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ABSTRACT

In contrast to deep reinforcement learning agents, biological neural networks are
grown through a self-organized developmental process. Here we propose a new
hypernetwork approach to grow artificial neural networks based on neural cellular
automata (NCA). Inspired by self-organising systems and information-theoretic
approaches to developmental biology, we show that our HyperNCA method can
grow neural networks capable of solving common reinforcement learning tasks.
Finally, we explore how the same approach can be used to build developmental
metamorphosis networks capable of transforming their weights to solve variations
of the initial RL task.

1 INTRODUCTION

Reinforcement learning (RL) agents are either trained with policy gradient methods (Arulkumaran
et al., 2017), or evolved with evolutionary strategies (Salimans et al., 2017) or genetic algorithms
(Such et al., 2017; Risi & Stanley, 2019). In both of these approaches, the neural network weights
are directly optimised, meaning that the search space is the weight space. An alternative approach
to finding optimal policies are the so-called indirect encodings (Stanley et al., 2019; Stanley &
Miikkulainen, 2003). These methods introduce an intermediate step into the training process which
decouples the optimisation space from the policy weight space: instead of directly searching for
optimal policy weights, we optimise a model whose output is the policy weights.

A well-known indirect encoding example found in nature is the genotype-phenotype relation be-
tween DNA sequences and the proteins they encode. For instance, the information needed to grow
a fully-functioning human brain must be contained in the human genome. However, DNA does not
encode the final position of every neuron or the presence of every synapse. A simple a back-of-the-
envelope calculation shows that the amount of information in the human DNA sequence —approx-
imately 1 GB— is not sufficient to explicitly encode the 1015 synapses present in the human brain
(Zador, 2019). In other words, your brain adjacency matrix is nowhere to be found in your DNA.

Unlike RL agents, animals grow their neural circuitry through a developmental process in which
neurons determine their synaptic connections solely based on local interactions. In biological sys-
tems, the growth of the nervous system —as any other tissue— is governed by gene regulatory
networks: a single set of rules encoded in the cells’ DNA which, depending on the cells state, will
produce different developmental outcomes.

The fundamental insight, acting as the foundation of this paper, is the connection between the notion
of computational irreducibility and biological developmental processes. Some dynamical systems
—notably chaotic ones, but not only— can have the interesting co-occurrence of two properties:
being deterministic and unpredictable simultaneously. In order to determine the state after n steps
of such a system, one must evolve the system for n steps according to its dynamical equation; in
other words, there does not exist an analytical expression describing the state of the system for any
step n. Such systems are said to be computationally irreducible (Zwirn & Delahaye, 2011). It is
conjectured that the developmental process of biological systems is computationally irreducible: the
only way to resolve the final configuration of the neural circuitry of the brain is to let unfold the
genetic information present in the DNA through an algorithmic growth process (Hiesinger, 2021).
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The power of algorithmic growth resides in not requiring to explicitly codify each of the details
of the final configuration of the system. Instead, a small amount of information —which encodes
the growth process— is capable of giving rise to a more complex system purely through its self-
organised dynamics.

Cellular automata (CA) are computational models able to exhibit computational irreducibility (Wol-
fram, 2002). They can display complex dynamical patterns emerging exclusively from the local
interaction of its elements via simple rules. Recently, neural cellular automata (NCA) —which re-
place the update rule of the CA by a neural network (Wulff & Hertz, 1992; Nichele et al., 2017;
Mordvintsev et al., 2020)— have gained popularity by taking advantage of modern deep learning
tools. On the other hand, a recent trend aims to make deep learning systems more robust by com-
bining them with ideas from collective intelligence such as CAs and self-organization (Ha & Tang,
2021; Risi, 2021).

Building on insights from algorithmic growth and computational irreducibility, we aim to grow neu-
ral networks using neural cellular automata to solve reinforcement learning tasks. We introduce
HyperNCAs, NCAs acting as Hypernetworks, and show that they are capable of producing pol-
icy networks with a significantly larger number of parameters able to solve modern reinforcement
learning tasks such as a discrete action environment (e.g. Lunar Lander) and a quadrupedal robot
locomotion task. Unlike existing Hypernetwork approaches (Ha et al., 2016; Stanley et al., 2009;
Carvelli et al., 2020), our proposed indirect-encoding relies on a developmental process guiding the
emergence of the final policy network. Finally, we propose the notion of metamorphosis networks:
a NCA-based approach to morph neural networks such that the network information is preserved
and re-used. We demonstrate how metamorphosis networks can be used to morph the weights of a
policy network in order to adapt to differently damaged morphologies.

