
[Re] Graph Edit Networks

Anonymous Author(s)

Affiliation

Address

email

Reproducibility Summary1

Scope of Reproducibility2

The studied paper proposes a novel output layer for graph neural networks (the graph edit network - GEN). The objective3

of this reproduction is to assess the possibility of its re-implementation in the Python programming language and the4

adherence of the provided code to the methodology, described in the source material. Additionally, we rigorously5

evaluate the functions used to create the synthetic data sets, on which the models are evaluated. Finally, we also pay6

attention to the claim that the proposed architecture scales well to larger graphs.7

Methodology8

For most of our work, we were able to use the code, provided in the supplementary repository. We also offer our own9

variations of the experimental setup, with an alternative method of risk estimation. A portion of the report is also10

devoted to a more exhaustive description of the included data generating functions, otherwise not offered original paper.11

Results12

We were able to reproduce GEN’s out-performance of a chosen baseline and its perfect scores on synthetic data sets.13

We also confirm the author’s claims of the sub-quadratic scaling of GEN’s forward passes and deduce that they reported14

the scaling of back-passes too favourably. We conclude our work with scepticism of the chosen experiments’ suitability15

to evaluate the model’s performance and discuss our findings.16

What was easy17

All the provided code has extensive documentation which made the paper’s experiments easy to reproduce. The entire18

code base is readable, modular and adheres to established practices on code readability. The authors also provide some19

unit tests for all of their models and have pre-implemented several useful diagnostic measures.20

What was difficult21

Running some of the provided code on a consumer-grade laptop (as reported in the original work) was prohibitively22

expensive. The lack of transparency about the code base’s runtimes made our work here much more difficult. Another23

time-consuming task was the debugging of a section of author-provided code. We’ve helped the authors identify the24

problem, which has now been resolved.25

Communication with original authors26

The authors were prompt with their responses, welcomed our efforts in reproducing their work and made themselves27

available for any questions. Upon our request, they happily provided additional implementations, not originally available28

in their repository, and offered their counter-arguments to some methodological concerns that we expressed to them.29

Submitted to ML Reproducibility Challenge 2020. Do not distribute.

1 Introduction30

The studied paper proposes a novel output layer for graph neural networks (GNNs), the graph edit network (GEN). This31

layer yields a sequence of graph edits δ . Particularly, the graph edit schema considered in the work is the one initially32

proposed in [SF83], describing notions of node insertions (insx), deletions (delx) and replacements (repli,x), as well33

as edge insertions (einsi,j) and deletions (edeli,j). Note that the subscripts x in node edits refer to the attributes of the34

edited node (in repli,x, the additional subscript i denotes the to-be replaced attributes), and i, j in the edge edits refer35

to the indices of nodes between which the edited edge can be found.36

These finite sequences of edits, also referred to as edit scripts δ̄t = [δ1t , δ
2
t , . . . , δ

n
t], are general enough to describe37

any graph-to-graph transformation and are not only very interpretable for humans, but also computationally efficient.38

Both of these properties establish GENs as a useful tool for work in the domain of graph time series prediction. More39

particularly, GENs perform time series prediction under the Markovian assumption, which states that knowing the40

graph Gt and the mapping function ψt, derived from the edit script δ̄t, is sufficient for predicting the graph found in the41

next step of the time series as42

Gt+1 = ψt(Gt); ψt := δ1t ◦ δ2t ◦ · · · ◦ δnt ; ∀δit ∈ δ̄t,

where the subscript t denotes the time-dependant index in the time series.43

2 Scope of Reproducibility44

The authors of the reproduced work formally prove theorems, stating that finding a mapping ψ between pairs of45

time-adjacent graphs is sufficient for constructing training data for GENs. They propose that their GNN architecture be46

trained to reproduce specific teaching signals for this function ψ, which may be derived from any gathered training47

time series of graphs. This is done by first finding reference pair mappings ψt : Gt → δ̄t(Gt) ≡ Gt → Gt+1 from the48

training series via graph edit distance approximators1, and then computing teaching signals via an algorithm, provided49

in the paper’s supplementary material.50

The authors empirically underpin this corollary by showing that the GEN performs well in a series of graph time-series51

prediction tests. They define several data generating processes (DGPs), from which the GEN attempts to learn the52

user-defined functions ψ, which remain hidden to the algorithm. The tests can be roughly split into three classes, which53

have corresponding experiments in section 4. The explicit conclusions of the experimental subsection of the original54

paper are that the GEN outperforms the selected baselines in all of the observed tasks.55

