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Abstract

Learning to do complex reasoning is the central objective of artificial intelligence.
Autoregressive language models have shown promise in generating intermediate
steps for problem solving; however, complex reasoning tasks such as theorem
proving still present challenges due to the vast search spaces. Classical works have
considered reasoning by searching, e.g., expanding the reasoning space with tree
search to explore intermediate steps; and reasoning by decomposing, i.e., breaking
down the problem into higher-level thoughts that prompt lower-level actions. In
this work, we develop Reasoning in Reasoning (RiR), a hierarchical framework
that formally unifies decomposing and search by a planner-actor game. Using neu-
ral theorem proving as a representative task, our approach breaks down complex
theorem proving problems into achievable sub-goals for abstraction over formal
proofsteps, giving models: (i) improved generalizability for reasoning step genera-
tion, (ii) a more compact and informative search space for reasoning trajectories,
and (iii) an efficient mechanism for learning to plan. We empirically show that
RiR achieves concrete performance gain on popular theorem proving datasets
including LeanDojo and miniF2F while being highly efficient (e.g., RiR is nearly
3x faster over the existing state-of-the-art baseline on miniF2F). We further present
information-theoretic conjectures on the principles driving RiR’s effectiveness.

A very powerful approach is to attempt to eliminate everything from the problem except the essentials;
that is, cut it down to size. Very often, if you can solve the simple problem, you can add refinements to
the solution of this, until you get back to the solution of the one you started with.

– Claude Shannon
Planner: high-level reasoning (search width = 2)

Actor: low-level reasoning (search width = 2)
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Figure 1: An illustrative example of Algorithm 1 and 2 on decomposing and search of RiR.
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1 Introduction

The main question we aim to address in this work is: what is an effective learning mechanism for
language models to solve complex reasoning problems, such as mathematical theorem proving?

Recent progress in language models have shown promises in generating intermediate steps by
next-token prediction [Wei et al., 2022], yet the performance often deteriorates when facing long
trajectories or vast spaces. This challenge is particularly evident in automated theorem proving, a task
that has been at the core of artificial intelligence research since the field’s early days [Simon, 1969].
The process of crafting a proof is a classical example of reasoning [Wang, 1961]: just as a learning
agent needs generalize from a limited set of examples to the broader set of all possible worlds, a
prover must navigate from a given set of known theorems to the vast space of provable statements.
An effective strategy from human mathematicians is the decomposition of problems with a sequence
of target goals. This provides a more informative direction for subsequent reasoning steps, potentially
reducing the effective search space.

We hereby introduce Reasoning in Reasoning (RiR), a fundamental hierarchical framework unifying
decomposing and search. In the context of theorem proving, our framework consists of an offline
co-training stage followed by an online goal-driven bi-level planning stage. Our contributions are:

• Framework: We develop Reasoning in Reasoning (RiR), a new and general reasoning
framework, that is practically implemented with goal-driven hierarchical learning via a
planner-actor game for neural theorem proving.

• Experiments: We show that RiR achieves both state-of-the-art performance and efficiency
on popular benchmarks of LeanDojo [Yang et al., 2023] and miniF2F [Zheng et al., 2021].

2 Preliminaries: Classical Neural Theorem Proving with Language Models

We here introduce classical methods. The glossary used throughout the paper is in Appendix A.

Setup. We frame formal theorem proving as a Markov Decision Process. Starting with a to-prove
statement q whose initial state is s0, we sequentially apply tactics yt to prove it. Each tactic applied
will make the current state st transit to the next state st+1. Each state is associated with a scalar
reward, r(st), provided by the environment. Below we show an example in Lean4.
theorem (p q: Prop): p v q → q v p := by

intro h
cases h with
inl hp => apply Or.inr; exact hp
inr hq => apply Or.inl; exact hq

-- goal s0: (p q: Prop) p v q → q v p
-- goal s1: (p q: Prop)(h: p v q) → q v p
-- goal s2: (p q: Prop)(hp: p) → q v p
-- goal s3: (p q: Prop)(hq: q) → q v p
-- goal s4: None

Neural theorem proving. A neural network parameterized by θ can act as a policy that samples
single tactic yt+1 ∼ πθ(· | st) at step t. The objective is to find the optimal trajectory which leads to
solved for each statement q, that is to find a sequence of tactics y1, . . . ,yT such that:

s0
y1−→ s1

y2−→ s2
y3−→ . . .

yT−−→ sT .

