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1 Introduction

The problem of characterizing information measures has puzzled people since the very begin-

ning of information theory. As an example, this intriguing character is expressed in the very

origin of the term ‘entropy’ for Shannon’s measure. In Shannon’s words:

My greatest concern was what to call it. I thought of calling it an ‘information’,

but the word was overly used, so I decided to call it an ‘uncertainty’. When I

discussed it with John von Neumann, he had a better idea. Von Neumann told

me, ‘You should call it entropy, for two reasons. In the first place your uncertainty

function has been used in statistical mechanics under that name, so it already has

a name. In the second place, and more important, nobody knows what entropy

really is, so in a debate you will always have an advantage’.[1] (see also [2], page

35).

This entropic mystery did nothing but grow since the advent of quantum information

theory (QIT) [3], in which von Neumann’s entropy (VNE) plays a significant role (as for

example, in the quantum coding theorem presented in [4, 5]). Of course, von Neumann’s

measure is not ‘alone’: there are many other entropic measures which also play a significant

role in QM and QIT, such as the Tsallis’ [6, 7] and Renỳı’s [8] entropies, and even more general
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ones [9, 10, 11]. This fact led to an important debate about which is the correct information

measure for the quantal realm (see for example [12] and [13]). Many studies attempted to

characterize Shannon’s entropy first [14, 15, 16, 17], but also von Neumann’s [18]. In this

article, we offer a novel perspective which considers VNE as the natural information measure

for a non-Boolean probability calculus.

Classical information theory (CIT) relies on the notion of probability: as stressed by

Shannon, the probabilistic aspect of the source is at the basis of his seminal work [19]. It

is widely accepted that classical probability theory can be axiomatized using Kolmogorov’s

postulates [20]. But it turns out that there exists another approach to classical probability,

namely, that of R. T. Cox [21, 22]. In Cox’ approach, probabilities are considered as an

inference calculus on a Boolean algebra of propositions: a rational agent, intending to make

inferences using classical logic (wherefrom the Boolean structure emerges), must compute

the plausibility of certain events to occur. It turns out that the only measure of plausibility

compatible with the algebraic symmetries of the Boolean algebra of propositions is —up

to rescaling— equivalent to Kolmogorov’s probability theory [23, 24, 25]. In this way, the

plausibility calculus is considered as a direct extension of classical deduction theory to an

inference theory: the extension of rationality applied to the calculus of plausibility.

In his preliminary works, Cox also conjectured that Shannon’s entropy [21] was the natural

information measure for classical probability distributions. This approach was considerably

developed and improved in [23, 24, 25, 26, 27, 28, 29]. In this way, Shannon’s and Hartley’s

entropies have been characterized as the only entropies that can be used for the purposes

of inquiry, in the sense that other entropies will lead to inconsistencies with the Boolean

character of the lattice of assertions [27].

In [30], we presented a derivation of the axioms of non-commutative probabilities in Quan-

tum Mechanics (QM) by appealing to the non-distributive (non-Boolean) character of the lat-

tice of projections of the Hilbert space (Cf. Appendix A of this work for elementary notions

of lattice theory). This was done by extending Cox’ approach for the orthomodular lattice

of projection operators to i) the quantal case and ii) more general non-Boolean algebras. In

this work we complement the approach by deriving the VNE as the most natural informa-

tion measure in the quantum context. As in [30], we extend our results to more general

(atomic) orthomodular lattices. This is done by exploiting the fact that Cox’ derivation of

Shannon’s entropy can be applied to all possible maximal Boolean subalgebras of an arbi-

trary atomistic orthomodular lattice. Thus, according to our extension of Cox’ approach to

the non-commutative realm, the VNE and Measurement Entropy (ME) [31, 32, 33] arise as

the most natural information measures.

The results presented in this work pave the way for a new way of conceiving information

theory. While classical probabilities give rise to Shannon’s theory, and thus, lead to CIT,

non-Boolean probabilities give rise to VNE and QIT. Thus, QIT could be conceived as a non-

Boolean generalization of CIT. This opens the door to a new way of exploring physical theories

from the informational point of view, due to the fact that probabilistic theories more general

than the ones appearing in classical and (standard) quantum mechanics can be conceived.

Indeed, during the 30’s von Neumann developed a theory of rings of operators [34] (today

known as von Neumann algebras [35, 36]), and subsequently, in a joint work with Murray, they

provided a classification of factors [37, 38, 39, 40]. While quantum systems of finite degrees of
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freedom (as is the case for example, in standard non-relativistic QM), can be described using

Type I factors, more general Factors are needed for more general theories: it can be shown

that Type III Factors must be used in relativistic quantum field theory, and Type II factors

may appear in quantum statistical mechanics of infinite systems [41, 35]. Thus, it is expected

that theories to be yet developed, such as a quantum theory of gravity, may very likely imply

the use of more general probabilistic models (perhaps not contained in the above examples).