In our work, we compare the GEN to one of the baselines - the modified version of Variational graph autoencoders56

(VGAE). As in the original work, we observe a modification of the method, suggested by [HHD+19], where the method57

attempts to directly infer the the graph in the next step of the time series. In the other experiments, we interpret claims58

about GEN’s performance on different datasets directly.59

Since the graphs, generated by the author-defined DGPs, are of a completely synthetic nature and very limited in scale,60

the authors also attempt to establish that GENs scale well to real-world networks. In their experimentation, they only61

pay attention to the scaling efficiency of the architecture and not to the quality of the predictions themselves. From the62

described conclusions, we identify the following claims, made in the experimental section of the paper, that we will be63

exploring:64

Claim (i): GENs, trained with either hinge or crossentropy loss, outperform the modified VGAE on all three65

dynamical graph system DGPs.66

Claim (ii): GENs, trained with user defined losses, achieve a perfect accuracy score on both dynamical tree DGPs.67

Claim (iii): The runtime of forward passes of a GEN, trained on the social network dataset (with or without edge68

filtering), scales sub-quadratically as the number of nodes in a graph increases.69

Claim (iv): The runtime of backward passes of a GEN, trained on the social network dataset with edge filtering,70

scales approximately linearly, as the number of nodes in a graph increases.71

1Approximation is used due to the NP-hard nature of the graph edit distance in general, as shown in [BBC+17]. In practice,
exploiting domain knowledge may also lead to sensible mappings ψt. As an example of domain knowledge exploitation, the authors
cite [ZS89].

2

Figure 1: The three cyclical time series yielded by the Edit Cycles DGP.

An additional contribution of our work is the thorough study and description of the synthetic datasets, used to evaluate72

the GENs performance. We pay special attention to this part of the paper, as they were not exhaustively described in73

the original work. This examination helps us shed light on the performance of the GEN in the discussion section and74

evaluate the suitability of the used exprimental approachs. It also provides a more in-depth descriptive resource to other75

researchers in the field, that might find these DGPs useful for their own work.76

3 Methodology77

Throughout our reproduction attempt, we have made great use of the code, provided in a supplementary repository to78

the original paper [bpa21]. To replicate the author’s experimental environment, we try to make the same assumptions79

and hyperparameter choices than those provided either in the original paper, or the documentation of the supplementary80

repository. A fork of this repository with our changes and additions is available at [Git].81

3.1 Model descriptions82

In the first class of experiments, we train 2 GEN models, one using the adapted cross-entropy loss (GEN-XE) and the83

other using the adapted hinge loss (GEN), described in the paper. Both models are parametrized by their input, output84

and hidden dimensionalities, as well as their used nonlinearities. Given the short edit scripts expected in these scenarios,85

no edge filtering is used in these models.86

We also train the Variational Graph autoencoder model, as described in [KW16]. Apart from its input, output and87

hidden dimensionalities, it is also parametrized by the size of its encoding space, the regularization strength β and88

a scaling factor for the noise on the last layer node features σ. It also takes a hyperparametric definition of the used89

nonlinearity.90

The GEN models used in the experiments, governed by the Peano addition and Boolean formulae DGPs, are similar91

to those in the Dynamical graph systems class. The models here, however, use an author-defined loss function, with92

respect to a custom teaching protocol, with only a single predictive step between graphs. Similarly to before, no edge93

filtering is used.94

In the experiments on the social network dataset, we train two variations of the GEN model. The first sets up two binary95

classifiers for each node to decide whether to consider changing outgoing/incoming edges or not. This approach is96

denoted in the results as flexible edge filtering. The second model limits the number of permitted edge edits with a fixed97

upper bound - this is denoted as fixed edge filtering. The models use a simplified single-step teaching protocol, over98

which its loss function is defined. In the protocol, all edits, except for node insertion, are processed as expected. For99

insertion, however, the protocol lets a given node n insert a neighbor n′ when there is at least one edge (n, n’) found in100

Gt+1, where n′ is not a node found in Gt. The authors acknowledge potential shortcomings of this method, but cite the101

desire of using a single-step protocol as the reason for choosing it.102

3.2 Data103

The paper contains three classes of experiments. The first two use user created DGPs, whereas the last one works104

with an external, well established social network. We describe the dataset and DGPs in accordance to the class of105

experiments they correspond to, in the following subsections.106

3

Figure 2: Example time series evolution of a graph, sampled from the Boolean Formulae DGP. The leftmost graph
denotes the logical formula, (x ∨ (y ∧ ¬y)) ∨ x, whereas each evolution corresponds to a logical simplification of the
previous graph.

