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Abstract

Previous works in mechanistic interpretability have attempted to represent model1

capabilities beyond looking at a single general direction in the subspace of model2

activations, however, many of these works neglect to consider how context impacts3

capability representation in the latent activation space. We hypothesize model4

behaviors like sycophancy or refusal are sets of related directions clustered together5

by the significant context they represent. To test this hypothesis, we generate a6

synthetic dataset for 5 different capabilities across 5 different, diverse contexts each.7

We use this dataset to train context-specific steering vectors and linear probes and8

measure their performance on contexts out of distribution from their training. We9

find that contextually trained steering vectors and linear probe are able to recover10

95% and 85% accuracy on unseen contexts, suggesting that general capability11

representations independent of context can be learned and effectively applied in12

contextually-specific settings. Our work contributes to a deeper understanding13

of how capabilities are represented across many contexts in the model’s latent14

activation space and bolsters confidence in applying steering and linear probing15

techniques in unseen settings that may be critical for safety.16

1 Introduction17

Foundational papers in mechanistic interpretability have attempted to control model behavior through18

steering, whereby one finds a vector representing a model capability from looking at the model’s19

hidden state activations at a particular layer (Rimsky et al., 2024; Zou et al., 2025).20

While steering is a powerful tool for controlling model behaviors, in practice, it can exhibit high21

variance in success across different prompts and also can severely impact model performance (Braun22

et al., 2025; Tan et al., 2025). Furthermore, behaviors may be mediated by several directions in the23

model’s latent activation space, so steering along a singular direction may not be sufficient to fully24

control model capabilities (Wollschläger et al., 2025; Pan et al., 2025; Zhao et al., 2025).25

We hypothesize that model capabilities such as sycophancy or refusal are represented in the model’s26

latent activation space as sets of directions across different contexts. For example, when we consider27

the capability of hallucination, we hypothesize that there is a separate, precise steering vector for28

hallucination about medical facts as compared to hallucination about Python syntax, and that these29

vectors could be leveraged for more fine-grained steering control and possible applications for more30

robust linear probing. In this work, we quantify the importance of context in steering and model31

representations by training context-specific steering vectors and linear probes and evaluating their out32

of distribution performance. We also release our codebase and a diverse, balanced synthetic dataset33

for training steering vectors on a variety of contexts 1. This dataset, containing 5 capabilities with34

5 distinct contexts per capability, distinguishes the quality and degree of distinctness of each point35

through two recursive processes which target those two aforementioned metrics, further detailed36

in Section 3.1. This dataset in addition to the conclusions we arrive can be valuable to generating37

diverse, context-specific steering vectors and performing analyses upon this data in the context of38

mechanistic interpretability and model internals (e.g. the latent activation space).39

1https://anonymous.4open.science/r/multi-view-capabilities-5510/README.md
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In the larger context of AI Safety, our research has important implications for understanding how40

to effectively apply steering and linear probing techniques in a variety of settings. Understanding41

contextual importance in steering and probing could also ensure undesirable behaviors such as42

manipulation do not appear in unexpected ways.43

Our main contributions can be summarized as follows:44

1. We create and release a balanced, diverse synthetic dataset of 5 capabilities across 5 different45

contexts that can be used for a variety of downstream tasks including probing and steering.46

2. To the best of our knowledge, we perform the first study of how well linear probes and47

steering vectors generalize across different contexts. We find that contextually-trained linear48

probes and steering vectors on average recover 85% and 95% accuracy respectively on49

unseen contexts.50

2 Related Works51

Linear probes are a mechanistic interpretability technique used for concept detection. They are52

trained by fitting a linear classifier on the activations of a hidden layer in a model to predict whether53

or not they contain a certain behavior. For example, we may train a linear probe on a model’s latent54

activations to predict whether or not it contains a sycophantic direction.55

Comparatively, steering is a causal technique of perturbing the model’s activations by adding a vector56

representing a specific concept during inference time at a particular layer. Adding the vector with57

a positive multiplier should make the concept more present in the model’s outputs and a negative58

multiplier should ablate the effect.59

Linear probes for representation editing and generalization. Davis and Sukthankar (2024)60

demonstrate that linear probes can effectively extract and causally edit internal representations in61

a chess-playing GPT model, establishing a crucial link between probe weight vectors and valid62

model outputs. Their work provides evidence that language models maintain editable emergent63

representations across different layers, with linear classifiers being able to reliably manipulate specific64

aspects of a model’s internal state. Davis and Sukthankar (2024) contribute to this understanding by65

examining probe performance across all model layers and investigating the linearity of latent feature66

representations. Their findings on the ability to edit model representations through linear probes align67

with the broader investigation of how capabilities are represented in the model’s latent activation68

space, though their work focuses primarily on a single domain context rather than exploring how69

capability representations might cluster or vary across significantly different contexts.70

