
Incre-ICAPQ: Iterative Cross Alignment and Prototype Quadruplet Loss
for Incremental Few-Shot Relation Classification

Anonymous ACL submission

Abstract

In incremental few-shot relation classification001
task, model performance is always limited002
by incompatibility between base feature em-003
bedding space and novel feature embedding004
space. To tackle the issue, we present a novel005
method named Incre-ICAPQ with Iterative006
Cross Alignment and Prototype Quadruplet007
loss. Specifically, we incorporate the query in-008
stance representation into the encoding of novel009
prototypes and meanwhile utilize the query-010
aware prototypes to acquire the query instance011
representation. To achieve better interaction,012
we further implement the above dual encod-013
ing iteratively. Moreover, prototype quadru-014
plet loss enlarges the distance between differ-015
ent types of prototypes, especially the relative016
distance between base and novel classes, and017
makes the distance between query and proto-018
type of the same class as close as possible. Ex-019
perimental results on two benchmarks demon-020
strate that Incre-ICAPQ significantly outper-021
forms the state-of-the-art baseline model.022

1 Introduction023

Relation classification (RC), an important sub-task024

of relation extraction (RE), aims at classifying the025

relation between two marked entities in a given026

sentence. For example, the instance “[Newton]e1027

served as the president of [the Royal Society]e2"028

expresses the relation member_of between the two029

entities Newton and the Royal Society. Some con-030

ventional methods (Zeng et al., 2014; Gormley031

et al., 2015; Soares et al., 2019) for relation clas-032

sification adopts supervised training and usually033

suffer from scarcity of manually annotated data. To034

alleviate this problem, distant supervision (DS) is035

adopted to automatically label abundant training in-036

stances by heuristically aligning knowledge graphs037

(KGs) with texts (Mintz et al., 2009). However,038

the existing DS-based methods fail to deal with039

the problem of long-tail relations in KGs and still040

suffer from data deficiency (Han et al., 2018).041
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Figure 1: Visualization of the representations of the
query instances and prototypes from BERT-IncreProto
(a) and our model BERT-Incre-ICAPQ (b). We ran-
domly sample three base relations and three novel rela-
tions from real-world dataset FewRel 1.0, each relation
with its corresponding prototype (triangles for base re-
lations and stars for novel relations) and eight query
instances (points).

To tackle the above long-tail problem, few-shot 042

RC was proposed, which formulates RC in a few- 043

shot learning scenario. This task requires the mod- 044

els trained with base relations to generalize well 045

to novel relations with only few labeled instances. 046

Base relations are those relations containing ad- 047

equate instances and can be effectively utilized 048

in the training phase to mimic the test phase on 049

novel relations with few samples. Fine-tuning pre- 050

trained models (Bengio, 2012; Gao et al., 2020) is 051

straightforward while suffers from the overfitting 052

problem. Thus, metric based methods (Ravi and 053

Larochelle, 2017; Dong et al., 2020; Geng et al., 054

2020; Liu et al., 2020b) were proposed to grasp 055

the fast-learning ability from previous experiences 056

and then quickly generalize to new concept. These 057

methods have been experimentally proven to be 058

effective. 059

Taking a step further, incremental few-shot RC 060

(Ren et al., 2020) considers a more realistic sce- 061

nario, where the model is required to dynamically 062

recognize the novel relations with a few samples, 063

without reducing the base relation identification 064

capability learned on the large-scale data of base 065
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relations. Hence in the test phase, the query set con-066