The goal of this work is not to reach the ever-elusive state-of-the-art at any given RL tasks, but
rather, to introduce a new kind of indirect encoding that puts forward the value of self-organisation
and algorithmic growth to generate neural policies for reinforcement learning agents.

2 RELATED WORK

Indirect encodings. Indirect encodings are inspired by the biological process of mapping a compact
genotype to a larger phenotype and have been primarily studied in the context of neuroevolution
(Floreano et al., 2008) (i.e. evolving artificial neural networks) but more recently were also optimized
through gradient-descent based approaches (Ha et al., 2016). In indirect encodings, the description
of the solution is compressed, allowing information to be reused and the final solution to contain
more components than the description itself. Even before the success of deep RL, these methods
enabled solving challenging car navigation tasks from pixels alone (Koutnı́k et al., 2013).

A highly influential indirect encoding is HyperNEAT (Stanley et al., 2009). HyperNEAT employs
an indirect encoding called compositional pattern producing networks (CPPNs) that abstracts away
the process of growth and instead describes the connectivity of a neural network through a function
of its geometry. An approach building on this idea, called Hypernetworks (Ha et al., 2016), has more
recently shown that networks generating the weights of another network can also be trained end-to-
end through gradient descent. Hypernetworks have been shown to be able to generate competitive
CNNs (Zhmoginov et al., 2022) and RNNs in a variety of tasks while using a smaller set of trainable
parameters. Both HyperNEAT and Hypernetworks are indirect encodings that have been applied
to reinforcement learning problems (Stanley et al., 2009; Carvelli et al., 2020), including robot
locomotion (Risi & Stanley, 2013; Clune et al., 2009). However, they do not rely on the process
of development over time, which can increase the evolvability of artificial agents (Kriegman et al.,
2017; Bongard, 2011) and is an important ingredient of biological systems (Hiesinger, 2021).

Neural cellular automata (NCA). Cellular automata are a class of computational models whose
outcomes emerge from the local interactions of simple rules. Introduced by Neumann et al. (1966)
as a part of his quest to build a self-replicating machine or universal constructor, a CA consist
of a lattice of computing cells which iteratively update their states based exclusively on their own
state and the states of their local neighbours. On a classical CA, each cell’s state is represented
by an integer and adjacent cells are considered neighbours. Critically, the update rule of a cellular
automaton is identical for all the cells.
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Wulff & Hertz (1992) showed that a recurrent single-layer neural networks could be trained with the
delta-rule algorithm to approximate the dynamical patterns generated by chaotic one-dimensional
CA. While Wulff and Hertz work was the first one to combine neural networks with cellular au-
tomata, they restricted their focus to a top-down study of the CA’s dynamics with a neural network
rather than replacing the CA rule by a neural neural network and studying their bottom-up emerging
properties. Tavares et al. (2006) proposed a Neuro-CA model which replaces the symbolic if-then
rules of classical CA by a neural network and represents the states by real numbers rather than in-
tegers. However, similarly to Wulff & Hertz (1992), the scope of the work was limited to showing
that a small feedfoward NCA with only 8 neurons trained through backprop could reproduce one-
dimensional CA patterns such as the Turing complete Rule 110. Gilpin (2018) formulated NCA
as a convolutional network architecture and showed that they could model complex dynamical CA
patterns such as Conway’s Game of Life. Critically, by formulating a NCA as a convolutional neural
network, Gilpin enabled NCA to be easily trainable exploiting modern deep learning techniques.