The more generalaframework for studying probabilistic models up to now is provided by

the Convex Operational Models (COM) approach [44, 45]. In a general probabilistic model,

the probabilities will not be necessarily Kolmogorovian (as is the case for the probabilities

appearing in Type I, II and III factors). Thus, we envisage the development of a non-

Kolmogorovian (or generalized) information theory. A clear example of the fact that such an

entity does exists can be found in studies focusing on the validity of informational notions

such as [31, 46, 32, 47] (cf. [45] for more references on the subject). In this work, we

show that CIT and QIT are just particular cases of this approach; the first would be the

Boolean case, and the second, the one represented by the Type I factors of the Murray-von

Neumann classification theory, i.e., as the algebras of bounded operators acting on separable

Hilbert spaces. In this context, it is pertinent to mention that quantum algorithms where

shown to exploit the non-Boolean character of the lattice of projection operators in quantum

mechanics [48]. The generalization of the Bayesian Cox’ approach presented here (and in

[30]), provides a unifying formal framework for dealing with possible physical theories. It

also provides a possible interpretation of VNE and ME as natural measures of information

for non-commutative event structures. In other words, as a natural information measure for

theories exhibiting a highly contextual character, like standard quantum mechanics [49, 50].

Before concluding this Introduction, we remark that an important advantage of extending

the Cox’ approach to non-Boolean settings is that it offers a novel argument in favor of the use

of the logarithmic functional form appearing in the VNE and the ME. As we have remarked

above, there is a debate around the question of why using the VNE instead of more general

quantum information measures (such as the quantum versions of Rényi and Tsallis entropies)

in the quantum realm. Moreover, while the ME was introduced in References [31], [32] and

[33], no conceptual argument is presented there in favor of using that functional form instead

of more general ones (apart from observing that it possesses some of the ‘desired properties’

shared by Shannon’s measure and the VNE). In fact, in Section 4.3 of reference [31], a Rényi

functional variant of the ME is considered as another possible alternative for the purpose of

studying quantum key encryption protocols. In other words, previous approaches do not focus

in giving reasons for singularizing the VNE and the ME amongst other possibly useful choices.

In this paper we show that in the framework of a rational agent looking for a measure of the

questions unanswered by a particular probability assignment in a contextual probabilistic

model, the VNE and more generally, the ME, appear as the most rational choices. From this

‘contextual rational agent ’ perspective, the functional forms appearing in the VNE and the

ME can be considered as the most reasonable choices compatible with the algebraic structure

of a contextual inquiry calculus. Notice that this approach also allows for a very intuitive

interpretation of the VNE and the ME, which was not present in previous works.

aFor the case of negative probabilities, see for example [42, 43].
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The paper is organized as follows. In Section 2 we start by reviewing classical probability

theory (in the approaches of Kolmogorov and Cox) and probabilities appearing in QM, em-

phasizing the differences with the classical case. In Section 3 we present a digression on Cox’

[22] and more recent [25] derivations of Shannon’s entropy as natural information measures

for Boolean algebras. Next, in Section 4, we show how VNE arises as a natural measure of

information for the Hilbertian projection lattice. In Section 5, we discuss generalized proba-

bilistic models and ME. Finally, in Section 6 we draw some conclusions. Elementary notions

of lattice theory can be found in Appendix A.

2 Axioms For Probability Theory

2.1 Kolmogorov’s axiomatization of classical probability

Let Σ represent a sigma-algebra of subsets of a given outcome set. To fix ideas, consider the

example of a dice. For this case, the outcome set Ω = {1, 2, 3, 4, 5, 6} is the set of all possible

results, and Σ = P(Ω) is the set of all possible subsets of Ω; each element of Σ represents a

possible event (for example, the event “the result is even”, is represented by the set {2, 4, 6}

and so on). Kolmogorov’s axioms can be presented in the form of conditions on a measure µ

over Σ as follows [20]:

µ : Σ → [0, 1]

which satisfies

µ(∅) = 0

µ(Ac) = 1− µ(A), (1)

where (. . .)c stands for the set-theoretical complement.

For any pairwise disjoint denumerable family{Ai}i∈I ,

µ(
⋃

i∈I Ai) =
∑

i µ(Ai).

With this minimal axiomatic basis the whole building of classical probability theory can

be erected.

A random variable is defined as a function X : Σ −→ R that assigns real values to the

elements of Σ. Random variables are intended to describe properties of the system under study

that depend on the different possible outcomes that may result from a given experiment. A

random variable may be discrete if its set of possible values is countable, or continuous if

there exists a continuous function which determines its probability distribution according to

P (X ⊆ B) =

∫
B

f(x) dx (2)

Although not necessarily, the formalization of probability given by Kolmogorov’s axioms

is usually associated with an objectivist (of frequentist) interpretation of probability theory, in

which probabilities represent a property of the system under study, and are therefore capable

of being subject to experimental test.
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2.2 Cox’ approach to classical probability

Alternatively, in Cox’ approach probabilities are interpreted in a subjective manner: they do

not represent properties of physical systems, but rather they are related to the information

one possesses about them. The aim of Cox was to establish probability theory as a form

of induction arising as an extension of classical logic to situations of incomplete knowledge.

As it will be shown, by doing so, Cox arrives at the same results as the ones obtained from

Kolmogorov’s axioms. However, these two approaches significantly differ at the conceptual

level. In this section, although we will follow Cox’ original deductions (presented in [21, 22]),

for the sake of clarity, we will somewhat change Cox’ notation. In [51] and [52], a more

detailed discussion on Cox’ work, together with implications and criticisms, can be found.

