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Abstract

Previous works in mechanistic interpretability have attempted to represent model
capabilities beyond looking at a single general direction in the subspace of model
activations, however, many of these works neglect to consider how context impacts
capability representation in the latent activation space. We hypothesize model
behaviors like sycophancy or refusal are sets of related directions clustered together
by the significant context they represent. To test this hypothesis, we generate a
synthetic dataset for 5 different capabilities across 5 different, diverse contexts
each. We use this dataset to train context-specific steering vectors and linear
probes and measure their performance on contexts out of distribution from their
training. We find that contextually trained steering vectors and linear probe are
able to recover 95% and 85% accuracy respectively on unseen contexts, suggesting
that general capability representations independent of context can be learned and
effectively applied in contextually-specific settings. Our work contributes to a
deeper understanding of how capabilities are represented across many contexts in
the model’s latent activation space and bolsters confidence in applying steering and
linear probing techniques in unseen settings that may be critical for safety.

1 Introduction

A central goal of mechanistic interpretability is to move beyond treating Large Language Models
(LLMs) as black boxes and to instead develop a precise understanding of their internal workings. A
promising line of inquiry focuses on the model’s latent activation space, where abstract concepts
and capabilities are thought to be encoded as specific geometric structures. Foundational to this
approach is the idea that many behaviors are represented linearly, meaning they correspond to specific
directions within this high-dimensional space.

Two of the most prominent techniques are linear probing and activation steering. Linear probing
serves as a diagnostic tool, allowing us to "probe" the model’s hidden states to detect whether a
specific capability or concept is being represented at a particular layer. In parallel, activation steering
provides a method for causal intervention. By adding a vector that represents a desired capability to
the model’s hidden state activations, one can "steer" the model to exhibit a specific behavior (Rimsky
et al.| [2024; Zou et al.| [2025)).

Foundational papers in mechanistic interpretability have attempted to control model behavior through
steering, whereby one adds a vector representing a model capability to the model’s hidden state
activations at a particular layer to “steer the model to act in a certain way (Rimsky et al.| [2024;
Zou et al., 2025). While steering is a powerful tool for controlling model behaviors, in practice, it
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can exhibit high variance in success across different prompts and also can severely impact model
performance (Braun et al.l [2025; [Tan et al., 2025). Furthermore, behaviors may be mediated by
several directions in the model’s latent activation space, so steering along a singular direction may
not be sufficient to fully control model capabilities (Wollschliger et al., 2025} [Pan et al., [2025}; |Zhao
et al.l [2025)).

In this work, we are interested in studying how robust linear probing and steering techniques are to
contexts unseen during training. We design and implement a synthetic data generation pipeline to
generate diverse, balanced datasets across different contexts. We then train context-specific linear
probes and steering vectors on our synthetic dataset and evaluate their out of distribution performance.
To determine whether there are shared structures between contextually trained vectors for the same
capability, we also examine the representational similarity between contextually trained vectors.

Our main contributions can be summarized as follows:

1. We propose a general synthetic data generation procedure that can be used to create balanced
datasets for any capability across various contexts.

2. Using our synthetic data generation pipeline, we create and release a synthetic dataset of 5
capabilities across 5 different contexts that can be used for a variety of downstream tasks
including probing and steering.

3. To the best of our knowledge, we perform the first study of how well linear probes and
steering vectors generalize across different contexts. We find that contextually-trained linear
probes and steering vectors on average recover 85% and 95% accuracy respectively on
unseen contexts.

We release our codebase and a diverse, balanced synthetic dataset for training steering vectors on a
variety of contexts so others may build upon our work.

2 Related Works

Linear representations in LLMs. The linear representation hypothesis |Park et al.|(2024), a result
foundational to the general understanding of latent activation spaces, suggests that high-level concepts
are represented linearly in the model’s activation space. From this hypothesis, several works have
provided evidence in support of linear capability representations (Zou et al., [2025; [Marks and
Tegmarkl, 2024).