Ichmoukhamedov and Martens (2025) investigate the generalization of truth direction linear probes71

across different conversational formats, finding that while probes generalize well between short72

conversations ending on lies, they struggle with longer formats where lies appear earlier. Their work73

demonstrates that the generalization of capability representations is highly dependent on contextual74

format, providing evidence that the structure of input significantly impacts how linear probes transfer75

across settings.76

Linear representations in LLMs. The linear representation hypothesis Park et al. (2024), a paper77

foundational to the general understanding of latent activation spaces, suggests that high-level concepts78

are represented linearly in the model’s activation space. From this hypothesis, several works have79

provided evidence in support of linear capability representations Zou et al. (2025); Marks and80

Tegmark (2024).81

Burnell et al. (2023) examine the structure of language model capabilities through factor analysis82

across 29 different LLMs and 27 cognitive tasks, finding that capabilities are not monolithic but83

instead composed of three distinct factors: reasoning, comprehension, and core language modeling.84

This multifaceted view of capability structure supports the hypothesis that complex behaviors may85

emerge from sets of related directions rather than single unified representations.86

Multi-directional behavior representations. Arditi et al. (2024) find a single direction that mediates87

refusal. However, more recent works have found evidence against this claim; Pan et al. (2025) find88

a dominant direction controlling refusal but show that there are other directions necessary to fully89

explain refusal behavior. Wollschläger et al. (2025) further suggest that refusal may be mediated by90

high dimensional cones.91
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Engels et al. (2025) demonstrate that some language model features are inherently multi-dimensional92

and cannot be reduced to one-dimensional representations. Using sparse autoencoders, they discover93

interpretable multi-dimensional features such as circular representations of days of the week and94

months of the year, showing through intervention experiments that these multi-dimensional structures95

serve as fundamental computational units. This work provides direct evidence that certain capabilities96

may require multi-directional representations rather than single directions.97

Steering. Many works have attempted to leverage the linear representation hypothesis to find a single98

direction controlling a certain model behavior and add or ablate this vector in order to steer the model99

to act in desirable way (Rimsky et al., 2024; Zou et al., 2025). More recent approaches have tried100

to take context into account, either by applying steering in certain scenarios (Lee et al., 2025) or by101

modifying the steering vector by taking an adaptive linear combination of several steering vectors102

based on the prompt (Wang et al., 2025). However, a more in-depth study is required to determine103

how and to what extent context influences capability representation in the latent activation space.104

von Rütte et al. (2024) extend concept guidance beyond truthfulness to explore a richer set of concepts105

including appropriateness, humor, creativity, and quality. They find that different concepts exhibit106

varying levels of "guidability" and that probes with optimal detection accuracy do not necessarily107

make for optimal steering vectors, revealing complex relationships between concept detectability and108

the ability to control model behavior through activation perturbation.109

3 Methodology110

3.1 Synthetic Data Generation111

For a given capability C (e.g. sycophancy), below is our general process for generating the dataset D112

(loosely based on Wu et al. (2025) and Perez et al. (2023)):113

In the realm of the capability of C, we ask Gemini 2.0 Flash (‘gemini-2.0-flash‘) to generate 20114

possible contexts, choosing 5 from which data can be generated. Our prompt explicitly instructs the115

model to generate an even balance of benign and semi-harmful data. As a result of this diversity in116

later experiments of this work, we can ensure that experimentation targeting a specific capability117

(e.g. sycophancy) doesn’t conflate with another, more foundational capability such as refusal if the118

original capability context only involved harmful contexts.119

For each capability of interest, we will create a synthetic dataset of questions involving several distinct120

contexts modeling that capability (e.g. biology and law in the capability of hallucination). Following121

the setup from Rimsky et al. (2024), each data point in this dataset will contain:122

1. ‘user_prompt‘: A question aimed to elicit a capability through potential answers to this123

question.124

2. ‘positive_response‘ A response to the ‘user_prompt‘ that aims to specifically express the125

target capability capability (e.g. agreeing with incorrect information in the context of126

hallucination).127

3. ‘negative_response‘ A response to the ‘user_prompt‘ aims to specifically express the opposite128

of the target capability or simply the lack of the capability’s presence (e.g. disagreeing and129

correcting incorrect information provided by the answer choice, going against the expression130

of hallucination).131

4. ‘context_label‘: A Gemini 2.0 Flash-generated label of 1 of the 5 contexts that the132

‘user_prompt‘ relates to within the capability (e.g. biology in hallucination).133