sists of instances of not only base relations but also067

novel relations, which is more challenging. Sev-068

eral related works (Liu et al., 2020a; Chen and Lee,069

2020; Kukleva et al., 2021) have been proposed070

in the field of computer vision and they focus on071

image classification task. As for the task of in-072

cremental few-shot RC, IncreProtoNet (Ren et al.,073

2020) is the first work, which proposes a two-phase074

prototypical network model.075

Specifically, IncreProtoNet contains two sepa-076

rate prototypical networks (Snell et al., 2017). One077

is pre-trained in the first phase to acquire the base078

prototypes and base feature extractor, and the other079

obtains the novel prototypes and novel feature en-080

coder with few-shot episode training in the second081

phase. However, IncreProtoNet suffers from insuf-082

ficient interaction between the class prototypes and083

the query instances. Therefore, in the embedding084

space, novel relations often overlap significantly085

with base relations, and query representations are086

scattered, as shown in Figure 1 (a). In addition, the087

triplet loss used by IncreProtoNet may be affected088

by noise samples, and its effectiveness decreases on089

tasks with domain shift. As a result, low accuracy090

on novel relation recognition has been witnessed.091

To alleviate the above problem, we first propose092

a novel Iterative Cross Alignment (ICA) mecha-093

nism. Specifically, we build an extra Cross Align-094

ment (CA) module to dynamically and interac-095

tively encode the novel prototypes and the query096

instances. On the one hand, the obtaining of097

novel prototypes is query-aware; namely, the query-098

related support instances contribute more to the099

final prototypes. On the other hand, the encod-100

ing of query instances is prototype-aware, since101

the query-related prototypes have more influence102

on the query representations. Further, we propose103

to iteratively implement the above CA, namely It-104

erative Alignment (IA), in order to achieve more105

sufficient interaction and alignment. Besides, Pro-106

totype Quadruplet (PQ) loss is proposed to enlarge107

the distance between different types of prototypes,108

while making the distance between query and pro-109

totype of the same class as close as possible.110

The contributions of this paper can be summa-111

rized below:112

• We propose a novel incremental few-shot clas-113

sification model Incre-ICAPQ with ICA mech-114

anism and PQ loss.115

• For the first time, we propose the iterative116

cross alignment mechinism, which learns the 117

representations of the query instancees and 118

the novel prototypes interactively and itera- 119

tively. Besides, a novel prototype quadruplet 120

loss is designed to regulates the feature space 121

distribution. 122

• Experiments on FewRel 1.0 and 2.0 datasets 123

demonstrate that our method outperforms the 124

state-of-the-art methods by a large margin. 125

2 Task Formulation 126

In the task of incremental few-shot RC, 127

first we are given a large dataset con- 128

taining Nbase base relations: Dbase = 129

∪Nbase
b=1 {Ib,i = (xb,i, hb,i, tb,i, rb)}Kb

i=1, in which 130

Kb is the number of instances of relation rb, 131

and Ib,i represents its i-th instance consisting 132

of the sentence xb,i and the mentioned entity 133

pair (hb,i, tb,i). Then we are given a support set 134

S = ∪Nnovel
n=1

{
I
′
n,i

}K
′
n

i=1
of Nnovel novel relations, 135

where K
′
n is the number of support instances of 136

novel relation r
′
n and I

′
n,i is the i-th supporting 137

instance. With Dbase and S, the task is to recognize 138

the relations of the instances in the query set 139

Q = ∪Nbase+Nnovel
q=1

{
I
′′
q,i

}K
′′
q

i=1
, in which K

′′
q is the 140

number of query instances of relation r
′′
q and I

′′
q,i 141

is its i-th query instance. Therefore, the model 142

is required to dynamically recognize the novel 143

relations based on a few novel support instances 144

while keeping the base relation identification 145

capability learned on the large base dataset. 146

3 Method 147

In this section, we elaborate on the details of our 148

proposed Incre-ICAPQ method for incremental 149

few-shot RC. First, we give a brief introduction 150

to the IncreProtoNet in Section 3.1. Then, we intro- 151

duce the overall framework of our model in Section 152

3.2. Next, we present the proposed ICA mecha- 153

nism with CA module and IA module in Section 154

3.3. Moreover, the proposed PQ loss is discussed 155

in Section 3.4. 156

3.1 A Brief Introduction to IncreProtoNet 157

IncreProtoNet (Ren et al., 2020) is the first work fo- 158

cusing on incremental few-shot RC. The proposed 159

model is a two-phase prototypical network. 160

In the first phase, a deep prototypical network, 161

consisting of a convolutional neural network based 162
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Figure 2: The framework of Incre-ICAPQ. In the dashed box of ICA, f⃝ corresponds to equation (6), which
represents the obtaining of query representation; and g⃝ corresponds to equation (8), which represents the update of
novel prototypes.

