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Inverse Design of Two-
Dimensional Airfoils Using
Conditional Generative Models
and Surrogate Log-Likelihoods
This paper shows how to use conditional generative models in two-dimensional (2D) airfoil
optimization to probabilistically predict good initialization points within the vicinity of the
optima given the input boundary conditions, thus warm starting and accelerating further
optimization. We accommodate the possibility of multiple optimal designs corresponding
to the same input boundary condition and take this inversion ambiguity into account
when designing our prediction framework. To this end, we first employ the conditional for-
mulation of our previous work BézierGAN–Conditional BézierGAN (CBGAN)—as a base-
line, then introduce its sibling conditional entropic BézierGAN (CEBGAN), which is based
on optimal transport regularized with entropy. Compared with CBGAN, CEBGAN over-
comes mode collapse plaguing conventional GANs, improves the average lift-drag
(Cl/Cd) efficiency of airfoil predictions from 80.8% of the optimal value to 95.8%, and
meanwhile accelerates the training process by 30.7%. Furthermore, we investigate the
unique ability of CEBGAN to produce a log-likelihood lower bound that may help select
generated samples of higher performance (e.g., aerodynamic performance). In addition,
we provide insights into the performance differences between these two models with low-
dimensional toy problems and visualizations. These results and the probabilistic formula-
tion of this inverse problem justify the extension of our GAN-based inverse design paradigm
to other inverse design problems or broader inverse problems. [DOI: 10.1115/1.4052846]

Keywords: artificial intelligence, data-driven design, design optimization, generative
design, machine learning, uncertainty modeling

1 Introduction
Design synthesis with shape optimization is often time-

consuming. After setting up a forward (analysis) model of the
objective function under a set of boundary conditions or require-
ments, you have to specify an initial set of design variables and
embark on some (typically) wearisome and costly iterative algo-
rithm to minimize that objective. This swings to its extreme when
the analysis model is formulated as nonlinear differential equations
that need to be solved iteratively, as, in the case of airfoil design, the
Navier–Stokes equation governs the system. Optimizing a design
for a single set of boundary conditions can take days or weeks,
depending on the number of design variables and complexity of
the objective function or forward model.
Therefore, it is tempting to construct a mapping that leads us

directly from the input problem parameters—e.g., boundary condi-
tions, constraints, or other problem-specific requirements—to the
optimal design variables. Alternatively, to be more pragmatic, at
least to the vicinity of the optima to short-circuit or accelerate a sub-
sequent optimization process. Researchers refer to such mappings
as Inverse Design.
The quest for such a mapping induces several challenges. Apart

from seeking a model with enough complexity and regularity to
approximate this complicated mapping with precision, another
inevitable conundrum is the inversion ambiguity that inverse
design problems usually confront. This is when there are multiple

potential, near-optimal designs corresponding to the same input
condition. This stymies traditional bijective regression models.
In this work, we attempt to address these challenges in the context

of 2D airfoil optimization, in which, given the input boundary condi-
tions, we predict the corresponding airfoils with near-maximal lift-
drag (Cl/Cd) efficiency. Specifically, after casting this inverse
design problem from a probabilistic perspective, we introduce two
recently developed probabilistic generative models—conditional
BézierGAN (CBGAN) and conditional entropic BézierGAN
(CEBGAN)—to realize airfoil inverse design in a probabilistic and
data-driven manner. Our result shows that CBGAN and CEBGAN
can, respectively, produce airfoils with 80.8% and 95.8% of the
average optimal airfoil performance. Their predictions can then
serve as warm start initialization points to accelerate further optimi-
zation. This paper’s key contributions are as follows:

(1) Our conditional GANs (i.e., CBGAN and CEBGAN) take
the freestream conditions and the target property, including
the Mach number, Reynolds number, and the target lift coef-
ficient as input, then directly predict airfoils of near-optimal
Cl/Cd efficiency (80.8% and 95.8% of optimal Cl/Cd, respec-
tively) that can short-circuit optimization. We measure the
optimality gap in both instantaneous and cumulative senses
as their performance metrics.

(2) Our CEBGAN incorporates the recent advances in computa-
tional optimal transport to accelerate its training by 30.7%
compared with CBGAN while achieving better final perfor-
mance (higher Cl/Cd efficiency).

(3) CEBGAN (or more generally CEGAN—conditional entro-
pic GAN) enables evaluating the surrogate log-likelihood
of samples for decision-making during prediction. We
develop the formulation of the surrogate log-likelihood for
CEGAN and prove its validity in the Supplementary
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Materials on the ASME Digital Collection. We further inves-
tigate its practicability by examining its correlation with
actual sample performance (i.e., aerodynamic efficiency).

(4) We compare the performance of CGAN and CEGAN on
low-dimensional toy problems to provide more insight into
each model’s behavior and illustrate the paper’s key results
on an understandable example.

(5) We create a dataset of optimal airfoils and the algorithm for
generating it for future studies. This dataset and the corre-
sponding code to replicate the paper are located online.2

2 Background and Related Work
This section first provides some background context on inverse

problems, inverse airfoil design, and mainstream generative
models to lay the foundation for how we cast inverse airfoil
design from a probabilistic viewpoint. Then, we enumerate some
recent work incorporating conditional generative models to solve
inverse design problems or broader inverse problems.

2.1 Inverse Problems. Inverse design falls under the scope of
inverse problems [1,2], in which we need to retrieve the correspond-
ing system parameters x from the observations y governed by a
forward problem:

y = F(x) + e or R(x, y) = e (1)

where for the explicit formulation on the left, F : X→ Y is a forward
operator mapping parameters to observed data, and e is the observa-
tion noise or tolerance; for the implicit one on the right, R :X × Y �
Rm is a residual operator measuring X and Y’s observation of the
governing equations such as PDEs. The explicit form can be
converted to the implicit form via R(x, y) ← y − F(x). Although
most forward problems are well-posed, their inversions are
usually not, with none or multiple x corresponding to the same y.
This cripples deterministic or straightforward attempts at inversion.
Many works rely on regularization to escape this pitfall [2,3].
In contrast to regularization, Bayesian inference tackles this issue

by taking all possible solutions into account and quantifying the
uncertainty of each with probability measure [1,2]. From the Baye-
sian perspective, if we take x and y both as the realizations of certain
random variables, solving the forward problem is equivalent to sam-
pling a dataset {x, y} from p(x, y)= p(y|x) p(x) where the likelihood
p(y|x) is assumed to exist and can be formulated from the determi-
nistic forward problem. The prior p(x) can be uniform, Gaussian, or
any other distributions depending on the prior information to
embed. The inverse problem then corresponds to deriving the pos-
terior p(x|y) of this probabilistic model.

