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Abstract
6G networks have become increasingly com-
plicated due to novel network architecture and
newly emerging signal processing and transmis-
sion techniques, leading to significant burdens
to 6G network management. Large language
models (LLMs) have recently been considered
a promising technique to equip 6G networks with
AI-native intelligence. Different from most ex-
isting studies that only consider a single LLM,
this work involves a multi-LLM debate-based
scheme for 6G network management, where mul-
tiple LLMs can collaboratively improve the initial
solution sequentially. Considering the complex
nature of 6G domain, we propose a novel hierar-
chical debate scheme: LLMs will first debate the
sub-task decomposition, and then debate each sub-
task step-by-step. Such a hierarchical approach
can significantly reduce the overall debate diffi-
culty by sub-task decomposition, aligning well
with the complex nature of 6G networks and en-
suring the final solution qualities. In addition, to
better evaluate the proposed technique, we have
defined a novel dataset named 6GPlan, including
110 complex 6G network management tasks and
5000 keyword solutions. Finally, the experiments
show that the proposed hierarchical debate can
significantly improve performance compared to
baseline techniques, e.g. more than 30% coverage
rate and global recall rate improvement.

1. Introduction
The envisioned 6G networks are expected to incorporate
many advanced paradigms, such as terahertz (THz) commu-
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nications, reconfigurable intelligent surfaces (RIS), cell-free
massive MIMO, semantic communication, and so on, and
the resulting heterogeneity will greatly increase overall sys-
tem complexity (Giordani et al., 2020). Meanwhile, the
interaction between these novel techniques also poses un-
precedented challenges for 6G network management, e.g.,
RIS phase configurations influence beamforming decisions,
and machine learning-enabled scheduling algorithms must
adapt to rapidly varying THz channel conditions (Zhou
et al., 2023). Therefore, given such complexity, ensuring
end-to-end performance, reliability, and energy efficiency
in 6G networks can be challenging. Specifically, 6G net-
work management demands a thorough understanding of
network architecture, professional knowledge of various
6G techniques, and the capability of integrating cross-layer
optimization frameworks. Academic studies have proposed
diverse solutions to optimize 6G networks, but most of
them are limited to a single algorithm and architecture (Shi
et al., 2023). By contrast, practical network management
usually requires cross-layer optimization, monitoring, re-
porting, and continuous improvement. It indicates a signifi-
cant gap between proof-of-concept algorithm solutions and
real-world network management implementations.

Given the above challenges and difficulties, large language
models (LLMs) have recently been considered promising
solutions for complicated network management tasks (Zhou
et al., 2024b). LLMs can equip 6G network management
with rich real-world knowledge such as vendor manuals,
standards specifications, and historical operational logs.
Consequently, they can not only understand the intricate
details of each network element, but also retain a holistic
view of system behaviour. Such foundations also enable
LLMs to offer clear, human-centred explanations for their
recommendations and decisions, fostering network operator
trust and transparent decision making (Zhou et al., 2024a).
Moreover, by reasoning across diverse network data do-
mains, LLMs can orchestrate cross-layer optimizations, e.g,
generating comprehensive solutions for network manage-
ment and coordinating multiple layers.

Existing studies have explored various applications of LLM-
enabled 6G networks, including network optimization (Zhou
et al., 2024a), traffic prediction (Hu et al., 2024), network se-
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Figure 1. Comparisons between conventional multiple-choice problems and our considered complex network management tasks.

curity (Nguyen et al., 2024), federated LLM (Su et al., 2024;
Yan et al., 2025), semantic communication (Park et al., 2024;
Chen et al., 2024b), etc. These studies have demonstrated
the great potential of LLMs to improve network intelligence
and efficiency in the 6G era. Note that most of these works
rely on the knowledge of a single LLM to understand the
defined network problem and generate outputs. However,
a single LLM’s knowledge is limited to the corpora it was
trained on, which may under-represent the latest standards
updates, region-specific operational practices, leading to
outdated generated content (Lu et al., 2024). Additionally,
without domain-specific grounding, a standalone LLM can
invent parameter names or protocol behaviours, undermin-
ing the reliability of decision-making and preventing the
applications to crucial 6G scenarios.

To this end, this work considers the collaboration of multi-
ple LLMs to address complex network management tasks
in 6G domain. Introducing multi-LLM collaboration can
overcome the inherent limitations of a single LLM, improv-
ing the reliability and reducing hallucinations. In particular,
given a specific network management task, we encourage
multiple LLMs to improve the initial solutions iteratively,
e.g., completing the former solutions or proposing alterna-
tives. Such a debate-based approach has been studied in
multiple existing studies, including diverge thinking (Liang
et al., 2023), theoretical analyses (Estornell & Liu, 2024),
round-robin style debate (Chan et al., 2023), and using
judges for evaluation (Khan et al., 2024), etc. These studies
demonstrate that LLM debating can significantly improve
the generated content quality.

However, network management in 6G is far more complex

than a simple multiple-choice task, since it demands end-to-
end orchestration across data collection, predictive analytics,
optimization loops, continuous improvement, etc (Tshak-
wanda et al., 2024). For instance, the optimization loop
is central to many optimization tasks, and the correspond-
ing algorithms include convex optimization, reinforcement
learning, meta-heuristic algorithms, etc (Zhou et al., 2023).
In addition, a closed-loop feedback mechanism is usually
required to validate the impact of each action, retrain the
predictive models, and update optimization policies, making
the overall pipeline a tightly coupled, multi-stage workflow
rather than a one-off inference.