encoder and a prototype based classifier, is pre-163

trained on a large training dataset for base relations164

in a supervised manner to learn the feature embed-165

ding space of base relations. Hence the base proto-166

types, denoted as Pbase = {p1, p2, . . . , pNbase }, can167

be obtained by averaging the representations of all168

the training instances within each base class b:169

pb =
1

Kb

Kb∑
i=1

xb,i, (1)170

where xb,i is the embedding of Ib,i through the base171

encoder.172

In the second phase, another prototypical net-173

work, named incremental few-shot prototypical174

network, is proposed to learn the feature embed-175

ding space of novel relations. The support set is176

encoded to obtain the novel prototypes Pnovel =177 {
p′1, p

′
2, . . . , p

′
Nnovel

}
as follows:178

p′n =
1

K ′
n

K′
n∑

i=1

x′n,i, (2)179

where x′n,i is the embedding of I ′n,i through the180

novel encoder. For a query instance q from the181

query set, the representation xq is calculated as the182

weighted sum of the xbaseq from the base feature183

embedding space and xnovelq from the novel feature184

embedding space:185

xq = ωbx
base
q + ωnx

novel
q , (3)186

where the weights ωb and ωn are determined by187

considering the similarity of the query representa-188

tion with the base prototypes and novel prototypes,189

respectively. In short, the query representation cal- 190

culation can be summarized as: 191

xq = f(xbaseq , xnovelq , Pbase, Pnovel), (4) 192

where f is a composite function and represents a 193

series of operations. More details can be found in 194

the original paper (Ren et al., 2020). Lastly, the 195

probability of q belonging to the i-th relation ri can 196

be measured as: 197

pθ(ri | q) =
exp

(
−d

(
xq,p

all
i

))∑Nbase +Nnovel
j=1 exp

(
−d

(
xq,pall

j

)) ,
(5) 198

where pall
i is the i-th prototype in P all = 199

{Pbase, Pnovel}. 200

Though IncreProtoNet performs well in recog- 201

nizing instances of base relations, it is still difficult 202

for this model to deal with novel relations. Exper- 203

imental results in Ren et al. (2020) show that the 204

accuracy for novel relations is much lower than that 205

of base relations, which is unsatisfactory. There are 206

several reasons as follows. First, IncreProtoNet ob- 207

tains the novel prototypes independent of the query 208

instance, lacking interaction between them. Sec- 209

ond, IncreProtoNet ignores the alignment between 210

base relations and novel relations, which is vital in 211

incremental learning scenarios. Third, there is no 212

effective regularization to the feature embedding 213

spaces of base relations and novel relations, which 214

causes discrepancy between them. 215

3.2 Overall Framework of Incre-ICAPQ 216

To tackle the above issues, we propose the Incre- 217

ICAPQ model on the basis of IncreProtoNet. Like 218
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IncreProtoNet, our model contains two phases in-219