Mordvintsev et al. (2020) demonstrated how NCAs can work as robust models of morphogenesis, i.e.
the process by which single stem cells grow into fully-formed organisms. In their work, the goal of
the NCA is to learn to grow 2D images. Each cell state is represented as a 16-dimensional vector with
the first 3 channels representing the visible colours, one channel representing the living state of the
cell, and the remaining hidden channels representing undefined quantities that the NCA can exploit
to encode information. Their neural rule encompasses a convolutional architecture with Sobel filters
as kernels which compute spatial gradients of the cells states, before feeding the resulting activations
to feed-forward layers whose output determine the new state of each cell. Our work builds upon
this architecture, and similarly to previous work on 3D NCAs by Sudhakaran et al. (2021), the
convolutional layers are trained along with the rest of the network parameters.

Because of their emergent nature, CAs and NCAs are capable of generating complex dynamical pat-
terns with few model parameters as shown by recent work (Kaiser & Sutskever, 2015; Mordvintsev
et al., 2020; Ruiz et al., 2020; Sudhakaran et al., 2021).

3 HYPER NEURAL CELLULAR AUTOMATA

Our Hypernetwork Neural Cellular Automata (HyperNCA) is visually summarised in Figure 1:
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Figure 1: Hyper Neural Cellular Automata (HyperNCA). During the Developmental Growth
phase (left), an initial random seed is updated for a finite number of steps using a 3D Neural Cel-
lular Automata (NCA). The NCA —and the seed— can have a single or several channels where
information is stored, here a single channel is represented. Policy evaluation phase (right): Once
development is concluded, the first channel of the grown pattern is mapped to the weight matrix of a
policy network which is evaluated on a reinforcement learning task —in this example, safely land-
ing the spacecraft on the ground. The size of the seed is chosen such that it matches the size of the
RL agent observation space while non-matching values of the last layer are simply zeroed-out. The
number of hidden layers of the policy can be arbitrarily chosen using a bigger seed, in the shown
example the seed/policy has 20 layers.
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The HyperNCA approach consists of a neural cellular automata (NCA) which operates on a high-
dimensional substrate whose values are interpreted as the weights of another network. We use
the NCA as a mathematical model analogous to development in biological organisms. We do so by
training a NCA to guide the developmental process of a policy network that controls a reinforcement
learning agent. Similarly to animal development, the growth process of the policy network is a self-
organising process whose final configuration emerges solely from local interactions.

Based on previous work (Mordvintsev et al., 2020; Sudhakaran et al., 2021), our NCA uses a convo-
lutional architecture which operates on a 3-dimensional substrate where each of the three dimensions
has C channels, resulting in a substrate of dimension 3C. The NCA consists of 3D convolutions
followed by a dense layer. The convolutions have kernel size 3, hence preserving the locality of the
cellular automata transition rule.

In order to generate a policy network we proceed as follows: 1. We randomly initialise a substrate
sampling from a random uniform distribution. 2. The NCA is applied to the substrate for a finite
number of steps. 3. The values of one of the channels of the substrate are interpreted as the weights
of a policy network P . 4. The resulting policy P is evaluated in a reinforcement learning task T .
5. The resulting fitness of P in task T guides the evolution of the NCA weights. The substrate has
shape L × C × W × W , where L is the number of layers of the policy network, C is the number
of channels of the NCA convolutional layers, and W is the size of the observation space of the task
(or the action space size if it is bigger than the observation space). This generic approach enables us
to grow networks of any size —in depth and width— by simply adjusting the shape of the substrate.
The algorithmic description of the approach is provided in Algorithm 1.

Algorithm 1: HyperNCA: Growing neural networks with Neural Cellular Automata & CMAES

Input: Reinforcement learning task T , NCA model, number of developmental steps δ,
training hyper-parameters Ω, fitness function F .
Output: Optimal agent policy weights W .

1 Sample random substrate seed S from an uniform distribution U(−1, 1) ;
2 while Fitness F < target fitness do
3 while generation < generations limit do
4 Generate a population of NCA using CMA-ES sampler;
5 for NCA in NCA population do // Parallelized across CPU cores
6 Let NCA update the initial seed for δ steps;
7 The grown values of the first channel are interpreted as the weights of the agent

policy W;
8 The grown policy is evaluated on the RL task T ;
9 end

10 if mean population fitness F < early-stopping threshold ∈ Ω then
11 break;
12 end
13 Use population fitness values to update CMA-ES sampler’s distribution mean and

covariance matrix;
14 end
15 Save solution and mean solution with highest fitness;
16 end