Let us call P the set of propositions that a rational agent uses to describe a system under study

and “¬”, “∨” and “∧”, the logical negation, disjunction, and conjunction, respectively. Cox

starts by postulating the existence of a function ϕh : P −→ R that represents the plausibility

of the propositions in P on the basis of a special knowledge possessed by the agent. Such

knowledge is that of a proposition, called h (usually called hypothesis), that i) happens to be

true and ii) satisfies:

• ∀a ∈ P, ϕh(¬a) = f(ϕh(a)), for some function f : P −→ R.

• ∀a, b ∈ P, ϕh(a ∨ b) = g[ϕh(a), ϕh(b)], for some function g : P×P −→ R.

It is now possible to derive the calculus of probabilities by imposing on this structure the

symmetries of a Boolean algebra b. On such a basis one arrives at results analogous to the

ones obtained from Kolmogorov’s axioms.

By imposing coherence of the function ϕh(·) with the associativity of conjunction (a∧ (b∧

c) = (a ∧ b) ∧ c)), Cox showed that the function g(x, y) must satisfy the functional equation

g[x, g(y, z)] = g[g(x, y), z] (3)

Using the theory developed in [15], it can be shown that after a re-scaling and a proper

definition of the probability P (a|h) in terms of ϕh(a), this equation’s solutions lead to the

product rule of probability theory

P (a ∧ b|h) = CP (a|h ∧ b)P (b|h) (4)

where C is a constant. The definition of P (a|h) in terms of ϕ(a|h) is omitted, as in actual

computations one ends up using only the function P (a|h) and never ϕ(a|h). On the other

hand, imposing coherence with i) the law of double negation (¬¬a = a) and ii) Morgan’s law

for disjunction (¬(a ∨ b) = ¬a ∧ ¬b), Cox arrives to a functional equation for f(·) which has

solutions in terms of P (a|h) given (up to re-scaling) by

P (a|h)r + P (¬a|h)r = 1 (5)

bBy classical logic one refers to the propositional calculus endowed with the operations “¬”, “∨” and “∧”. It
is widely known that the algebraic structures corresponding to this propositional calculus are closely related
to Boolean algebras.
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This seemingly arbitrary choice of value for the constant r can be avoided via re-scaling

probability to absorb the r exponent. That is to say, it can be avoided by defining probability

as P ′(a|h) ≡ P r(a|h) instead of P (a|h). Cox decides to take r = 1 and thus he obtains the

usual rule for computing the probabilities of complementary outcomes. Finally, using results

(4) and (5), and imposing coherence with i) the law of double negation and ii) Morgan’s law

for conjunction (¬(a ∧ b) = ¬a ∨ ¬b), Cox deduces the sum rule of probability theory:

P (a ∨ b|h) = P (a|h) + P (b|h)− P (a ∧ b|h) (6)

It can be easily shown from equations (4) and (6) that, if normalized to 1, P (a|h) satisfies all

the properties of a Kolmogorovian probability (equations 1).

2.3 Axioms for probabilities in quantum mechanics

In [53] R. P. Feynman defines probabilities as follows:

I should say, that in spite of the implication of the title of this talk the concept of

probability is not altered in quantum mechanics. When I say the probability of a

certain outcome of an experiment is p, I mean the conventional thing, that is, if

the experiment one expects that the fraction of those which give the outcome in

question is roughly p. I will not be at all concerned with analyzing or defining this

concept in more detail, for no departure of the concept used in classical statistics

is required.

What is changed, and changed radically, is the method of calculating probabilities.

Feynman asserts that while the concept of probability is not altered in QM, the method

of calculating probabilities changes radically. What does this mean? In order to clarify, let

us write down things in a more technical way. To begin with, a general state in QM can be

represented by a density operator, i.e., a trace class positive hermitian operator of trace one

[54, 55]. Let P(H) be the orthomodular lattice of projection operators of a Hilbert space

H (cf. App. A). Due to the spectral theorem, every physical event (i.e., the outcome of

any conceivable experiment), can be represented as a projection operator in P(H). If P is

a projection representing an event and the state of the system is represented by the density

operator ρ, then, the probability pρ(P ) that the event P occurs is given by the formula

pρ(P ) = tr(ρP ) (7)

which is known as Born’s rule [55]. Given an event P and state ρ, if the experiment is repeated

many times, Born’s rule assigns a number which coincides with the fraction mentioned in

Feynman’s quotation. Gleason’s theorem [56] ensures that density operators are in bijective

correspondence with measures s of the form

s : P(H) → [0, 1]

such that

s(0) = 0 (0 is the null subspace).

s(P⊥) = 1− s(P ), (8)
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and, for a denumerable

and pairwise orthogonal family of projections Pj

s(
∑

j Pj) =
∑

j s(Pj).