cluding the base pretraining phase and the few-shot220

episode training phase. Furthermore, we innova-221

tively propose the ICA mechanism and PQ loss,222

which are demonstrated in the dashed boxes in Fig-223

ure 2. Next, we illustrate the detailed design.224

3.3 Iterative Cross Alignment225

In the task of incremental few-shot RC, it is im-226

portant to make an alignment between the base227

feature embedding space and the novel feature em-228

bedding space so as to flexibly encode the query229

instance and further make correct relation classifi-230

cation. This requires full interaction between base231

relations and novel relations.232

Cross Alignment. To this end, the cross align-233

ment (CA) module is designed to encode the novel234

prototypes and the query instance in an interactive235

manner. To be specific, we first initialize the novel236

prototypes Pnovel and the query instance embed-237

ding xq with equations (2) and (4), respectively.238

Then, the CA module updates p′n ∈ Pnovel, en-239

couraging the model pay more attention to those240

query-related supporting instances,241

p′n =

K′
n∑

i=1

γn,ix
′
n,i, (6)242

where γn,i is defined as:243

γn,i =
exp

(
−d

(
xq, x

′
n,i

))
∑K′

n
i=1 exp

(
−d

(
xq, x′n,i

)) , (7)244

where d is the euclidean distance. In short, the245

novel prototype embedding process can be summa-246

rized as:247

Pnovel = g(xq,∪Nnovel
n=1

{
I
′
n,i

}K
′
n

i=1
). (8)248

Correspondingly, the query instance representation249

xq is further updated with equation (4), which re-250

quires the model to pay more attention to the query-251

related base prototypes and novel prototypes. Since252

most of the query instances belong to base relations,253

the CA module actually enhances the interaction254

between instances of base relations and novel rela-255

tions, achieving better alignment between the two256

feature embedding spaces.257

Iterative Alignment. The aligned query repre-258

sentation can help group the different support sam-259

ples from the same novel class together to optimize260

Algorithm 1 Iterative Cross Alignment
Input: Base prototypes Pbase, support set S, query
instance q and predefined maximum iteration
number N .
Parameter: Base encoder Θ1 and novel encoder
Θ2.
Output: Novel prototypes Pnovel, query instance
representation xq and probability distribution for
relation of q: pθ(r | q).

1: Initialize novel prototypes Pnovel with equa-
tion (1).

2: Initialize query instance representation xq with
equation (2).

3: for t = 1 → N do
4: Update query representation xtq:

xtq = f(xbaseq , xnovelq , Pbase, P
t−1
novel),

5: Update novel prototypes P t+1
novel:

P t+1
novel = g(xtq,∪

Nnovel
n=1

{
I
′
n,i

}K
′
n

i=1
).

6: end for
7: return Pnovel, xq and pθ(r | q).

the novel prototype. Meanwhile, the optimized 261

novel prototype can further help align query rep- 262

resentations from different encoders. Inspired by 263

traditional iterative cross-optimization algorithms, 264

such as the EM (McLachlan and Krishnan, 2007) 265

or k-means (Hartigan and Wong, 1979) algorithms, 266

we further propose to carry out the above CA in an 267

iterative way, namely Iterative Alignment (IA). The 268

implementation is straightforward, since we just 269

need to iteratively update Pnovel and xq with equa- 270

tions (6) and (4), respectively, until the predefined 271

maximum number of steps is reached. Finally, the 272

refined novel prototypes and query instance repre- 273

sentations are obtained. The IA expands CA from 274

single round to multiple rounds, further promoting 275

the interaction and alignment. Algorithm 1 outlines 276

the key steps of our ICA mechanism. 277

Iterative Cross Alignment for Increment Few- 278

Shot Domain Adaptation. In the real world, es- 279

pecially common in the few-shot scenario, the test 280

(novel classes) domain and training (base classes) 281

domain are often different, so how to improve the 282

abilities of our model to transfer across domains is 283

also very important. Since the test domain usually 284

has no annotations and could differ vastly from 285

the training domain, we first initialize novel class 286

prototypes with average representation of support 287
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set instances and the query representations with288

initialized novel class prototypes. Then the CA289

module cross-aligns novel support instances and290

query from different domains. Besides, in the cross-291

domain scenario, initial query and novel prototypes292

are more likely to be incompatible; therefore, the293

ICA mechanism can more significantly improve the294

representations of the novel prototypes and query295

from different domains.296

3.4 Prototype Quadruplet Loss297

In our method, there are two feature embedding298

spaces for base and novel classed separately and299

the query instance is encoded by the two jointly.300

Therefore, it is important to measure which embed-301

ding space contributes more and further estimate302

which prototype is the nearest. In addition, the303

feature spaces of base classes and novel classes304

should be separated as much as possible when they305

are embedded into the same space. To this end, we306

design a novel Prototype Quadruplet loss (LPQ),307

denoted as follows:308

LPQ =

M∑
i=1

Nnovel∑
k=1

max (0, δ1 + d1 − d2)