Linear probes for representation editing and generalization. |Davis and Sukthankar| (2024)
demonstrate that linear probes can effectively extract and causally edit internal representations in
a chess-playing GPT model, establishing a crucial link between probe weight vectors and valid
model outputs. Their work provides evidence that language models maintain editable emergent
representations across different layers, with linear classifiers being able to reliably manipulate specific
aspects of a model’s internal state. |Davis and Sukthankar| (2024) contribute to this understanding by
examining probe performance across all model layers and investigating the linearity of latent feature
representations. Their findings on the ability to edit model representations through linear probes align
with the broader investigation of how capabilities are represented in the model’s latent activation
space, though their work focuses primarily on a single domain context rather than exploring how
capability representations might cluster or vary across significantly different contexts.

Ichmoukhamedov and Martens| (2025) investigate the generalization of truth direction linear probes
across different conversational formats, finding that while probes generalize well between short
conversations ending on lies, they struggle with longer formats where lies appear earlier. Their work
demonstrates that the generalization of capability representations is highly dependent on contextual
format, providing evidence that the structure of input significantly impacts how linear probes transfer
across settings.

Steering. Many works have attempted to leverage the linear representation hypothesis to find a single
direction controlling a certain model behavior and add or ablate this vector in order to steer the model
to act in desirable way (Rimsky et al.,|2024; Zou et al., [2025). More recent approaches have tried
to take context into account, either by applying steering in certain scenarios (Lee et al.,[2025) or by
modifying the steering vector by taking an adaptive linear combination of several steering vectors



based on the prompt (Wang et al., 2025). However, a more in-depth study is required to determine
how and to what extent context influences capability representation in the latent activation space.

von Riitte et al.|(2024) extend concept guidance beyond truthfulness to explore a richer set of concepts
including appropriateness, humor, creativity, and quality. They find that different concepts exhibit
varying levels of "guidability" and that probes with optimal detection accuracy do not necessarily
make for optimal steering vectors, revealing complex relationships between concept detectability and
the ability to control model behavior through activation perturbation.

3 Methodology

3.1 Preliminaries

A Large Language Model (LLM) maps an input token sequence © = (1, ..., z7) to an output
token sequence y = (y1, - - .,y ). The LLM consists of L transformer layers. For an input x, the
hidden state (activation vector) at layer [ € {1,..., L} and token position ¢ € {1,...,T} is denoted

as h())(z,t) € R?, where d is the dimensionality of the hidden states. The latent activation space
refers to the vector space containing these hidden states. We will generally refer to vectors in this
space, such as linear probes or steering vectors, as v.

A linear probe, denoted as p, is a binary linear classifier used to detect the linear presence of a
capability in the latent activation space. A probe p is defined by a weight vector w € R? and a bias
b € R. For a hidden state h € R, the probe’s prediction score is: s,(h) = wh + b The parameters
(w, b) are optimized by training on labeled data.

Steering involves causally modifying an LLM’s hidden states using a steering vector, denoted as
s € R?. For an input z, the hidden state h()(, ) at layer [ and token # is perturbed as: h!) (x,t) =

h(l)(x, t) + as where @ € R is a scalar multiplier. This paper uses Bi-directional Preference
Optimization (BiPO) to train s.

3.2 Linear Probes

We use linear probes to determine if there are general shared linear structures between activations
related context x; and xz; for i # j. For each context z; € X, we train a linear probe p; on the
model’s activations to distinguish the presence of capability C'in context x;. To understand the degree
of similarities between activations for differing context, we test how well p; generalizes to contexts
in X \ {z;}. We will quantify this by measuring the average positive prediction probability over
each dataset. We will also train a general linear probe g, for detecting the capability and measure its
performance across contexts in X.

3.3 Steering

To steer model behaviors, we implement Bi-directional Preference Optimization (BiPO) (Cao et al.,
2024)), a technique which trains a steering vector by minimizing the loss of producing desired positive
and negative steered responses when the vector is applied.

To measure steering effectiveness, we employ a judge model, similar to the steering evaluation
technique presented in Wu et al.|(2025), to define a steering score. For each individual response, we
ask the judge model to rate on a scale from 0 to 5 how well the concept is incorporated in the response
based on the positive response for positive steering and negative response for negative steering. On
some dataset D, the steering score is defined to be the average of the judge model ratings for each
steered model completion.