Therefore, considering the unique demand of complex net-
work management tasks, the unique contribution of this
work is summarized by: 1) Firstly, we propose a novel hierar-
chical debate framework. In particular, LLMs will first focus
on task decomposition, decoupling complex network man-
agement tasks into more actionable sub-tasks. Then, LLMs
can concentrate on each sub-task, proposing/improving spe-
cific pipelines and relevant techniques. Compared with
regular debating in existing studies (Liang et al., 2023; Es-
tornell & Liu, 2024; Chan et al., 2023; Khan et al., 2024),
such a hierarchical design can reduce the overall debate
complexity, since each debate can focus on more specific
sub-tasks, instead of improving the whole problem in a sin-
gle operation. In addition, decoupling the whole problem
into multiple sub-tasks allows for parallel execution, saving
the overall implementation time.
2) To better evaluate the performance of the proposed hier-
archical debate techniques, we further build a complex net-
work management task planning dataset named 6GPlan, in-
cluding eleven 6G-related techniques such as reconfigurable
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Figure 2. Comparisons between conventional one-shot inference, debating and hierarchical debate.

intelligent surfaces, Open RANs, quantum communication,
semantic communication, etc. It involves 110 complicated
planning/management tasks in the 6G domain, and the so-
lutions consist of around 5,000 keywords. Compared with
existing studies that focus on one specific topic (Zhou et al.,
2024a; Hu et al., 2024; Nguyen et al., 2024; Su et al., 2024),
this work is the first to utilize LLMs to comprehensively
understand complex 6G network management problems. Fi-
nally, the experiments show that the proposed hierarchical
debate can significantly improve performance compared to
baseline techniques, e.g. more than 30% coverage rate and
global recall rate improvement.

2. LLM-Based Complicated Network Task
Planning and Management

Fig.1 shows the differences between conventional problems
and our considered complex network management problems.
Specifically, these conventional problems only require one-
off inference. For instance, multiple-choice problems are
defined in most existing datasets to evaluate the performance
of LLMs on telecom knowledge understanding, e.g., Tele-
QnA(Maatouk et al., 2023), NetEval(Miao et al., 2023), and
ORAN-bench-13 (Gajjar & Shah, 2025) . Consequently, the
LLM can simply recall a known fact, then match it to one
of the given options.

By contrast, our considered complex network management
tasks are open-ended and require LLMs to develop a solu-
tion from scratch. Firstly, from the reasoning and planning
perspective, the ideal solution is expected to integrate sev-
eral processing stages: channel acquisition and prediction,

phase-shift optimization, implementation, feedback, and per-
formance monitoring, demonstrating true chain-of-thought
capability. For instance, due to the “real-time” requirements
in the question, the solutions in Fig. 1 highlight “Real-time
Channel Acquisition” and “Low-latency Implementation”.
Secondly, in terms of the depth and breadth of knowledge,
such open-ended tasks force LLMs to draw on a broad base
of telecom domain facts, including signal processing funda-
mentals, wireless channel modelling, quantization effects,
hardware constraints, and finally combine them into a coher-
ent pipeline. For example, LLMs have to consider different
RIS designs in Fig. 1, e.g., “Continuous Phase Shifts”,
“Discrete Phase Shifts”, and “Hybrid Methods”. Moreover,
testing LLMs on multi-disciplinary workflows also allows
us to assess the capacity to integrate heterogeneous methods
rather than retrieve isolated facts, e.g., combining “Com-
pressed Sensing”, “DNNs/LSTMs”, “Hardware Accelera-
tion”, and “Online Learning” techniques.

The above analyses demonstrate that handling complex net-
work management tasks demands dynamic, decompositional
problem-solving, integration of heterogeneous techniques,
and real-time adaptation. Therefore, compared with con-
ventional multiple-choice or Q&A tasks, complex network
management scenarios provide a far more demanding and
informative benchmark for LLMs.

3. Hierarchical debate-Based Task Planning
This section will first introduce conventional debate-based
network management task planning, and then present the
proposed hierarchical debate-based framework along with
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the designed 6GPlan dataset.

3.1. Debate-based Task Planning

Fig. 2 compares one-shot inference, debate-based inference,
and the proposed hierarchical debate scheme. Specifically,
given a complex open-ended question, the conventional
approach will generate the final solution directly by one-shot
inference. By contrast, the debate-based inference involves
multiple LLMs, and these LLMs can improve/criticize the
former solutions iteratively.

Meta Prompts: In the meta prompt, we briefly introduce
the task and rules:

“We are in an iterative debate process. Given
a technical question {Question} and category
{6G Category}, we aim to generate better solutions
by improving the initial results iteratively.”

Debater Prompts: Then, for these complex network man-
agement tasks, instead of criticizing the former solutions,
we encourage the LLM to improve the former solutions by
adding new related techniques or alternatives to existing
techniques.

“You are a expert in {6G Category} research. Based
on the given question {Question} and previous solu-
tions {Pre Solution}, please improve it by adding
any missing technical keywords, methods, or alternative
approaches.”

For instance, as shown in Fig. 2, LLM 2 can complete
the initial solutions proposed by LLM 1 by adding “Expe-
rience Replay with Prioritization”, and then LLM 1 can
further improve it by claiming “we should also preserve
old knowledge while learn new experience”. Finally, note
that no judge is needed for the defined scheme, since it
aims to improve the solution iteratively instead of judging
correct/wrong answers.

3.2. Hierarchical debate

Considering the inherent complexity of network manage-
ment tasks, here we propose a novel hierarchical debate
method. In particular, hierarchical debate includes 2 phases:
task decomposition debate and sub-task debate.

1) Firstly, for the task decomposition phase, we aim to
decompose the overall task into more specific sub-tasks.

