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Abstract

Humans use multiple senses to comprehend the001
environment. Vision and language are two of002
the most vital senses since they allow us to eas-003
ily communicate our thoughts and perceive the004
world around us. There has been a lot of inter-005
est in creating video-language understanding006
systems with human-like senses since a video-007
language pair can mimic both our linguistic008
medium and visual environment with temporal009
dynamics. In this survey, we review the key010
tasks of these systems and highlight the associ-011
ated challenges. Based on the challenges, we012
summarize their methods from model architec-013
ture, model training, and data perspectives. We014
also conduct performance comparison among015
the methods, and discuss promising directions016
for future research.017

1 Introduction018

Vision and language constitute fundamental com-019

ponents of our perception: vision allows us to per-020

ceive the physical world, while language enables021

us to describe and converse about it. However, the022

world is not merely a static image but exhibits dy-023

namics in which objects move and interact across024

time. With the temporal dimension, videos are able025

to capture such temporal dynamics that character-026

ize the physical world. Consequently, in pursuit027

of endowing artificial intelligence with human-like028

perceptual abilities, researchers have been devel-029

oping Video-Language Understanding models that030

are capable of interpreting the spatio-temporal dy-031

namics of videos and the semantics of language,032

dating back to the 1970s (Lazarus, 1973; McGurk033

and MacDonald, 1976). These models are distinc-034

tive from image-language understanding models,035

since they exhibit an additional ability to interpret036

the temporal dynamics (Li et al., 2020).037

They have demonstrated impressive perfor-038

mance in various video-language understanding039

tasks. These tasks evaluate video-language mod-040

els from coarse-grained to fine-grained understand- 041

ing capacity. For example, for coarse-grained un- 042

derstanding, text-video retrieval task assesses the 043

model’s ability to holistically associate a language 044

query with a whole video (Han et al., 2023). For 045

more fine-grained understanding capacity, a video 046

captioning model is required to understand the over- 047

all and detailed video content, then describe the 048

content in concise language (Abdar et al., 2023). 049

Fine-grained understanding in video questioning 050

answering remains a difficult task, where a model 051

needs to recognize minute visual objects or actions, 052

and infers their semantic, spatial, temporal, and 053

causal relationships (Xiao et al., 2021). 054

In order to effectively perform such video- 055

language understanding tasks, there are three chal- 056

lenges that video-language understanding works 057

have to explore. The first challenge lies in devising 058

an appropriate neural architecture to model the in- 059

teraction between video and language modalities. 060

The second challenge is to design an effective strat- 061

egy to train video-language understanding models 062

in order to effectively adapt to multiple target tasks 063

and domains. The third challenge is preparing high- 064

quality video-language data that fuel the training 065

of these models. 066

Although a handful of recent works have tried to 067

review video-language understanding, they mostly 068

focus on one challenge, for example, Transformer- 069

based architecture (Ruan and Jin, 2022) (the 070

1st challenge), self-supervised learning (Schiappa 071

et al., 2023) and pre-training (Cheng et al., 2023) 072

(the 2nd challenge), and data augmentation (Zhou 073

et al., 2024) (the 3rd challenge). Moreover, oth- 074

ers also focus merely on one video-language un- 075

derstanding task, e.g. video question answering 076

(Zhong et al., 2022), text-video retrieval (Zhu et al., 077

2023), and video captioning (Abdar et al., 2023). 078

Such a narrow focus contradicts the growing con- 079

sensus advocating for the development of artificial 080

general intelligence capable of versatile adaptation 081
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Video-language
understanding tasks

Text-video retrieval e.g. (Jiang et al., 2022a; Jin et al., 2023; Dong et al., 2022; Pei et al., 2023; Lin et al., 2022; Zhang et al., 2023a)

Video captioning e.g. (Seo et al., 2022; Wu et al., 2021; Zhang et al., 2020; Pan et al., 2020; Xu et al., 2020; Lin et al., 2020)

VideoQA e.g. (Xiao et al., 2023b, 2022b; Park et al., 2021; Li et al., 2023e; Guo et al., 2021; Peng et al., 2021; Zhao et al., 2017b)

Other tasks e.g. (Liu et al., 2022; Zeng et al., 2022; Yang et al., 2021; Li et al., 2023c; Lin et al., 2023; Hwang et al., 2023)

Video-language
understanding methods

Model Architecture

Pre-transformer e.g. (Ye et al., 2017; Feichtenhofer et al., 2016; Yang et al., 2017; Zhao et al., 2017a)

Transformer-based e.g. (Akbari et al., 2021; Tang et al., 2021; Li et al., 2023b; Luo et al., 2022; Xue et al., 2022b)

LLM-augmented e.g. (Zhang et al., 2023b; Li et al., 2023a; Chen et al., 2023; Li et al., 2023d; Pan et al., 2023)

Model Training
Pre-training e.g. (Cheng et al., 2023; Lei et al., 2021c; Fu et al., 2023; Gao et al., 2021; Bain et al., 2021)

Fine-tuning e.g. (Xu et al., 2019; Anne Hendricks et al., 2017; Pan et al., 2022; Yang et al., 2022a)

Data perspective

Data curation
Manual collection e.g. (Xue et al., 2022a; Zellers et al., 2021; Castro et al., 2022b)

Data augmentation e.g. (Xing et al., 2023; Jiang et al., 2022c; Wang et al., 2021b)

Label annotation
Manual annotation e.g. (Li et al., 2022a; Xiao et al., 2021; Castro et al., 2022a)

Automatic generation e.g. (Zhao et al., 2023; Yang et al., 2023; Ventura et al., 2023)