2.2 Inverse Design and Inverse Airfoil Design. Based on the
Bayesian view of inverse problems, we can regard inverse design as
retrieving the posterior p(x ∣ y, O) of the optimal design variables x
given the desired problem parameter y, which are all governed by
certain optimality condition in the form of R(x, y)= 0. Specifically,
we propose to formulate the inverse design problem in general as

p(x ∣ y, O) ∝ p(O ∣ x, y) p(x)

∝ exp (−‖R(x, y)‖2/ϵ2) p(x) (2)

where O stands for being optimal and ϵ controls the tolerance of
error. This probabilistic formulation is reasonable because it
assigns a higher posterior probability to design variables x whose
residuals are closer to 0.
Our inverse airfoil design problem requires the airfoil to satisfy y

and be optimal under a chosen criterion. This criterion is typically
computed via some numerical forward model or simulator. In our
airfoil example, the airfoil shape is first processed by some shape

parameterization algorithm to obtain design variables x and
passed to a mesh generator M for meshing. The generated mesh
is then fed together with the desired property y and boundary con-
ditions b into a computational fluid dynamics (CFD) solver to
produce a chosen objective J. Ideally, the second-order optimality
condition of J−∇xJ(M(x), y, b) = 0 and HxJ(M(x), y, b) ≽ 0 – is
used to examine whether x has properties y under b and is also
optimal in terms of certain requirements. Following Eq. (2), we for-
mulate the inverse airfoil design problem as follows:

p(x ∣ y, b, O) ∝ p(O ∣ x, y, b) p(x)

∝ exp −
‖R(x, y, b)‖2

ε2

( )
p(x)

(3a)

R(x, y, b) =
∇xJ(M(x), y, b) HxJ(M(x), y, b) ≽ 0
∞ HxJ(M(x), y, b) ≺ 0

{
(3b)

We try to formulate the inverse airfoil design problem as gener-
ically as possible here such that it can extend to other domains and
tasks, and so we did not specify the components of Eqs. (3a) and
(3b). However, for the specific problems addressed in this paper,
the methodology section details these choices.
The analytical form of the posterior p(x|y) is in general infeasible

by virtue of the likelihood’s complexity. However, one practical
work-around is to use any universal approximator [4] with adequate
model capacity—such as any of the mainstream generative models
introduced next—to learn p(x|y) from the generated dataset {x, y}
on a data-driven basis.

2.3 Generative Models. Traditional generative models of
limited complexity such as Gaussian Mixture Models are in
general insufficient to approximate real-world high-dimensional
target distributions pr(x). As of writing, the three most commonly
used generative models including their variations are generative
adversarial networks (GANs) [5–9], variational autoencoders
(VAEs) [10–15], and flow-based models [16–18]. They all share
a deep neural network generator G : Z→X in common that serves
the same purpose—implicitly representing a distribution pg(x) via
the transformation of latent prior distribution p(z) of noise. They
mainly differ in the way they drive pg towards pr:

(1) GANs (e.g., vanilla GAN [5]) achieve this by either exactly
or approximately minimizing some statistical distances
between pg and pr, as the next section elucidates. In
general, GANs do not provide information about the
sample likelihood pg(x). This is one of their primary
weaknesses.

(2) VAEs achieve this by indirectly maximizing the sample like-
lihood via its lower bound. Since G here is not designed to be
invertible and merely represents a low-dimensional manifold
of measure zero in high-dimensional data space, likelihood
maximization becomes possible by introducing Gaussian-
like noise in the data space and via variational inference.

(3) Flow-based models align the dimension of x and z and care-
fully design the generator G to make it invertible such that
the analytical form of the density function can be retrieved
for direct likelihood maximization.

Currently, GANs often generate higher quality samples than
VAE or Flow models. This indicates GANs” good convergence
to at least some modes of pr. VAE’s convergence issues are
usually attributed to posterior collapse [11–13], whereas flow-based
models currently need to sacrifice their expressivity on the altar of
invertibility.
Our work will focus on GANs’ learning of the posterior p(x|y),

for which the generator now takes the conditional form G : Y×Z
→X to induce its dependency on the condition y, forming an
approximate distribution pg(x|y).2https://github.com/IDEALLab/CEBGAN_JMD_2021
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2.4 Recent Work on Inverse Design. Inverse design based on
conditional generative models is an emerging area without a signif-
icant body of existing work. So far, within the realm of mechanical
engineering, it is almost universally applied to the design of nano-
materials and microstructures, including nano-photonics [19–23],
nanoelectronics [24], cellular structures [25], porous materials
[26], crystals [27], etc. It has also been applied to the synthesis of
kinematic linkages recently [28]. Outside of those isolated areas,
it has been employed by inverse molecular design [29], medical
imaging [30,31], gene expression inference [32], and image pro-
cessing [33] among others. Other than using conditional generative
models, inverse design was also enabled by using a traditional
numerical regime (i.e., a design optimization framework) [34] and
other machine learning algorithms (e.g., Gaussian process and rein-
forcement learning) [35,36] for structural optimization, metamater-
ial design, and flow sculpting. Furthermore, with regard to the
generative model’s application to unconditional design synthesis,
which can potentially be adapted for a conditional configuration,
several works have emerged lately. For instance, Chen and Fuge
demonstrated design synthesis preserving inter-part dependencies
using GANs of hierarchical architecture [37]. Oh et al. ran topology
optimization and GANs in a loop to explore the design space and
synthesize new designs with efficiency [38]. Shu et al. generated
3D models using GANs [39].
To the extent of our knowledge, only two existing works studied

the conditional synthesis of curves using generative models, both
related to airfoil design. In Ref. [40], Yilmaz and German used con-
ditional GAN to generate airfoils of specified stall conditions and
airfoil drag polars. Achour et al. [41] implemented a conditional
GAN taking discrete conditions representing four classes as input
to generate airfoils falling into the desired quarter of the [Cl/Cd

ratio × shape area] domain. Our work differs from theirs via the
key contributions listed in the end of the introduction (Sec. 1).

3 Methodology
In this section, we present the formulation and technical details of

our airfoil prediction frameworks. We first introduce the generation
of the airfoil dataset for inverse airfoil design. After that, we shed
light on conditional BézierGAN (CBGAN) construction and its
evolution to the optimal-transport-based conditional entropic
BézierGAN (CEBGAN), which is easier to train and yields infor-
mation about the sample likelihood. We end the section by describ-
ing the metrics we use to measure their performances on our
generalized regression problems.

3.1 Dataset Creation Via Two-Dimensional Airfoil
Optimization. The conditional GAN models’ real dataset consists
of optimal shape designs of 2D airfoils. To build the dataset, we
perform shape optimization over a range of input boundary condi-
tions to achieve high-performing 2D airfoil designs. We use the
SU23 solver (an open-source PDE analysis toolset) to perform
gradient-based shape optimization following the general process
shown in Fig. 1.
The flowchart starts with a baseline geometry (represented as

surface points) and its mesh as input to the design cycle, along
with a chosen objective function J and a set of design variables x.
SU2 allows users to choose different objectives such as drag coef-
ficient (Cd), lift coefficient (Cl), and efficiency (Cl/Cd). In this paper,
we choose Cd as the objective function (J=Cd) with a target Cl (y=
Cl)—i.e., the optimization is run at a fixed Clwhich works by updat-
ing the angle of attack (α) during the optimization such that the
resulting Cl matches the target Cl value. In SU2, Hicks-Henne
bump functions and free-form deformation (FFD) control point

approach [42] are used to parameterize 2D airfoils and generate
the design variables x. SU2 also provides different optimizers
(e.g., SLSQP, CG, BFGS, and POWELL) to do the gradient-based
optimization. A chosen gradient-based optimizer will orchestrate
the design cycle consisting of the direct flow solver, adjoint
solver, and geometry/mesh deformation tools in SU2. The iterative
design loop proceeds until an optimum is found or reaching a
maximum number of optimizer iterations. We develop an integrated
computational pipeline that automates the optimization by merging
GMSH4 (open-source finite element mesh generator) mesher and
SU2 optimizer through a PYTHON script.
In this paper, we use the gradient-based SLSQP optimizer and the

Hick-Henne parameterization method to minimize Cd such that
the efficiency (i.e., Cl/Cd) is maximized at a constant Cl. To find
the optimal airfoil design (and mitigate converging to local
optima in non-convex problems), for each group of freestream con-
ditions b and target properties y—i.e., Mach number (Ma), Rey-
nolds number (Re), and target lift coefficient (Cl)—we perform
adjoint optimization on eight diverse candidate airfoils and pick
the optimized one with the highest efficiency (Fig. 2).
The diverse candidate airfoils are generated by applying Latin

Hypercube sampling [43] on the lower-dimensional latent space
(of BézierGAN [44]) for diverse coverage (eight samples) and
feeding the eight groups of latent codes into the pre-trained Bézier-
GANmodel. To generate sufficient data, each of the eight candidate
airfoils is optimized (using adjoint optimization) for 1000+ steps
with the same 1000+ sets of input freestream conditions (Ma and
Re) and target Cl. We select the final adjoint-optimized airfoil
with the highest efficiency and store it in our database of samples.