4 EXPERIMENTS AND RESULTS

4.1 OPTIMISATION DETAILS

We use CMA-ES —Covariance Matrix Adaptation Evolution Strategy— (Hansen & Ostermeier,
1996), a black-box population-based optimisation algorithm to train the HyperNCA. Evolutionary
strategies (ES) algorithms have been shown to be capable of finding performing solutions for rein-
forcement learning tasks, both through directly optimising the policy weights (Salimans et al., 2017)
and with encodings of the policy in the form of local learning rules (Najarro & Risi, 2020). Black-
box methods such as CMA-ES have the advantage of not requiring to compute gradients and being
easily parallelizable.
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Experiments have been run on a single machine with a AMD Ryzen Threadripper 3990X CPU with
64 cores. We choose a population size of 64, such that we can run one generation in parallel, —each
core running an evaluation of the environment—, and adopt an initial variance of 0.1. Finally, we
employ an early stopping method which stops and resets training runs which show poor performance
after a few hundred generations.

All the code to train the HyperNCA model in any gym environment as well as the the weights of the
reported models can be found at https://github.com/enajx/hyperNCA

4.2 HYPERNETWORK BASELINE

As a baseline, we use a Linear Hypernetwork, similar to the one in Ha et al. (2016). The smallest
Hypernetwork is composed of a set of linear embeddings and a single linear weight generating
matrix. The number of trainable parameters can be calculated by (N ∗Edim +Edim ∗M , where N
equals the number of embeddings and M = num target params/N . Typically, each embedding
in the Hypernetwork corresponds to a layer in the target network. However, because the target
networks are small (288 and 1792 parameters), we opt to include many embeddings and concatenate
the weight generator outputs to create the final parameter vector, to ensure a smaller Hypernetwork.

4.3 RESULTS

The HyperNCA method is able of generating policy networks capable of solving tasks with both
continuous and discrete action spaces, namely: a simulated 3D quadruped whose goal is to learn to
walk as far as possible along one direction and Atari’s Lunar Lander, a discrete task where the goal
is to smoothly land on a procedurally generated terrain.

Continuous 3D locomotion task. This task consists of a simulated robot using the Bullet physics
engine (Coumans & Bai, 2016); the quadruped has 13 rigid links, including four legs and a torso,
along with 8 actuated joints (Duan et al., 2016). It is modeled after the ant robot in the MuJoCo
simulator and constitutes a common benchmark in RL (Finn et al., 2017). The robot has an input
size of 28, comprising the positional and velocity information of the agent and an action space of
8 dimensions, controlling the motion of each of the 8 joints. The fitness of the quadruped agent
depends on the distance travelled during a period of 1, 000 time-steps along a fixed axis. In order
to make our experiment reproducible —and conveniently, easier for the agent— , we made the
environment deterministic by fixing the seed which instantiates the robot on the same initial position
at each episode.

We follow the method described in Algorithm 1 to grow a feed forward policy network consisting of
three layers with [28, 28, 8] neurons respectively, no bias and hyperbolic tangent as activation func-
tion. This policy network has 1, 792 weight parameters. By contrast, the HyperNCA used to grow
the policy has 314 trainable parameters, roughly 5.7 times less parameters than the resulting policy
network. The grown network yields a reward of 1, 192 meters walked. We have not systematically
performed a hyperparameter search of the CMA-ES parameters nor the HyperNCA architecture,
therefore it is likely that higher rewards could be reached. However, since these tasks can easily be
solved with modern RL methods, fine-tuning hyperparameters to obtain the highest reward is not
within the focus of this paper.

In comparison, the small baseline Hypernetwork has 704 parameters and achieves a lower score of
1078. We also evaluated a large Hypernetwork with 5, 280 parameters using ES (Salimans et al.,
2017). Interestingly, here the network achieves a fitness > 1, 400, which demonstrates that the
Hypernetwork can in fact perform well with a large enough number of parameters but is challenged
to compress the weights to the same extent than the NCA. Future work will have to investigate these
results closer to draw definite conclusions.

