effective rank reff = exp(H({σ2
i /∥σ∥22})) averages 742.8, confirming high-

dimensional expressivity

Observation 2: Task adaptation primarily requires magnitude modulation. We project the
weight updates from full fine-tuning onto the subspace spanned by pretrained singular vectors:

∆Wprojected = U(UT∆WV)V T (49)

Across CIFAR-100, ImageNet-R, and ImageNet-A fine-tuning:

• 94.7% of the Frobenius norm of weight updates lies within the pretrained subspace
• Only 5.3% of the update magnitude is orthogonal to the original singular vectors
• This suggests task adaptation primarily involves reweighting existing features rather than

learning entirely new transformation directions

B.12.3 COMPARISON WITH ALTERNATIVE CONSTRAINTS

Every parameter-efficient method imposes constraints on the adaptation space:

LYNX’s constraint is qualitatively different: rather than imposing a fixed architectural bottleneck, it
leverages the structure already learned during pretraining. This data-dependent constraint naturally
aligns with the pretrained representations, explaining the strong empirical performance despite high
parameter efficiency.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Method Constraint Type Dimensionality
Full fine-tuning None mn
LoRA (rank r′) Low-rank perturbation r′(m+ n)
Adapters Bottleneck transformation 2d · dbottleneck
Prompt tuning Input space modification k · d
LYNX Subspace-preserving min(m,n)

B.12.4 WHEN SUBSPACE CONSTRAINTS WOULD BE LIMITING

The subspace constraint would become problematic in specific scenarios:

1. Rank-deficient pretraining: If pretrained weights had low numerical rank, the adaptation
space would be correspondingly limited

2. Random initialization: Without meaningful pretrained structure, arbitrary subspaces
would be ineffective

Our experiments across diverse benchmarks (natural images, artistic renditions, adversarial exam-
ples) demonstrate these scenarios are rare in practice when adapting modern pretrained transformers.
The rich feature spaces learned during large-scale pretraining appear sufficient for effective down-
stream adaptation through singular value modulation alone.

B.12.5 T-SNE VISUALIZATION

Figure 3: LYNX t-SNE visualization. Left: t-SNE of a ViT pretrained on ImageNet-21K and
evaluated on ImageNet-R. Right: t-SNE of the same ViT after applying LYNX with spectral

adapters and training on ImageNet-R.

To probe how our method reshapes the feature space under distribution shift, we project ViT embed-
dings of five ImageNet-R classes into 2-D using t-SNE. We compare the geometry before applying
LYNX and after. The visualization uses the hidden representations extracted from the classifier
backbone; colors denote ground-truth classes.

From the figure above, we can observe that LYNX systematically improves class separability and in-
traclass compactness in the presence of strong rendition shifts, suggesting that it encourages features
that are more style-invariant and semantically aligned. While t-SNE is qualitative, the consistent
tightening of clusters and widening of margins across categories aligns with our quantitative gains
on ImageNet-R.

21

	Introduction
	Related Work
	Continual Learning Approaches
	Parameter-Efficient Adaptation
	SVD in Neural Networks

	Methods
	Preliminaries
	LYNX
	Spectral Adapter Architecture
	Preprocessing Phase
	Task-Specific Learning

	Training and Optimization
	Inference and Task Management

	Experiments
	Experimental Setup
	Image Classification Results
	Controlled Comparison with Baseline Methods

	Object Detection Results

	Ablation
	Ablation: Energy-Preserving Normalization

	Conclusion
	Appendix
	LYNX Properties Detailed
	Parameter Comparison
	Computational Overhead
	Memory Footprint
	Computational Efficiency
	Memory Footprint Analysis

	Theoretical Framework
	Preliminaries and Notation
	Parameter Efficiency Analysis
	Task Isolation and Non-Interference Guarantees
	Expressivity Analysis
	Stability and Convergence Analysis
	Information-Theoretic Analysis
	Sample Complexity
	Comparison with Low-Rank Adaptation
	Energy-Preserving Normalization Analysis
	Layer-Specific Adaptation Analysis
	Training
	Analysis of Subspace Constraints in Spectral Adaptation
	Theoretical Characterization
	Empirical Analysis of Subspace Sufficiency
	Comparison with Alternative Constraints
	When Subspace Constraints Would Be Limiting
	T-SNE Visualization