+ max (0, δ2 + d1 − d3) ,

(9)309

where δ1 and δ2 are hyper-parameters, M is the to-310

tal number of training episodes, and three distances311

d1, d2, d3 are defined as follows:312

d1 = d
(
f
(
aki

)
, P k

p,i

)
, (10)313

d2 = d
(
f
(
aki

)
, P k

n,i

)
, (11)314

d3 = d
(
P k
n,novel,i, P

k
n,base,i

)
, (12)315

where
(
aki , P

k
p,i, P

k
n,novel,i, P

k
n,base,i

)
is a quadru-316

plet consisting of the anchor instance, the positive317

prototype from the same novel class, the first nega-318

tive prototype from another novel class and the sec-319

ond negative prototype from one of the base classes,320

f(·) is the feature extractor, and P k
n,i is randomly321

selected from P k
n,novel,i or P k

n,base,i. Different from322

IncreProtoNet, inspired by the triplet-center loss323

(He et al., 2018), which can further enhance the dis-324

criminative power of the features, we also learn the325

center representation of each class and then require326

that the distances between anchors and centers from327

the same class are smalller than those from differ- 328

ent classes. Note that pk, P k
n,novel,i, P

k
n,base,i are 329

all virtual instances and denote the corresponding 330

prototypes. 331

In addition, to enhance the abilities of our model 332

to transfer across domains, inspired by the quadru- 333

plet loss (Chen et al., 2017) which introduces the 334

absolute distance between the positive and negative 335

sample pairs, we add d3 to better align different do- 336

mains, which narrows the domain gap and further 337

alleviates the issue of incompatible feature embed- 338

ding between base classes and novel classes, so as 339

to achieve more effective domain adaptation. 340

Finally, the joint loss function L is a trade-off 341

between the cross-entropy loss LCE and the above 342

LPQ by a hyper-parameter λ: 343

L = LCE + λ · LPQ. (13) 344

4 Experiments 345

4.1 Datasets and Evaluation Metrics 346

Datasets. We carry out extensive experiments on 347

two benchmark datasets. The first one is FewRel 348

1.0 (Han et al., 2018), which contains 80 relations 349

and provides 700 instances for each relation. We 350

adopt the same split as Ren et al. (2020). To be 351

specific, 54 relations are randomly selected as the 352

base relations each with 550 instances for base pre- 353

training, 50 instances for episode training and 100 354

instances for testing. 10 other relations each with 355

700 instances are sampled as the novel relations 356

for the episode training. The rest 16 relations each 357

with 700 instances are used as the novel relations in 358

testing. The other dataset is FewRel 2.0 (Gao et al., 359

2019b), which is constructed on top of the FewRel 360

1.0 by adding a new test set in a quite different 361

domain (i.e., medicine), requiring the models to 362

transfer across domains. 363

Evaluation Metrics. To compare our proposed 364

method with the state-of-the-art methods, we adopt 365

the same evaluation metrics as Ren et al. (2020), 366

namely, three kinds of classification accuracy, in- 367

cluding classification accuracy for instances of base 368

relations, novel relations, and all relations. Since 369

the number of base relations is much larger than 370

that of novel relations, the classification accuracy 371

for instances of all relations depends largely on that 372

of base relations. 373
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Table 1: Average classification accuracy (%) on the FewRel 1.0 dataset.

Models
1-shot learning 5-shot learning

Base Novel Both Base Novel Both
Proto 43.20 ± 0.12 39.86 ± 0.26 42.91 ± 0.22 66.74 ± 0.05 57.33 ± 0.15 65.94 ± 0.11

HATT Proto 51.58 ± 0.11 45.16 ± 0.18 51.03 ± 0.15 67.77 ± 0.13 61.12 ± 0.09 67.20 ± 0.08
BERT-PAIR 76.03 ± 0.05 58.29 ± 0.13 75.30 ± 0.11 80.01 ± 0.03 64.34 ± 0.14 78.68 ± 0.12