The problem of automated theorem proving is often solved via a two-stage framework as follows.

Stage 1: offline learning for proofstep generation. Classical approaches [Han et al., 2021,
Welleck et al., 2022, Yang et al., 2023, Li et al., 2024] fine-tune a model pθ(y⋆ | s) to sample the
next proofstep y conditional only on current goal s. The classical prompt format is:

> Input: {$current goal s} > Output: {$proofstep y⋆}

Stage 2: online search for complete proof. Classically, given a statement q, a full proof ȳ1:T is
found by constructing a tree [Yang et al., 2023, Li et al., 2024] with only low-level tactic search. A
common choice is best-first search, where there is a priority queue Q of partial proofs, ordered by
some value function v(·). At step t, we pop one partial proof ȳ1:t (each associated with its current
state st) with the highest value. We then expand ȳ1:t by generating M candidate proofsteps, and each
resulting partial proof ȳ1:t+1 ∈ St+1(ȳ1:t) is inserted into the queue Qȳ prioritized by the value.
The search continues until a full proof ȳ1:T is found, or termination criteria is reached.
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3 Method

3.1 Offline Learning Stage: Goal-Driven Co-Training

Unlike classical approaches which learn to minimize the loss with regard to the conditional distribution
p(y⋆ | s), we propose to learn the joint distribution p⋆(s⋆t+1,y

⋆
t+1 | st), where s⋆t+1 is the target goal

state achieved by applying y⋆
t+1. Our strategy is simple: we co-train a goal predictor model p(s⋆ | s)

and a goal-driven tactic predictor model p(y⋆ | s, s⋆), with the co-training loss below:

Lco(θ) = − 1

N

∑
(s,y⋆,s⋆)∼Dtrain︸ ︷︷ ︸

triplet set

[
log pθ(s

⋆ | s)︸ ︷︷ ︸
goal planner

+ log pθ(y
⋆ | s, s⋆)︸ ︷︷ ︸

goal-driven actor

]
. (1)

We use the following input-output prompt format in training for the theorem proving task:

Planner (Target Goal Generation):

> Input: [CURRENT GOAL] {$current goal s} [TARGET GOAL]

> Output: {$target goal s⋆}

Actor (Goal-Driven Tactic Generation):

> Input: [CURRENT GOAL] {$current goal s} [TARGET GOAL] {$target goal s⋆}
[PROOFSTEP]

> Output: {$tactic y⋆}

By decomposing the decision making process into goal state generation and goal-driven proofstep
generation, RiR naturally captures the hierarchical structure of the reasoning.

3.2 Online Planning Stage: Goal-Driven Hierarchical Search

Algorithm 1 is a general design for RiR during the planning phase, where we can plug in various
practical tree search policies. The high-level search explores promising target goals, while the low-
level search finds the tactics to achieve each target goal, similar to the classical leader-follower game.
A key feature is the joint update of both trees. An illustrative example is in Fig 1, and a concrete
algorithm with best-first search (BFS) that we currently deploy for experiments is in Appendix D.