3.2.1 Dynamical graph systems107

The Dynamical graph systems class of DGPs governs the train and test set generation in Experiments 4.1.1, 4.2.1 and108

4.2.2. The class contains three discrete processes, provided in the supplementary repository in the form of scripts for109

the python programming language. During training/testing time, the time series generator function is called, always110

returning a sequence of graphs based on DGP-specific function arguments.111

The Edit Cycles DGP always yields one of three author specified cyclical time series, the outputs only differing in112

length and the starting time index. The edit script δ̄t between two graphs is always of cardinality |δ̄| ≤ 2 and all possible113

generated graphs consist of between two and four nodes. The cyclical series that the DGP yields are visualized in114

Figure 1.115

The Degree Rules data generating function generates a series of a determined length using the edit rules, described in116

Algorithm 1. The generator function accepts parameters, corresponding to the series length and the number of nodes117

in the initial graph G0. G0’s adjacency matrix is then randomly initialized. Consequentially, given a fixed time series118

length, the returned series is fully dependant on the random initialization of G0, as the rules are deterministic. In the119

examples in section 4.1, as per the author’s source code, the randomization from NumPy’s random.rand is used, and120

all series’ initial graphs G0 start with exactly 8 nodes. We comment on this choice of randomization and provide our121

alternative in Section 4.2.122

The third and final DGP in this class is inspired by Conway’s Game of Life [Gar70]. Similarly to Degree Rules, it123

takes an input graph and applies a graph-to-graph mapping function. This one is specified by Algorithm 2 and is used124

to create a time-series of a specified length. This function is also deterministic. In the resulting graphs, the nodes125

considered alive in the Game of Life rule set are denoted with the feature value xn = 1. In contrast to degree rules,126

Game of Life graphs retain their number of nodes throughout evolution, as the graph will always denote the D ×D127

grid with the neighborhood structure modeling a nodes’ 8-neighborhood, and only the nodes’ alive/dead state will128

change. In each time series, a number of random Game of Life oscilators (randomly chosen between 5 candidates) is129

chosen and made alive. Afterwards, each still dead cell will be made alive with a probability Pr(repl0,1(n)) = p. In130

the experiments in section 4.1, we report results using the parameters p = 0.1, D = 10, and always placing a single131

oscillator on the grid at initialization.132

3.2.2 Tree dynamical systems133

The Tree dynamical systems class of DGPs governs the train and test set generation in Experiments 4.1.2 and 4.2.3. It134

contains two distinct processes. They are distinguished from the DGP class in the previous section because they both135

generate strictly tree-structured graphs, with no loops. Furthermore, they both include more complex node attribute136

encodings in the form of one-hot vectors.137

The initial graph in a series, generated by the Boolean Formulae generator function, corresponds to a random138

Boolean formula. The time series following such a G0 represents gradual simplifications of the formula, ending139

with a logic graph that can not be simplified any longer. An example evolution is given in Figure 2 for the formula140

(x ∨ (y ∧ ¬y)) ∨ x. The initial trees are generated via a stochastic regular tree grammar with a Pr(∧) = Pr(∨) = 0.3141

and Pr(x) = Pr(¬x) = Pr(y) = Pr(¬y) = 0.1. The generator functions also offer a hyperparametric maximal number142

of applied rules p, where the authors use p = 3 in the original experiments.143

4

Algorithm 1 The Gt → Gt+1 mapping for the Degree
rules DGP. The function shareN returns true if the
nodes share at least one neighbor.

Input: Graph Gt, containing nodes n.
1: for each component C ∈ Gt do
2: for each n ∈ C do
3: d← degree(n)
4: if d ≥ 3 then del(n)
5: else if ∃n′ ∈ C : shareN(n, n′) then
6: for each n′ ∈ C : shareN(n, n′) do
7: eins(n, n′)
8: else ins1(n∗), eins(n, n∗)

Algorithm 2 The Gt → Gt+1 mapping for the Game
of Life DGP. The AliveDegree function returns the
number of neighboring nodes n′ with the attribute
xn′ = 1.
Input: Graph Gt, containing nodes n.