For each concept z; we compute the steering scores for the following vectors:

1. s; for every s; € S (context-specific steering vector).
2. g, (general steering vector).

3. 0 (no steering).



3.4 Synthetic Data Generation

For a given capability C' (e.g. sycophancy), below is our general process for generating the dataset D
(loosely based on|Wu et al.|(2025) and Perez et al.[(2023))):

In the realm of the capability of C', we ask model M to generate r possible contexts, choosing n from
which data can be generated. Our prompt explicitly instructs the model to generate an even balance
of benign and semi-harmful data. As a result of this diversity in later experiments of this work, we
can ensure that experimentation targeting a specific capability (e.g. sycophancy) doesn’t conflate
with another, more foundational capability such as refusal than if the original capability context only
involved harmful contexts.

For each capability of interest, we will create a synthetic dataset of questions involving several distinct
contexts modeling that capability (e.g. biology and law in the capability of hallucination). Following
the setup from Rimsky et al.[|(2024), each data point in this dataset will contain:

1. user_prompt: A question aimed to elicit a capability through potential answers to this
question.

2. positive_response: A response to the ‘user_prompt‘ that aims to specifically express the
target capability capability (e.g. agreeing with incorrect information in the context of
hallucination).

3. negative_response: A response to the ‘user_prompt* aims to specifically express the opposite
of the target capability or simply the lack of the capability’s presence (e.g. disagreeing and
correcting incorrect information provided by the answer choice, going against the expression
of hallucination).

4. context_label: A label of 1 of the 5 contexts that the ‘user_prompt‘ relates to within the
capability (e.g. biology in hallucination).

To ensure that our data was diverse enough to effectively train both linear probes and steering vectors,
we implemented the following diversification and quality maximization process shown in[I}

Let D(79) and D(test) be the train and test synthetic datasets respectively generated for capability
C with n different contexts represented. For simplicity, we omit the C' from notation, and unless
stated otherwise, all samples relate to the same capability C'. Then, we define the set of contexts

as X = {x1,29,...,2,} and z{""*™ c Dltrain) and (1" < Dtest) g5 the subsets of training

and testing datasets related to concept x;. From the synthetic data generation process, for all ¢,
(train)
|z |

7

= m > n (implying that | D) | = nm).

The corresponding context-specific linear probe/steering vectors are defined to be in the set V' =

{v1,Vva,...,Vv,} such that each v; is trained on xz(»tmm). We define py and s, to be a general linear

probe/steering vectors trained on a randomly sampled subset R C D(*7%") such that |R| = m.

3.5 Measuring Generalizability

For each steering vector/linear probe v;, we compute its generalization ratio G(v;). Let v;’s in-

distribution performance Z(v;) be its steering score measured on samples in xEteSt). Correspondingly,

the out-of-distribution performance O(v;) is measured by calculating v;’s steering score on samples
in D(test) \ a:l(te‘gt), i.e. the samples in the test dataset that do not relate to concept x;.

Then, we define the generalization ratio G(v;) as a function that takes in vector v; with the following
formula:

If G(v;) = 1, then v; generalizes perfectly well out of distribution (i.e. it performs the same out-of-
distribution as in-distribution). When G(v;) < 1, v; performs better on the context it was trained on
than unseen contexts, and the ratio quantifies how much of its in-distribution performance v; recovers
out of distribution.
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Figure 1: The pipeline for enhancing data diversity and quality. For a data point d; in a given context
¢y, out of the 5 provided contexts, it recursively takes the cosine similarity of d; against all other data
points in the context (d;j; v ;) until the cosine similarity exceeds a threshold of 0.7. Each d; of the
diversified data is then ranked from 1-5 on the contrast of positive_response to negative_responses,
quality, and other metrics to determine a holistic score, iterating through every d; in the dataset. The
dataset is then ranked greatest-to-least with the highest holistic scores at the top and the lowest at the
bottom, where then the lowest quality d; are regenerated. This process recurses until the minimum
score for any d; is > 3.
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4 Experiments

4.1 Setup

To generate our synthetic dataset, we use Gemini-2.0 Flash. For each capability, we generate 5
contextual datasets (n = 5) from an initial choice of » = 20 contexts. We then generate 200 samples
per contextual dataset (m = 200).