3.2 BézierGAN. BézierGAN is a framework developed by
Chen and Fuge [44,45]. This subsection reviews its crucial compo-
nents, the underlying mechanism, and conditional formulation,
from which entropic BézierGAN is inspired and stems.

3.2.1 Bézier Layer and Regularization. BézierGAN is essen-
tially a specialized InfoGAN [46]. Its only difference to its prede-
cessor is the additional Bézier layer mounted on its generator and
the accompanying regularization loss, which ensure the generation
of smooth Bézier curves and make it suitable for geometry-related
engineering applications.

Fig. 1 Flowchart of gradient-based airfoil shape optimization
with SU2

3https://su2code.github.io/. SU2 can deal with different kinds of physical problems
by choosing different solvers such as Euler’s Navier-Stokes” and Reynolds-averaged
Navier–Stokes (RANS)’ equations. In this paper, we optimize airfoils by solving the
RANS equation. 4https://gmsh.info/
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The Bézier layer is of the following mathematical form [45]:

Xj =

∑n
i=0

n
i

( )
uij(1 − uj)n−iPiwi

∑n
i=0

n
i

( )
uij(1 − uj)n−iwi

, j = 0, . . . , m (4)

where P, w, and n are, respectively, control points, weights, and
predetermined degree defining the rational Bézier curve, and X is
the tensor of data points sampled from the Bézier curve according
to them+ 1 parameter variables u that determine the sampling inter-
vals. For numerical stability, this layer is usually evaluated on a log-
arithmic scale. It serves as the final output layer of the generator and
does not hinder backpropagation, due to its differentiability. In the
training process of BézierGAN, we can apply additional regulariza-
tions to P and w to further rectify the quality of the Bézier curve.
Apart from this distinction, the other part of BézierGAN’s training
is the same as those of vanilla GAN and InfoGAN and can also
benefit from their improvements.

3.2.2 Minimax Game and Probabilistic Perspective. Since the
learning of disentangled representation is not mandatory in our
applications, the mutual information maximization coming from
InfoGAN will be suspended in this work. Instead, we focus on
the core minimax game inherited from vanilla GAN, which is a
min-max optimization of the following form:

min
G

max
D

Ex∼pr (x)[ logD(x)] + Ez∼pZ (z)[ log (1 − D(G(z)))] (5)

whereD is the discriminator, G is the generator, z is the noise, and x
are the real samples we are trying to counterfeit using G after
running this game several times. Doing so encourages the distribu-
tion pg(x) implicitly represented by G to converge to pr(x), which is
the underlying distribution generating real data. Past work has
proven that when the discriminator is trained to optimum before
each update of the generator, we are equivalently minimizing the
Jensen–Shannon divergence between pr and pg, i.e., JSD(pr ‖ pg)
[5]. In practice, however, because of inefficiency, vanishing gradi-
ents, and instability [47], in each epoch, the discriminator is only
updated for a few iterations and thus barely arrives at its
optimum; so this theory is just a reasonable approximation.
Nevertheless, this probabilistic perspective does provide

researchers with many insights and new directions to delve into.
Although the mode collapse plaguing vanilla GAN cannot be attrib-
uted to JS divergence in full [48,49], the minimax game based on it
still plays a role in this and other defects because several proposals
that replace this game assuming JS divergence to be the culprit have
achieved significant improvement [6–9]. One prominent work, if
not the most among them, is the Wasserstein GAN (WGAN) [8],
which is established on optimal transport theory that we shall intro-
duce in the next subsection.

3.2.3 Conditional Formulation and CBGAN. BézierGAN and
vanilla GAN share the same conditional formulation as shown in

Ref. [50], namely

min
G

max
D

Ex,y∼pr (x,y){ logD(x, y)+ Ez∼pZ (z)[ log (1−D(G(z, y), y))]}

(6)

where y stands for the condition corresponding to x and both the
discriminator and generator additionally take y as a input, so that
G implicitly represents a conditional distribution pg(x|y). From
the same JS divergence point of view, it readily follows that
this minimax game is approximately minimizing JSD(pr(x,
y) ‖ pg(x|y) pr(y)) to lead pg(x|y) to pr(x|y).
Figure 3 presents the architecture of CBGAN for our inverse

airfoil design task. Its generator takes the Gaussian noise vector z,
the desired property y which is Cl here, and the freestream condi-
tions b which are Ma and Re as input, and output the design vari-
ables x, which are the 192 data points on the Bézier curve of an
airfoil and the angle of attack α. The discriminator, on the other
hand, takes x, y, and b as input and produces the probability of
being an optimal airfoil.

3.3 Entropic BézierGAN. Arjovsky and Bottou [47] hypoth-
esize that one critical defect vanilla GANs suffer from is the discon-
tinuity of JS divergence over distributions concentrated on
low-dimensional manifolds embedded in high-dimensional
spaces. These low-dimensional manifolds are usually misaligned,
so it prompts the discriminator to overpower the generator and
leads to vanishing gradients. To overcome this convergence issue,
WGANs equipped with Wasserstein distance, a special case of
optimal transport (OT) distance, came into play. This modification
improved the stability of GAN’s training process drastically and
significantly alleviated mode collapse [8,9] common in early
GAN models. Later, these WGANs were further generalized to a
broader range of OT distances, and the Lipschitz smoothness con-
straint originally enforced with crudeness was also replaced with
an entropic soft regularization term in the loss function [51–54].
These GANs are dubbed Smoothed WGAN, OT GAN, or Entropic
GAN (EGAN), and the lower bound estimation of likelihood is also
enabled due to their special properties [54].
Many real-world datasets indeed reside on low-dimensional man-

ifolds [55] and the airfoil dataset should be no exception, as
reflected in Ref. [44]. Therefore, we hypothesized that EGAN
based on optimal transport might carry corresponding benefits for
inverse design. Our entropic sibling of BézierGAN also employs
the Bézier layer as the final layer of the generator. Likewise, it
has no difference to regular EGANs other than that.