Figure 1: Taxonomy of Video-language Understanding

to a range of tasks and domains. Consider a human082

interaction scenario where an individual iteratively083

poses questions about a video, searches for a per-084

tinent moment, and requests a summary. Such085

use case necessitates a broad capability to compre-086

hend video and language content, without being087

bounded by a certain task. In addition, the devel-088

opment of a video-language understanding system089

often involves a multi-step process encompassing090

designing a model architecture, formulating a train-091

ing method, and preparing data, rather than being092

a singular-step endeavor. Hence, this paper aims093

to present a more comprehensive and meaningful094

survey to connect the aspects of video-language095

understanding. Our contributions are as follows:096

• We summarize the key tasks of video-097

language understanding and discuss their com-098

mon challenges: intra-modal and cross-modal099

interaction, cross-domain adaptation, and data100

preparation.101

• We provide a clear taxonomy to review video-102

language understanding works from three per-103

spectives according to the three aforemen-104

tioned challenges: (1) Model architecture per-105

spective: we classify existing works into Pre-106

transformer, Transformer-based, and LLM-107

augmented architectures to model video-108

language relationship. In the latter category,109

we discuss recent efforts that utilize the ad-110

vantages of LLMs to enhance video-language111

understanding. (2) Model training perspec-112

tive: we categorize the training methods into113

Pre-training and Fine-tuning to adapt video-114

language representations to the target down-115

stream task. (3) Data perspective: we also116

summarize existing approaches that curate117

video-language data and annotate them to fuel 118

the training of video-language understanding 119

models. 120

• Finally, we provide our prospects and propose 121

potential directions for future research. 122

2 Video-Language Tasks 123

There exists a wide range of tasks that demand 124

video-language understanding capacity. We illus- 125

trate typical examples of them in Figure 2. 126

2.1 Text-video retrieval 127

Text-video retrieval is the task to search for the 128

corresponding video given a language query (text- 129

to-video), or oppositely search for the language 130

description given a video (video-to-text). At the 131

moment, due to the popularity of social media plat- 132

forms such as YouTube, Bilibili, and Netflix, where 133

users want to find videos that suit their needs, there 134

are more research works that concentrate on text-to- 135

video retrieval than the video-to-text setting. The 136

main evaluation metrics for text-video retrieval are 137

recall at rank N (R@N), median rank (MedR), and 138

mean rank (MnR) (Luo et al., 2022; Xue et al., 139

2022b). They assume a one-to-one correspondence 140

between a pair of video and text. However, in prac- 141

tice, there might exist one-to-many matches for a 142

query, to which these evaluation metrics may be 143

unable to adapt (Fang et al., 2023a). Instead of 144

extracting a complete video, there exists a variant 145

of text-video retrieval, i.e. video moment retrieval 146

which requires more fine-grained video-language 147

understanding to extract relevant video moments 148

for a textual query within a single video. 149
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MSRVTT (Xu et al., 2016)

Text-video retrieval

Query: A man speaks to
children in a classroom.

Video-text retrieval
Target: A large kid
playground slide is
shown.  Several people
slide down, a woman
and her little girl.ActivityNet (Heilbron et al., 2015)

Video captioning

Caption: add butter to
the macaroni and stir

YouCook2 (Zhou et al., 2018)

Open-ended VideoQA

MSVD (Chen et al., 2011)

Question:  what is someone
stabbing a poster with?

Answer: sword

Multi-choice VideoQA
Question: what does the man in
checkered do after walking onto
the stage with microphone
stands at the start ?

0. bow to people 1. set up the
stand ✔  2. take away the
stand 3. takes out some paper
4. hands him a bottle 

NExT-QA (Xiao et al., 2021)

Counting-based VideoQA

Question: how many people are
nodding their heads to music ?

Answer: 2
TGIF-QA (Jang et al., 2017)

Figure 2: Illustration of video-language understanding tasks. For more examples, we refer reader to Appendix A.