Meta Prompts: In the meta prompt, we briefly intro-
duce the task and rules to decompose the question into
more specific sub-tasks:

“We are in an iterative debate process. Given
a technical question {Question} and category
{6G Category}, we aim to decompose the ques-
tion into sub-tasks by iteratively improving the ini-

Algorithm 1 Hierarchical Debate (Sequential Debaters)

Require: Technical question Q, 6G research category C,
Number of debaters M

Ensure: Final refined solutions for each sub-task

1: Phase 1: Task Decomposition Debate
2: Initialize high-level steps S ← S(0) ▷ e.g. empty or

seed steps
3: for i = 1 to Ndecomp do
4: Scur ← S
5: for j = 1 to M do
6: Meta-Prompt: “Iterative debate. Given Q and

C, decompose into sub-tasks by improving Scur.”
7: Debater j Prompt: “Expert in C. Based on Q

and Scur, improve the sub-tasks.”
8: Scur ← output of Debater j
9: end for

10: S ← Scur

11: end for
12: ▷ S∗ is the final decomposition

13: Phase 2: Sub-Task Implementation Debate
14: for each sub-task sn in S∗ do
15: Initialize solution R← R

(0)
n

16: for k = 1 to Nsub do
17: Rcur ← R
18: for j = 1 to M do
19: Meta-Prompt: “Iterative debate. Given Q

and sub-task sn, improve Rcur.”
20: Debater j Prompt: “Expert in C. Based

on Q, sn, and Rcur, add missing methods/keywords.”
21: Rcur ← output of Debater j
22: end for
23: R← Rcur

24: end for
25: Store final R∗

n ← R
26: end for

27: return {R∗
n}

|S∗|
n=1

tial technical steps.”

Debater Prompts: The debate prompt aims to review
and improve the high-level technical steps.

“You are a expert in {6G Category} research.
Based on the given question {Question}
and previous task decomposition results
{Technical steps}, please serve as a
critical reviewer to improve the sub-task steps.”

2) Then, for the sub-task implementation phase, we enforce
LLMs to debate on each sub-task.

Meta Prompts: In the meta prompt, we briefly intro-
duce the task and rules, and ask the LLM to focus exclu-
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sively on a specific sub-task:

“We are in an iterative debate process. Given
a technical question {Question} and category
{Category}, please focus exclusively on sub-task
{Step n} regarding the question. We aim to im-
prove the initial results iteratively”.

Debater Prompts: Similar to the regular debate process
in Section 3.1, LLMs are encouraged to improve the
previous solutions.

“You are a expert in {6G Category} research.
Based on the given question {Question}, please
focus on sub-task {Step n} exclusively and im-
prove the previous solutions {Pre Solution} of
this sub-task by adding any missing technical key-
words, methods, or alternative approaches.”

Finally, the proposed hierarchical debate is summarized
in Algorithm 1. This two-level, sequential-debater design
ensures that a) high-level planning is solidified before b)
detailed solutions are honed. A detailed high-level plan
is expected to guide the low-level debate, producing more
comprehensive solutions.

3.3. Dataset Design

Fig. 3 shows the overall design pipeline of the 6GPlan
dataset1. Firstly, we selected 11 topics regarding 6G
networks, e.g., integrated sensing and communication,
mmWave and Terahertz Communications, non-terrestrial
networks, cell-free massive MIMO, etc. For each category,
we asked an LLM to generate related questions, focusing
on complex network management and optimization tasks.
After that, we consider a multi-LLM question-answering
approach: asking multiple LLMs to generate solutions for
a given question, and then extracting related technical key-
words from their replies. Here we use these keywords to
represent the key elements that should be covered in a high-
quality solution. At the end, we will merge the keywords
from these LLMs, and implement human verification and
correction, guaranteeing the dataset quality.

4. Performance Evaluation
4.1. Experiment Settings

We evaluated all experiments on the 6GPlan dataset, which
contains 110 complicated planning/management tasks dis-
tributed across 11 core 6G themes (e.g., RIS, semantic com-
munications, mmWave/Terahertz networks). Each question
is paired with a set of gold-standard technical keywords
(around 5000 total) that serve as our reference for evalua-

1The 6GPlan dataset is available at https://github.
com/haozhou1995/6GPlan_Dataset.git

Figure 3. The design pipeline of 6GPlan dataset.

tion. Detailed dataset samples can be found in the Appendix
A. Experiments ran concurrently on 16 worker threads, with
a 1 s delay between API calls to avoid rate-limit failures.

We evaluated three multistage solution generation pipelines:
Baseline, Regular Debate, and Hierarchical Debate, involv-
ing five large language models (LLMs): GPT-3.5-turbo,
GPT-4o, GPT-4o-mini, and Llama3-8b.
Baseline:Each model receives a single end-to-end prompt
per question that asks for a comprehensive, narrative solu-
tion in the form of technical keywords and methods, with
no intermediate extraction or extra interaction.
Regular Debate: This pipeline is augmented by structuring
knowledge elicitation as a round of debate: the first debater
proposes an initial solution, and a second debater enriches it
by adding missing domain-specific alternatives, algorithms,
and designs. We systematically compared three combina-
tions of LLMs, GPT-4o with GPT-4o-mini, GPT-4o with
GPT-3.5-turbo, and GPT-3.5-turbo with Llama 3-8B.
Hierarchical Debate: In this multi-stage pipeline as shown
in Algorithm 1, we first conduct a one-round top-level de-
bate in which Debater 1 breaks the original question into a
numbered list of technical sub-tasks and Debater 2 enriches
or adds any missing steps. Each resulting sub-task then
undergoes an independent, one-round sub-task-level debate
following the Regular Debate protocol: Debater 1 generates
an initial solution for that sub-task, and Debater 2 refines
it by appending any omitted alternatives or algorithms. Fi-
nally, the outputs from all sub-task debates are concatenated
into a single, cohesive solution. See detailed Prompt input
of each pipeline in Appendix B.
Evaluation. All outputs were evaluated against the gold-
standard keywords using 3 complementary metrics—Macro
Coverage Rate (MCR) (%), Keyword Hit Count (KHC), and
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Table 1. Experimental results across pipelines and model combinations.
Pipeline Model Combination MCR (%) KHC GRR (%)