Initial qualitative observations of the data up until this point revealed that Gemini, although being134

queried in separate API calls per batch of 5 generated data points, seemed to be repeating the questions135

and content with very similar concepts, in some cases with data points generated during a particular136

API call being identical to a data point generated in another API call. Moreover, some of the data137

seemed to be lacking in quality; either the user_prompt, positive_responses, and/or negative_response138

occasionally did not aim to target a potentially significant enough elicitation of the capability. To139

ensure that our data was diverse enough to effectively train both linear probes and steering vectors,140

we implemented the following diversification and quality maximization process shown in 1141
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Figure 1: The pipeline for enhancing data diversity and quality. For a data point di in a given context
cn out of the 5 provided contexts, it recursively takes the cosine similarity of di against all other data
points in the context (dj ̸=i ∀ j) until the cosine similarity exceeds a threshold of 0.7. Each di of the
diversified data is then ranked from 1-5 on the contrast of positive_response to negative_responses,
quality, and other metrics to determine a holistic score, iterating through every di in the dataset. The
dataset is then ranked greatest-to-least with the highest holistic scores at the top and the lowest at the
bottom, where then the lowest quality di are regenerated. This process recurses until the minimum
score for any di is ≥ 3.

3.2 Extracting contextual steering vectors142

Let D(train) and D(test) be the train and test synthetic datasets respectively generated for capability143

C with n different contexts represented. For simplicity, we omit the C from notation, and unless144

stated otherwise, all samples relate to the same capability C. Then, we define the set of contexts145

as X = {x1, x2, . . . , xn} and x
(train)
i ⊂ D(train) and x

(test)
i ⊂ D(test) as the subsets of training146

and testing datasets related to concept xi. From the synthetic data generation process, for all i,147

|x(train)
i | = m > n (implying that |D(train)| = nm).148

The corresponding context-specific steering vectors are defined to be in the set V = {v1,v2, . . . ,vn}149

such that each vi is trained on x
(train)
i . We define g to be a general steering vector trained on a150

randomly sampled subset R ⊂ D(train) such that |R| = m. Our experiments utilize m = 200 and151

n = 5.152

To steer model behaviors, we implement Bi-directional Preference Optimization (BiPO) (Cao et al.,153

2024), a technique which trains a steering vector by minimizing the loss of producing desired positive154

and negative steered responses when the vector is applied.155

3.3 Measuring steering generalization156

To measure steering effectiveness, we employ a judge model, similar to the steering evaluation157

technique presented in Wu et al. (2025), to define a steering score. For each individual response, we158

ask the judge model to rate on a scale from 0 to 5 how well the concept is incorporated in the response159

based on the positive response for positive steering and negative response for negative steering.160

On some dataset D, the steering score is defined to be the average of the judge model ratings for each161

steered model completion.162

For each vi, we compute its generalization ratio G(vi). Let vi’s in-distribution performance I(vi)163

be its steering score measured on samples in x
(test)
i . Correspondingly, the out-of-distribution164

performance O(vi) is measured by calculating vi’s steering score on samples in D(test) \ x(test)
i , i.e.165

the samples in the test dataset that do not relate to concept xi.166

Then, we define the generalization ratio G(vi) as a function that takes in vector vi with the following167

formula:168
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G(vi) =
O(vi)

I(vi)
.

If G(vi) = 1, then vi generalizes perfectly well out of distribution (i.e. it performs the same out-of-169

distribution as in-distribution). When G(vi) < 1, vi performs better on the context it was trained on170

than unseen contexts, and the ratio quantifies how much of its in-distribution performance vi recovers171

out of distribution.172

In addition to computing the generalization ratio of each concept vector, for each concept xi we also173

compute the steering scores for the following vectors on the dataset x(test)
i :174

1. vi for every vi ∈ V (context-specific steering vector).175

2. g (general steering vector).176

3. 0⃗ (no steering).177

We additionally compute the steering score of the above vectors on the entire test dataset D(test).178

3.4 Linear probe generalization179

In addition to looking at the generalizability of steering, we also examine the generalization ability of180

the model’s latent representations of context-specific capabilities. We refer to this measurement as the181

capability-detection performance, intending to capture how well a vector representing the capability182

detects this capability on unseen prompts.183

We measure capability-detection by evaluating the generalizability of linear probes. We use linear184

probes to determine if there are general shared linear structures between activations related context xi185

and xj for i ̸= j. For each context xi ∈ X, we train a linear probe pi to distinguish the presence of186

capability C in context xi. To understand the degree of similarities between activations for differing187

context, we test how well pi generalizes to contexts in X \ {xi}. We will quantify this by measuring188

the average positive prediction probability over each dataset.189

We will also train a general linear probe for detecting the capability and measure its performance190

across contexts in X. We perform these experiments on two models, Qwen-2.5-7B-Instruct and191