2.2 Video captioning150

Video captioning is the task to generate a concise151

language description for a video. A video caption-152

ing model receives as input a video and optionally153

a language transcript transcribed from the audio in154

the video. Typically, a model produces a sentence-155

level caption for the whole video. Krishna et al.156

(2017), Zhou et al. (2018b), and Yang et al. (2023)157

investigate generating a sentence caption or a title158

for each video segment in dense video captioning159

and video chapter generation. Moreover, Yu et al.160

(2021) also explores generating a paragraph-level161

caption to summarize a video in multimodal ab-162

stractive summarization.163

2.3 Video question answering (videoQA)164

Video question answering is the task to predict the165

correct answer based on a question q and a video v.166

There are two fundamental types of VideoQA, i.e.167

multi-choice VideoQA and open-ended VideoQA.168

In multi-choice VideoQA, a model is presented169

with a certain number of candidate answers and it170

will choose the correct answer among them. Open-171

ended VideoQA can be formulated as a classifica-172

tion problem, a generation problem, or a regres-173

sion problem. Classification-based VideoQA asso-174

ciates a video-question pair with an answer from175

a pre-defined vocabulary set. Generation-based176

VideoQA is not restricted to a vocabulary set, in177

which a model can generate a sequence of tokens178

that represent the answer to a question. Regression-179

based VideoQA is often used for counting ques-180

tions, e.g. counting the repetitions of an action or181

counting the number of an object in a video.182

2.4 Connections among video-language183

understanding tasks184

Apart from these three most popular groups of185

video-language understanding tasks, there are other186

tasks that have been widely studied in the literature187

such as action recognition, referring video object188

segmentation, etc. Although one may argue that189

these video-language understanding tasks possess 190

distinct natures, research work has found that one 191

foundation model can effectively tackle many of 192

them (Wang et al., 2022). Li et al. (2023b) even 193

unify text-video retrieval, video captioning, and 194

videoQA as a single masked language modeling 195

task and use the same set of parameter values to 196

perform all of them. Additionally, Seo et al. (2022) 197

find that a model designed for video captioning can 198

effectively adapt to text-video retrieval, videoQA, 199

and action recognition. Based on these works, we 200

believe that even though different tasks exhibit dif- 201

ferent challenges due to their specific nature, their 202

challenges can be summarized into common chal- 203

lenges of video-language understanding. 204

3 Challenges of Video-Language 205

Understanding 206

Video-language understanding presents unique 207

challenges compared with image-language under- 208

standing, since a video incorporates an additional 209

temporal channel. We summarize important chal- 210

lenges of video-language understanding as follows: 211

Intra-modal and cross-modal interaction. While 212

intra-modal interaction modeling within language 213

can be directly taken from image-language under- 214

standing, intra-modal interaction modeling within 215

video is different since it jointly consists of spa- 216

tial interaction and temporal interaction. Spatial 217

interaction delves into the relationships among pix- 218

els, patches, regions, or objects within an individ- 219

ual frame, whereas temporal interaction captures 220

sequential dependencies among video frames or 221

video segments. Longer video durations amplify 222

the complexity of temporal interaction modeling by 223

necessitating the recognition of a higher number of 224

objects and events (Yu et al., 2020) and also com- 225

putational demand to process more video frames 226

(Lin et al., 2022). Particular video domains, such 227

as egocentric videos, also complicate temporal in- 228

teraction modeling, as objects undergo drastic ap- 229

pearance and disappearance dynamics over time, 230
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posing challenges in capturing their relationships231

(Bansal et al., 2022; Tang et al., 2023).232

Given the larger semantic gap for video-233

language compared to image-language, cross-234

modal interaction plays a crucial role in video-235

language understanding. The interaction between236

visual and language features is pivotal for aligning237

the semantics of video and text query to associate238

them for text-video retrieval, or identifying rele-239

vant parts to answer the question and writing the240

caption in videoQA and video captioning, respec-241

tively. In addition, incorporating the interaction242

of motion and language features can mitigate the243

extraction of noisy information from videos (Ding244

et al., 2022). Lin et al. (2022) also discover that the245

interaction between audio and language features246

can compactly capture information related to ob-247

jects, actions, and complex events, compensating248

for sparsely extracted video frames.249

Cross-domain adaptation. Given the infinitude of250

online videos, that our video-language understand-251

ing model will encounter testing scenarios which252

are identically distributed to our training data is253

an impractical assumption. Moreover, with the ad-254

vent of LLM-augmented models that can tackle255

a variety video-language understanding tasks (Li256

et al., 2023a,d), it is currently more advisable to257

train a model that can effectively adapt to multiple258

tasks and domains than to obtain a model which259

specializes in a specific understanding task. Fur-260

thermore, since a video can be considered as a261

sequence of images, training a model on video-text262

data is more computationally expensive than image-263

text data. Combined with the large-scale of recent264

video-language understanding models (Jiang et al.,265

2022a; Yang et al., 2022a), there is also a need to266

devise an efficient fine-tuning strategy to save the267

computational cost of fine-tuning these models.268

Data preparation. Although Lei et al. (2021c)269

only use image-text data to train models for video-270

language understanding tasks, in essence, video-271

text data are crucial for the effectiveness of these272

models. In particular, compared with a static image,273

a video offers richer information with diverse spa-274

tial semantics with consistent temporal dynamics275

(Zhuang et al., 2023). As such, Cheng et al. (2023)276

find that training on videos outperforms training on277

images, but jointly training on both data achieves278

the best performance. As additional evidence, Yuan279

et al. (2023) shows that video-pretrained models280

outperform image-pretrained models in classify-281

ing motion-rich videos. However, video-text data 282

takes up more storage cost than image-text data 283

since a video comprises multiple images as video 284

frames. Moreover, annotating a video is also more 285

time-consuming and labor-intensive than annotat- 286

ing an image (Xing et al., 2023). Therefore, video- 287

language understanding models have been limited 288

by the small size of clean paired video-text cor- 289

pora in contrast to billion-scale image-text datasets 290

(Zhao et al., 2023). Various efforts (Zhao et al., 291

2023; Xing et al., 2023) have been put into devis- 292

ing efficient and economical methods to curate and 293

label video-text data. 294

4 Model Architecture for Video- 295

Language Understanding 296

Effective modeling intra-modal and cross-modal 297

interaction is the key aim in designing video- 298

language understanding model architectures, which 299

can be divided into Pre-transformer and 300

Transformer-based architectures. The advent 301

of LLMs with remarkable zero-shot capability 302

in addressing multiple tasks led to the design 303

of LLM-augmented architectures that exhibit 304

cross-domain adaptation ability to various video- 305

language understanding tasks. 306

4.1 Pre-transformer architecture 307

Pre-transformer architectures typically comprise 308

unimodal video and language encoders for imple- 309

menting intra-modal interactions and cross-modal 310

encoders for cross-modal interactions. 311

Unimodal encoders. A video encoder often en- 312

codes raw videos by extracting frame appearance 313

and clip motion features as spatial and temporal 314

representations, respectively. As each video frame 315

can be considered as a single image, various works 316

have utilized CNNs to extract spatial representa- 317

tions (Simonyan and Zisserman, 2014; Feichten- 318

hofer et al., 2016; Zhao et al., 2017b). For tempo- 319

ral representations, the sequential nature of RNN 320

makes it a popular choice in pre-transformer ar- 321

chitectures (Yang et al., 2017; Zhao et al., 2017a; 322

Venugopalan et al., 2015). Furthermore, 3D CNNs 323

with an additional temporal channel inserted to 2D 324

CNN have also demonstrated effectiveness in ex- 325

tracting spatio-temporal representations (Tran et al., 326

2017; Carreira and Zisserman, 2017). In addition 327

to CNN and RNN, Chen et al. (2018), Gay et al. 328

(2019), and Wei et al. (2017) also build graphs to 329

incorporate intra-modal relationships among video 330
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Video Language Video
Encoder

Language
Encoder

Video Language

Video
Encoder

Language
Encoder

Cross-modal
Transformer Encoder

LanguageVideo

Shared Transformer Dual TransformerStacked Transformer
Cross-modal

Transformer Encoder

Figure 3: Illustration of video-language Transformer-based architectures.