1: for each n ∈ Gt do
2: d← AliveDegree(n)
3: if (xn == 1) and (d < 2 or 4 ≤ d) then
4: repl1,0(n)
5: else if (xn == 0) and (d == 3) then
6: repl0,1(n)

144

Graph Cycles Degree Rules Game of Life Boolean Formulae Peano Addition

of unique graphs 9 12346 2100 10788 34353

Table 1: The number of unique graphs that can appear in the time series, sampled from the DGPs in sections 3.2.1 and
3.2.2. as reported by the authors.

The Peano addition DGP models Peano’s recursive definition of addition. The operations are encoded similarly as in145

the Boolean formulae DGP, where both the operands and the arguments are represented as nodes in the dynamical tree146

graph.The initial graph generator function receives an argument, specifying the maximal number n of additions. The147

authors use n = 3 in their experiments. Peano’s addition rules simplify into four edit rules, the edit scripts of which are148

all upper bound as |δ̄| ≤ 3. The node attributes appearing in the set are the 10 digit values, the summation operation149

+(m,n) = m+ n and the successor operation succ(m) = m+ 1.150

The author-reported numbers of possible graphs, appearing in the time series, resultant from the five described DGPs,151

is tabulated in Table 1. Note, however, that not all of these graphs can be sampled as the initial graphs G0 in a given152

series and that the mappings ψ : Gt → Gt+1 are deterministic in all DGPs. Hence, the actual number of unique pairs153

(Gt, Gt+1) is much lower.154

3.2.3 Real-world social network155

For the final class of experiments, the arXiv HEP-Th citation network data set, first described in [LKF05], is used. It156

describes a graph, parsed from the e-print arXiv and covers all mutual citations within a set of 27,700 papers. In it, a157

paper x, that cites paper y is connected with it with an outgoing edge. From this network, the authors parse sub-graphs158

with a rolling window approach - considering only papers published within τ months of a given time point between159

January 1993 to April 2003. The number of nodes naturally grows with τ, so the result is a collection of graphs with160

different orders of node-count magnitude. In the presented experiment, these 1554 discovered sub-graphs of node count161

NG ∈ [100, 2786] are assumed as undirected.162

3.3 Hyperparameters163

For all the GNN-based models in the first two classes of experiments, the authors use two hidden layers with 64 neurons164

each. As far as the architecture specification is concerned, the GENs use summation as the aggregation function and165

concatenation as the merge function. All networks are trained with the Adam optimizer using the learning rate of 10−3.166

The weight decay is set to 10−5 in the graph dynamical systems class of experiments and to 10−3 in the dynamical tree167

class of experiments.168

The results for the VGAE model are reported using β = 10−3, γ = 10−3. The dimensionality of its embedding space169

is always equal to the size of the last hidden layer, so 64. As per the provided code by the authors, all models use the170

sigmoid nonlinearity in the experiment on the Game of Life dataset, whereas we employ ReLU for all other experiments171

on synthetic data.172

5

In the experiments reported in section 4.1, both the training and the testing time series are sampled independently173

from their corresponding DGP, without special assertions of training and testing set discrepancy. All models train on174

30,000 series, whereas the testing results are reported for 10 samples. We comment on the authors’ methods of risk175

estimation and provide alternatives for these parameters in section 4.2. For the experiments on the social network176

dataset, a 3-hidden layer architecture with the tanh nonlinearity, and PyTorch’s default learning rate and weight decay177

are used.178

3.4 Experimental setup and code179

In our experiments, we use the metrics of precision and recall to evaluate the performance on insertion and deletion180

tasks. The experiments done on Tree dynamical systems use the notion of accuracy, which is an indicator function,181

defined at the value 1 when the nodes in the two input graphs match in all their features, and their adjacency matrices are182

identical. The reported accuracy is the average value of these indicator functions across all graph pairs in all time-series183

in the test set.184

The experiments in section 4.1 were run in a loop across an entire class of DGPs, with 5 repetitions being ran for185

each considered model. In the training phase, a time series was independently generated on each epoch using its186

corresponding generator function. As per the original paper, the considered stopping criterion was a rolling 10-epoch187

average stop loss. Upon finishing training, the model was evaluated on time series, generated by the same generator188

functions as during training.189

We recognized this method of risk estimation as potentially problematic, given that there is no special care taken to190

ensure the discrepancy of the tranining and testing sets. It is for this reason that we change the used approach in some191

experiments, reported in section 4.2. In them, we sample our test set of graphs GTest
0 ahead of time, and ensure that at192