3.3.1 Optimal Transport With Entropic Regularization. For
two probability distributions—specifically in our GAN training
case, the real data distribution pr(x) and the generator’s approximate
distribution pg(x)—the Kantorovich optimal transport distance reg-
ularized with entropy or equivalently KL divergence has the

Fig. 2 Candidate baseline airfoils (each consists of 192 surface points) with their optimized designs from SU2. The freestream
conditions: Ma=0.5, Re=51, 000, 000, and target lift coefficient: Cl=1.0.
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following expression [56,57]:

OTλ(pr , pg) := min
PX,X̂∈Π(pr ,pg)

Ex,x̂∼PX,X̂
[c(x, x̂)] + λKL(PX,X̂ ∣ pr × pg)

(7)

where Π(pr, pg) is the set of joint distributions PX,X̂ whose marginal
distributions equal pr and pg, c is cost function usually symmetric
positive, and λ≥ 0 is a weight controlling the degree of regulariza-
tion. When c= ‖ · ‖2 and λ= 0, this OT distance reduces to the well-
known Wasserstein-1 distance used in WGAN [8,9], minimizing
which is how WGAN is trained.
Yet, the evaluation of Wasserstein-1 distance is not as easy as its

counterpart for which λ > 0. Though a direct optimization of Eq. (7)
is highly intractable, due to the Fenchel–Rockafellar theorem, the
strong duality holds so that we can evaluate its dual instead [56–58]:

OTλ(pr , pg) =max
f , g

Ex∼pr [f (x)] + Ex̂∼pg [g(x̂)]

− λEx, x̂∼pr×pg exp (v(x, x̂)/λ) − 1
[ ]

(8)

v(x, x̂) := f (x) + g(x̂) − c(x, x̂) (9)

where f and g are the Lagrange multipliers that can be optimized
through a universal approximator like neural networks or the Sink-
horn algorithm introduced next. Equipped with this OT probability
distance, in EGAN, instead of minimizing the JS divergence, we
can train the generator G, bringing pg to pr via [52,54]:

min
G

OTλ(pr , pg) (10)

3.3.2 Sinkhorn Divergence. Though greatly increasing the
evaluation efficiency and mitigating the curse of dimensionality
[56], the entropic regularization, in consequence, brings about an
entropic bias, namely OTλ(p, p) ≠ 0, which may induce mode col-
lapse [58]. One practical way to eliminate this bias is to use Sink-
horn divergence defined below composed of OTλ to evaluate the
discrepancy between distributions:

Sλ(pr , pg) : = OTλ(pr , pg) −
1
2
OTλ(pr , pr) −

1
2
OTλ(pg, pg) (11)

It is proved in Ref. [58] that this metric is indeed symmetric,
convex, smooth, and positive definite; thus, a better option than
OTλ. Now, we can train the generator instead by [51]

min
G

Sλ(pr , pg) (12)

3.3.3 Sinkhorn Algorithm. Evaluating Eq. (8) via parameter-
ized f and g represented by neural networks, as in Refs. [8,9,54],
is time-consuming. To accelerate the training process, we can
realize this clumsy maximization with the Sinkhorn algorithm
[58], which is the coordinate ascent coming from the first-order
optimality condition for Eq. (8). Normally for a λ not too close to
0, the Sinkhorn algorithm can converge within milliseconds [56].
Equation (11) can then be evaluated by applying the Sinkhorn algo-
rithm to each of its three terms.

3.3.4 Conditional Formulation and CEBGAN. Following the
same rationale for constructing conditional BézierGAN, we can
approximate pr(x|y) with pg(x|y) through minimizing the Sinkhorn
divergence Sλ pr(x, y)‖pg(x ∣ y)pr(y)

( )
. This indicates we have

to design a cost function c([x, y], [x̂, ŷ]) for the prediction-
condition bundles. One effortless way is to construct it by
c([x, y], [x̂, ŷ]) = c1(x, x̂) + c2(y, ŷ). Specifically, for the evaluation
of Sλ in our airfoil design application, we set λ= 5 and build a
shift-invariant cost function c with L1 norm by

c([x, y, b], [x̂, ŷ, b̂]) = |x − x̂| + |y − ŷ| + |b − b̂| (13)

As to the architecture of CEBGAN, since we are using Eq. (12) for
its training, the discriminator is no longer required. We use the same
generator as shown in Fig. 3 for inverse airfoil generation. This unity
helps compare the performance of CBGAN and CEBGAN.

3.3.5 Conditional Surrogate Log-Likelihood. Similar to
Ref. [54], it can also be proven, as provided in the supplementary
material (see Fig. S1 available in the Supplemental Materials on
the ASME Digital Collection), that this conditional formulation is
equivalent to maximizing the sample likelihood of the explicit
density model below provided c is shift-invariant:

p(x, y) =
∫
ŷ,z
p(x, y ∣ ŷ, z) pr(ŷ) p(z) dŷ dz (14)

Fig. 3 Overall CBGAN model architecture. CEBGAN shares the same generator architecture and does not need the
discriminator.
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p(x, y ∣ ŷ, z) ∝ exp −
c([x, y], [G(z, ŷ), ŷ])

λ

( )
(15)

One can then derive the corollary that

log p(x, y) ≥ −
1
λ
EP⋆

Z∣X,Y
c([x, y], [G⋆(z, y), y])
[ ]

+ EPZ log p(z)
[ ]

+ H P⋆
Z∣X,Y

( )
+ log pr(y) + const

(16)

in which

P⋆
Z∣X,Y = PZ (z) exp

v⋆([x, y], [G⋆(z, y), y])
λ

( )
(17)

where H is the Shannon-entropy function, PZ is the empirical
distribution of sampled noise, and v⋆ (Eq. (9)) is evaluated with
the optimal f ⋆ and g⋆. Then, for a given condition y and a series
of generated samples {xi=G(zi, y)}n, we can use the RHS of Eq.
(16) as the surrogate log-likelihood (SLL) to evaluate the plausibil-
ity of the bundles {[xi, y]}n and select the ones with higher SLL as
the samples more likely to have good quality. While sample likeli-
hood is not always reliable for this purpose (especially when the
generative model is ill-converged [59]) and the SLL only provides
a lower bound, it is nevertheless our only resort for evaluating
GAN-based sample likelihoods. (Recall from Sec. 2.3 that the
lack of explicit exact sample likelihoods is GAN’s key weakness
compared to VAE- or Flow-based models.) We will investigate
its effectiveness statistically in the experiment section.

3.4 Metrics. To evaluate the quality of our conditional GAN’s
approximation to p(x ∣ y, b, O) for the inverse airfoil design in a
quantitative manner, we compute two classes of metrics. First, we
compute the kernel maximum mean discrepancy (MMD)—a
measure of distributional fit—that measures how well the genera-
tive model matches the training data. Second, we compute how
the generative model reduces the optimality gap between the
ground-truth optimal airfoil and the one produced by the conditional
generative model. This directly measures how the generative model
affects downstream optimization performance. We evaluate this in
both the instantaneous setting and cumulatively, such as when the
generative model warm-starts a traditional optimization process.
In addition, we calculate the Pearson correlation coefficient
between the surrogate log-likelihood of generated airfoils and
their actual performance and plot its distribution.

3.4.1 Maximum Mean Discrepancy. During the cross-
validation phase before the final training, we use the kernel maxi-
mum mean discrepancy (MMD) [60] to measure the discrepancy
between the two joint distributions pr(x, y) and pg(x|y)pr(y). The
MMD between two distributions p(x) and q(y) is defined by

MMD2(p, q) = E k(x, x′) − 2k(x, y) + k(y, y′)
[ ]

(18)

where we select Gaussian kernel with σ= 1 as k in our application as
this is a common choice.
Though not as intuitive as traditional regression metrics such as

MSE in giving an intuitive estimation of the error magnitude directly
in the data space, MMD is much more justified for this work as MSE
essentially comes from the KL divergence between the data distribu-
tion and the unimodal Gaussian regression model, whereas pg(x|y)
here is no longer such a simplified conditional distribution.