Figure 2 shows an example of the developmental steps for a policy network grown by an evolved
HyperNCA. The weight pattern quickly self-organizes into a particular global structure after which
it appears to be mostly fine-tuned for the remaining developmental steps.
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Developmental step 0 Developmental step 10 Developmental step 20

Figure 2: The developmental process of two quadruped policy networks at three developmental
steps. Above: a network grown from an initial random substrate, after 10 and after 20 developmental
steps. Below: a network grown from a substrate initialised with a single value at its center. Below
each layer, the connections are visualised as weight matrices.

Growing deeper policy networks. In order to demonstrate the flexibility and potential of our
approach, we generate a deeper policy consisting of 30 hidden layers and 22, 960 parameters by an
evolved HyperNCA with 548 trainable parameters, that is, a phenotype ∼40 times bigger than its
genotype. The resulting policy reaches a fitness reward of 1, 075. While such a big policy is not
necessary to solve the quadruped task, this result demonstrates that the developmental compression
exhibited by the HyperNCA can encode high-dimensional phenotypes. Crucially, this enables the
optimisation algorithm to operate on a much smaller parameter space, allowing us to rely upon
optimisation techniques —like covariance-based approaches— that would struggle with memory
issues in higher dimensional spaces.

Discrete RL task. Lunar lander is an single-player Atari game where the player’s goal is to
smoothly land the lander on a procedurally generated terrain. There are four discrete actions avail-
able: do nothing, fire engine towards the left, fire engine vertically and fire engine towards the right.
The environment state is defined by 8 quantities: the 2D position coordinates of the lander, its lin-
ear velocities, its angle, its angular velocity, and two booleans representing whether each leg is in
contact with the ground or not (Brockman et al., 2016). The reward for moving from the top of the
screen to the landing pad and coming to rest is about 100-140 points. If the lander moves away from
the landing pad, it loses reward. If the lander crashes, it receives an additional −100 points. If it
comes to rest, it receives an additional +100 points. Each leg with ground contact is +10 points.
Firing the main engine is −0.3 points each frame. Firing the side engines −0.03 points each frame.
The task is considered solved if the player attains 200+ reward over 100 evaluations.

To solve this task, we grow a five-layer feedforward policy with [8, 8, 8, 8, 3] nodes per layer respec-
tively, no bias and hyperbolic tangent as activation function. The resulting policy has 288 parameters
and is generated by a HyperNCA with 226 trainable parameters, i.e. a HyperNCA genotype with
roughly 24% less parameters than the resulting policy phenotype. The policy is grown for 20 devel-
opmental steps and yields a reward of 252± 63 evaluated over one hundred runs, therefore solving
the task according to the pre-establish criterion of 200 points. Similarly to the previous task, the hy-
perparameters have not been optimised. For comparison, in this domain the baseline Hypernetwork
has 252 trainable parameters and achieves 264± 28 fitness over 100 trials.
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4.4 METAMORPHOSIS NEURAL NETWORKS

Metamorphosis is a developmental phenomenon by which an organism experiences substantial
changes in its morphology during post-embryonic life —a biological process first appeared in ptery-
gote insects 400 million years ago (Belles, 2020). We draw inspiration from this biological process
to build metamorphosis networks: an extension of our HyperNCA approach to morph policy net-
works in order to make the agent capable of solving different tasks. We demonstrate our approach
with the quadruped RL task described in the previous section.

First, following the standard HyperNCA approach, a NCA is trained to grow a policy network for the
quadruped locomotion task with standard morphology. Subsequently, the morphology is modified,
and the same NCA is let to operate on the grown policy for a finite number of steps in order to
adapt its weights to the new morphology. This new metamorphosed policy is then evaluated on
the task with the altered quadruped body. Finally, we repeat the same metamorphosis process for a
third morphology. The metamorphosis of the policy happens offline, unlike plastic networks, all the
information used to modify the policy weights to the new morphology is contained in the genome
(the NCA) and hence no lifelong learning from the environment takes place.