each sampled training time series, the function ψ : GTest
0 → GTest

1 , ∀ GTest
0 ∈ T remains hidden from the algorithm.193

3.5 Computational requirements194

All experimentation was done on a desktop machine, running Windows 11, powered by an AMD Ryzen 7 2700X195

processor and 32 GB of RAM. The code was evaluated locally, in an environment, based on Python 3.8. The code base196

provided by the authors is dependant on the NumPy, PyTorch, PyTorch Geometric, Edist [PMH15] and MatPlotLib197

packages.198

One repetition of running all three considered models on all three Graph dynamical systems (together) takes 90 minutes199

on average, with the VGAE taking the bulk of time to train, as the hinge-loss GEN usually hits the stop loss threshold200

and stops training earlier. A single repetition of the experiment on the Peano addition DGP takes approximately 15201

minutes, whereas one over the Boolean formulae experiment takes 1 minute. On average, 60 minutes required to202

compute a full pass over all 12 months on the Social network experiment, for both edit schemas together. Working only203

with the largest graphs, i.e. τ = 12, takes 8 minutes on average.204

4 Experiments205

Our results confirm the authors’ findings from claims (i) - (iii) when considering the results of the strict reproduction.206

We find that the scaling of the backward passes from claim (iv) is not linear, but remains sub-quadratic. However, we207

show that these results are achieved by an architecture that is not able to optimize its loss function successfully.208

Our additional experiments in Subsection 4.2 show that the experimental results are stable for different choices of the209

initial graph G0. The results also stand for more robust method of risk estimation. From these additional experiments,210

we derive important insights about the testing scenarios, presented in Section 5.211

4.1 Experiments reproducing original paper212

4.1.1 Precision/Recall on Dynamical Graph System DGPs213

In this task, we aimed to reproduce the results, stated in Claim (i) in Section 2. For almost all the metrics, we were214

able to reproduce the values originally reported in the paper, with the difference δ := (our results− reported results)215

within a standard deviation of 0. The only major discrepancy we noticed was an increase in mean deletion precision and216

6

Figure 3: The runtime - graph scale dependence in the experiment 4.1.3,
with overlaid fitted loess models. Each facet corresponds to an individual
experiment, and the grey bands denote the 95% confidence interval of the
fit.

Pass

direction

Edge

filtering

Log-log

linear fit slope

Forward
Flexible 1.38± 0.02

Constant 1.31± 0.02

Backward
Flexible 1.30± 0.01

Constant 1.69± 0.10

Table 2: Slopes of log-log linear models
on the Runtime/Graph scale scatter plot.
The uncertainty denotes the standard de-
viation of slopes accross 5 repetitions of
the experiment 4.1.3.

insertion recall for the VGAE model in the edit cycle task, when comparing to the results, reported in the original paper.217

However, both GEN models still outperformed the VGAE, which supports Claim (i).218

4.1.2 Accuracy on Tree dynamical system DGPs219

In this task, we address Claim (ii) from Section 2. In the original paper, the authors reported a 100% accuracy for both220

Tree dynamical system scenarios. While our results returned an accuracy of 0.98± 0.02 in the Boolean Formulae task221

(and a perfect score for Peano addition), we can conclude that these results are convincing enough to support Claim (ii).222

4.1.3 Scaling of GENs on bigger graphs223

This experiment addresss claims (iii) and (iv) from Section 2. In the original paper, the authors claim that GENs were224

able to scale sub-quadratically in their forward passes and approximately linearly in their backward passes, when225

using appropriate edge filtering approaches. Figure 3 shows scatter plots of the runtime-graph scale dependency on a226

log-log scale. Notice, that the runtime duration of the backward passes with constant edge filtering is very unstable,227

when compared to other scenarios. This is likely due to a higher difference in the fraction of considered edges, when228

compared to the flexible filtering approach. The scaling coefficients of the fitted linear models are further tabulated in229

Table 2. These results support Claim (iii) in that the forward passes scale sub-quadratically. However, the lower of the230

two average coefficients for computing the gradient (the flexible approach) is still substantially larger than one. This231

indicates an exponential, albeit sub-quadratic scaling of the backward passes. We conclude that these results do not232

support Claim (iv).233

4.2 Experiments beyond original paper234

4.2.1 Established methods of random graph generation235

It is a common practice in the social network analysis (SNA) community to, when initializing random graphs, use236

specific methods of graph generation. Namely, if we want to make general statements about SNA methods, inferred237

from experiments on random graphs, these should be similar to those that tend to appear in nature. At the very least,238

it is considered a good practice to use established randomization methods, to more easily compare to results in other239

publications. In this experiment, we repeat the methods from experiment 4.1.1 on the Degree rules DGP. However,240

instead of randomly initializing the adjecency matrix, we use two established methods of random graph generation: the241