We first discuss the results of linear probe generalization in section to show how well latent
representations generalize out of distribution. Then, we explore how well the causality generalizes by
looking at steering efficacy in

4.2 Linear Probes

4.2.1 Generalizability

We perform these experiments on two models, Qwen-2.5-7B-Instruct and Llama2-13B-Chat. We
train probes ever 4 layers for Qwen-2.5-7B-Instruct and every 5 layers for Llama2-13B-Chat. For
each probe, we select the probe trained on the layer it performs the best on its validation dataset for
comparison.

Across all the capabilities we test, we find that general linear probes perform on par with contextually-
trained linear probes on context-specific data, suggesting the existence of context-independent linear
capability representations. In particular, across all capabilities, general linear probes recover greater
than 90% of the accuracy of the contextually-trained linear probe, as shown in Figure

Furthermore, we find that contextually trained linear probes tend to generalize quite well as shown
in Figure[3] though the trend is more ambiguous and capability-dependent. The average recovered
accuracy between cross contexts is 85%, suggesting that even contextually trained probes are able to
apply general knowledge to a variety of contexts. Notably, the trend seems to be consistent between
models about which capabilities have higher generalization ratios than others.

4.2.2 Representational Similarity

To understand the internal structure of capability representations, we analyze the cosine similarity
between linear probe weight vectors. We compute three metrics: (1) a cross-capability baseline
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Figure 2: Ratio of the accuracy of general linear probes trained on a mix of contexts to the accuracy
of in-context linear probes trained on a specific context for that context across capabilities.
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Figure 3: Average Generalization ratios (context vector accuracy out of context / in-context accuracy)
across capabilities for both models.

measuring average similarity between general probes p, for different capabilities, (2) general-to-
context similarity measuring how similar p is to context-specific probes p; for the same capability,
and (3) context-to-context similarity measuring average similarity among context-specific probes
within the same capability.

Figure [d]shows these metrics across capabilities. The cross-capability baseline of 0.048 provides a
reference for when capabilities are distinct. The full results are included in Appendix [B1}



A Welch t-test shows that the difference in means of the cross-capability similarities and the context-
to-context similarities is significant at the o = 0.05 level for all capabilities except for persuasion and
refusal. The difference in means between the cross-capability similarities and the general-to-context
was significant at the o = 0.05 level for all capabilities except refusal. These patterns suggest that
while probes adapt to specific contexts, they maintain a core shared representation of the underlying
capability.

Probe Weights: Capability Similarity Metrics
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Figure 4: Cosine similarity metrics for linear probe weights across capabilities. Blue bars show
general-to-context similarity (between general probe p, and context-specific probes p;), while green
bars show context-to-context similarity (among context-specific probes). Red dashed line indicates
the cross-capability baseline (0.048). All similarities substantially exceed baseline, indicating shared
linear structures across contexts.

4.3 Steering

4.3.1 Steering Generalization

We perform steering experiments on Qwen-2.5-7B-Instruct. Through an exploration of the Bi-
directional Preference Optimization (BiPO) steering method 2024), we see that injecting
the steering vector at layer 15 is the most effective. Further and lighter empirical testing of our own
with other hidden layers further proves layer 15°s effectiveness.

We find that general steering vectors tend to perform similarly to contextual steering vectors when
evaluated using a judge model that scores responses on a scale from 0 to 5 based on how aligned
they are with the positive/negative response in our dataset. Results comparing general and contextual
steering vectors for each capability can be found in Appendix [A]

On average, steering vectors achieve a cross-context generalization ratio of 0.95, providing strong
support that the general capability representation identified by linear probes can be applied effectively
in causal settings as well. The breakdown of generalization across capabilities is shown in Figure 5]

4.3.2 Representational Similarity

We perform analogous cosine similarity analysis on steering vectors s to examine whether the shared
structures observed in linear probes extend to causal interventions. Using the same three metrics, we
analyze similarities between general steering vectors s, and context-specific vectors s;.