Algorithm 1 RiR – A Unified Reasoning Mechanism with Decomposing and Search
Input: problem statement q, a language model w/ parameter θ

1: tree← Tree(θ, q)
2: repeat
3: s⋆

l ← tree.policy() ▷ /⋆ planner ⋆/
4: tree← Tree(θ, s⋆

l )
5: repeat
6: ytl ← tree.policy() ▷ /⋆ goal-driven actor ⋆/
7: until STOP LOW
8: {tree, tree}.update() ▷ /⋆ joint update ⋆/
9: until STOP HIGH

10: return tree.solution

4 Experiments

Setups: Datasets and Models. We use the random split of LeanDojo Benchmark 4 [Yang et al.,
2023] as the training dataset. We use BYT5-0.3B [Xue et al., 2021] as our base model, which is a
pretrained byte-level encoder-decoder Transformer model, and was adopted in Yang et al. [2023] with
the state-of-the-art performance in theorem proving. We refer to this trained checkpoint of Reprover
(w/o retrieval) as our baseline, and evaluate it with the same setting as RiR. We train the above model
for 500K steps, with the learning rate as 5.0× 10−4 and batch size as 8. For evaluation, we use both
LeanDojo Benchmark 4 and miniF2F [Zheng et al., 2021]. We use the Pass@1 metric with 10-min
timeout limit for evaluation. The search width for the high-level and the low-level is 5 and 64.
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Figure 2: Efficiency. The scatter plot for actor
and planner time spent for proved theorems on
miniF2F. RiR significantly reduces the actor
time via the goal guidance from the planner.
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Figure 3: Efficiency. The CDF plot for search
time spent for proved theorems on miniF2F Bench-
mark. RiR is significantly faster (nearly 3x) than
the existing state-of-the-art baseline.

Results: Performance Gain. We present the performance comparison of RiR with existing base-
lines in Table 1. RiR also proved 1 more AIME and 2 more AMC problems compared to the current
state-of-the-art Reprover [Yang et al., 2023].

Dataset (→) miniF2F-test2 LeanDojo-test
Method (↓) / Model (→) BYT5-0.3B BYT5-0.3B

Reprover (BFS) 34.43% 50.16%

RiR (BFS) 36.89% 53.73%

Table 1: Performance. Pass@1 rate on LeanDojo and miniF2F.

Results: Efficiency Gain. RiR is significantly faster in searching for the optimal reasoning trajec-
tories via a more compact and information-directed search space with the goal-driven planner, as
illustrated in Figure 3 on miniF2F benchmark. RiR is more time efficient in the sense that we achieve
better results in small computational budget. Specifically, as shown in Figure 2, while the classical
Reprover has an average actor time (i.e., time spent for low-level proofstep search) of 78.21s, RiR
reduces this to only 23.39s, with additional 3.93s for planner time (i.e., time spent for high-level goal
search) on average, setting the new efficiency benchmark for neural theorem proving.

Remarks. We present logs showing how RiR found hard proofs fast while classical approaches fail
in Appendix F; take Finset.union subset left for example, while the classical method
expanded more than 8914 nodes yet still failed after 10 minutes, RiR proved the theorem
within 5 seconds and only searched 1 node. We believe the significant improvement in efficiency
and effectiveness comes from RiR’s ability to generalize better and to explore better in the more
compact and informative search space, empirically supporting the Conjecture 2 and 3 in Appendix B.

5 Conclusions

We have developed Reasoning in Reasoning (RiR), an easy-to-implement framework unifying
reasoning by search and reasoning by decomposing for language models. In the domain of automated
theorem proving, RiR is practically implemented with goal-driven offline pretraining and hierarchical
online planning, where reasoning takes place in different semantic levels. We explore RiR with
initial information-theoretical analysis, discussing the Co-Training Advantage Conjecture and the
Hierarchical Planning Advantage Conjecture in Appendix B, and present detailed discussions in
related works and limitations in Appendix C and E. We hope RiR can shed light on the fundamental
way for reasoning with language models.

2Additional data points on miniF2F-test for readers’ reference:
• Azerbayev et al. [2023] LLEMMA-7B achieves 26.2%;
• Welleck and Saha [2023] LLMSTEP-1.8B achieves 27.9%;
• Polu and Sutskever [2020] GPT-f achieves 36.6%.