Thus, given a state ρ, a measure sρ satisfying Eqns. 8 is uniquely determined in such a way

that, for each outcome of each experiment represented by a projection operator P , it coincides

with the probability defined in Feynman’s quotation. In this way, probabilities appearing in

QM (which are governed by the density matrix and the Born’s rule), can be axiomatized using

Eqs. 8. How is all of this related with the above Feynman’s quotation? What is the technical

meaning of the radical difference mentioned by Feynman? While Eqs. 8 may look unfamiliar,

it is instructive to consider a quantum probability distribution, such as s, as a collection of

classical probability distributions. Let us make some important definitions in order to see

how this works. Let E := {Pi}i∈N be a collection of projections such that
∨

i Pi = 1H and

Pi⊥Pj = 0 whenever i 6= j. We call E an experiment. The intuitive idea of an experiment

refers to the set of events defined by a concrete experimental setup. Each one of these events

is in a bijective correspondence with a possible measurement outcome. Thus, the E’s can be

regarded as part of an outcome set ΩE . As an example, measuring the spin of a particle in

a definite direction defines an experiment. To measure it in another direction, defines a new

experiment incompatible with the first one. Notice that any experiment defines a maximal

Boolean subalgebra of P(H), which is isomorphic to P(ΩE). The state of the system defines

a classical probability distribution on this Boolean subalgebra, satisfying Eqs. 1.

We call an orthonormal complete set of projectors of the form {|ϕi〉〈ϕi|}i∈N in H (where

the |ϕi〉 are unit vectors) a frame. Notice that any frame is also an experiment. In a sense, a

frame represents a maximal experiment on the system, in the sense that it cannot be refined

by any finer measurement (cfr. [57], Chapter 2). We call FH to the set of all possible frames

in H. Frames are irreducible experiments, in the sense that no outcome is degenerate.

Each experiment E defines a maximal Boolean subalgebra BE ⊂ P(H) c. Again, if we

restrict the state ρ to BE , we obtain a measure ρBE
on BE satisfying Kolmogorov’s probability

theory (defined by Eqns. 1).

Indeed, if we restrict to frames, for each orthonormal basis {|φi〉}i∈N of H representing

a particular irreducible experiment, the state ρ assigns to it a classical probability distribu-

tion represented by the vector (p|φ1〉, p|φ2〉, . . .), where p|φi〉 = tr(ρ|φi〉〈φi|). Indeed, the set

{|φi〉〈φi|}i∈N generates a maximal Boolean algebra, and measure sρ defines a classical prob-

ability measure on it just as in 1. Thus, the quantum probabilities originated in a given state

can be considered as a (non-denumerable) family

{(p|φ1〉, p|φ2〉, p|φ3〉, . . . . . .)}

{(p|φ′

1
〉, p|φ′

2
〉, p|φ′

3
〉, . . . . . .)}

{(p|φ′′

1
〉, p|φ′′

2
〉, p|φ′′

3
〉, . . . . . .)}

...

...
cThe construction of BE is trivial: it is indeed the smallest Boolean subalgebra of P(H) containing E.
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(9)

where |φi〉, |φ
′
i〉, etc., ranges over all possible orthonormal basis of H.

Thus, a quantum state can be seen as a collection of classical probability distributions

ranging over each possible experiment. Since in QM different experiments can be incom-

patible (i.e., some of them cannot be simultaneously performed), a quantum state does not

determine a single classical probability distribution: due to Gleason’s theorem, this fact is

correctly axiomatized by Eqs. 8. We thus see how the meaning of the expression “radically

changed” in Feynman’s quote can be expressed in a clear technical (but also conceptual)

sense. In classical probability theory the rational agent is confronted with an event struc-

ture represented by a single Boolean algebra (only one context). This is the content of Cox’

approach to probability theory d: the Boolean structure of propositions representing classical

events determine the possible measures of degrees of belief. In other words, if the agent wants

to avoid inconsistencies, he must compute probabilities according to rules compatible with

the Boolean structure of classical logic.

In the quantum realm, due to the existence of complementary contexts, a single Boolean

algebra is no longer sufficient to cogently (and fully) describe physical phenomena, and thus,

the orthomodular structure of P(H) emerges. This is the case for more general theories as

well, such as algebraic relativistic quantum field theory or quantum mechanics with infinitely

many degrees of freedom, and this involves the use of more general algebraic structures (more

on this in the next Section). Notice that these considerations do not imply that classical

logic should be abandoned; quite on the contrary, the experimenter is always confronted with

concrete experiments for which a Boolean algebra is perfectly defined. But no a priori principle

grants that the complete description of all possible phenomena will be exhausted within a

single Boolean context. Here we encounter the radical difference in computing probabilities

that quantum mechanics forces on us: non-Boolean event structures do appear in nature, and

in this case, new rules for computing probabilities must be invoked. In [30] Cox’ construction

is generalized by showing that when the experimenter is confronted with events represented

by a non-Boolean algebra such as P(H), the plausibility measures must obey Eqns. 8 in order

to avoid inconsistencies.