Llama2-13B-Chat. We train probes ever 4 layers for Qwen-2.5-7B-Instruct and every 5 layers for192

Llama2-13B-Chat. For each probe, we select the probe trained on the layer it performs the best on its193

validation dataset for comparison.194

4 Results & Discussion195

We first discuss the results of linear probe generalization in section 4.1 to show how well latent196

representations generalize out of distribution. Then, we explore how well the causality generalizes by197

looking at steering efficacy in 4.2.198

4.1 Linear Probe Results199

Across all the capabilities we test, we find that general linear probes perform on par with200

contextually-trained linear probes on context-specific data, suggesting the existence of context-201

independent linear capability representations. In particular, across all capabilities, general linear202

probes recover greater than 90% of the accuracy of the contextually-trained linear probe, as shown in203

Figure 2.204

Furthermore, we find that contextually trained linear probes tend to generalize quite well as shown205

in Figure 4, though the trend is more ambiguous and capability-dependent. The average recovered206

accuracy between cross contexts is 85%, suggesting that even contextually trained probes are able to207

apply general knowledge to a variety of contexts. Notably, the trend seems to be consistent between208

models about which capabilities have higher generalization ratios than others.209
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Figure 2: Ratio of the accuracy of general linear probes trained on a mix of contexts to the accuracy
of in-context linear probes trained on a specific context for that context across capabilities.

Figure 3: Average Generalization ratios (context vector accuracy out of context / in-context accuracy)
across capabilities for both models.

4.2 Steering Efficacy Results210

We perform steering on the Qwen model family of the 7B size. Through an exploration of the Bi-211

directional Preference Optimization (BiPO) steering method (Cao et al., 2024), we see that injecting212

the steering vector at layer 15 is the most effective. Further and lighter empirical testing of our own213

with other layer values.214
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Figure 4: Calculating and comparing the scores of a general steering vector trained on all contexts c
in the capability of hallucination against a context-specific steering vector trained only on a specific
context ci, both evaluated on the context of ci. More figures testing other capabilities and contexts
can be found in Appendix A

We find that general steering vectors tend to perform similarly to contextual steering vectors when215

evaluated using a judge model that scores responses on a scale from 0 to 5 based on how aligned they216

are with the positive/negative response in our dataset.217

On average, steering vectors achieve a cross-context generalization ratio of 0.95, providing strong218

support that the general capability representation identified by linear probes can be applied effectively219

in causal settings as well. The breakdown of generalization across capabilities is shown in Figure 5.220

5 Conclusion221

In this work, we measure how well context-specific linear probes and steering vectors generalize on222

unseen contexts. We find that both linear probes and steering vectors tend to generalize quite well out223

of context. We find that on a 7B model, across 5 different capabilities, contextual linear probes are224

able to recover 85% accuracy on average when applied on unseen contexts for the same capability.225

On the same model, steering is able to recover 95% accuracy on unseen contexts. We also introduce226

a balanced synthetic dataset of 5 different capabilities with 5 different contexts each that can be used227

for future probing and steering applications.228

Future work could be done to expand this analysis on more models and to understand the shared229

generalization variances between different capabilities. In particular, one could look at the underlying230

mechanisms of these behaviors and determine if there are any shared circuits between different231

contexts to show how causally processing differs between contexts.232
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Figure 5: The average generalization ratio across all contexts for all capabilities. The generalization
ratio is measured as the contextual steering vector efficacy on the out of context datasets and its own
context-specific dataset.

Overall, our results provide support for the existence of general representations of capabilities that233

are context-invariant. As mechanistic interpretability techniques such as probing and steering are234

increasingly being used to detect and modify harmful model behaviors in diverse real-world contexts,235

ensuring their robustness will play a pivotal role in future safety work.236
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Figure 6: Calculating and comparing the scores of a general steering vector trained on all contexts c
in a given capability Ci against a context-specific steering vector trained only on a specific context ci,
both evaluated on the context of ci. More figures testing other capabilities and contexts can be found
in Appendix
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Figure 7: Calculating and comparing the scores of a general steering vector trained on all contexts c
in a given capability Ci against a context-specific steering vector trained only on a specific context ci,
both evaluated on the context of ci. More figures testing other capabilities and contexts can be found
in Appendix
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Figure 8: Calculating and comparing the scores of a general steering vector trained on all contexts c
in a given capability Ci against a context-specific steering vector trained only on a specific context ci,
both evaluated on the context of ci. More figures testing other capabilities and contexts can be found
in Appendix
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