Figure[6|reveals stronger representational coherence for steering vectors compared to probes. The
cross-capability baseline (0.196) is higher than for probes, while general-to-context similarities range
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Figure 5: The average generalization ratio across all contexts for all capabilities. The generalization
ratio is measured as the contextual steering vector efficacy on the out of context datasets and its own
context-specific dataset.

from 0.533 to 0.761 — substantially higher than the probe range. Context-to-context similarities
(0.300-0.603) similarly exceed their probe counterparts. This heightened similarity suggests that
steering vectors, optimized for causal effectiveness via BiPO, converge toward more unified capability
representations. The stronger shared structure aligns with the higher generalization ratios observed
for steering (95%) versus probing (85%), indicating that causally effective directions are more
context-invariant than discriminative directions. The full results are included in Appendix[B.2]

A Welch t-test shows that the difference in means of the cross-capability similarities and the context-
to-context similarities is significant at the o = 0.05 level for all capabilities except for persuasion and
refusal. The difference in means between the cross-capability similarities and the general-to-context
was significant at the ov = 0.05 level for all capabilities.

5 Conclusion

We investigate the generalizability of context-specific linear probes and steering vectors across
diverse, unseen contexts using a balanced synthetic dataset with 5 capabilities and 5 contexts each.
Our experiments reveal strong context-invariant capability representations: general linear probes
recover over 90% of context-specific probe accuracy, while context-specific probes p; achieve 85%
cross-context generalization and steering vectors s; achieve 95%.

Empirical findings. Representational similarity analysis shows that both general-to-context and
context-to-context cosine similarities substantially exceed cross-capability baselines for both steer-
ing vectors (0.196 baseline) and linear probe weights (0.048 baseline). These consistent patterns
across capabilities demonstrate that shared linear structures persist across contexts, providing strong
empirical support for the linear representation hypothesis 2024) in multi-context settings.

The robust generalization of both detection and intervention techniques has critical implications
for Al safety. Practitioners can train interpretability tools on limited contexts while maintaining
confidence in their effectiveness across diverse deployment scenarios—crucial as these methods are
increasingly used to identify and modify potentially harmful behaviors in production systems.

Limitations. Our work has several important limitations. First, our steering evaluation relies on judge
model scoring, which exhibited notable inconsistency in distinguishing between subtle differences
in steering effectiveness. The judge often assigned similar scores to responses with meaningfully
different levels of capability expression, potentially obscuring true performance differences between
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Figure 6: Cosine similarity metrics for steering vectors across capabilities. Blue bars show general-
to-context similarity (between general steering vector s, and context-specific vectors s;), while green
bars show context-to-context similarity (among context-specific vectors). Red dashed line indicates
the cross-capability baseline (0.196). Higher similarities compared to probe weights suggest stronger
representational coherence for causally optimized directions.

steering vectors. Second, we evaluate exclusively on synthetic data generated by Gemini-2.0 Flash.
While our diversification pipeline improves quality, synthetic data may not capture the distributional
complexity and edge cases present in naturalistic contexts where safety-critical applications operate.

Future work should validate findings on naturalistic data from real-world applications, develop more
reliable evaluation metrics for steering effectiveness, and examine causal mechanisms through circuit
analysis to understand how processing differs between contexts despite shared representations.
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A Context-specific vs. General Steering Results

Raw Positive Score Comparison (Hallucination)

12 W Specialized Vector
General Vector
10
0.8
o
5
5
A
= 06
5
&
04
0.2
& o '3
& & & = <
& & & S 5
< ;,c» < < N
& Qa 7 < &
@7 Y & & S
& & K & 5
o S «© £ &°
R < & &
& & &
& &
Context
Raw Negative Score C ison (H i ion)
=W Specialized Vector
General Vector
4
3
g
s
S
&
3
&2
1
0
© S o o o
& & & &€ &
S & & 5
& & N & N
§ § & &7 &
& 7 & N &
& & K & <
¢ ¢ ¢ & »
& &S < &
5 « & &
& & W
& & ¢
&®
Context