2.4 General case

Measures in lattices more general than the sigma-algebra of the classical case and P(H) can

be constructed [35, 36]. They can be axiomatized as conditions on a measure s as follows:

s : L → [0; 1],

(L standing for the lattice of all events)

such that

s(0) = 0.

s(E⊥) = 1− s(E), (10)

and, for a denumerable and pairwise orthogonal family of eventsEj

s(
∑

j Ej) =
∑

j s(Ej).

dIt is also the content of other similar approaches as well, such as the ones presented in Section II of [58]
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See [61] regarding the conditions for the existence of such measures. Eqs. 1 and 8 are just

particular cases of this general approach. There do exist concrete examples of measures on

lattices, coming from Type II and Type III factors, which do not reduce to 1 and 8 [35, 41].

Define an experiment as a set of propositions A := {ai}i∈N , such that ai ⊥ aj for i 6= j and∨
i ai = 1. Call E to the set of all possible experiments. A frame in L will be an orthogonal

set {ai}i∈N of atoms such that
∨

i ai = 1. Notice that frames are also experiments here.

3 Cox’ Approach and Information Measures

Given an event structure (i.e, a set of propositions referring to events) represented by an

atomic Boolean lattice B, Cox defines a question as the set of assertions that answer it. If a

proposition x ∈ B answers question Q (notice that according to Cox’ definition this means

x ∈ Q), and if y implies x (or in lattice theoretical notation: y ≤ x), then, y should also

answer Q (and thus, y ∈ Q). Any set of propositions in B with this property will be called

a down-set (see [25]). Thus, any question Q in the set of questions Q(B) defined by B is a

down-set. Q(B) forms a lattice with set theoretical inclusion as partial order, intersection as

conjunction and set union as disjunction. Notwithstanding, Q(B) will fail to be Boolean, due

to the failure of orthocomplementation.

Following [59], define an ideal I of a lattice L as a non-empty subset satisfying the following

conditions

• If x ≤ y and y ∈ I, then x ∈ I.

• If x, y ∈ I, then x ∨ y ∈ I.

Thus, any ideal is also a down-set. Given an element a ∈ L, a set of the form I(a) = {x ∈

L | x ≤ a} is an ideal, and it is called a principal ideal of L. An important theorem due to

Birkhoff [59] asserts that the set L̂ of all ideals forms a lattice and the set L̂p of all principal

ideals forms a sublattice, which is isomorphic to L [59] (and we denote this fact by L̂p ∼ L).

For an arbitrary atomic Boolean algebra B, any a ∈ B can be written in the form a =
∨

i ai,

for some atoms ai
e. We can also form the lattices of ideals B̂ and B̂p, with B̂p ⊆ B̂ and B̂p ∼ B

(as lattices).

We can also form the lattice of questions Q(B) (which will not be necessarily suitably

orthocomplemented). Notice that while each ideal in B belongs to Q(B), not every element in

Q(B) is an ideal (because a system of assertions does not necessarily satisfy the join condition

of the definition of ideal [28]). Thus, in order to stress the difference, let us call Q̂(B) to the

set of ideal-questions (i.e., questions such that are represented by ideals of B). It should be

clear that Q̂(B) ⊆ Q(B). For any question Q ∈ Q(B), if a ∈ Q, then, the ideal I(a) of a in B

satisfies I(a) ⊆ Q (because Q must contain all the x such that x ≤ a). From this, it follows

that Q =
⋃

a∈Q I(a).

One more step is needed in order to guarantee that our questions be real. A real question

must satisfy the condition of being answerable by a true statement [25]. This is elegantly

done by requiring that all atoms must belong to a question in order to be considered real.

Thus, let R(B) be the set if real questions. It can be shown that in the general case, RB will

eNotice that maximal Boolean subalgebras of P(H) satisfy these conditions and that the disjunction may be
infinite but denumerable.
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not be Boolean because of the failure of orthocomplementation. We will not use this lattice

here, but only consider Q(B) and Q̂(B).

There exists a quantity analogous to probability, called relevance [25], which quantifies

the degree to which one question answers another (the technical details of the construction of

the relevance function are similar to those presented in Section 2.2). Relevance is not only a

natural generalization of information theory, but also forms its foundation [25]. Let us repeat

that the vocable relevance refers to the computation of to what an extent a question answers

another one. From the mathematical point of view, this task is completely analogous to that of

assigning plausibility to B, but applied now to Q(B). As explained in [25], in order to assign

relevances, i) the algebraic properties of the question lattice Q(B) and ii) the probability

assigned to B using Cox’ method must be taken into account. The objective is thus to assign

relevances to the ideal-questions (the rest can be computed using the inquiry calculus derived

using Cox’ method, see Knuth [25]). With the question algebra well-defined, Knuth extends

the ordering relation to a quantity that describes the degree to which one question answers

another. This is done by defining a bi-valuation on the lattice that takes two questions and

returns a real number d ∈ [0, c], where c is the maximal relevance. Precisely, Knuth calls this

bi-valuation the relevance [25]. This procedure can be applied to Q(B) and Q̂(B), and thus

we have a function d(·|·) with properties analogous to that of a plausibility function, but now

defined on the lattices of questions.