Erdős–Rényi model [ER59] and the Configuration graph model [New03]. In our experiment, graphs G0 were always242

initialized with 36 nodes in both models. We set the edge creation probability in the Erdős-Renyi model p = 0.5 and243

the degree sequence of the Configuration model follows a random power-law sequence with the exponent γ = 3.244

7

Figure 4: Diagnostic δ-boxplot comparing the ini-
tially reported scores to our results using the al-
ternative risk estimation method and a larger test
set, performed on the Game of Life DGP for the
hinge-loss based GEN.

Figure 5: Distributions of time series lengths, sampled from the
Tree Dynamic Systems DGPs. The facet rows correspond to
the maximal number of operations (3-5).

All metrics on these newly generated random graphs remained in the 0.05-neighborhood of the originally reported245

results. We conclude that the performed experiments are robust to different methods of random graph generation, and246

that the change in graph generation does not disprove Claim (i).247

4.2.2 Alternative methods of risk estimation - Dynamical graph systems248

As established above, no special care is taken to ensure the discrepancy between the training and testing set of time-series249

in the original results. In this experiment, we re-run experiments 4.1.1 and 4.1.2 with our changed method of risk250

assessment, described in Section 3.4. We also raise the cardinality of testing set to 100, attempting to achieve stable251

results. We analyze our results by comparing several repetitions of the new experiment with the reported values. As a252

diagnostic tool, we employed the automatic plotting of δ-boxplots. An example of such a plot - describing the testing253

scenario where the discrepancy between the reported results and our experiments was the largest, is provided in 4.254

Notice that, while our change in the experimental setup did contribute to slightly worse metric scores, these changes are255

still minimal (δ ∈ [−0.1, 0.05] for all observed testing scenarios). Consequentially, we conclude that the experimental256

results are robust for our method of risk estimation. Other diagnostic boxplots are available in the supplementary257

repository [Git]. The insights of Figure 4 should not be interpreted as solely positive, as we discuss in Section 5.258

4.2.3 Alternative methods of risk estimation - Dynamical tree systems259

For the Peano addition and Boolean Formulae DGPs, we attempted to employ a similar sampling restriction for training260

series generation, as described above. During sampling, however, we noticed that our described methodology failed to261

sample a sufficient amount of training examples. Our troubleshooting lead us towards the realization, that these DGPs262

were very prone to generating trees that could not be simplified any further, which meant that no mapping pairs (G0, G1)263

could be generated from such a sample. Our diagnostic results in Figure 5 show the overwhelming majority of samples264

being part of this group, which casts doubt on the claims, made in 1. We evaluated the empirical probability of a unique,265

simplifyable tree G0, being sampled from a DGP. Our results show that the Boolean addition DGP sampled such a tree266

with probability PrBoolean = 0.13± 0.003, while the Peano addition DGP performed at PrPeano = 0.26± 0.002. These267

results are derived over 300,000 DGP samples with uniformly distributed hyperparametric values of maximal permited268

operations p ∈ [3, 5], with 3 repetitions.269

In an attempt to evaluate the performance of the GEN on this family of data, we loosen our restrictions, set in Subsection270

3.4. Instead, we run 5 repetitions of training, with holdout estimation (|Test set| = 100) on the time series, generated by271

the unique graphs G0, described in the previous paragraph. In this setup, the results were not perfect, but remained in272

the ±0.05 standard-deviation-neighborhood of the reported results.273

8

4.2.4 Performance on the social network dataset274

The authors use the social network data set only to evaluate the scaling capabilities of the GEN, but do not offer any275

information on the model’s performance on the set.2 Since the model’s scaling may be dependant on specific model276

parameters (specifically, the used user-defined loss function), we examine if the model is capable of training using277

gradient descent in this experiment. We visualize the loss curves of training the model over 1554 iterations (one pass278

of each available graph in Figure 6, with all hyper parameters similar to the original experiment, and using the Adam279

optimizer. We see that the model, implemented in the scenario, does not optimize its loss function successfully.280

5 Discussion281

Figure 6: The loss curves for training the GEN with the au-
thors’ custom defined loss function. The differently-colored
lines correspond to the values τ , with respect to which the
model’s training set is generated.