3.4.2 Reduction in Instantaneous Optimality Gap. Regarding
the GAN prediction as a one-step optimization, instantaneous opti-
mality gap checks the efficacy of the conditional GANs by compar-
ing the performance (Cl/Cd ratio in our case) of the predicted airfoil
to the performance of the optimized airfoil after one step (iteration)
of the iterative adjoint method (i.e., hi=1 in Eq. (19)). Regardless of
the instant time saving, we want to show that the one-step prediction

using conditional GANs also surpasses an adjoint step using
gradient-based optimization to improve the airfoil performance. If
we ignore the time cost of the instant one-step prediction and
compare the GAN predicted airfoil to the original design (i.e., h0
without any optimization) directly, the performance can have a
more significant improvement (as demonstrated in Fig. 7).

3.4.3 Reduction in Cumulative Optimality Gap. While the
Instantaneous Optimality Gap (often referred to and used in papers
on so-called zero-shot optimization) is a useful performance
measure, it ignores the fact that an optimizer can further refine a con-
ditional generative model’s prediction. That is, a conditional model
might warm-start a further optimization. This section describes
how we calculate the amount of effort the conditional GANs can
save in those cases.
Specifically, given an n-iteration optimization history {hi}n

which records the performance hi (i.e., Cl/Cd ratio) at each optimi-
zation iteration i, after calculating the percentage of each hi with
respect to the optimal value hn in the history, we define the cumu-
lative optimality gap (COG) as the area enclosed by the optimiza-
tion history curve normalized in percentage and the horizontal
line of 100% corresponding to hn (a specific example can be seen
in Fig. 9). In other words,

COG({hi}n) =
∑n

i=1 hn − hi
hn

(19)

Unlike the instantaneous optimality gap, this index also takes into
account the performance of the subsequent optimization steps,
assigning lower COG values to the ones that approach the optima
faster.
With the COG defined above, for each group of input conditions,

if we have the corresponding history {hoi }m of an original adjoint
optimization (using original airfoils as a start) and the history
{hri }n of a restart adjoint optimization (using GAN predicted airfoils
as a warm start) accelerated by the conditional GANs (as shown in
Figs. 8 and 9), we can examine the amount of effort the conditional
GANs help save via the relative reduction in COG, namely

RiCOG =
COG({hoi }m) − COG({hri }n)

COG({hoi }m)
× 100% (20)

3.4.4 Correlation Between Surrogate Log-Likelihood and
Cl /Cd Efficiency. To justify the usage of SLL (Eq. (16)) for select-
ing airfoil predictions, we need to statistically verify that there is a
positive correlation between the airfoil’s surrogate value and its per-
formance, which is the Cl/Cd efficiency in our case. This can be
accomplished by first generating n airfoils for each of the m input
conditions in the test set. Then, for each input condition indexed
by i, we evaluate the corresponding airfoil predictions’ surrogate
values {s(i)j }n and Cl/Cd efficiencies {e(i)j }n and calculate the
Pearson correlation coefficient ri between them:

ri =

∑n
j=1 s(i)j − �s(i)

( )
e(i)j − �e(i)

( )



















∑n

j=1 s(i)j − �s(i)
( )2√ 


















∑n

j=1 e(i)j − �e(i)
( )2√ (21)

Finally, we demonstrate the distribution of these m coefficients
{ri}m using a histogram. If the SLL is a practical indicator of a
sample’s optimality, we can expect most correlation coefficients
to be at least greater than 0 and, preferably, closer to the ideal or
maximum value of 1.

4 Experiments, Results, and Discussion
We first use two simple experiments in low-dimensional spaces

to visually study and illustrate the ability of and the performance
differences between CGAN and CEGAN, specifically in:

(1) Ability to converge to complicated conditional distributions.
(2) Ability to capture multimodality of the distributions.
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Because of the complexity of the posteriors, these two factors are
predominantly the foundation of a generative model’s good perfor-
mance in tackling high-dimensional inverse problems. Only a
model with these two abilities can generate samples of good fidelity
and handle the ubiquitous inversion ambiguity in inverse problems,
i.e., having multiple solutions to the same input.
After using these simple illustrative examples to build intuition,

we then employ both generative models on the more realistic
problem of learning an optimal 2D airfoil manifold, which is intrin-
sically a high-dimensional conditional distribution. We compare
their learning performance through the lens of reducing the optimal-
ity gap and time of airfoil CFD optimization, wherein we use the
generative models to provide a good warm-start initialization in
the neighborhood of the final solution. Moreover, we investigate
the effectiveness of SLL in assessing generated sample’s quality.

4.1 Revisiting Regression. This experiment aims to illustrate
the ability of conditional GANs in approximating complicated con-
ditional distributions and the performance differences between a tra-
ditional Gaussian regression model, the vanilla conditional GAN,
and the entropic one based on optimal transport.
For this purpose, we define a toy problem: a 1D Gaussian mixture

conditional distribution, in the form:

p(y ∣ x) =
1
2
N (y ∣ x2 − 1, 0.052) +

1
2
N (y ∣ x3, 0.052) (22)

A dataset {xi, yi} composed of 200 samples is then sampled from
p(x, y)= p(y| x) p(x) where p(x) = U(−1, 1), a uniform distribution
between −1 and 1. These samples are then fed into the generative
models for training. They are illustrated in Fig. 4 as dots under-
neath, with each color corresponding to each Gaussian component.
Three regression models are then selected to retrieve this

multimodal conditional distribution for comparison. The first one

is a traditional unimodal Gaussian regression model q(y ∣
x) =N (y ∣ f (x), σ2) whose mean function f is represented by a
neural network and trained with MSE loss as usual. The result is
shown on the left of Fig. 4, with the mean function f plotted on
top of the data points. Obviously, it can converge to neither one
of the two modes because MSE is only minimized when the predic-
tion approaches the average of the targets. From a probability point
of view, this is because MSE originates from the KL divergence—
KL p(x, y)‖q(y ∣ x)p(x)( )

—while minimizing this divergence can
only lead q(y | x) to average across all the modes of p(y | x) [61].
This further explains why MSE is not an ideal metric for assessing
learning results in more complicated applications wherein having
mode collapse yet producing good quality samples is usually pre-
ferred over a mediocre overall convergence.
This conditional distribution is then approximated by CGAN and

CEGAN, both having the same generator structure representing
q(y | x) with more complexity than the former Gaussian model.
After the same amount of training epochs, we can see from the
sample points they generate—the dots on top of the data points in
Fig. 4, with the CGAN’s prediction in the middle and the
CEGAN’s on the right—that they both learn to recover the multi-
modality of the conditional distribution and have comparable con-
vergence. Because of the additional discriminator training phase,
each training epoch of CGAN is longer than that of CEGAN
under our hyperparameter configuration, not to mention that it
takes extra effort in tuning hyperparameters to redress the delicate
balance between the discriminator and the generator when training
vanilla GANs. These bolster our preference for CEGAN over
CGAN, especially when applied to learning complicated condi-
tional distributions.