4



Acknowledgements

This research was also supported in part through grants from the U.S. Department of Energy under
Grant No. DOE DE-EE0009505, the National Science Foundation under Grant No. IIS 2332475,
with additional acknowledgment to the University of Chicago’s Research Computing Center. All
experimentation and processing were conducted solely on Eigent AI and Caltech servers.

References
Zhangir Azerbayev, Hailey Schoelkopf, Keiran Paster, Marco Dos Santos, Stephen McAleer, Albert Q

Jiang, Jia Deng, Stella Biderman, and Sean Welleck. Llemma: An open language model for
mathematics. arXiv preprint arXiv:2310.10631, 2023.

Bram Bakker, Jürgen Schmidhuber, et al. Hierarchical reinforcement learning based on subgoal
discovery and subpolicy specialization. In Proc. of the 8-th Conf. on Intelligent Autonomous
Systems, pages 438–445. Citeseer, 2004.

Kshitij Bansal, Sarah Loos, Markus Rabe, Christian Szegedy, and Stewart Wilcox. Holist: An envi-
ronment for machine learning of higher order logic theorem proving. In International Conference
on Machine Learning, pages 454–463. PMLR, 2019.

Ching-An Cheng, Andrey Kolobov, Dipendra Misra, Allen Nie, and Adith Swaminathan. LLF-Bench:
Benchmark for Interactive Learning from Language Feedback. arXiv preprint arXiv:2312.06853,
2023.

Rohan Chitnis, Tom Silver, Joshua B Tenenbaum, Tomas Lozano-Perez, and Leslie Pack Kaelbling.
Learning neuro-symbolic relational transition models for bilevel planning. In 2022 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages 4166–4173. IEEE,
2022.
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Appendix

A Glossary

theorem statement (q) a mathematical statement.
goal (s) a statement in the context of a proofsearch, denoted as s.
state a representation containing contexts (e.g., hypotheses) and goals for the proof;

for simplicity, we also use this term interchangeably with goal.
proofstep / tactic (y) a reasoning step that uses established assumptions etc to achieve the goal.

reasoning the process of deriving intermediate steps to solve a problem.
planning a sub-type of reasoning on deriving high-level goals that trigger low-level steps.
low-level search the sampling and pruning for proofsteps.
high-level search the sampling and pruning for goals, see Section 3 for details.

B Theoretical Conjectures: An Information Gain Perspective

The simple insight is that the new mechanism of RiR increases information learned from environments,
improving both generalization for reasoning step learning and exploration for reasoning path planning.

B.1 Intuition

To recap, we propose a hierarchical approach for learning in theorem proving:

1. Planner step: predicting the target state via p(s⋆t+1 | st).
2. Actor step: predicting the proofstep via p(y⋆

t | st, s⋆t+1).

This contrasts with the traditional approach of solely predicting p(y⋆
t | st).

Let’s think in an information-theoretic way: st+1 acts as an information bottleneck [Shwartz-Ziv
and Tishby, 2017], by abstracting different possible proofsteps or sequences of proofsteps yt into a
single, more compact representation. Consider a simplified example below:

-- goal st = 3 * (2 + 1) = 9
-- goal st+1 = 9 = 9

There exist multiple different proofsteps to reach st+1 from st, for instance:

• ring – algebraic normalization.
• norm num – direct numeric evaluation.
• simp; rfl – simplification followed by reflexivity.
• calc · · · (omitted) – step-by-step calculation.

It is important that in this way, st+1 could generalize beyond our current setting (i.e., the next formal
goal in Lean4). Essentially, it can be any abstraction of the formal proofsteps, for example:

• A high-level thought expressed in informal natural language.
• A discrete code representing a proof strategy.
• A latent vector in a learned numeric representation space.

Intuitively, the abstraction brought by s⋆t+1 helps capture essential proof structure and compress away
irrelevant details, which can also be considered as a way to reduce estimation errors [Jiang, 2018].