Baseline

GPT-4o 36.99 34.01 36.57
GPT-4o-mini 39.62 36.58 39.34
GPT-3.5-turbo 22.79 21.00 22.58
LLaMA3-8B 31.42 28.94 31.12

Regular Debate
GPT-4o + GPT-3.5-turbo 38.65 33.05 35.55
GPT-4o + GPT-4o-mini 49.75 45.87 49.33
LLaMA3-8B + GPT-3.5-turbo 39.86 35.56 38.24

Hierarchical Debate
GPT-4o + GPT-3.5-turbo 55.22 51.05 54.90
GPT-4o + GPT-4o-mini 81.19 75.41 81.09
LLaMA3-8B + GPT-3.5-turbo 58.30 55.02 59.17

(a) GPT-4o + GPT-3.5-turbo (b) GPT-4o + GPT-4o-mini (c) GPT-3.5-turbo + Llama3-8B

Figure 4. Radar-plot comparison of MCR for three debate configurations over 11 6G technical categories.

Global Recall Rate (GRR)(%). MCR assesses equity by av-
eraging per-question recall across all prompts, ensuring that
performance on shorter or niche items is valued equally to
that on longer, information-dense ones. GRR measures over-
all retrieval capacity by computing the corpus-wide ratio of
matched to reference keywords, thereby reflecting a model’s
effectiveness on prompts with extensive keyword invento-
ries. KHC is the mean number of correctly retrieved key-
words per prompt, reflecting a model’s absolute yield and
revealing whether it tends to over- or under-generate terms.
Together, these measures ensure equity (MCR), breadth
(GRR), and yield (KHC).

4.2. Experiment Results

On the 6GPlan benchmark of 110 open-ended questions,
Regular Debate achieved modest gains, improving recall
by up to 10 % over the one-shot Baseline by applying the
adversarial debate framework first described by Irving et
al. [(Irving et al., 2018)]. In contrast, our Hierarchical
Debate pipeline which builds on the Iterated Amplification
framework proposed by Christiano et al. [(Christiano et al.,
2018)] delivers substantially greater improvements. By de-
composing each question into focused sub-tasks and refining

them individually, Hierarchical Debate pushes MCR into the
55–81 % range—more than doubling Baseline performance
in our strongest configuration and outperforming Regular
Debate by over 30 % (See Table 1). Parallel increases
in KHC and GRR confirm that this multi-stage approach
not only recovers a larger fraction of reference terms but
also significantly raises the absolute volume of keywords
retrieved. Therefore, staged decomposition and targeted
sub-task debate are essential for achieving comprehensive,
reliable coverage in complex technical question answering
and complex planning tasks in the 6G domain.

Moreover, Figure 4 breaks down per-category MCR for
three representative model stacks, GPT-4o+GPT-3.5-turbo,
GPT-4o+GPT-4o-mini, and Llama3-8B+GPT-3.5-turbo, and
once again confirms the decisive advantage of Hierarchical
Debate. In every subplot, the Hierarchical Debate trace (red)
completely encloses both the one-shot Baseline (blue) and
single-round Regular Debate (green) polygons, boosting
MCR by roughly 20–35 % across all eleven 6G themes. In
particular, underserved domains such as Semantic Commu-
nications and Quantum Communications jump from near-
baseline levels of 20 % to above 60 %, while high-density
areas such as Cell-Free MIMO climb from 40 % to over 80
%. Regular debate yields uneven 5–10 % gains and leaves
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Table 2. Impact of Debate Round Count on GPT-4o + GPT-4o-
mini Performance for Regular and Hierarchical Debate

Debate Type Rounds MCR (%) KHC GRR (%)

Regular
1 Round 49.75 45.87 49.33
2 Rounds 47.07 43.56 46.85
3 Rounds 45.13 41.75 44.90

Hierarchical
1 Round 81.19 75.41 81.09
2 Rounds 72.83 67.54 72.63
3 Rounds 68.49 63.58 68.37

niche gaps while Hierarchical debate achieves near-uniform
high coverage. These per-category insights reinforce our
earlier findings: multi-stage decomposition and targeted
sub-task refinement can achieve the breadth, depth, and con-
sistency required for reliable, comprehensive coverage in
technical question answering and complex task planning.

In addition, to understand how the number of debate rounds
affects our pipeline. We conducted experiments on varying
numbers of debate rounds for the strongest model configu-
ration (GPT-4o with GPT-4o-mini). Table 2 investigates the
effect of increasing debate rounds and reveals a clear pattern
of diminishing returns. In the Regular Debate setting, a
second refinement pass drops MCR from 49.75 % to 47.07
%, and a third round further erodes performance to 45.13
%. We believe this stems from cascading context drift: each
additional pass risks overwriting high-precision terms with
marginal or spurious additions, ultimately introducing noise
rather than substantive gains.