4.2 Mode Collapse Examination. In this experiment, we
demonstrate EGAN’s ability to overcome mode collapse and the

Fig. 5 Result of GAN and EGAN learning Gaussian mixture

Fig. 4 Learning results of the regression problem of learning a two-mode Gaussian mixture conditional distribution
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convergence issues in vanilla GANs and handle the multimodality
of the target distribution.
A commonly used toy dataset for mode collapse examination, as

in Ref. [49], is the 2D Gaussian mixture distribution in Eq. (23) with
eight components located on a circle of a certain radius, which
equals 15 here:

p(x) =
1
8

∑8
n=1

N x | 15 cos
nπ

4
, sin

nπ

4

[ ]T
, I

( )
(23)

This is our learning target, mimicking the inverse ambiguity predic-
ament. Eight hundred samples are thereafter sampled from this syn-
thetic distribution, forming a dataset on which both a vanilla GAN
and an EGANwith the same generator architecture are trained to see
if they can capture all of the eight modes. Though there is seemingly
nothing conditional in this study, we can still take p(x) equivalently
as pX|Y=y(x), i.e., a conditional distribution with its condition Y
fixed. Success in learning this distribution is a prerequisite for a
high-performing conditional generative model.
The learning results are demonstrated in Fig. 5, with the 800

samples plotted as dots underneath and the generated samples of
each model as dots above. The vanilla GAN fails to sufficiently con-
verge to all modes in this case, while the EGAN trained with Sink-
horn divergence successfully captures all the 8 modes. Similar
convergence issues of vanilla GAN are also reported in many
works such as Ref. [49]. This result indicates that EGAN is a
much better choice for solving inverse design problems where
inversion ambiguity may exist.

4.3 Airfoil Prediction. After grasping the general perfor-
mance distinctions between CGAN and CEGAN with the help of
those low-dimensional toy problems, we now turn to a more realis-
tic problem. In this final experiment, with the Bézier layer equipped,
we investigate CBGAN and CEBGAN’s ability to learn the high-
dimensional posterior of optimal airfoils conditioned on the free-
stream conditions and target property. We generate the correspond-
ing near-optimal airfoil on unseen input conditions and also use this
as a warm-start initialization to short-circuit the subsequent optimi-
zations. We quantify and compare these two GANs’ performances
using the metrics defined in Sec. 3.4. Regarding CEBGAN, we
examine its SLL’s efficacy in distinguishing good predictions
from the poor ones after CEBGAN converges.

4.3.1 Dataset and Training. Our dataset contains 1245 opti-
mized airfoils with corresponding input freestream conditions b
and the target properties y (i.e., Ma, Re, and Cl).
Optimized airfoils: Each airfoil is optimized using the adjoint

method described in Sec. 3.1. Each optimized airfoil consists of
192 surface points (192 × 2 coordinates) along with the optimized
angle of attack, α (Fig. 6).
Input conditions: We generate N groups of Ma, Re, and Cl

through the Latin Hypercube sampling strategy to evenly cover
the design space. In this paper, we have Ma ranging from 0.2 to

0.9, Re from 107 to 108, and Cl from 0.8 to 1.4. We excluded the
input conditions leading to airfoil optimization failure (divergence
that leads to negative or abnormally high efficiency). The final
dataset contains 1245 groups of input conditions (Ma, Re, and Cl)
and the corresponding 1245 optimized airfoils. The average time
elapse of each SU2 airfoil optimization instance is 55.7 mins on
the Deepthought2 HPC5 at UMD, with 500 instances running in
parallel.
The 1245 airfoils are split into two parts: 995 airfoils for four-fold

cross-validation and training the final generative models, and 250
airfoils reserved for testing. During the cross-validation phase,
MMD (Sec. 3.4.1) is used for evaluating GANs’ convergence to
the distribution of the validation set, against the value of which
we adjust the hyperparameters accordingly, setting them to the can-
didate having the lowest MMD. Once every hyperparameter value
is determined, all the 995 training samples are fed into CBGAN and
CEBGAN to train the final generative models. The CBGAN is
trained with a batch size of 32 for 160,000 iterations, and it takes
3h 51m to finish, while the CEBGAN with a batch size of 128
for 120,000 iterations and takes 2h. Both are trained on NVIDIA
Tesla V100 DGXS 32GB GPU. It is hard to directly compare
their training speed as they have different hyperparameters, training
algorithms, and final performances, but roughly in the sense of time
cost per iteration, CEBGAN is about 30.7% faster to train than
CBGAN.

4.3.2 Quantitative Performance of Conditional GANs. The
freestream conditions (Ma and Re) and target lift coefficients (Cl)
of the 250 testing airfoils are fed into the trained CBGAN and
CEBGAN models to generate 250 airfoils with fixed zero noise,
respectively. The predicted airfoils’ efficiencies are evaluated by
the SU2 simulator [62] and benchmarked with the ground truth
(i.e., the optimal efficiency from a converged adjoint optimization)
to demonstrate the performance of the two conditional GANs.
Specifically, for performance (Cl/Cd) validation of a predicted

airfoil, the corresponding input conditions (Ma, Re, and Cl) of a pre-
dicted airfoil (including predicted α) together with other default
freestream conditions6 are wrapped into a SU2 configuration file.
GMSH generates a 2D mesh of the predicted airfoil (i.e., 192 × 2
coordinates) (as shown in Fig. 1), which we then write into an
SU2 format. The efficiency is evaluated by solving the RANS equa-
tions on the predicted airfoil using air with the corresponding free-
stream conditions and target Cl.
The ground-truth efficiency value is acquired by performing the

iterative adjoint optimization exhibited in Fig. 1. With the same
input conditions, the eight candidate airfoils (Fig. 2) are iteratively
optimized. The optimized one with the highest efficiency is the
ground-truth optimal design, and the highest efficiency is the
ground-truth optimal efficiency.

Fig. 6 Samples of the database

5https://hpcc.umd.edu/hpcc/dt2.html
6In this paper, air’s freestream pressure is 101,325 Pa, and the freestream tempera-

ture is 288.15 K.
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For easy comparison, we normalize the 250 testing samples’ effi-
ciencies into percentages. The ground-truth optimal efficiency (i.e.,
hn in Eq. (19)) of each airfoil is represented as 100%, which is used
as the comparison baseline. The other types of efficiencies can be
represented as percentages by dividing with their corresponding
ground-truth efficiency (i.e., hi/hn), indicating how close they are
to the optimal efficiency.
Reduction in instantaneous optimality gap: For a more intuitive

comparison, we first compute and compare the average reduction
in instantaneous optimality gap (Sec. 3.4.2) of the 250 testing air-
foils in different scenarios. Figure 7 illustrates the comparison:

(1) The “Final: Adjoint” line indicates the average ground-truth
efficiency of the 250 testing samples. As every ground-truth
efficiency is represented as 100%, the average has no
variance.

(2) The “Initial: CBGAN” line indicates the average efficiency
of the 250 predicted airfoils from CBGAN, and the
“Initial: CEBGAN” line indicates the average efficiency of
the 250 CEBGAN generated airfoils. Without using any
further optimization, the CBGAN predicted airfoils achieve
an average of 80.8% of the ground-truth efficiency while
the CEBGAN predicted airfoils achieve an average of
95.8% of the ground-truth efficiency.

(3) The “No Optimization” line indicates the average efficiency
(22.9%) of the original 250 airfoils before using adjoint
optimization.

(4) The “Initial: Adjoint” line indicates the average efficiency of
the optimized 250 airfoils after taking one step (iteration) of
adjoint optimization using the SU2 optimizer. These airfoils
achieve an average of 49.3% of the ground-truth efficiency.