Information never hurts [Cover, 1999] – there is H(y⋆
t | st, s⋆t+1) ≤ H(y⋆

t | st), i.e., knowing s⋆t+1
helps reduces uncertainty about y⋆

t , providing a more focused direction for action search. In the
theorem-proving scenario, one may assume a lower bound on this additional knowledge. We now
present preliminary theoretical conjectures as follows.
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B.2 Generalization Guarantee for Goal-Driven Policy Co-Training

Assumption 1 The conditional mutual information between the optimal action y⋆ and the optimal
target goal s⋆, given the current state s, is bounded by a constant γI > 0:

I(y⋆; s⋆|s) ≥ γI . (2)

Assumption 2 Let p⋆(s, s⋆,y⋆) be the true joint distribution over triplets {(si,y⋆
i , s

′
i)}Ni=1. Let

pθc(y
⋆ | s) and pθco(y

⋆ | s) be the learned distributions for the classical and the co-training
approach from minimizing the empirical loss Lc(θ) of classical method and Lco(θ) in Eq. 1. We
assume:

1. The hypothesis classes Θc and Θco have VC dimensions dc and dco, and are such that:

Lc(ϑ
∗
c) ≤ inf

θ∈Θc

Lc(θ) +O

(√
dc + log(1/δ)

N

)
,

Lco(ϑ
∗
co) ≤ inf

θ∈Θco

Lco(θ) +O

(√
dco + log(1/δ)

N

)
,

with probability at least 1 − δ over the choice of the training set, where ϑ∗c =
argminθ∈Θc

Lc(θ) and ϑ∗co = argminθ∈Θco
Lco(θ).

2. The number of training examples N is sufficiently large such that N ≥ 32(dco+log(1/δ))
γI

.

Conjecture 1 (Loss Decomposition with Information Gain) Let Lco(ϑ
∗
co) be the optimal co-

training loss and Lc(ϑ
∗
c) be the optimal classical loss. Suppose the conditional mutual information

satisfies I(y⋆; s⋆ | s) ≥ γI for some constant γI > 0. Then, there exists a constant C > 0 such that:

Lco(ϑ
∗
co) ≤ Lc(ϑ

∗
c) + CγI .

Conjecture 2 (Co-Training Advantage) By Assumption 1 and 2, with probability at least 1− 2δ
over the choice of the training set, the following inequality holds:

Ep⋆(s) [∥p⋆(y⋆ | s)− pθc
(y⋆ | s)∥TV] ≥ Ep⋆(s) [∥p⋆(y⋆ | s)− pθco

(y⋆ | s)∥TV] + |f(CγI)|,

where f(·) is assumed to be monotonic.

B.3 Efficiency Guarantee for Goal-Driven Hierarchical Planning

In our hierarchical approach for theorem proving, we introduce a target goal space S̃ = S. At step
t, given the current state st, we first search for target goals given the current goal; next, conditional
on the chosen target goals, we search for tactics, and apply the chosen tactic to transit to new states;
the process repeats until termination. In contrast, the classical single-level planning approach only
samples low-level tactics without any high-level guidance; we refer to this as the flat planning:

• (Classical) Flat planning: we have a policy πf : S → A that maps states to actions.
• (RiR) Hierarchical planning: we have:

– A high-level planner policy πh : S → S̃ , that maps goals to target goals.

– A low-level actor policy πl : S × S̃ → A , that maps goals and target goals to actions.

The simple intuition is that the introduction of the goal state creates a partitioning over the raw action
space, reducing the search space and making the search more efficient.

Conjecture 3 (Hierarchical Planning Advantage) Consider a hierarchical planning approach
with a high-level policy πh and a low-level policy πl, and a flat planning approach with a pol-
icy πf . Let Nh(ϵ) and Nf (ϵ) be the number of node expansions required by the hierarchical and flat
planning approaches to find an ϵ-optimal solution w.p. at least 1− δ. Under mild assumptions, there
exist constants c1, c2, γ > 0 such that:
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E [Nh(ϵ)] ≤ c1e
−I(A;S̃|S) · log

(
1

δ

)
· (E [Nf (ϵ)])

γ
+ c2 · ψ(ϵh, ϵl), (3)

where γI is the conditional mutual information between the optimal action and the optimal target goal,
and ϵh and ϵl are the ϵ-optimality gaps of the learned high-level and low-level policies, respectively.