This pattern mirrors the over-correction effects reported by
Chen et al., who demonstrate that excessive multi-round
refinement can introduce noise and reduce overall reason-
ing quality [(Chen et al., 2024a)]. Furthermore, refinement
rounds merely produced synonyms of existing keywords,
adding no new approaches or algorithms. Hierarchical De-
bate follows a similar trajectory—MCR falls from 81.19 %
after one top-level plus sub-task cycle to 72.83 % and 68.49
% after two and three rounds. Here, over-decomposition
into 20–30 sub-tasks per question fragments the model’s
attention, leading to low-value or redundant sub-tasks that
dilute overall MCR (See Appendix C for sample output).
Figure 5’s radar plots reinforce this finding at the category
level. Both Regular and Hierarchical Debate profiles con-
tract markedly with each additional round: the one-round
trace forms the largest, while the two- and three-round traces
shrink and become increasingly jagged. In Regular Debate,
well-covered domains like Cell-Free MIMO lose 5–8 %
per extra round, and niche areas such as Semantic Commu-
nications collapse from 40 % to below 25 %. Hierarchi-
cal Debate suffers even sharper per-category drops—up to
15 % in Terahertz Communications—reflecting how over-
segmentation into 20–30 sub-tasks fragments focus. To-
gether, Table 2 and Figure 5 demonstrate that a single,

(a) Hierarchical Debate

(b) Regular Debate

Figure 5. MCR over 11 technical categories for the GPT-4o + GPT-
4o-mini configuration with varying number of debate rounds.

carefully constrained debate round strikes the optimal bal-
ance: additional rounds compound noise and undermine
both breadth and consistency.

5. Conclusion
LLMs are promising technologies to enable AI-native 6G
networks, contributing to better understanding of complex
network architecture and diverse techniques. This work pro-
posed a novel hierarchical debate-based method for complex
task planning in the 6G domain. It first decouples these prob-
lems into more manageable sub-tasks, and then debates each
sub-task to improve the technical details. The experiments
demonstrate that the proposed technique can outperform
conventional debate techniques over various metrics.

7



References
Chan, C.-M., Chen, W., Su, Y., Yu, J., Xue, W., Zhang, S.,

Fu, J., and Liu, Z. Chateval: Towards better llm-based
evaluators through multi-agent debate. arXiv preprint
arXiv:2308.07201, 2023.

Chen, J. C.-Y., Prasad, A., Saha, S., Stengel-Eskin, E.,
and Bansal, M. Magicore: Multi-agent, iterative,
coarse-to-fine refinement for reasoning. arXiv preprint
arXiv:2409.12147, 2024a.

Chen, Z., Yang, H. H., Chong, K. F. E., and Quek, T. Q. Per-
sonalizing semantic communication: A foundation model
approach. In 2024 IEEE 25th International Workshop on
Signal Processing Advances in Wireless Communications
(SPAWC), pp. 846–850. IEEE, 2024b.

Christiano, P., Shlegeris, B., and Amodei, D. Supervis-
ing strong learners by amplifying weak experts. arXiv
preprint arXiv:1810.08575, 2018.

Estornell, A. and Liu, Y. Multi-llm debate: Framework,
principals, and interventions. Advances in Neural Infor-
mation Processing Systems, 37:28938–28964, 2024.

Gajjar, P. and Shah, V. K. Oran-bench-13k: An open source
benchmark for assessing llms in open radio access net-
works. In 2025 IEEE 22nd Consumer Communications
& Networking Conference (CCNC), pp. 1–4. IEEE, 2025.

Giordani, M., Polese, M., Mezzavilla, M., Rangan, S., and
Zorzi, M. Toward 6g networks: Use cases and tech-
nologies. IEEE communications magazine, 58(3):55–61,
2020.

Hu, C., Zhou, H., Wu, D., Chen, X., Yan, J., and Liu, X. Self-
refined generative foundation models for wireless traffic
prediction. arXiv preprint arXiv:2408.10390, 2024.

Irving, G., Christiano, P., and Amodei, D. Ai safety via
debate. arXiv preprint arXiv:1805.00899, 2018.

Khan, A., Hughes, J., Valentine, D., Ruis, L., Sachan, K.,
Radhakrishnan, A., Grefenstette, E., Bowman, S. R.,
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A. 6GPlan Dataset Samples
The 6GPlan dataset includes the following categories: Reconfigurable Intelligent Surfaces (RIS), Integrated Sensing and
Communication (ISAC) mmWave and Terahertz (THz) Communications, Non-Terrestrial Networks (NTN) Cell-Free
Massive MIMO, Artificial Intelligence (AI)-Driven Network Optimization, Semantic Communications, Open Radio Access
Network (O-RAN) Quantum Communication for 6G Blockchain for Secure Wireless Networks, 6G-Enabled Digital Twin
Network. These 11 techniques are widely considered promising techniques towards 6G networks.
The 6GPlan dataset is available at https://github.com/haozhou1995/6GPlan_Dataset.git.

For each category, we have designed 10 complex network optimization/management-related tasks. Considering “Artificial
Intelligence (AI)-Driven Network Optimization” as an example, the questions include:

• 1. How can AI-driven systems balance real-time network optimization with long-term infrastructure planning under
dynamic traffic conditions? (Integrates short-term adaptability with strategic resource allocation.)

• 2. How to design AI models that dynamically optimize heterogeneous network resources (e.g., spectrum, power,
compute) while ensuring fairness across users? (Addresses multi-objective trade-offs and fairness constraints.)

• 3. How can reinforcement learning frameworks be structured to handle non-stationary network environments with
unpredictable user behavior? (Focuses on RL robustness against distributional shifts and adversarial conditions.)

• 4. How to implement federated learning for distributed network optimization without compromising latency or data
privacy? (Balances decentralized AI training with QoS and security requirements.)

• 5. How should AI-driven network management systems prioritize conflicting objectives (e.g., energy efficiency vs.
ultra-low latency) in 5G/6G slicing? (Requires Pareto-optimal solutions for multi-dimensional optimization.)

• 6. How to architect AI-based self-organizing networks (SONs) that minimize human intervention while avoiding
catastrophic misconfigurations? (Focuses on fail-safes and interpretability in autonomous decision-making.)