entities such as video segments or visual objects.331

These graph-structured works emphasize the rea-332

soning ability of the model architecture.333

A common framework of language encoder is334

to extract pre-trained word embeddings such as335

word2vec (Kaufman et al., 2016; Yu et al., 2017) or336

GloVe (Torabi et al., 2016; Kiros et al., 2014), then337

proceed with RNN-based modules such as LSTM338

or GRU. Such framework is taken from language339

model architectures before the era of Transformer.340

Cross-modal encoders. Gao et al. (2017) and341

Zeng et al. (2017) apply element-wise multiplica-342

tion to fuse the global video and question represen-343

tations for video question answering. It demon-344

strates the advantage of a simple operation for345

video-language fusion. Attention has also been346

used to model video-language relations, in order347

to identify salient parts in video and language sen-348

tence (Yuan et al., 2019), or to refine the represen-349

tation of the video based on the language question350

(Xu et al., 2017). Pre-transformer video-language351

works have also combined attention with a wide va-352

riety of techniques, including hierarchical learning353

(Baraldi et al., 2017), multi-faceted representation354

(Long et al., 2018), memory networks (Fan et al.,355

2019), and graph networks (Xiao et al., 2022a).356

4.2 Transformer-based architecture357

Developed based on the self-attention mechanism,358

which exhaustively correlates every pair of in-359

put tokens with each other, Transformer-based360

architecture has the capacity to capture long-361

term dependencies and learn from web-scale data.362

It has demonstrated remarkable performance in363

many video-language tasks. Similar to the pre-364

transformer architecture, the Transformer-based365

framework also comprises unimodal encoders and366

cross-modal encoders to model intra-modal and367

cross-modal interactions, respectively. For uni-368

modal encoders, several works find vision trans-369

former for video encoding and BERT encoder for370

language encoding outperform RNN- and CNN-371

based encoding (Fu et al., 2021; Bain et al., 2021;372

Seo et al., 2022). We then summarize fundamen-373

tal types of Transformer-based architectures and374

illustrate them in Figure 3. 375

Shared Transformer. Motivated by the success of 376

Transformer in language modeling (Devlin et al., 377

2018), Akbari et al. (2021) and Wang et al. (2023a) 378

construct a shared Transformer encoder for video- 379

language understanding. Their encoder architec- 380

tures receive the concatenation of visual patches 381

and language tokens, then jointly calculate their 382

interactions in a BERT-based manner. Akbari et al. 383

(2021) additionally incorporate modality embed- 384

dings which comprise three values to denote three 385

kinds of input modalities, i.e. (video, audio, text). 386

Stacked Transformer. Li et al. (2020) reveals that 387

a shared Transformer encoder is weak in model- 388

ing temporal relations between videos and texts. 389

To address this problem, they introduce a stacked 390

Transformer architecture, with a hierarchical stack 391

consisting of unimodal encoders to encode video 392

and language inputs separately, and then a cross- 393

modal Transformer to compute video-language in- 394

teractions. A multitude of video-language under- 395

standing works follow such design to stack a cross- 396

modal Transformer-based encoder above unimodal 397

encoders (Fu et al., 2023; Li et al., 2023b; Lei et al., 398

2021c; Luo et al., 2022; Nie et al., 2022). To per- 399

form video captioning, Seo et al. (2022) and Luo 400

et al. (2020) further insert a causal Transformer- 401

based decoder that generates language tokens based 402

on the encoded cross-modal representations. 403

Dual Transformer. Dual Transformer architec- 404

tures have been favored for text-video retrieval 405

(Luo et al., 2022; Bain et al., 2021, 2022; Lin et al., 406

2022; Xue et al., 2022b). These architectures use 407

two Transformer encoders to encode video and 408

language separately, yielding global representa- 409

tions for each input modality, then applying simple 410

operations such as cosine similarity to compute 411

cross-modal interaction. Such a separate encoding 412

scheme enables them to mitigate the computational 413

cost of computing pairwise interactions between 414

every pair of video and language inputs. They have 415

accomplished not only efficiency but also effective- 416

ness in text-video retrieval problems. 417
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4.3 LLM-augmented architecture418