ProtoNet (Increment) 75.63 ± 0.04 18.44 ± 0.02 70.78 ± 0.03 75.07 ± 0.03 47.11 ± 0.04 72.70 ± 0.02
Imprint 62.62 ± 0.13 16.79 ± 0.34 58.73 ± 0.27 67.72 ± 0.09 16.49 ± 0.31 63.38 ± 0.25

AttractorNet 66.48 ± 0.19 5.32 ± 0.25 61.29 ± 0.23 68.26 ± 0.22 6.45 ± 0.26 62.78 ± 0.24

GloVe-IncreProtoNet 70.96 ± 0.21 48.38 ± 0.11 69.36 ± 0.15 72.54 ± 0.16 61.57 ± 0.11 71.54 ± 0.13
GloVe-Incre-ICAPQ 72.15 ± 0.18 54.47 ± 0.04 70.42 ± 0.08 72.70 ± 0.06 71.91 ± 0.10 72.63 ± 0.13
BERT-IncreProtoNet 82.10 ± 0.04 60.15 ± 0.11 80.65 ± 0.10 84.64 ± 0.04 65.77 ± 0.09 82.26 ± 0.08
BERT-Incre-ICAPQ 82.56 ± 0.02 63.25 ± 0.09 81.50 ± 0.08 84.90 ± 0.05 69.50 ± 0.06 83.64 ± 0.04