• 7. How can generative AI models simulate and preemptively optimize network topologies for unanticipated traffic
patterns? (Leverages synthetic data and scenario generation for proactive planning.)

• 8. How to integrate digital twin frameworks with AI-driven optimization for cross-domain network lifecycle manage-
ment? (Combines simulation, real-time analytics, and closed-loop control.)

• 9. How can transfer learning reduce the cost of deploying AI optimization models across geographically diverse
networks? (Addresses domain adaptation and knowledge reuse in heterogeneous environments.)

• 10. How to quantify and mitigate risks of AI-driven optimization decisions destabilizing legacy network protocols?
(Ensures backward compatibility and graceful degradation during AI adoption.)

Then, for question 1, “How can AI-driven systems balance real-time network optimization with long-term infrastructure
planning under dynamic traffic conditions?”, the dataset is organized as:

”question50”: { ”question”:” How can AI-driven systems balance real-time network optimization with long-term infrastruc-
ture planning under dynamic traffic conditions?”,
”Answer”: ”AI-driven network optimization, dynamic traffic prediction, reinforcement learning, digital twins, multi-objective
optimization, LSTM networks, spatial-temporal analysis, federated learning, software-defined networking (SDN), network
function virtualization (NFV), load balancing, edge computing, generative adversarial networks (GANs), capacity fore-
casting, 5G network deployment, time-series forecasting, online learning, explainable AI (XAI), OSS/BSS integration,
QoS metrics, adversarial training, spectrum allocation, predictive maintenance, graph-based optimization, synthetic data
generation, feedback loops, cost-benefit analysis, anomaly detection, regulatory compliance, real-time network optimization,
long-term infrastructure planning, dynamic traffic conditions, network efficiency, dynamic resource allocation, machine
learning, centralized control, predictive analytics, capacity planning, simulation and modeling, hierarchical AI systems,
continuous learning, adaptive learning mechanisms, edge intelligence, network slicing, energy efficiency optimization,
latency minimization, security-aware optimization.”, ”Category”: ”Artificial Intelligence (AI)-Driven Network Optimization”
}
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Consider another question “How can reinforcement learning frameworks be structured to handle non-stationary network
environments with unpredictable user behavior?”, and the dataset sample is:

”question52”: { ”question”:” How can reinforcement learning frameworks be structured to handle non-stationary network
environments with unpredictable user behavior?”, ”Answer”: ”Reinforcement Learning (RL) frameworks, AI-Driven
Network Optimization, non-stationary environments, dynamic networks, user behavior variability, channel conditions,
network topology, bandwidth allocation, power management, time-varying demands, data rate optimization, adaptive state
representation, online feature engineering, real-time channel quality indicators, network load metrics, user mobility patterns,
data normalization/scaling, context-aware state augmentation, dynamic reward shaping, multi-objective optimization, adap-
tive exploration strategies, concept drift detection, meta-learning, transfer learning, domain adversarial training, federated
learning, Markov decision processes (MDPs), multi-agent systems, distributed reinforcement learning, hybrid models,
Bayesian networks, time-series analysis, anomaly detection, clustering algorithms, contextual bandits, safe exploration, edge
computing, network traffic patterns, probabilistic modeling, synthetic perturbations, automated retraining, time-split valida-
tion, fallback policies, adaptive learning rates, performance benchmarks.”, ”Category”: ”Artificial Intelligence (AI)-Driven
Network Optimization” }

Figure 6. Overview of keywords frequencies in the 6GPlan dataset.

Finally, Fig. 6 visualized the frequency of different words in the created dataset. It highlights the importance of machine
learning techniques for network management, e.g., federated learning, reinforcement learning, edge computing, etc.
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B. Prompt Input

Prompt input of LLMs - One Round

1. Baseline Pipeline

“You are an expert in Category: {category}. Given a technical question in this category, Question: {question}.
List all relevant technical keywords, methods, algorithms, and designs. No extra explanation; provide your keyword-
rich solution.”

2. Regular Debate

1. Debater 1 (GPT-4o)

“You are Debater 1 (GPT-4o), an expert in Category: {category}. Given Question: {question}, list
the relevant technical keywords, methods, algorithms, and designs without extra explanation. Provide your
keyword-rich solution.”

2. Debater 2 (GPT-4o-mini)

“You are Debater 2 (GPT-4o-mini). Given the same Category: {category} and Question: {question}, read
Debater 1’s solution: {sol}. Enrich this list by adding any missing technical keywords, methods, algorithms,
or designs. No extra explanation; provide your keyword-rich solution.”

3. Hierarchical Debate

3.1 Top-Level Decomposition

1. Debater 1 (GPT-4o)

“You are an expert in {category} research. Break down the following technical question into a flat, numbered
list of high-level steps. Question (Category: {category}): {question}. Focus on stages such as prediction,
system modeling, optimization, evaluation, etc. Do not use nested lists.”

2. Debater 2 (GPT-4o-mini)

“You are an expert in {category} research. Review the plan below and insert or refine any missing steps.
Category: {category} Question: {question}. Initial Decomposition: {sol}. Keep the numbering; no
extra explanation.”

3.2 sub-task-Level Debate

1. Debater 1 (GPT-4o)

“You are Debater 1 (GPT-4o), an expert in {category}. Given Question: {question}, focus exclusively on
sub-task: {st}. List the techniques, algorithms, and designs that address this sub-task.
No extra explanation.”