Large language models (LLMs) have achieved im-419

pressive results in simultaneously tackling mul-420

tiple NLP tasks. Recent efforts have sought to421

apply LLMs for video-language understanding to422

extend its cross-domain adaptation ability to video-423

language settings (Chen et al., 2023; Li et al.,424

2023a). These efforts can be categorized into two425

approaches. The first approach employs LLM as a426

controller and video-language understanding mod-427

els as helping tools. The controller will call the428

specific tool according to the language input in-429

struction. The second approach utilizes LLM as430

the output generator and seeks to align video pre-431

trained models to the LLM. For video-language432

understanding, since the second approach domi-433

nates the first one with a long list of recent works434

(Chen et al., 2023; Li et al., 2023a; Chen et al.,435

2023; Li et al., 2023d; Zhang et al., 2023b; Maaz436

et al., 2023), we review them as follows:437

LLM as the output generator. The framework438

comprises a visual encoder, a semantic translator,439

and an LLM as the output generator. Regarding440

visual encoder, LLM-augmented architectures of-441

ten use vision transformer and CNN models of442

the pre-Transformer and Transformer-based archi-443

tectures (Chen et al., 2023). Since an LLM has444

never seen a video during its training, a seman-445

tic translator is needed to translate the visual se-446

mantics of a video to the LLM’s semantics. For447

the translator, Video-LLaMA (Zhang et al., 2023b)448

and VideoChat (Li et al., 2023a) implement a Q-449

Former as a Transformer-based module that uses a450

sequence of query embeddings that interact with vi-451

sual features of the video to extract informative452

video information. Instead of Q-Former, Vide-453

oLLM (Chen et al., 2023), Video-ChatGPT (Maaz454

et al., 2023), and LLaMA-Vid (Li et al., 2023d)455

find that a simple linear projection that projects456

visual features into the LLM’s input dimension can457

achieve effective performance. Subsequently, these458

visual-based query embeddings or projected visual459

features are combined with the language instruc-460

tion to become the input fed to the LLM to produce461

the final output.462

4.4 Performance analysis463

Among the Transformer-based architectures, dual464

Transformer is the most effective for the text-video465

retrieval task, as it excels at associating holistic466

language and video semantics. On the other hand,467

stacked Transformer architecture can deftly calcu- 468

late intra-modal and inter-modal interactions with 469

specialized unimodal and cross-modal encoders. 470

Thus, it can extract meaningful video information 471

with respect to the question for videoQA, and re- 472

late the currently generated language tokens to the 473

video content for video captioning. Interestingly, 474

recent LLM-augmented models significantly out- 475

perform the Transformer-based ones, proving them- 476

selves a promising architecture for video-language 477

understanding. Due to the page limit, we defer our 478

tables for performance comparison to Appendix B. 479

5 Model Training for Video-Language 480

Understanding 481

5.1 Pre-training for Video-Language 482

Understanding 483

Pre-trained language models have established out- 484

standing performance in a broad range of NLP 485

tasks. These models are trained upon a large cor- 486

pus of text to gain valuable world knowledge that 487

can be applied to multiple downstream tasks. Sim- 488

ilar ideas have been adopted for video-language 489

understanding. Various pre-training strategies have 490

been devised to help a video-language understand- 491

ing model obtain video and language contextual 492

knowledge. We summarize them into three groups: 493

Language-based pre-training. The most popular 494

language-based pre-training task is masked lan- 495

guage modeling (MLM) (Lei et al., 2021c; Sun 496

et al., 2019; Cheng et al., 2023), which randomly 497

masks a portion of words in the language input 498

and trains the model to predict the masked words 499

based on unmasked language words and video enti- 500

ties. Instead of masking a portion of words, UniVL 501

(Luo et al., 2020) and VICTOR (Lei et al., 2021a) 502

discover that masking the whole language modality 503

benefits video captioning task. MLM can be com- 504

bined with other language-based pre-training task, 505

e.g. masked sentence order modeling which is to 506

classify the original order of the shuffled language 507

sentences (Lei et al., 2021a). 508

Video-based pre-training. Video-based pre- 509

training tasks help video-language models capture 510

contextual information in the video modality. As 511

a counterpart of MLM, masked video modeling 512

(MVM) trains the model to predict the portion of 513

masked video entities based upon the unmasked en- 514

tities and language words. The continuous nature 515

of videos leads to different choices of video enti- 516

ties, such as frame patches (Li et al., 2020) or video 517
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frames (Fu et al., 2021). In terms of the training518