Figure 7: Calculating and comparing the scores of a general steering vector trained on all contexts ¢
in the capability of hallucination against a context-specific steering vector trained only on a specific

context ¢;, both evaluated on the context of ¢;.
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Raw Negative Score Comparison (Persuasion)
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Figure 8: Calculating and comparing the scores of a general steering vector trained on all contexts
c in a given capability C; of persuasion against a context-specific steering vector trained only on a
specific context c;, both evaluated on the context of ¢;. More figures testing other capabilities and
contexts can be found in Appendix
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Raw Negative Score Comparison (Pessimism)
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Figure 9: Calculating and comparing the scores of a general steering vector trained on all contexts
c in a given capability C; of pessimism against a context-specific steering vector trained only on a
specific context c;, both evaluated on the context of ¢;. More figures testing other capabilities and
contexts can be found in Appendix
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Raw Negative Score Comparison (Refusal)
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Figure 10: Calculating and comparing the scores of a general steering vector trained on all contexts ¢
in a given capability C; of refusal against a context-specific steering vector trained only on a specific
context ¢;, both evaluated on the context of c;. More figures testing other capabilities and contexts
can be found in Appendix
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Raw Negative Score Comparison (Sycophancy)
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Figure 11: Calculating and comparing the scores of a general steering vector trained on all contexts ¢
in a given capability C; of sycophancy against a context-specific steering vector trained only on a
specific context c;, both evaluated on the context of c;.
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B Representation Similarity Heatmaps

B.1 Linear Probes

Cross-Capability Cosine Similarity: General Probe Weights
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Figure 12: Heatmap of cosine similarities comparing general linear probes between each of the
different capabilities, selecting the layer probe with the highest accuracy.

Probe Weight Cosine Similarity Matrix: hallucination
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Figure 13: Heatmap of cosine similarities comparing context linear probes for hallucination, selecting
the layer probe with the highest accuracy.
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Probe Weight Cosine Similarity Matrix: refusal

-1.0
general/layer_28 - 0.183
-0.8
generating_malicious/layer_4
£ illegal_activities/layer_8 06 z
o k]
© =
13
: £
3 g
£ personal preference/layer_16 ]
o personal - 046
promoting_self-harm/layer_28
0.2
recipe_preference/layer_8
' 0.0
P \@? &7 5
& &
@ & & &
& & & <
& & & &
§ & < 4 P
o > N &
& & > >
& A s &
gf\ Qé ©

Probe Weight

Figure 14: Heatmap of cosine similarities comparing context linear probes for refusal, selecting the
layer probe with the highest accuracy.
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Figure 15: Heatmap of cosine similarities comparing context linear probes for persuasion, selecting
the layer probe with the highest accuracy.
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Probe Weight Cosine Similarity Matrix: sycophancy
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Figure 16: Heatmap of cosine similarities comparing context linear probes for sycophancy, selecting
the layer probe with the highest accuracy.
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Figure 17: Heatmap of cosine similarities comparing context linear probes for truthfulness, selecting
the layer probe with the highest accuracy.
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Probe Weight Cosine Similarity Matrix: pessimism
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Figure 18: Heatmap of cosine similarities comparing context linear probes for pessimism, selecting
the layer probe with the highest accuracy.

B.2 Steering

Cross-Capability Cosine Similarity: General Vectors
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Figure 19: Heatmap of cosine similarities comparing general steering vectors between each of the
different capabilities, selecting the layer probe with the highest accuracy.



Cosine Similarity Matrix: hallucination

-1.0

fabricating_legal_pr/...210835 - 1.000 0.583

0.8

imaginary_geography/...204650

invented_recipes/...211523

nonexistent_scientif/...221645 0.571

Steering Vector

nonsense_medical_adv/...223831

0.2

nonsense_medical_adv/...212418 .46/ 0.611

' 0.0

Steering Vector

Figure 20: Heatmap of cosine similarities comparing context steering vectors for hallucination.
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Figure 21: Heatmap of cosine similarities comparing context steering vectors for refusal.
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Cosine Similarity Matrix: persuasion
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Figure 22: Heatmap of cosine similarities comparing context steering vectors for persuasion.
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Figure 23: Heatmap of cosine similarities comparing context steering vectors for sycophancy.
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Cosine Similarity Matrix: pessimism
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Figure 24: Heatmap of cosine similarities comparing context steering vectors for pessimism.
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