4.2 Implementation Details374

To systematically validate the effectiveness of the375

proposed ICA method, we experiment with two376

kinds of word embedding initialization methods,377

namely, GloVe (Pennington et al., 2014) and BERT378

(Devlin et al., 2019). Besides, the compared meth-379

ods are all evaluated in both 1-shot and 5-shot learn-380

ing. The hidden dimension of feature extractor381

is 230, as well as the prototype dimension. The382

stochastic gradient descent (SGD) is employed for383

optimization and the initial learning rate in episode384

training is set as 0.1, except for BERT as 0.001. For385

the PQ loss, the two margins δ1 and δ2 are set as386

5.0 and 10.0 respectively, while the balance weight387

λ is set as 1.388

4.3 Comparison Methods389

First of all, we compare with several few-shot learn-390

ing models, namely, Proto (Han et al., 2018), HATT391

Proto (Gao et al., 2019a) and BERT-PAIR (Gao392

et al., 2019b) and the incremental few-shot learn-393

ing model ProtoNet (Increment) (Snell et al., 2017).394

Besides, following (Ren et al., 2020), we compare395

with Imprint (Qi et al., 2018) and LwoF (Gidaris396

and Komodakis, 2018) models which are the incre-397

mental few-shot learning models in the computer398

vision field. Finally, we take IncreProtoNet as our399

baseline, which is the current state of the art.400

4.4 Main Results401

Our model gains significant improvement in in-402

cremental few-show learning tasks. From Table403

1, we can observe that for the FewRel 1.0 dataset,404

our model achieves the best in both 1-shot and 5-405

shot tasks. Compared with the best baseline model406

IncreProtoNet, our model remarkably improves the407

novel class classification accuracy by 3-10%, while 408

maintaining high accuracy on base class recogni- 409

tion. This shows that the proposed ICA mechanism 410

and PQ loss can greatly promote the models’ recog- 411

nition capabilities for novel classes. We conjecture 412

this is because the ICA mechanism can obtain more 413

effective novel prototypes and better align the query 414

representations from different encoders. 415

The more support set instances, the larger the 416

improvement for novel class classification. As 417

can be seen from Table 1, using either GloVe or 418

BERT as the initial text encoder, the improvement 419

on the 5-shot learning is more significant than that 420

of 1-shot learning for novel class. This is because 421

when there are more support set samples, the ICA 422

mechanism and PQ loss can help separate the base 423

and novel classes, reduce the distance between sim- 424

ilar classes, and make the query of novel class and 425

corresponding prototype as close as possible. 426

4.5 Domain Adaptation 427

To further demonstrate the superiority of our 428

method, we extend the few-shot domain adapta- 429

tion (few-shot DA) task in FewRel 2.0 (Gao et al., 430

2019b) to the incremental few-shot domain adapta- 431

tion (incre-few-shot DA) task in our work. Differ- 432

ent from the original incre-few-shot RC, the novel 433

instances in the test set are replaced by new in- 434

stances from the medical domain. Since the do- 435

main of novel instances in the test set is no longer 436

consistent with the training set, the models are re- 437

quired to be able to transfer across domains, which 438

is more challenging. 439

Table 2 illustrates the comparison results of 440

Incre-ProtoNet and our model, and we have two 441

observations: (1) Huge drops on almost all met- 442
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Table 2: Results (%) of incre-few-shot DA on the FewRel 2.0 dataset.

Models
1-shot learning 5-shot learning

Base Novel Both Base Novel Both
GloVe-IncreProtoNet 71.37 ± 0.25 36.85 ± 0.13 68.44 ± 0.18 71.71 ± 0.22 49.15 ± 0.14 69.80 ± 0.17
GloVe-Incre-ICAPQ 71.39 ±0.11 37.03 ± 0.15 68.48 ± 0.14 73.11 ± 0.15 55.58 ± 0.10 71.63 ± 0.11
BERT-IncreProtoNet 86.27 ± 0.06 52.68 ± 0.20 83.42 ± 0.11 87.83 ± 0.05 56.70 ± 0.14 85.19 ± 0.09
BERT-Incre-ICAPQ 86.72 ± 0.04 52.85 ± 0.16 84.58 ± 0.12 87.49 ± 0.16 65.27± 0.08 85.60 ± 0.14

Table 3: Ablation Studies. † indicates Incre-ICAPQ without the ICA mechanism; and ‡ indicates Incre-ICAPQ
without the PQ loss.

Models
1-shot learning 5-shot learning

Base Novel Both Base Novel Both
GloVe-IncreProtoNet 70.96 ± 0.21 48.38 ± 0.11 69.36 ± 0.15 72.54 ± 0.16 61.57 ± 0.11 71.54 ± 0.13
GloVe-Incre-ICAPQ † 72.03 ± 0.12 52.47 ±0.05 69.42 ± 0.01 72.32 ± 0.04 67.36 ± 0.10 71.94 ± 0.08
GloVe-Incre-ICAPQ ‡ 71.15 ±0.03 53.97 ± 0.12 69.82 ± 0.10 71.12 ± 0.06 69.14 ± 0.16 71.64 ± 0.11
GloVe-Incre-ICAPQ 72.15 ± 0.18 54.47 ± 0.04 70.42 ± 0.08 72.70 ± 0.06 71.91 ± 0.10 72.63 ± 0.13
BERT-IncreProtoNet 82.10 ± 0.04 60.15 ± 0.11 80.65 ± 0.10 84.64 ± 0.04 65.77 ± 0.09 82.26 ± 0.08
BERT-Incre-ICAPQ † 82.20 ± 0.13 62.72 ± 0.15 80.67 ± 0.08 84.04 ± 0.12 68.06 ± 0.28 82.15 ± 0.10
BERT-Incre-ICAPQ ‡ 82.15 ± 0.14 63.07 ± 0.09 80.92 ± 0.13 84.98 ± 0.10 69.36 ± 0.12 83.25 ± 0.15
BERT-Incre-ICAPQ 82.56 ± 0.02 63.25 ± 0.09 81.50 ± 0.08 84.90 ± 0.05 69.50 ± 0.06 83.64 ± 0.04