In essence, RiR is helpful when target goals effectively decompose the problem into smaller subprob-
lems while preserving the essential information about the optimal solution. Intuitively, if the target
goals selected by the high-level policy provide useful information towards the optimal actions, the
low-level policy can focus on a smaller set of relevant actions, leading to more efficient search.

C Related Works

Reasoning with language models. In language modeling, reasoning typically refers to generating
intermediate steps within the language space to reach a final solution to a problem [Wei et al., 2022].
Solving complex or novel reasoning problems remains as an open challenge. One promising direction
is reasoning by searching, e.g., expanding the reasoning space by tree search for intermediate
steps [Yao et al., 2024, Feng et al., 2023, Liu et al., 2023a, Yuan et al., 2024]. Another research
direction is reasoning by decomposition, i.e., generating higher-level goals that trigger a single or a
sequence of lower-level steps [Zhou et al., 2022, Liu et al., 2023b, Zheng et al., 2023, Liang et al.,
2024, Dalal et al., 2024, Huang et al., 2022, Hu et al., 2024]. The most similar line of literature to
ours is subgoal search [Wilkins, 1980, Czechowski et al., 2021, Zawalski et al., 2022, Parascandolo
et al., 2020, Paul et al., 2019], while we put specific focus on the theorem proving benchmarks, and
present initial theoretical conjectures, and formally unifies search and decomposing in a hierarchical
framework for large language model training and inference.

Automatic Theorem Proving with language models. As a representative reasoning task, automatic
theorem proving (ATP) is often characterized as a tree search problem, i.e., constructing a (tactic-
based) proof tree and traversing it to find the correct proof [Li et al., 2024]. In the context of language
modeling, proofstep generation forms the edges of the proof tree; the common standard in prior works
is to generate single proof steps with the input format similar to [GOAL]${goal}[PROOFSTEP],
i.e., conditional on the current goal, generating the next tactic [Polu and Sutskever, 2020, Yang et al.,
2023, Azerbayev et al., 2023, Lample et al., 2022]. For the proof search stage, while people have been
using simple heuristics like breadth-first search [Bansal et al., 2019], or MCTS-like search guided by
learned value functions [Lample et al., 2022, Polu et al., 2022], designing better search algorithms
remains an active area [Li et al., 2024]. The key challenge is that the tactic-based proof space is
combinatorially large. Distinguished from prior works , RiR introduces the goal-driven co-training
for proofstep generation with a bi-level search framework for generalization and efficiency advantage.

Hierarchical and goal-conditioned RL. Planning and learning is hard when the decision-making
space scales up [Bakker et al., 2004]. Hierarhical RL intends to address this issue by learning a
hierarchy of policies operating on different levels of abstraction (e.g., subgoals over the state space).
This mitigates the scaling issues by improving exploration for the environment [Ghosh et al., 2020,
Chitnis et al., 2022, Kumar et al., 2023, Silver et al., 2023, Le et al., 2018]. There is another line of
research termed as goal-conditioned RL [Ghosh et al., 2019, Wang et al., 2023, Ghugare et al., 2024],
which trains offline RL policy in a supervised manner conditioning on goal or return. Unlike most
prior works that rely on a predefined goal structure, we train models to learn to generate goals in the
language space, and refine the goal planning via low-level tree search and joint update.

D A Practical Implementation of RiR with Best-First Search

Here, we propose a bi-level best-first search algorithm which maintains a priority queue of trajectories,
where the priority of a trajectory is determined by its joint negative log-likelihood, defined as:

− log p(τ) = −
t∑

i=1

log p(yi+1, s
⋆
i+1|si) = −

t∑
i=1

(
log p(s⋆i |si−1) + log p(yi+1|s⋆i+1, si)

)
.