objective, Li et al. (2020) use L2 regression loss519

to train the model to predict pre-trained features520

of the masked video frames extracted by ResNet521

and SlowFast models, while Fu et al. (2021) use522

cross-entropy loss to train the model to predict the523

masked visual tokens, which are quantized by a524

variational autoencoder from visual frame patches.525

Video-text pre-training. Video-text pre-training526

is crucial for a model to capture video-language527

relation. Xue et al. (2022b), Gao et al. (2021), and528

Bain et al. (2021) utilize a framework of video-text529

contrastive learning to produce close representa-530

tions for semantically similar video and language531

inputs. These works focus on creating a joint se-532

mantic space that aligns separate representations533

of video and language. Instead of separate repre-534

sentations, Tang et al. (2021), Fu et al. (2021), and535

Li et al. (2023b) enable video and textual represen-536

tations to interact with each other and use a single537

token to represent the cross-modal input, which is538

forwarded to predict whether the video-text pair is539

matched or not. In these two pre-training frame-540

works, not only video-text data but also image-text541

data are utilized during pre-training, in which an542

image is considered as a video with a single frame.543

Video-text contrastive learning has revealed544

promising results for text-video retrieval (Lin et al.,545

2022; Gao et al., 2021; Xue et al., 2022b). MLM546

has contributed to enhancing VideoQA since the547

task resembles MLM in predicting the language548

word given a video-language pair (the question is549

the language input in videoQA). Compared to these550

pre-training strategies, MVM does provide perfor-551

mance gain for video-language understanding but552

its gain is less significant (Cheng et al., 2023).553

5.2 Fine-tuning for Video-Language554

Understanding555

Task-specific fine-tuning is commonly used by pre-556

Transformer architectures to train from scratch557

since these models do not have sufficient parameter558

capacity to learn generalizable features through pre-559

training. It is also widely adopted by Transformer-560

based architectures to improve the performance561

for a specific downstream task. Moreover, LLM-562

augmented architectures also utilize instruction tun-563

ing as a variant of fine-tuning, to adapt from the564

visual and audio spaces to the LLM language space.565

Fine-tuning strategies. Normally, all of the model566

parameters are updated during fine-tuning (Gao567

et al., 2017; Xu et al., 2019; Anne Hendricks et al.,568

2017). However, in cases computational resources 569

or training data are limited, only adaptation lay- 570

ers such as low-rank adapters (Pan et al., 2022; 571

Yang et al., 2022a) or learnable prompt vectors (Ju 572

et al., 2022) are fine-tuned to reduce training cost or 573

prevent overfitting. Such risks also apply for LLM- 574

augmented architectures discussed in Section 4.3, 575

since LLMs exhibit a billion scale of parameters, 576

thus incurring excessively huge cost if full fine- 577

tuning is conducted. For such models, Zhang et al. 578

(2023b) and Li et al. (2023d) design a two-stage 579

instruction tuning strategy which only fine-tunes 580

the semantic translator. The first stage trains the 581

model to generate the textual description based on 582

the combined video and the language instruction, 583

in order to align visual representations extracted by 584

the visual encoder with the language space of LLM. 585

The second stage is often performed on small-scale 586

video-text pairs manually collected by the authors 587

to further tailor the output features of the translator 588

towards the target domains. 589

6 Data Perspective for Video-Language 590

Understanding 591

6.1 Data curation 592

Manual collection. To construct video-language 593

datasets, multiple works search for publicly avail- 594

able videos on the internet, which exhibit a wide 595

diversity of content. As such, video-language 596

datasets with online videos are mostly aimed for the 597

purpose of pre-training models to learn generaliz- 598

able knowledge. Instead of online videos, to collect 599

videos satisfying a specific requirement, Xiao et al. 600

(2021) inherit 6,000 videos from the video relation 601

dataset VidOR since they want videos that describe 602

scenes in daily life. Analogously, Causal-VidQA 603

dataset (Li et al., 2022a) inherits 546,882 videos 604

from the Kinetics-700 dataset, and FIBER dataset 605

(Castro et al., 2022b) uses 41,250 video clips of 606

the VaTeX dataset. Apart from making use of exist- 607

ing datasets, Goyal et al. (2017) and Damen et al. 608

(2022) request human annotators to record videos 609

by themselves. 610

Data augmentation. Rather than manually col- 611

lecting videos from external sources, Xing et al. 612

(2023) and Jiang et al. (2022c) explore data aug- 613

mentation techniques which are particularly de- 614

signed for videos. In detail, their TubeTokenMix 615

mixes two videos in which the mixing coefficient 616

is defined upon the temporal dimension, and their 617

temporal shift randomly shifts video frame features 618
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backward or forward over the temporal dimension.619

These techniques outperform standard augmenta-620

tion approaches for image data, such as CutMix621

(Yun et al., 2019), Mixup (Zhang et al., 2017), and622

PixMix (Hendrycks et al., 2022).623

6.2 Label annotation624

Manual annotation. Several works (Li et al.,625

2022a; Lei et al., 2021b; Xiao et al., 2021) use hu-626

man annotators since they provide high-quality la-627

bels. However, such approach is expensive, partic-628

ularly when dealing with video data. For example,629

annotating QVHighlights dataset (Lei et al., 2021b)630

costs approximately $16,000 for 10K videos and631

3 months to complete. Similarly, NExT-QA (Xiao632

et al., 2021) needs 100 undergraduate students and633

1 year to annotate only 5K videos.634

Automatic generation. Directly taking language635

transcripts of YouTube videos as textual labels636

could reduce annotation cost (Miech et al., 2019;637

Xue et al., 2022a; Zellers et al., 2021). However,638

these labels have been shown to be grammatically639

incorrect and temporally misalign with the video640

content (Tang et al., 2021). Motivated by the suc-641

cess of LLMs, Zhao et al. (2023) train a system642

consisting of a TimeSformer-L visual encoder and643

a GPT-2XL decoder to write dense captions for644

videos. Moreover, Li et al. (2023a) use GPT-4 to645

generate summaries for movie synopses.646

7 Future Directions647

Fine-grained video-language understanding. Ex-648

isting methods excel at performing video-language649

understanding at a coarse-grained level. Thus, an-650

swering questions like “what is” or recognizing a651

global event is no longer a difficult problem (Xiao652

et al., 2021). Nevertheless, stopping at the coarse-653

grained understanding level can restrict practical654

applications of current systems. In practice, a user655

might search for the specific timestamp and the656

position of an object within a video (Jiang et al.,657

2022b). Moreover, he or she may ask the AI agent658

to predict alternative events, which is typical in659

predictive applications (Xiao et al., 2021; Li et al.,660

2022a). These circumstances require fine-grained661

understanding and inference ability about causal662

and temporal relationships within a video. Fu-663

ture research in this direction is needed to promote664

progress towards the core of human intelligence.665

Long-form video-language understanding. Cur-666

rent video-language understanding systems have667

been trained exclusively upon short video clips668

(5-15 seconds in length) (Lin et al., 2022). Conse- 669

quently, they struggle with real-world videos which 670

may last several minutes or hours. The reasons that 671

models are mostly trained on short video clips are 672

two-fold: 1) training on long-range videos demands 673

huge computational cost to process a high num- 674

ber of video frames, 2) many benchmarks contain 675

spatial bias that enables a model to determine the 676

answer based on short-term video cues (Lei et al., 677

2022). To address the first issue, existing work has 678

sought to train a model on an additional modality 679

while maintaining the number of their input frames 680

in long videos (Lin et al., 2022). For the second 681

issue, Mangalam et al. (2023) introduce a bench- 682

mark of authentically long-term video-language 683

understanding. However, feeding a model with 684

additional information may introduce noise and 685

Mangalam et al. (2023)’s benchmark is restricted 686

to the egocentric domain. Consequently, designing 687

an efficient training framework for the model to 688

capture spatial, temporal, and causal relationships 689

in long videos deserves more attention. 690

Trustworthiness of video-language understand- 691

ing models. Although modern video-language un- 692

derstanding systems have demonstrated remarkable 693

performance, their black-box nature undermines 694

our trust to deploy them. In particular, we still do 695

not precisely understand what part of the video a 696

videoQA model looks at to answer the question (Li 697

et al., 2022b), or how video and language seman- 698

tic information flows into the common representa- 699

tion space of the video retrieval model (Jia et al., 700

2022). Furthermore, adversarial noise sensitivity 701

or hallucination of video-language understanding 702

models are also open problems. Future trustworthi- 703

ness benchmarks such as (Xiao et al., 2023a; Wang 704

et al., 2021a) for video-language understanding are 705

of great significance towards practical systems. 706

8 Conclusion 707

In this paper, we survey the broad research field 708

of video-language understanding. Particularly, we 709

categorize related video-language understanding 710

tasks and discuss meaningful insights from model 711

architecture, model training, and data perspectives. 712

Moreover, we analyze performances of different 713

video-language understanding methods, and finally 714

conclude with promising future directions. We 715

hope our survey can foster more research towards 716

constructing effective AI systems that can compre- 717

hensively understand dynamic visual world and 718

meaningfully interact with humans. 719
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9 Limitations720

Although we have sought to comprehensively ana-721

lyze the literature of video-language understanding,722

we might not fully cover all of the tasks, model ar-723

chitectures, model training, and data perspectives.724

Therefore, we complement the survey with a repos-725

itory1. The repository comprises the latest video-726

language understanding papers, datasets, and their727

open-source implementations. We will periodically728

update the repository to trace the progress of the729

latest research.730
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1570

Appendix 1571

A More Examples of Video-Language Understanding tasks 1572

Due to limited space, further examples of video-language understanding tasks are provided in Figure 4. 1573

Video moment retrieval 

38s 48s 60s 64s

Q: People in scuba gear are swimming around. - QVHighlights (Lei et al., 2021)

Action recognition

UCF-101 (Soomro et al., 2012)

O: Soccer juggling

Action segmentation

Segment label - COIN (Tang et al., 2019)

take out the laptop cd drive insert the hard disk tray

A woman
wearing
overalls is
talking to the
camera.