2. Debater 2 (GPT-4o-mini)

“You are Debater 2 (GPT-4o-mini), focusing on sub-task: {st} in Category: {category}. Given Question:
{question}, read Debater 1’s answer: {sol}. Enrich it with any missing techniques, algorithms, or designs.
No extra explanation.”
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Prompt input of LLMs - Multiple Rounds

Regular Debate (2-3 Rounds)

1. Round 1: Debater 1 (GPT-4o)

“You are Debater 1 (GPT-4o), an expert in Category: {category}. Given a technical question, Question:
{question}. List the relevant technical keywords, methods, algorithms, and designs without extra explanation.
Provide your keyword-rich solution.”

2. Round 1: Debater 2 (GPT-4o-mini)

“You are Debater 2 (GPT-4o-mini). Given the same Category and Question, read Debater 1’s solution: {sol}.
Enrich with any missing technical keywords, methods, algorithms, or designs without explanation. Provide your
keyword-rich solution.”

3. Round 2: Debater 1 (GPT-4o) – refine Debater 2’s list

“You are Debater 1 (GPT-4o). Read Debater 2’s list: {sol}. Add any missing technical keywords, methods,
algorithms, or designs without explanation. Provide your keyword-rich solution.”

4. Round 2: Debater 2 (GPT-4o-mini) – refine Debater 1’s update

“You are Debater 2 (GPT-4o-mini). Read Debater 1’s refined list: {sol}. Add any missing technical keywords,
methods, algorithms, or designs without explanation. Provide your keyword-rich solution.”

5. Round 3: Debater 1 (GPT-4o) – further refine

“You are Debater 1 (GPT-4o). Read Debater 2’s refined list: {sol}. Add any missing technical keywords,
methods, algorithms, or designs without explanation. Provide your keyword-rich solution.”

6. Round 3: Debater 2 (GPT-4o-mini) – final refine

“You are Debater 2 (GPT-4o-mini). Read Debater 1’s final list: {sol}. Add any missing technical keywords,
methods, algorithms, or designs without explanation. Provide your keyword-rich solution.”

Hierarchical Top-level Debate (2-3 Rounds)

1. Debater 1 (GPT-4o)

“You are an expert in {category} research. Break down the following technical question into a flat, numbered
list of high-level steps. Question (Category: {category}): {question}. Focus on stages such as prediction,
system modeling, optimization, evaluation, etc. Do not use nested lists.”

2. Debater 2 (GPT-4o-mini)

“You are an expert in {category} research. Review the plan below and insert or refine any missing steps.
Category: {category} Question: {question}. Initial Decomposition: {sol}. Keep the numbering; no
extra explanation.”

3. Round i (alternating GPT-4o / GPT-4o-mini)

i = # of Debate Rounds * 2.

“You are an expert in {category} research. Review the plan below and insert or refine any missing steps.
Category: {category} Question: {question}. Previous Decomposition: {sol}. Keep the numbering;
no extra explanation.
Repeat this prompt for 2–3 rounds, feeding each new {sol} back into the next iteration, or until no further
changes are suggested. ”
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Prompt input of LLMs - Multiple Rounds

Hierarchical sub-task-Level Debate (2-3 Rounds)

1. Round 1: Debater 1 (GPT-4o) – initial sub-task list

“You are Debater 1 (GPT-4o), focusing on sub-task: {st} in Category: {category}. Given Question:
{question}, list the techniques, algorithms, and designs that address this sub-task. No extra explanation.”

2. Round 1: Debater 2 (GPT-4o-mini) – first refine

“You are Debater 2 (GPT-4o-mini), focusing on sub-task: {st}. Given Question: {question}, read Debater
1’s answer: {sol}. Enrich with any missing techniques, algorithms, or designs. No extra explanation.”

3. Round 2: Debater 1 (GPT-4o) – second refine

“You are Debater 1 (GPT-4o), focusing on sub-task: {st}. Given Question: {question}, read Debater 2’s
answer: {sol}. Enrich with any missing techniques, algorithms, or designs. No extra explanation.”

4. Round 2: Debater 2 (GPT-4o-mini) – third refine

“You are Debater 2 (GPT-4o-mini), focusing on sub-task: {st}. Given Question: {question}, read Debater
1’s refined answer: {sol}. Enrich with any missing techniques, algorithms, or designs. No extra explanation.”

5. Round 3: Debater 1 (GPT-4o) – fourth refine

“You are Debater 1 (GPT-4o), focusing on sub-task: {st}. Given Question: {question}, read Debater 2’s
refined answer: {sol}. Enrich with any missing techniques, algorithms, or designs. No extra explanation.”

6. Round 3: Debater 2 (GPT-4o-mini) – final refine

“You are Debater 2 (GPT-4o-mini), focusing on sub-task: {st}. Given Question: {question}, read Debater
1’s final answer: {sol}. Enrich with any missing techniques, algorithms, or designs. No extra explanation.”
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C. Sample output of Hierarchical Debate
Here we provide a sample question output regarding the sub-task decomposition of hierarchical debate. The sample question
is ”How to optimize RIS placement in 3D urban environments to maximize coverage while minimizing blockage effects?”
The following are the sub-task decomposition results under different debate rounds. The results show that the increased
number of rounds may add noise to the sub-task decomposition, e.g., the number of sub-tasks increases from 13 to 23. This
pattern shows the over-correction effects, e.g., excessive multi-round refinement can introduce noise and reduce overall
reasoning quality in debate process.

1) Top-level debated sub-tasks for 1 round of debate

Sub-task 1: Conduct a comprehensive analysis of the urban 3D environment to gather data on building layouts, heights,
and materials.

Sub-task 2: Develop a detailed 3D model of the urban area using Geographic Information System (GIS) data and building
blueprints.

Sub-task 3: Identify key locations for potential RIS placement considering existing infrastructure and strategic points for
coverage.

Sub-task 4: Model the electromagnetic wave propagation characteristics in the environment using ray tracing or similar
techniques.