At each iteration, the algorithm pops the highest-priority trajectory. It performs high-level search to
sample target goals, and low-level search to sample tactics conditioned on both the target and the
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current goal. By prioritizing trajectories with policy heuristics, RiR efficiently explores the most
promising reasoning paths, using the learned model to guide both goal planning and tactic generation.

Algorithm 2 RiR – Best-First Search
Input: problem statement q, a language model with parameter θ

1: Q ← QUEUE(q)
2: whileQ ≠ ∅ and not BUDGETEXHAUSTED() do
3: τ = (s0, (ŝ

⋆
1, ŷ1), . . . , st−1, (ŝ

⋆
t , ŷt), st)← Q.POP()

4: if st is PROOFFINISHED then return τ
5: end if

6: Gt ← SAMPLETARGETGOALS(st,θ) ▷ /⋆ high-level search ⋆/

7: for ŝ
⋆(i)
t ∈ Gt do

8: Y(i)
t ← SAMPLETACTICS(ŝ

⋆(i)
t+1, st,θ) ▷ /⋆ low-level search ⋆/

9: for ŷ
(i,j)
t+1 ∈ Y

(i)
t do

10: s
(i,j)
t+1 ← APPLYTACTIC(ŷ

(i,j)
t+1 , st)

11: τ ′ ← (s0, (ŝ
⋆
1, ŷ1), . . . , st, (ŝ

⋆
t+1, ŷt+1), s

(i,j)
t+1 )

12: Q.PUSH(τ ′,− log p(τ ′)) ▷ /⋆ joint update ⋆/
13: end for
14: end for

15: end while
16: return FAILURE

Note that the Best-First Search here can be easily switched to other search algorithms, e.g., Monte
Carlo Tree Search [Coulom, 2006] or scalable RL finetuning [Fickinger et al., 2021], which we
encourage the community to explore in more depth.

E Limitations and Future Steps

While we have shown the effectiveness of RiR on neural theorem proving benchmarks, there are
a lot more to be built upon our framework. Future directions may include: (i) incorporating dedi-
cated reward models in the planning phase (rather than using the likehood heuristics); (ii) adding
post-training during planning using techniques like contrastive preference learning [Hejna et al.,
2023], to further tune the model with pairs of successful and failed reasoning trajectories for self-
improvement [Hosseini et al., 2024]; (iii) integrating language feedback [Cheng et al., 2023], contex-
tual information [Welleck and Saha, 2023], and other broader goals for co-training and planning; (v)
investigating in-context learning alternatives for co-traning to apply RiR in black-box models; (vii)
adding goal rollout and lookahead to further improve RiR’s performance and efficiency.

F Detailed Experimental Results and Logs

We are open-sourcing all our codes, training scripts, evaluation logs, and checkpoints at this link:

• github.com/ziyu-deep/reasoning-in-reasoning.

For evaluation on LeanDojo, we use:

• Repository: https://github.com/leanprover-community/mathlib4.
• Commit: fe4454af900584467d21f4fd4fe951d29d9332a7.

For evaluation on miniF2F, we use:

• Repository: https://github.com/yangky11/miniF2F-lean4.
• Commit: 9e445f5435407f014b88b44a98436d50dd7abd00.

11

https://github.com/ZIYU-DEEP/Reasoning-in-Reasoning
https://github.com/leanprover-community/mathlib4
https://github.com/leanprover-community/mathlib4/commit/fe4454af900584467d21f4fd4fe951d29d9332a7
https://github.com/yangky11/miniF2F-lean4
https://github.com/yangky11/miniF2F-lean4/commit/9e445f5435407f014b88b44a98436d50dd7abd00


We hereby present some example proofs from logs, showing how RiR succeeded with significantly
fewer nodes to search. More examples can be found in our released repository.