Following [25], we assume that the extent to which the top question 1̂ answers a join-

irreducible question I(ai) depends only on the probability of the assertion ai from which the

question I(ai) was generated. More abstractly, d(I(ai)|1̂) = H(p(ai)|1), H being a function

to be determined in such a way that it satisfies compatibility with the algebraic properties of

the lattice and the probabilities assigned in B (by using Cox’ method). Now, let us review

the properties of d(·|·) according to Knuth’ inquiry calculus. First, we will have subadditivity

d(a ∨ b|c) ≤ d(a|c) + d(b|c) (11)

which is a straightforward consequence of the sigma-additivity condition

d(
∨
i

xi|c) =
∑
i

d(xi|c) (12)

for pairwise disjoint questions {xi}i∈N . Commutativity of “∨” implies that

d(x1 ∨ x2 ∨ . . . ∨ xn|c) = d(xπ(1) ∨ xπ(2), . . . ∨ xπ(n)|c) (13)

for any permutation π. Now suppose that to a certain collection of questions {x1, x2, . . . , xn}

we add a new question y = I(x) and that we know in advance that the assertion x is false.

Then, y collapses to 0̂ ∈ Q(B). Thus, we should have the expansibility condition

d(x1 ∨ x2 ∨ . . . ∨ xn ∨ y|c) = d(x1 ∨ x2 ∨ . . . ∨ xn|c) (14)

Suppose now that a question X in Q(B) can be written as X =
∨

i I(ai), where the {I(ai)}

are ideal questions with I(ai) ∧ I(aj) = 0̂. Then, we will have

d(
∨
i

I(ai)|1̂) =
∑
i

d(
∨
i

I(ai)|1̂) =
∑
i

H(p(ai)|1). (15)
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Let us cast the above equation as

d(
∨
i

I(ai)|1̂) = K(p(ai)), (16)

where we have introduced the function K(p(ai)) which depends on the p(ai) only. If the

{I(ai)} form a finite set (of n elements), we can write K(p(ai)) = Kn(p(a1), . . . , p(an)). It

turns out that Kn(p(a1), . . . , p(an)) satisfies subadditivity, additivity, symmetry and expan-

sibility. A well known result [14, 25] implies that

Kn(p(a1), . . . , p(an)) = AHn(p(a1), . . . , p(an)) +BH0
n(p(a1), . . . , p(an)), (17)

where A and B are arbitrary constants, Hn(p1, . . . , pn) = −
∑n

i=1 pi ln pi and H0
n = ln(n)

are the Shannon and Hartley entropies respectively. For information theoretical purposes

related to the continuity of the measure of information [14, 25], it is very natural to set

A = 1 and B = 0, and thus Kn(p(a1), . . . , p(an)) = −
∑n

i=1 p(ai) ln p(ai). When the terms

{I(ai)} in the decomposition are an infinite denumerable set, by continuity, we will have that

K(p(ai)) = −
∑∞

i=1 p(ai) ln p(ai). The discussion in this Section allows us to discard the

restriction to finite Boolean algebras and turn to more general ones.

4 Von Neumann’s Entropy As A Natural Measure For P(H)

As was done in the Cox approach to the Boolean case in order to justify the use of Shannon

measure, we look now for a natural information measure for P(H), i.e., a function depending

on the non-commutative measure defined by Eqns. 8. In other words, by appealing to

Gleason’s theorem, we look for a function S(ρ) (depending only on the state ρ), and at the

same time compatible with the algebraic structure of P(H). Notice that it is not a priori

obvious whether a variant of Cox method can be applied to the non-Boolean structure of

P(H) and used to justify the choice of the VNE. In this Section we will see that, according

to Cox approach, the VNE appears as the most rational choice.

Let us call BP(H) to the set of all maximal Boolean lattices of P(H). For each B ∈ BP(H),

we can consider its dual lattice of ideals B̂.

Notice that when H is finite dimensional, its maximal Boolean subalgebras will be finite.

As an example, consider P(C2), i.e., the set of all possible linear subspaces of a two dimen-

sional complex Hilbert space. Then, each maximal Boolean subalgebra will be of the form

{0,P,¬P⊥,1C2}, with P = |ϕ〉〈ϕ| for some unit norm vector |ϕ〉 and P⊥ = |ϕ⊥〉〈ϕ⊥| (with

〈ϕ|ϕ⊥〉 = 0). In a similar way, for P(C3), a maximal Boolean subalgebra will be isomorphic

to P({a,b,c}) = {∅, {a}, {b}, {c}, {a,b}, {a,c},

{b,c}, {a,b,c}}. More specifically, for this last example, given three orthogonal rays in C3

represented by unitary vectors |ϕ1〉, |ϕ2〉 and |ϕ3〉, the set {0,P1,P2,P3,P12,P13,P23,1C3},

where Pi = |ϕi〉〈ϕi| (i = 1, 2, 3) and Pij = |ϕi〉〈ϕi| + |ϕj〉〈ϕj | (i, j = 1, 2, 3, i 6= j), forms a

maximal Boolean subalgebra (and all maximal Boolean subalgebras are of this form). No-

tice that in these examples, the sets of atoms {|ϕ1〉〈ϕ1|; |ϕ2〉〈ϕ2|; |ϕ3〉〈ϕ3|} (with orthonormal

|ϕi〉〈ϕi| for all i) and {|ϕ〉〈ϕ|; |ϕ⊥〉〈ϕ⊥|} i) form frames, and ii) generate the above mentioned

Boolean subalgebras of P(H).