Sub-task 5: Simulate various RIS configurations to understand their impact on signal coverage and blockage in the 3D
model.

Sub-task 6: Formulate an optimization problem to maximize coverage and minimize blockage, defining objective functions
and constraints based on the environment and RIS capabilities.

Sub-task 7: Implement optimization algorithms, such as genetic algorithms or particle swarm optimization, tailored to the
problem’s constraints and objectives.

Sub-task 8: Evaluate candidate solutions from the optimization process using performance metrics like signal strength,
coverage area, and interference levels.

Sub-task 9: Perform sensitivity analysis to assess the robustness of the optimized RIS configurations against variations in
environmental parameters.

Sub-task 10: Validate the optimized RIS placement through field testing or advanced simulation tools to ensure practical
feasibility and performance.

Sub-task 11: Refine the model and optimization criteria based on feedback from real-world testing to improve accuracy
and reliability.

Sub-task 12: Explore alternative RIS technologies and configurations to enhance performance.

Sub-task 13: Document the entire process, including assumptions, methodologies, and results, to facilitate further research
and development.

2) Top-level debated sub-tasks for 2 rounds of debate

Sub-task 1: Develop a software tool or platform for continuous monitoring and re-optimization of RIS placements using
real-time data.

Sub-task 2: Incorporate machine learning techniques to enhance the prediction model’s accuracy and adaptability to
dynamic urban environments.

Sub-task 3: Ensure compliance with regulatory standards and obtain necessary approvals for RIS deployment in urban
areas.
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Sub-task 4: Collaborate with telecommunication providers to integrate RIS placements into existing network infrastruc-
ture.

Sub-task 5: Establish a data collection protocol to gather performance metrics and environmental changes over time.

Sub-task 6: Implement security measures to protect the RIS infrastructure from potential cyber threats or unauthorized
access.

Sub-task 7: Train personnel on the installation, maintenance, and management of the RIS system to ensure efficient
operation.

Sub-task 8: Develop user-friendly interfaces for stakeholders to visualize and interact with coverage and blockage data.

Sub-task 9: Explore partnerships with technology companies to leverage advancements in RIS and related technologies.

Sub-task 10: Set up a feedback loop with end-users to continuously gather insights and improve RIS performance and user
experience.

Sub-task 11: Conduct a comprehensive site survey to identify potential RIS locations based on coverage gaps and obstruc-
tion analysis.

Sub-task 12: Utilize simulation software to model different RIS configurations and their impact on signal propagation in
3D urban environments.

Sub-task 13: Perform a cost-benefit analysis for various RIS placement scenarios to evaluate financial viability and resource
allocation.

Sub-task 14: Develop algorithms for optimal RIS placement considering parameters such as building heights, density, and
user distribution.

Sub-task 15: Pilot test selected RIS configurations in a controlled urban area to assess performance and gather empirical
data.

Sub-task 16: Analyze the impact of environmental factors (e.g., weather, foliage) on RIS performance and adjust deploy-
ment strategies accordingly.

Sub-task 17: Create a maintenance schedule and protocol to ensure ongoing performance evaluation and infrastructure
upkeep.

Sub-task 18: Document lessons learned and best practices from initial deployments to inform future RIS optimization
efforts.

Sub-task 19: Collaborate with urban planners to integrate RIS deployment into future urban development projects for
sustainable growth.

Sub-task 20: Engage in community outreach to educate local residents about the benefits and functionality of RIS
technology.

3) Top-level debated sub-tasks for 3 rounds of debate

Sub-task 1: Define the objectives of RIS placement, including coverage maximization and blockage minimization.

Sub-task 2: Gather and process 3D urban environment data, including building layouts and heights.

Sub-task 3: Model the radio frequency (RF) propagation characteristics in urban environments.

Sub-task 4: Identify potential RIS locations based on the 3D environment data.

Sub-task 5: Develop a mathematical model to represent the coverage and blockage effects.

Sub-task 6: Formulate an optimization problem to maximize coverage and minimize blockage, including constraints.
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Sub-task 7: Select an appropriate optimization algorithm suitable for the formulated problem.

Sub-task 8: Implement the optimization algorithm to determine optimal RIS placement.

Sub-task 9: Simulate the radio wave propagation with the proposed RIS placement using RF simulation software.

Sub-task 10: Analyze the simulation results to evaluate coverage performance and blockage reduction.

Sub-task 11: Refine the placement strategy based on evaluation results and iterate if necessary.

Sub-task 12: Validate the optimized RIS placement through real-world experiments or further simulations with realistic
parameters.

Sub-task 13: Incorporate dynamic factors such as user mobility and varying traffic patterns into the model.

Sub-task 14: Evaluate the impact of different RIS technologies (e.g., passive vs. active) on performance parameters.

Sub-task 15: Conduct sensitivity analysis on parameters affecting RF propagation, RIS effectiveness, and environmental
variables.

Sub-task 16: Explore multi-objective optimization techniques to balance coverage, cost-effectiveness, and deployment
complexity.

Sub-task 17: Investigate the integration of machine learning methods to predict optimal RIS placement based on historical
data.

Sub-task 18: Conduct a feasibility study for RIS deployment considering regulatory, infrastructural, and economic con-
straints.

Sub-task 19: Document the findings and recommendations for future RIS deployment in urban environments.

Sub-task 20: Develop a risk assessment plan to identify potential challenges and mitigation strategies during deployment.

Sub-task 21: Create a comprehensive stakeholder engagement strategy to address community concerns and regulatory
compliance.

Sub-task 22: Set up a monitoring and evaluation framework to assess the long-term performance of the deployed RIS.

Sub-task 23: Plan for scalability and adaptability of the RIS network to accommodate future technology advancements and
urban development.
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