Example 0: Proof Found by RiR

Theorem:
File Path: Mathlib/Order/ConditionallyCompleteLattice/Basic.lean
Full Name: OrderIso.map_ciSup

Status: Status.PROVED

Proof:
simp [iSup, hf]
rw [e.map_csSup']
swap
assumption'
apply Set.range_nonempty
rw [← Set.range_comp]
rfl

Search Statistics:
Planner Time: 150.2634212092962
Actor Time: 315.0649007729953
Environment Time: 38.92193151102401
Total Time: 505.9431369260419
Total Nodes: 2207
Searched Nodes: 37

Example 0: Failure by Reprover (w/o retrieval)

Theorem:
File Path: Mathlib/Order/ConditionallyCompleteLattice/Basic.lean
Full Name: OrderIso.map_ciSup

Status: Status.OPEN

Proof: None

Search Statistics:
Actor Time: 512.3867035790754
Environment Time: 89.58101247090963
Total Time: 602.1384408420126
Total Nodes: 4082
Searched Nodes: 160
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Example 1: Proof Found by RiR

Theorem:
File Path: Mathlib/Data/Finset/Basic.lean
Full Name: Finset.union_subset_left

Status: Status.PROVED

Proof:
exact Finset.Subset.trans (Finset.subset_union_left s t) h

Search Statistics:
Planner Time: 1.3937767379684374
Actor Time: 3.304290219093673
Environment Time: 0.07375576300546527
Total Time: 4.774586059036665
Total Nodes: 7
Searched Nodes: 1

Example 1: Failure by Reprover (w/o retrieval)

Theorem:
File Path: Mathlib/Data/Finset/Basic.lean
Full Name: Finset.union_subset_left

Status: Status.OPEN

Proof: None

Search Statistics:
Actor Time: 491.1531239761098
Environment Time: 110.1171304465338
Total Time: 601.520013278001
Total Nodes: 8914
Searched Nodes: 233
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Example 2: Proof Found by RiR

Theorem:
File Path: Mathlib/Data/Nat/PrimeFin.lean
Full Name: Nat.Prime.primeFactors

Status: Status.PROVED

Proof:
ext
simp [hp.ne_zero]
simp [hp, Nat.dvd_prime hp]
aesop

Search Statistics:
Planner Time: 150.2634212092962
Actor Time: 315.0649007729953
Environment Time: 38.92193151102401
Total Time: 505.9431369260419
Total Nodes: 2207
Searched Nodes: 37

Example 2: Failure by Reprover (w/o retrieval)

Theorem:
File Path: Mathlib/Data/Nat/PrimeFin.lean
Full Name: Nat.Prime.primeFactors

Status: Status.OPEN

Proof: None

Search Statistics:
Actor Time: 474.4240076234564
Environment Time: 127.5987611755263
Total Time: 602.1851601980161
Total Nodes: 4231
Searched Nodes: 133
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Example 3: Proof Found by RiR

Theorem:
File Path: Mathlib/Order/SuccPred/Basic.lean
Full Name: exists_succ_iterate_or

Status: Status.PROVED

Proof:
obtain h | h := le_total a b
exacts [Or.inl (IsSuccArchimedean.exists_succ_iterate_of_le h),
Or.inr (IsSuccArchimedean.exists_succ_iterate_of_le h)]

Search Statistics:
Planner Time: 15.921687303110957
Actor Time: 44.464585242792964
Environment Time: 8.429574175737798
Total Time: 68.86368872597814
Total Nodes: 377
Searched Nodes: 3

Example 3: Failure by Reprover (w/o retrieval)

Theorem:
File Path: Mathlib/Order/SuccPred/Basic.lean
Full Name: exists_succ_iterate_or

Status: Status.OPEN

Proof: None

Search Statistics:
Actor Time: 519.0408471203409
Environment Time: 86.30267171841115
Total Time: 605.4483464460354
Total Nodes: 2819
Searched Nodes: 95
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