Now, it is important to notice that if we restrict a state ρ to B, we will have a classical

probability measure such as the one defined by Eqns. 1, and a concomitant inquiry set Q(B)
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can be defined as in [22, 23] (see Section 3 of this work). In what follows, our strategy will

be to construct a suitable information measure, just as we did in Section 3, for each maximal

Boolean subalgebra of P(H). For each frame F = {|ϕi〉〈ϕi|}i∈N ⊂ B representing a complete

experiment, state ρ assigns probabilities pi = tr(ρ|ϕi〉〈ϕi|) to each possible outcome of F . By

following Cox’ spirit [22, 23, 26] and the procedure sketched in Section 3, we can guarantee (by

choosing suitable coefficients A and B in Eqn. 17) that for each maximal Boolean subalgebra

B there exists a canonical information measure HF (ρ) such that for each frame F ⊆ B:

HF (ρ) = −
∑
i

pi ln pi =

−
∑
i

tr(ρ|ϕi〉〈ϕi|) ln(tr(ρ|ϕi〉〈ϕi|)). (18)

The above construction can be carried out for any B ∈ BP(H). Thus, for any ρ, each

B ∈ BP(H) and each frame F ⊆ B, we have a measure HF (ρ). It is important to note that

this family of measures, although only defined on the maximal boolean sublattices, do cover

the whole P(H) lattice. This is so because, as shown in [60], every orthomodular lattice is

the union of its maximal boolean sublattices.

Our point is that we need a measure such that it depends only on ρ and not on the

particular choice of complete experiment (represented by a particular frame). Among the

family of measures HF (ρ), it is natural (according to Cox approach) to take the one which

attains the minimum value: the one with the least Shannon’s information (i.e., we are looking

for the frame in which the information is maximal). This means that it is natural to define

H(ρ) := inf
F∈FH

HF (ρ). (19)

Given that ρ is self adjoint, let us consider its set of eigenprojectors Fρ = {|ρi〉〈ρi|}i∈N ,

with ρi ∈ R satisfying ρ|ρi〉 = ρi|ρi〉 and ρ =
∑

ρi|ρi〉〈ρi|. It should be clear that if ρ is

non-degenerate, Fρ is a frame. If ρ is degenerate, it is equally easy to find a frame out of

its eigenprojections. Accordingly, without loss of generality we can suppose that ρ defines a

frame. Now consider the maximal Boolean algebra BFρ
generated by Fρ. Using Eq. 18, it

follows that the canonical measure H, when restricted to Fρ satisfies

HFρ
(ρ) = −

∑
i tr(ρ|ρi〉〈ρi|) ln(tr(ρ|ρi〉〈ρi|)) =

−
∑

i ρi ln ρi = −tr(ρ ln(ρ)) (20)

which is nothing but the VNE. But the VNE has the well known property of attaining its

minimum value at Fρ (cf. Reference [2]):

−tr(ρ ln(ρ)) ≤ HF (ρ), ∀ F ∈ FH (21)

Thus, we have shown that H(ρ) = −tr(ρ ln(ρ)). In other words, von Neumann’s entropy

is the only function which emerges canonically as the minimum of all measures compatible

with the algebraic structure of P(H). Notice that we are deriving VNE out of the algebraic
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symmetries of the lattice. The above considerations show the VNE as a natural measure of

information of P(H), as a consequence of Shannon’s entropy being the natural information

measure of a Boolean algebra following Cox’ method. Notice that our derivation covers both

the finite and infinite dimensional cases.

5 Generalized Probabilistic Models

After deriving the VNE using the Cox method, we now advance a step further and investigate

whether this procedure can be extended to more general contextual theories. Concretely, we

now briefly discuss what happens if L is an arbitrary atomic orthomodular lattice and µ is

a measure obeying Eqs. 10. We show that the procedure of the previous Section can be

extended to this case. Let BL be the set of all possible maximal Boolean subalgebras of L.

For each B ∈ BL, the Cox’ construction applies as in Section 3, and we have a Shannon’s

function HF(µ) defined for each frame F = {ai}i∈N ∈ E (see Section 2.4):

HF(µ) = −
∑
ai∈A

µ(ai) ln(µ(ai)), (22)

As in the previous Section, we define:

H(µ) := inf
F∈E

HF(µ). (23)

Notice that when restricted to frames, HA(µ) coincides with the Shannon’s measures derived

using Cox’ method. Thus, by construction, H(µ) does the job of representing the canonical

measure of information, as Shannon’s and VNE did in the classical and quantum cases,

respectively.

The results of this Section show that it is indeed possible to generalize Cox’ method to

probabilistic theories more general than a Boolean algebra. Notice that, when L is a Boolean

algebra, we recover Cox’ construction, and when L = P(H), we recover our construction for

the VNE. Indeed, by looking at Eq. 23, the reader will soon recognize that our derivation

coincides with the measurement entropy (ME) introduced in [31, 32, 33]. The main difference

of our approach with the one of these references is that: i) we derive the same measures

by using Cox approach, and thus, we provide a novel intuitive interpretation for them; and

ii) by means of our derivation, we discard other possible functional forms, such as the ones

appearing in Tsallis or Rényi entropies, justifying in this way the usage of the logarithmic

form of the VNE and the ME.