Our experimental results conclusively show that most of282

the claims in the original work hold. It is imperative,283

however, to discuss the choice of DGPs on which the284

model was evaluated to achieve these results. Consider,285

for example, the Game of Life DGP, used for evaluat-286

ing the precision and recall of the test set. While at first287

glance, a perfect result on a relatively involved system288

might be impressive, we must recall that node/edge ed-289

its and insertions should never appear in an edit script δ̄290

between two Game of life graphs, as the only changes in291

the systems correspond to replication edits. Consequen-292

tially, the system in the scenario is only asked to output293

without any addition or insertion edits. Since experiment294

4.2.1 showed that this output does not always appear, this295

casts a doubt over the model’s expressive power. Another296

example of a somewhat poor test setup is the Edit Cycles297

DGP, in which the network will always test on transi-298

tions ψ, to which it was already introduce during training,299

given that the series are cyclical and Markovian. Adding to this, it is very likely that, due to the nature of the problem300

they describe, the mappings ψ, inferred from the Peano addition and Degree formulae DGPs, are often seen during301

training. We support this claim with our description of the sampling problems we encountered in Experiment 4.2.2.302

Our experimental results on the arXiv citation network show that the network’s runtimes are subquadratically dependant303

on the number of nodes in the given graph. This partially corroborates the authors’ claims. However, we note that304

these results are achieved by an architecture, that is not able to optimize its loss function correctly. Given that the loss305

cumulative loss increases with τ (as one would expect), we hypothesize that this performance is not a result of a simple306

syntactical error in the author-defined loss function. While this additional insight does not disprove Claim (iii), we note307

that a different, better performing loss function, might.308

We propose that th weakneseses we higlighted here be considered in future work, We believe that a more in-depth and309

practical experimental evaluation of an otherwise elegant and interpretable solution could greatly benefit the machine310

learning community in the years to come.311

5.1 What was easy312

All the provided code has extensive and clear documentation which made the paper’s experiments easy to reproduce. The313

entire code base is readable, very modular, adheres to established practices on code readability, and goes hand-in-hand314

with the nomenclature of the paper. While the presented implementations do require intermediate familiarity with315

common PyTorch constructs, the authors do admirable work in explaining everything else as-they-go, almost always316

without using unnecessary dependencies or needlessly referencing the reader elsewhere. The authors also provide a317

moderate amount of clearly written unit tests for all of their models and have already pre-implemented several diagnostic318

2This concern was also raised to the authors during the paper’s submission and review process by AnonReviewer4. See the section
Weak points in: https://openreview.net/forum?id=dlEJsyHGeaL¬eId=Sg922s85khx

9

measures, such as execution runtime logging, repetition handling and plotting of training curves, which made our work319

a lot easier.320

5.2 What was difficult321

Even with the extensive supplementary material, we believe that it would have been very difficult to reproduce the322

exact implementation of GEN and the presented DGPs by reading the paper alone, as we’ve discovered many important323

details from the supplementary documentation.324

In the paper, the authors state that all experiments were run on a consumer-grade laptop. While this may be the case,325

running some of the provided code is prohibitively time consuming to run on such a machine. For example, we were326

not able to finish a single pairwise distance calculation in a day’s worth of computing time (and have thus not reported327

on the results of that method here) on the kernel-based baseline from [PGH18]. The lack of transparency about the code328

base’s runtimes made our work here much more difficult.329

The original paper also uses a direct implementation of the [HHD+19] as a baseline for experiments, relating to330

Claim (i). This model was not provided in the repository at the beginning of our work. The authors later provided us331

with the implementation, which encountered runtime errors. Even though the model now works, the trouble-shooting332

of this part of the code was especially time-consuming. The author’s repository also lacks a hierarchical structure of333

related items. While the purpose of every file is clearly explained, our reproduction would have been easier with some334

reorganization.335

5.3 Communication with original authors336

We contacted Mr. Paaßen, along with his colleagues to inform them about our efforts to reproduce their work in337

mid-January. He was prompt with his responses, welcomed our work and made himself available for any questions.338

Upon our request, he forwarded the code with which the authors evaluated a baseline, reported in the paper, but not339

available in the repository. Upon our discovering of its aforementioned problems, he was prompt to offer solutions340

and sent us an adapted file in a couple of days. He let us know that the authors plan to update the repository with this341

working file shortly, which we see as an aditional benefit of our effort reproducing this article.342