She lays out
wrapping
paper, showing
how to wrap a
toy in it.

She wraps it
around the toy,
then tapes it
up.

0s 23s 183s

ActivityNet Captions (Krishna et al., 2017)

Dense video captioning Video chapter generation

Dismantle
the left side

Separate the
freewheel
hub from
the axle

Clean
Inspect the 
bearing
surfaces

New cones Repack with
new balls

0s 40s 65s 98s 114s 146s

VidChapters-7M (Yang et al., 2023)

Summary: a slim silhouette in a
fashion illustration is a tight ,
hourglass outline for the design .
draw a slim silhouette in fashion
design with a pro designer in this free
fashion illustration video .

Transcript: our next silhouette , with which to
design your own styles and dresses up on or
dresses , pants anything , is a slim silhouette .
what slim means in terms of fashion designing
drawings is that , it 's not form fitting . it fits the
form , but it graces the form . you can tell where
the body is underneath the garment , but it 's not
so tight as to say - How2 (Sanabria et al., 2018)

Multimodal abstractive summarization

Figure 4: More examples of video-language understanding tasks.

B Details of Video-Language Understanding performance 1574

Due to page limit, full details of performance in text-video retrieval, video captioning, and videoQA tasks 1575

are listed in Table 1, 2, and 3, respectively. 1576

C Details of Video-Language Understanding datasets 1577

Due to page limit, details of the datasets for video-language understanding tasks are listed in Table 4. 1578

Methods Model architecture Video Text R@1 R@5 R@10
JSFusion (Yu et al., 2018)

Pre-TF

RN GloVe-LSTM 10.2 31.2 43.2
C+LSTM+SA-FC7 (Torabi et al., 2016) VGG GloVe-LSTM 4.2 12.9 19.9
VSE-LSTM (Kiros et al., 2014) ConvNet/OxfordNet GloVe-LSTM 3.8 12.7 17.1
EITanque (Kaufman et al., 2016) VGG word2vec-LSTM 4.7 16.6 24.1
SA-G+SA-FC7 (Torabi et al., 2016) VGG GloVe 3.1 9.0 13.4
CT-SAN (Yu et al., 2017) RN word2vec-LSTM 4.4 16.6 22.3
All-in-one (Wang et al., 2023a) Shared TF ViT BT 37.9 68.1 77.1
VindLU (Cheng et al., 2023) Stacked TF ViT BT 48.8 72.4 82.2
HERO (Li et al., 2020) Stacked TF RN+SlowFast BT 16.8 43.4 57.7
MV-GPT (Seo et al., 2022) Stacked TF ViViT BT 37.3 65.5 75.1
CLIP-ViP (Xue et al., 2022a) Dual TF ViT CLIP-text 49.6 74.5 84.8
CLIP4Clip (Luo et al., 2022) Dual TF ViT CLIP-text 44.5 71.4 81.6

Table 1: Performance on text-video retrieval. (Pre-TF: Pre-transformer, Shared TF: Shared Transformer, Stack
TF: Stack Transformer, Dual TF: Dual Transformer, RN: ResNet/ResNeXt (He et al., 2016; Xie et al., 2017), ViT:
Vision Transformer (Dosovitskiy et al., 2020), BT: BERT (Devlin et al., 2018), ViViT: Video Vision Transformer
(Arnab et al., 2021)). We report recall at rank 1 (R@1), 5 (R@5), and 10 (R@10). We choose MSRVTT as one of
the most popular datasets for text-video retrieval.
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Methods Model architecture Video BLEU-4 METEOR
MFATT (Long et al., 2018)

Pre-TF

Video: RN+C3D 39.1 26.7
TA (Yao et al., 2015) Video: 3D-CNN 36.5 25.7
h-RNN (Yu et al., 2016) Video: VGG 36.8 25.9
CAT-TM (Long et al., 2018) Video: RN+C3D 36.6 25.6
NFS-TM (Long et al., 2018) Video: RN+C3D 37.0 25.9
Fuse-TM (Long et al., 2018) Video: RN+C3D 37.5 25.9
VLAB (He et al., 2023)

Stacked TF

EVA-G 54.6 33.4
UniVL (Luo et al., 2020) S3D 41.8 28.9
MV-GPT (Seo et al., 2022) ViViT 48.9 38.7
CLIP-DCD (Yang et al., 2022b) ViT 48.2 30.9
DeCEMBERT (Tang et al., 2021) RN 45.2 29.7
mPLUG-2 (Xu et al., 2023) ViT 57.8 34.9

Table 2: Performance on video captioning. (Pre-TF: Pre-transformer, Stacked TF: Stacked Transformer, RN:
ResNet/ResNeXt (He et al., 2016; Xie et al., 2017), ViViT: Video Vision Transformer (Arnab et al., 2021), EVA-G:
Fang et al. (2023b)). We report BLEU-4 and METEOR, which are two popular metrics for language generation. We
choose MSRVTT as one of the most popular datasets for video captioning.