(5) The box plot underneath indicates the minimum, the first quar-
tile, the median, the third quartile, and the maximum of the
250 testing airfoils at each of the three scenarios (i.e., GAN
prediction, one-step adjoint, and initial design). The medians
—75.9%, 84.2%, 66.4%, 19.4% from left to right—do not
coincide well with the means above, which suggests skewness
in the distributions of instantaneous optimality gaps.

Both conditional GANs can quickly (<1 s) predict airfoils whose
performance (i.e., efficiency) has been significantly improved (from

22.9% to 80.8% with CBGAN and 95.8% with CEBGAN for these
250 testing samples) compared to the original designs. This repre-
sents a reduction in instantaneous optimality gap (with respect to
true optimal Cl/Cd). For CBGAN, the instantaneous gap is
reduced by a factor of 4.0 × compared to initial airfoils and 2.6 ×
compared to one step of the adjoint method. For CEBGAN, the
two numbers are 18.4 × and 12.1 ×, respectively. The average effi-
ciency of the CEBGAN predicted airfoils has been close to the
ground-truth one (100%). We have also computed a two-sample
t-test on their difference in instantaneous optimality gap. This test
resulted in p= 0.0001. Though the conditional GANs cannot
directly generate the ground-truth optimal airfoils, they surpass an
adjoint step and provide a warm start point for a restart optimiza-
tion, as we show next.
Reduction in Cumulative Optimality Gap: We demonstrate the

reduction in cumulative optimality gap (Sec. 3.4.3) by comparing
the iterative optimization histories (averaged) of the 250 testing
samples between the original adjoint optimization (using original
airfoils as a start) and the restart adjoint optimization (using GAN
predicted airfoils as a warm start). Figure 8 illustrates the
comparison:

(1) The “Final: Adjoint” line, the “No Optimization” line, and
the three dashed lines indicate the same average efficiencies
in Fig. 7.

(2) The “Optimization: Adjoint” curve indicates the original
adjoint optimization history of the 250 testing samples (in
average). The average number of evaluations for the original
adjoint optimization is 41. The fill of the same color indicates
the efficiency standard deviation (±StdDev) of the 250
testing samples for each evaluation.

(3) The “Optimization: CBGAN” and “Optimization:
CEBGAN” curves indicate the restart adjoint optimization
histories of the 250 testing samples (in average) with
CBGAN and CEBGAN, respectively. The average number
of evaluations of the restart adjoint optimization is 35 for
CBGAN and 20 for CEBGAN. The fills of the same respec-
tive colors indicate the efficiency standard deviation
(±StdDev) of the 250 testing samples for each evaluation.

(4) The “Final: CBGAN” and “Final: CEBGAN” lines indicate
the average efficiency of the optimal airfoils after the

Fig. 7 Illustration of reduction in instantaneous optimality gap using the averaged efficien-
cies of the 250 testing samples

Journal of Mechanical Design FEBRUARY 2022, Vol. 144 / 021712-9

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/m

echanicaldesign/article-pdf/144/2/021712/6806632/m
d_144_2_021712.pdf by U

niversity of M
aryland Libraries user on 12 M

ay 2023



restart optimization with CBGAN and CEBGAN, respec-
tively. As we can see, the restart optimization can lead to a
slightly higher efficiency, which is 102.6% of the ground-
truth efficiency for CBGAN and 98.2% of the ground-truth
efficiency for CEBGAN.

If we compare the area enveloped by the “Optimization: Adjoint”
curve, y-axis, and the “Final: Adjoint” line to the area enveloped by
the “Optimization: CBGAN”/“Optimization: CEBGAN” curve,
y-axis, and the “Final: CBGAN”/“Final: CEBGAN” line (as
described in Sec. 3.4.3), we can see a significant relative reduction
in cumulative optimality gap (RiCOG) by 41.6% for CBGAN and
91.3% for CEBGAN.
It is also worth noticing that both the CEBGAN and CBGAN can

yield some predictions that either instantaneously goes beyond the
100% ground-truth optimal efficiency (as in Fig. 7), or can be
further optimized to surpass this threshold (as in Fig. 8). This indi-
cates that the dataset contains many locally optimal airfoil designs,
even though we attempt to select the best one among the eight can-
didates, as mentioned in Sec. 3.1. Therefore, the conditional GANs
are still learning the distribution of local minima. More discussion
on this will be presented in Sec. 5.
Reduction in Cumulative Optimality Gap of an Example

Airfoil: We demonstrate a single concrete case of one example
airfoil (predicted using both CBGAN and CEBGAN) to show
how the results in Fig. 4 translate to a single data point. Figure 9
demonstrates the example case:

(1) The “Initial: Adjoint”, “Initial: CBGAN” and “Initial:
CEBGAN” lines indicate the efficiencies of the one-step
adjoint, CBGAN predicted, and CEBGAN predicted airfoils,
respectively. The "No Optimization" line indicate the effi-
ciency of the original airfoil.

(2) The “Final: Adjoint”, “Final: CBGAN” and “Final:
CEBGAN” lines indicate the efficiencies of the ground-truth
optimal, CBGAN restart optimized, and CEBGAN restart
optimized airfoils, respectively.

(3) The “Optimization: Adjoint”, “Optimization: CBGAN” and
“Optimization: CEBGAN” curves indicate the original,
CBGAN, and CEBGAN restart adjoint optimization histories
of this specific example airfoil.

Instead of using the percentage of the ground-truth optimal effi-
ciency, in Fig. 9, the y-axis indicates the actual efficiency values
(these are normalized to percentages to make multiple airfoils com-
parable on the same axis in Figs. 7 and 8). In Fig. 9, other than dem-
onstrating the reduction in cumulative optimality gap of a specific
case, we can also show the specific status of the airfoil in different
stages. For example, we provide the airfoil shapes in four different
stages (original airfoil, optimal airfoil after original adjoint optimi-
zation, GAN predicted airfoils, and the optimized airfoils after
restart adjoint optimization). As a warm start, the GAN predicted
airfoils can achieve the optima (even higher efficiency) faster than
using the original adjoint optimization. With the GAN predicted
airfoil, even if we halt the restart optimization halfway, we can
still achieve an airfoil of similar quality to a full adjoint run.
Figure 10 uses histograms and kernel density estimation (KDE) to
show the distribution of the relative reduction in cumulative opti-
mality gap (RiCOG) for the 250 testing samples.