6 Conclusions

If a rational agent deals with a Boolean algebra of assertions, representing physical events, a

plausibility calculus can be derived in such a way that the plausibility function yields a theory

which is formally equivalent to that of Kolmogorov for classical probabilities [21, 22, 29, 25].

A similar result holds if the rational agent deals with an atomic orthomodular lattice [30],

as is the case with the contextual character of the lattice of projections representing events

of a quantum system. For the later case, non-Kolmogorovian probabilities (Eqs. 8) arise

as the only ones compatible with the non-commutative (non-Boolean) character of quantum

complementarity.
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In Cox’ approach, Shannon’s information measure relies on the axiomatic structure of Kol-

mogorovian probability theory. We have shown in Section 4 that, according to our extension

of Cox’ method, the VNE emerges as its non-commutative version. The VNE thus arises as

a natural measure of information derived from the non-Boolean character of the underlying

lattice P(H). The different entropies discussed in this work are summarized in Table 1.

The fact that this kind of construction can be extended to more general probabilistic

models (as we have shown in Section 5, where we have deduced the ME as a natural measure

of information), implies that CIT and QIT can be considered as particular cases of a more

general non-commutative information theory.

These results allow for an interpretation of the VNE and measurement entropy as the nat-

ural measures of information for an experimenter who deals with a non-Boolean (contextual)

event structure. This is the case for standard quantum mechanics, in which quantum com-

plementarity expresses itself in the existence of non-compatible measurement set-ups and,

consequently, in the different contexts of P(H) (maximal Boolean subalgebras) and non-

commutative observables.

Classical Quantum General

Lattice P(Γ) P(H) L
Entropy −

∑
i p(i) ln(p(i)) −trρ ln(ρ) infF∈E HF(µ)

Table 1. Table comparing the differences between the classical, quantal, and general cases.
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[45] Federico Holik, Cesar Massri, Manuel Sáenz, and Angel Plastino. Generalized proba-

bilities in statistical theories. arXiv:1406.0913 [stat.OT], 2014.

[46] Howard Barnum, Jonathan Barrett, Matthew Leifer, and Alexander Wilce. Cloning

and Broadcasting in Generic Probabilistic Theories. 2006.

[47] Alexander Holevo. Probabilistic and statistical aspects of quantum theory, volume 1 of

Quaderni. Monographs. Edizioni della Normale, Pisa, second edition, 2011. With a

foreword from the second Russian edition by K. A. Valiev.

[48] Jeffrey Bub. Quantum computaton from a quantum logical perspective. Quantum

Information And Computation, 7(4):281–296, May 2007.

[49] Otfried Gühne, Matthias Kleinmann, Adán Cabello, Jan-Åke Larsson, Gerhard Kirch-
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Appendix A

Lattices

• A lattice L is a partially ordered set (i.e., a set endowed with a partial order relationship

“≤”) such that for very a, b ∈ L there exists a unique supremum, the least upper bound

“a ∨ b” called their join, and an infimum, the greatest lower bound “a ∧ b” called their

meet.

• A bounded lattice has a greatest and least element, denoted 1 and 0 (also called top

and bottom, respectively).

• For any lattice, an orthocomplementation is a unary operation “¬(. . .)” satisfying:

¬(¬(a)) = a (A.1)

a ≤ b −→ ¬b ≤ ¬a (A.2)
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a ∨ ¬a and a ∧ ¬a exist and

a ∨ ¬a = 1 (A.3)

a ∧ ¬a = 0 (A.4)

hold.

• If L has a null element 0, then an element x of L is an atom if 0 < x and there exists

no element y of L such that 0 < y < x. L is Atomic, if for every nonzero element x of

L, there exists an atom a of L such that a ≤ x.

• Amodular lattice is one that satisfies the modular law x ≤ b implies x∨(a∧b) = (x∨a)∧b,

where ≤ is the partial order, and ∨ and ∧ (join and meet, respectively) are the operations

of the lattice. An orthomodular lattice is an orthocomplemented lattice satisfying the

orthomodular law: a ≤ b and ¬a ≤ c implies a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c).

• Distributive lattices are lattices for which the operations of join and meet are distribu-

tive over each other. Distributive orthocomplemented lattices are called Boolean. The

collection of subsets of a given set, with set intersection as meet, set union as join and

set complement as orthocomplementation, form a complete bounded lattice which is

also Boolean.

• Any quantum system represented by a separable Hilbert space H has associated a lattice

formed by all its closed subspaces P(H), where 0 is the null subspace, 1 is the total

space H, ∨ is the closure of the direct sum, ∧ is subspace intersection, and ¬(S) is

the orthogonal complement of a subspace S⊥ [36]. This lattice was called “Quantum

Logic” by Birkhoff and von Neumann and it is a modular one if the Hilbert space is finite

dimensional, and orthomodular for the infinite dimensional case. The set of projection

operators on H forms a lattice which is isomorphic to P(H) (and thus, they can be

identified).