When asked about their method of risk estimation, the author argued that the combinatorial explosion of possible343

starting states makes it unlikely that GEN just memorizes the training data without generalization. For the case of344

the Edit Cycles dataset, where this obviously has to happen, since there is no underlying ground-truth function ψ, he345

offered the insight that generalization was not the main aim of the inclusion of this dataset. Rather, it was intended to346

test the expresiveness of the edits, as memoriztation alone does not suffice to solve the task of mapping Gt → Gt+1.347

Summing up, we greatly appreciate the authors’ responses and their general attitude towards their work being reproduced348

as a part of this challenge.349

References350

[BBC+17] Sebastien Bougleux, Luc Brun, Vincenzo Carletti, Pasquale Foggia, Benoit Gaüzère, and Mario Vento. Graph edit351

distance as a quadratic assignment problem. Pattern Recognition Letters, 87:38–46, 2017.352

[bpa21] bpaassen. Graph edit networks. https://gitlab.com/bpaassen/graph-edit-networks, 2021. Originally353

provided SHA = 588dffec. SHA w/ fixes, as a result of our work = aeab0e04. Note that the latter SHA reveals author354

name.355

[ER59] P. Erdős and A. Rényi. On random graphs. Publicationes Mathematicae (Debre), 1959.356

[Gar70] Martin Gardner. The fantastic combinations of john conway’s new solitaire game’life. Sc. Am., 223:20–123, 1970.357

[Git] Anonymized supplementary repository for the reproducibility challenge - anonymous github. https://anonymous.358

4open.science/r/reproducibility_challenge-9D55/README.md. (Accessed on 02/02/2022).359

[HHD+19] Ehsan Hajiramezanali, Arman Hasanzadeh, Nick Duffield, Krishna R Narayanan, Mingyuan Zhou, and Xiaoning Qian.360

Variational graph recurrent neural networks. arXiv preprint arXiv:1908.09710, 2019.361

[KW16] Thomas N Kipf and Max Welling. Variational graph auto-encoders. arXiv preprint arXiv:1611.07308, 2016.362

10

https://gitlab.com/bpaassen/graph-edit-networks
https://anonymous.4open.science/r/reproducibility_challenge-9D55/README.md
https://anonymous.4open.science/r/reproducibility_challenge-9D55/README.md
https://anonymous.4open.science/r/reproducibility_challenge-9D55/README.md

[LKF05] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. Graphs over time: densification laws, shrinking diameters and363

possible explanations. In Proceedings of the eleventh ACM SIGKDD international conference on Knowledge discovery364

in data mining, pages 177–187, 2005.365

[New03] Mark EJ Newman. The structure and function of complex networks. SIAM review, 45(2):167–256, 2003.366

[PGH18] Benjamin Paaßen, Christina Göpfert, and Barbara Hammer. Time series prediction for graphs in kernel and dissimilarity367

spaces. Neural Processing Letters, 48(2):669–689, 2018.368

[PMH15] Benjamin Paaßen, Bassam Mokbel, and Barbara Hammer. A toolbox for adaptive sequence dissimilarity measures for369

intelligent tutoring systems. In Santos et. al., editor, Proceedings of the 8th International Conference on Educational370

Data Mining (EDM 2015), page 632–632. International Educational Datamining Society, 2015.371

[SF83] Alberto Sanfeliu and King-Sun Fu. A distance measure between attributed relational graphs for pattern recognition.372

IEEE transactions on systems, man, and cybernetics, (3):353–362, 1983.373

[ZS89] Kaizhong Zhang and Dennis Shasha. Simple fast algorithms for the editing distance between trees and related problems.374

SIAM journal on computing, 18(6):1245–1262, 1989.375

11

	Introduction
	Scope of Reproducibility
	Methodology
	Model descriptions
	Data
	Dynamical graph systems
	Tree dynamical systems
	Real-world social network

	Hyperparameters
	Experimental setup and code
	Computational requirements

	Experiments
	Experiments reproducing original paper
	Precision/Recall on Dynamical Graph System DGPs
	Accuracy on Tree dynamical system DGPs
	Scaling of GENs on bigger graphs

	Experiments beyond original paper
	Established methods of random graph generation
	Alternative methods of risk estimation - Dynamical graph systems
	Alternative methods of risk estimation - Dynamical tree systems
	Performance on the social network dataset

	Discussion
	What was easy
	What was difficult
	Communication with original authors