Methods Architecture Video Text Dataset
MSRVTT MSVD

QueST (Jiang et al., 2020)

Pre-TF

RN + C3D GloVe-LSTM 40.0 -
HME (Fan et al., 2019) RN/VGG + C3D GloVe-GRU 34.6 36.1
HGA (Jiang and Han, 2020) RN/VGG + C3D GloVe-GRU 33.0 33.7
ST-VQA (Jang et al., 2019) RN+C3D GloVe-LSTM 35.5 34.7
PGAT (Peng et al., 2021) Faster-RCNN GloVe-LSTM 38.1 39.0
HCRN (Le et al., 2020) RN GloVe-LSTM 35.6 36.1
HQGA (Xiao et al., 2022a) Faster-RCNN BERT-LSTM 38.6 41.2
All in one (Wang et al., 2023a) Shared TF ViT BT 44.3 47.9
LAVENDER (Li et al., 2023b) Stacked TF VS-TF BT 45.0 56.6
VIOLET (Fu et al., 2023) Stacked TF VS-TF BT 44.5 54.7
ClipBERT (Lei et al., 2021c) Stacked TF CLIP-text BT 37.4 -
VGT (Xiao et al., 2022b) Dual TF Faster-RCNN BT 39.7 -
CoVGT (Xiao et al., 2023b) Dual TF Faster-RCNN BT 40.0 -
LLaMA-Vid (Li et al., 2023d) LLM-Augmented EVA-G Vicuna 58.9 70.0

Table 3: Performance on videoQA. (Pre-TF: Pre-transformer, Dual TF: Dual Transformer, RN: ResNet/ResNeXt
(He et al., 2016; Xie et al., 2017), BT: BERT (Devlin et al., 2018), VS-TF: Video Swin Transformer (Liu et al.,
2021), EVA-G: Fang et al. (2023b)). We report accuracy of the methods. We choose MSRVTT and MSVD as two
of the most popular datasets for videoQA.
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Dataset Video source Annotation Tasks #Videos/#Routes
MSVD (Chen and Dolan, 2011) YouTube videos Manual TVR, VC, VideoQA 1.9K
MSRVTT (Xu et al., 2016) Web videos Manual TVR, VC, VideoQA 7.2K
ActivityNet (Yu et al., 2019) YouTube videos Manual AL, TVR, VC, VMR 5.8K
FIBER (Castro et al., 2022b) VaTeX (Wang et al., 2019) Manual VC, VideoQA 28K
WildQA (Castro et al., 2022a) YouTube videos Manual VideoQA 0.4K
NExT-QA (Xiao et al., 2021) VidOR (Shang et al., 2019) Manual VideoQA 5.4K
CausalVid-QA (Li et al., 2022a) Kinetics-700 (Carreira et al., 2019) Manual VideoQA 26K
HowTo100M (Miech et al., 2019) YouTube videos Auto PT 1.2M
HD-VILA-100M (Xue et al., 2022a) YouTube videos Auto PT 3.3M
YT-Temporal-180M (Zellers et al., 2021) YouTube videos Auto PT 6M
TGIF-QA (Jang et al., 2017) Animated GIFs Manual VideoQA 71K
TGIF-QA-R (Peng et al., 2021) TGIF-QA (Jang et al., 2017) Manual, Auto VideoQA 71K
DiDeMo (Anne Hendricks et al., 2017) YFCC100M (Thomee et al., 2016) Manual TVR 11K
YouCook2 (Zhou et al., 2018a) YouTube videos Manual TVR, VC 2K
HMDB-51 (Kuehne et al., 2011) Web videos Manual TVR, AR 6.8K
Kinetics-400 (Kay et al., 2017) YouTube videos Manual AR 306K
Kinetics-600 (Carreira et al., 2018) Kinetics-400 (Kay et al., 2017) Manual AR, VG 480K
Kinetics-700 (Carreira et al., 2019) Kinetics-600 (Carreira et al., 2018) Manual AR 650K
VaTeX (Wang et al., 2019) Kinetics-600 (Carreira et al., 2018) Manual TVR, VC 41K
TVR (Lei et al., 2020) TVQA (Lei et al., 2018) Manual VMR 22K
How2R (Li et al., 2020) HowTo100M (Miech et al., 2019) Manual VMR 22K
How2QA (Li et al., 2020) HowTo100M (Miech et al., 2019) Manual VideoQA 22K
YouTube Highlights (Sun et al., 2014) YouTube videos Manual VMR 0.6K
TACoS (Regneri et al., 2013) MPII Composites (Rohrbach et al., 2012) Manual VMR 0.1K
QVHighlights (Lei et al., 2021b) YouTube vlogs Manual VMR 10K
TVSum (Song et al., 2015) YouTube videos Manual VMR 50
ViTT (Huang et al., 2020) YouTube-8M (Abu-El-Haija et al., 2016) Manual VMR 5.8K
VidChapters-7M (Yang et al., 2023) YT-Temporal-180M (Zellers et al., 2021) Auto VC, VMR 817K
VideoCC3M (Nagrani et al., 2022) Web videos Auto PT 6.3M
WebVid-10M (Bain et al., 2021) Web videos Auto PT 10.7M
COIN (Tang et al., 2019) YouTube videos Manual AS 12K
CrossTask (Zhukov et al., 2019) YouTube videos Manual AR 4.7K
Alivol-10M (Lei et al., 2021a) E-commerce videos Auto PT 10M
LSMDC (Rohrbach et al., 2015) British movies Manual TVR 72
EK-100 (Damen et al., 2022) Manual Manual AR, AL 7K
SSV1 (Goyal et al., 2017) Manual Manual AR 108K
SSV2 (Goyal et al., 2017) Manual Manual AR 221K
Moments in Time (Monfort et al., 2019) Web videos Manual AR 1M
InternVid (Wang et al., 2023b) YouTube videos Auto PT 7.1M
How2 (Sanabria et al., 2018) YouTube videos Auto VC 13.2K
WTS70M (Stroud et al., 2020) YouTube videos Auto PT 70M
Charades (Gao et al., 2017) Manual Manual AR, VMR, VideoQA 10K

Table 4: Video understanding datasets in the literature. (VMR: Video moment retrieval, TVR: text-video retrieval,
VC: video captioning, AL: action localization, AR: action recognition, AS: action segmentation, VG: video
generation, PT: pre-training).
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