The three quadruped variations consist of: the standard Ant quadruped M1 and two damaged mor-
phologies M2 and M3 with partially mutilated legs. The trained NCA develops a functional policy
out of the initial seed in 10 developmental steps which solves the first morphology M1. We then let
the same NCA further modify the previously grown weights for 20 additional developmental steps,
and evaluate the resulting network on the second morphology M2. The same procedure is applied
for the third morphology, where the weights develop for another 20 steps to solve morphology M3.
The resulting policy networks yield 1, 329, 1, 343 and 1, 266 rewards (distance walked) on each
morphology respectively. The evolved NCA has 1, 480 trainable parameters, while each of the pol-
icy it develops has 1, 792 parameters. Notice that it is a single NCA model that give rise to the three
final policy networks.

In order to demonstrate that the policy weights are indeed morphing (i.e. the model is not using the
same weights to solve all three morphologies), we show in Fig. 3 the relative changes in the weights
between each policy as the weight trajectories represented in 3-dimensional PCA space.

M1

M2
M3

Step 0

Step 10

Step 30

Step 50

Figure 3: Low-dimensional representation of the policy weights at each developmental step. Each
morphology (M1, M2, and M3) points to the location in weight space used by the agent during
evaluation. M1 is the standard Mujoco Ant morphology, M2 has one front leg and back leg mutilated
and M3 has the two front legs mutilated. The dimensionality reduction is computed with PCA. The
initial seed is represented with a star symbol ⋆.
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Additionally, we cross-evaluate each of the policies on the mismatching morphologies. Table 1
shows that the NCA-guided metamorphosis process has indeed a positive impact on the policies’
performance on each morphology reward.

M1 M2 M3

Policy M1 1,329 827 747
Policy M2 21 1,343 916
Policy M3 13 1,140 1,266

Table 1: Rewards obtained from cross-evaluation of the three policies grown by the same Hyper-
NCA at three developmental steps on each of the three morphologies M1, M2 and M3. The reward
value represent the distance walked by the quadruped from its initial position. The values in the
diagonal (shown in bold) correspond to the rewards the policies were grown to perform well on, i.e.
policy M1 was evaluated on morphology M1 at developmental step 10, policy M2 was evaluated on
morphology M2 at developmental step 30 and policy M3 was evaluated on M3 at step 50. That is,
the diagonal values are the rewards obtained by each quadruped morphology at their corresponding
developmental steps. The values outside of the diagonal are the rewards obtained when evaluat-
ing the policies at the developmental steps which do not match the morphologies at that step; this
decreases the obtained reward demonstrating that the policy weights have indeed morphed.

5 DISCUSSION AND FUTURE WORK

Our HyperNCA approach is able to solve the tested RL tasks, reaching a comparable performance to
other indirect encoding methods. Since the model has to undergo a developmental process, it seems
currently harder to optimise, although more experiments are necessary to confirm this hypothesis.
To optimize these highly dynamical and self-organizing systems, more open-ended search methods
such as quality diversity (QD) (Pugh et al., 2016) or intrinsically-motivated learning approaches
(Baranes & Oudeyer, 2013) could be of particular interest. These methods might be more suited to
navigate the likely highly deceptive fitness landscapes of self-organizing systems.

The goal of this paper is not necessarily to reach SotA in one RL benchmark, but rather to propose
a novel developmental framework to grow neural networks through local self-organising processes.
Contrasting to the previous literature on Hypernetworks and indirect encodings, our encoding fol-
lows a developmental process, inspired by biological growth and self-organisation. While currently
not outperforming direct encoding approaches, research in neuroscience suggests that this type of
“genomic bottleneck” (Zador, 2019) has an important regularizing constraint, allowing animals to
generalize better to new situations. Recent results suggest that artificial agents can also benefit from
such a compression for better generalization (Pedersen & Risi, 2021) and the HyperNCA approach
presented in this paper could be a promising method to study this question in more detail. Further-
more, it could serve as a model to characterize developmental processes in biological organisms.

Future work includes extending the approach to more complex tasks, which might benefit from the
HyperNCA’s ability to grow deep policy networks more clearly. Additionally, it should be explored
how different substrate representations —including higher dimensionality— affect the growth pro-
cess. We are particularly excited to further investigate the metamorphosis capabilities of such devel-
opmental encodings. For example, the changes in an organism’s form in biological metamorphosis
are often striking (e.g. a caterpillar turning into a butterfly). Could a HyperNCA facilitate similar
radical changes in the morphologies and nervous systems of artificial robots?
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