4.3.3 Practicability of the Surrogate Log-Likelihood. In the
above example, we fixed the noise vector of the generator to demon-
strate an example case. However, fixing this noise vector can only let
us produce a single sample for each input condition. This becomes
inappropriate when the diversity of predictions is critical or when
inversion ambiguity exists. Multiple modes can correspond to the
same input condition (e.g., the conditional distribution in Fig. 5 or
multiple, approximately equally good airfoils for a given set of
boundary conditions). In that case, we need to randomly sample a
large batch of noise vectors from the noise distribution p(z) and
use them to produce many valid samples from across all modes.
Assuming we can sample the generator, how do we distinguish

samples with a higher likelihood of being high quality? Conceptu-
ally, these samples should lie within the vicinity of the conditional
distribution modes, while low-performing samples should lie in the
long tails of the distribution. How can we assess this without
running any further costly CFD simulations?
As elucidated before, unlike traditional GANs, EGAN provides

us with a surrogate log-likelihood which is essentially a lower
bound of the sample’s likelihood. It is then promising to use this
surrogate value as an indicator of a sample’s quality. That is, the
higher the surrogate value, the better the quality, provided the

Fig. 8 Illustration of reduction in cumulative optimality gap using the averaged optimization
histories of the 250 testing samples

021712-10 / Vol. 144, FEBRUARY 2022 Transactions of the ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/m

echanicaldesign/article-pdf/144/2/021712/6806632/m
d_144_2_021712.pdf by U

niversity of M
aryland Libraries user on 12 M

ay 2023



EGAN converges well to the target conditional distribution, as dem-
onstrated by Balaji et al. [54]. To verify this experimentally for
CEBGAN, we randomly sample 10 airfoils for each of the 250
test input conditions and calculate the Pearson correlation coeffi-
cient between the surrogate values of the airfoils and their ground-
truth Cl/Cd efficiencies, as introduced in Sec. 3.4.4. If the surrogate
likelihood is a meaningfully useful quality measure, it should have a
high correlation with the expensive-to-compute ground truth CFD
simulation values.
For this task, we draw 4096 samples from the distribution (Eq.

(17)) when evaluating the expectation in Eq. (16). The distribution
of these coefficients for the 250 test samples is illustrated in Fig. 11.
Unfortunately, the correlations are almost symmetrically distributed
around 0. This implies that the SLL does not usefully discriminate
between high- and low-quality predictions for inverse airfoil design.
We may also use a scatter plot to illustrate the correlation between
SLL and Cl/Cd ratio more concretely. Before doing this, for each of
the 250 input conditions, we need to normalize the SLL and the
Cl/Cd ratio over all the 10 trials with mean and standard deviation
to unify their range across input conditions and mitigate the distor-
tion of outliers. Figure 12 demonstrates the distribution of these nor-
malized points, where we can neither notice any apparent positive
correlation. More discussions on the possible causes are included
in Sec. 5.

5 Limitations and Future Work
Our inverse design methodology shows its potential in accelerat-

ing design optimization. However, before extrapolating it to the
other tasks, one should be aware of several limitations of our data-
driven inverse design paradigm.
First, because of the data-driven training process, our GANs’ per-

formance depends on the quality of the training dataset. Thus, if our
optimal airfoil dataset obtained through the CFD adjoint method
consists of many local optima, we should not expect our GANs to
always yield global optima on either seen or unseen input condi-
tions. We observe that our GANs can generate airfoils of higher per-
formance than our targets in the dataset, so this local optima issue
indeed exists in our current dataset. Likewise, the diversity of train-
ing samples directly affects the diversity of conditional GAN’s gen-
eration. While generating the dataset, we used eight airfoils
generated by the BézierGAN as our initialization points, but for
at least some input conditions as shown in Fig. 2, the final optimized
airfoils more or less have shapes similar to their original counter-
parts. It is impossible that these eight typical shapes can represent
all the airfoils. Therefore, just like in many other design tasks, we

Fig. 11 The distribution of Pearson correlation coefficient
between SLL of airfoil predictions and their actual Cl/Cd
efficiencies

Fig. 9 Illustration of reduction in cumulative optimality gap using a single concrete case
(Ma = 0.72, Re = 60, 799, 053, and Cl=0.88)

Fig. 10 Distribution of relative reduction in cumulative optimal-
ity gap (RiCOG) of the 250 testing samples using histograms (left
y-axis) and KDE (right y-axis)
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made global optimality and diversity optional. Despite this limita-
tion, our conditional GANs still demonstrate their ability to accu-
rately approximate the posterior imperfectly represented by the
dataset. This data-driven paradigm is still valuable in many tasks
where global optimality and diversity of results are not mandatory.
One would likely then propose to increase the dataset size to over-

come these issues. However, the optimal airfoil dataset generation is
very time-consuming, and it is impractical to retrieve all optima. One
possible solution is to use a low-dimensional design representation,
as presented in Ref. [44], to accelerate the optimization process.
Another more radical way is to discard this data generating
process and use variational inference to directly learn the posterior,
which could be an interesting research topic in the future.
In addition, the surrogate log likelihood—the lower bound to the

exact sample log likelihood—cannot effectively differentiate
between samples of good and bad quality. There are several hypoth-
eses on this that might be worth probing in the future: 1. Sample
likelihood is just not very related to sample’s quality, let alone its
lower bound approximation; 2. The lower bound is not tight
enough to reveal the sample likelihood’s positive correlation with
sample quality; 3. This is cause by the incompleteness of the train-
ing dataset such that many designs of better performance are either
downplayed or neglected in this empirical distribution, thus
assigned lower likelihood by the CEGAN after training, but they
somehow get recovered when generating the predictions.
Furthermore, this paper did not address two important factors that

affect real-world use cases. First, we did not address scalability—the
relation between the design problem’s dimensionality and the num-
ber of data samples required to maintain a good approximation.
Higher dimensions could occur from the design parameterization
(e.g., 3D versus 2D), the input conditions (e.g., including heat trans-
fer inputs), or the design objectives (e.g., optimizing not only drag,
but also manufacturability or vibration). Increasing any of these
would complicate Inverse Design and require a larger number of
data samples. Second, we did not address how to handle design
constraints (aside from those not implicitly encoded in the training
dataset). Future work could address how inverse design can more
explicitly adapt and capture newdesign constraints without requiring
retraining.

6 Conclusions
In this work, we employed two conditional GANs—CBGAN and

CEBGAN—to approximate the posterior of the optimal airfoils

conditioned on the freestream conditions and the target properties.
Then, given unseen input conditions, we could generate warm
start initialization points near the optima and accelerate the subse-
quent airfoil shape optimization. Our results show that both gener-
ative models can accomplish this task, but the CEBGAN—CEGAN
based on regularized optimal transport and equipped with Bézier
layer—performs uniformly better than that of vanilla CBGAN,
either in terms of training speed or prediction accuracy among
other metrics. CEGAN’s advantage in approximating the multi-
modal distribution also manifests in simple toy examples. In addi-
tion, unlike traditional GANs, CEGAN also provides us with the
unique ability to approximate the sample likelihood via a lower
bound dubbed the surrogate log-likelihood, though its potential in
selecting good samples remains to be investigated and uncovered.
Our GAN-based probabilistic inverse design paradigm is applica-

ble to inverse airfoil design and the other inverse problems where
high-dimensional posteriors need to be approximated. The Bézier
layer we employed is suitable for curve-related design problems,
but in other problems we can replace the Bézier layer with different
architectures. For example, we can use a free-form deformation
(FFD) layer for 3D airfoil design problems [63], or use standard
2D/3D convolutional layers for pixelated/voxelized designs [38].
The advantages brought by the conditional GAN framework and
the entropic regularization should be invariant to such architecture
adjustment. In future work, we will test our method on more appli-
cations to demonstrate this point. The performance and surrogate
log-likelihood of CEGAN suggest that it is a GAN more suitable
for these posterior-retrieving tasks.
Though we solely focused on GANs’ application in this inverse

design work, it does not exclude the potential of using other gener-
ative models for similar tasks. Our preference for GANs is based on
the widely alleged good quality of its generated samples in other
works and the possibility of extending its power to more compli-
cated inverse designs in the future. However, for many inverse
design problems, other generative models like VAEs and flow-
based models may also generate predictions of comparable
quality, and given their more straightforward and accurate sample
likelihood evaluation process, they may even be better candidates
than GANs in certain tasks. This is worth investigating in the future.
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