rics have been witnessed for both IncreProtNet and443

our model, which demonstrates the difficulty of444

incre-few-shot DA. However, the performance of445

our method deteriorates much slower than that of446

IncreProtoNet. (2) Our model outperforms Incre-447

ProtoNet on all metrics. Especially in 5-shot set-448

tings, the accuracy of novel relation recognition449

is improved by more than 7% in absolute percent-450

age. It indicate that our proposed ICA mechanism451

provides more accurate, robust and general rep-452

resentations for the relation prototypes and query453

instances.454

4.6 Ablation Studies455

As shown in Table 3, on the FewRel 1.0 dataset,456

compared with the baseline IncreProtoNet, our457

model can get a large improvement with either458

the ICA mechanism or the PQ loss. Especially459

for the ICA mechanism, benefited from the full460

interaction brought by it, better query representa-461

tion and novel prototype representation greatly im-462

prove the model’s ability in incremental few-shot463

learning tasks. Furthermore, these two designs are464

complementary to each other, and combining them465

together, we can achieve even larger improvement.466

4.7 Visualization Analysis467

We visualize different types of query representa-468

tions and prototype representations. As shown in469

Figure 3, benefited from the ICA mechanism and 470

PQ loss, prototypes of different classes are pushed 471

apart, and the representations of different queries 472

are more accurate and fall close to the correspond- 473

ing prototype of the same class. 474

4.8 Impact of the Iteration Number of ICA 475

As shown in Table 4, the ICA mechanism with two 476

(N=2) or three (N=3) iterations achieves better re- 477

sults than the single iteration (N=1). This shows 478

that the ICA mechanism which optimizes query rep- 479

resentation and novel prototype representation step 480

by step can effectively improve the accuracy of in- 481

cremental few-shot learning. In addition, when N is 482

greater than 3, the accuracy of the model decreases. 483

The reason is probably that larger N leads to over- 484

fitting of the model. Finally, it can be seen from 485

Table 4 that no matter how many times the model 486

is iteratively aligned, our models are significantly 487

better than the current best baseline IncreProtoNet. 488

5 Related Work 489

RC is a fundamental task in natural language pro- 490

cessing, aiming to recognize the semantic relation 491

between two marked entities in a sentence. With 492

the development of deep learning in recent years, 493

many models based on neural networks have been 494

proposed for this task and achieved great progress. 495
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Figure 3: Visualization of the representations of the query instances and prototypes when BERT-Incre-ICAPQ is
equipped without (a) ICA mechanism and without (b) PQ loss.

Table 4: Impact of the iteration number of ICA.

Models
5-shot learning

Base Novel Both
GloVe-IncreProtoNet 72.43 61.57 71.54

GloVe-Incre-ICAPQ (N=1) 72.33 69.91 71.92
GloVe-Incre-ICAPQ (N=2) 72.55 68.91 72.45
GloVe-Incre-ICAPQ (N=3) 72.17 71.91 72.68
GloVe-Incre-ICAPQ (N=4) 73.23 70.61 72.13

BERT-IncreProtoNet 84.54 65.77 82.26
BERT-Incre-ICAPQ (N=1) 84.25 67.50 82.95
BERT-Incre-ICAPQ (N=2) 84.36 69.50 82.24
BERT-Incre-ICAPQ (N=3) 84.89 69.10 83.46
BERT-Incre-ICAPQ (N=4) 84.43 68.10 82.13

For example, Zeng et al. (2014) and dos Santos et496

al. (2015) utilized convolutional neural networks497

to capture the global and local semantic informa-498

tion. Later, some attention-based models (Wang499

et al., 2016; Zhou et al., 2016; Jin et al., 2020) have500

been proposed to better capture the more useful501

semantic information. These models are may suf-502

fer from the scarcity of high-quality training data.503

To mitigate the problem, some works (Mintz et al.,504

2009; Jia et al., 2019; Qin et al., 2018) adopt DS505

to construct large-scale datasets, while ignore the506

effect of long-tail relations.507

Few-shot RC aims to learn high-quality features508

with only a small number of training samples. Early509

works employed the paradigm of pretraining and510

fine-turning (Bengio, 2012; Donahue et al., 2014;511

Gao et al., 2020), which aimed to acquire and512

transfer konwledge from support set containing in-513

stances of common relations. Later, metric learning514

methods (Vinyals et al., 2016; Snell et al., 2017)515

were proposed to learn different representations516

across relations. One representative work is pro- 517

totypical networks (Snell et al., 2017), aiming to 518

learn robust class representations and classify the 519

query set based on the distance to the class pro- 520

totypes in the feature space. A series of works 521

(Han et al., 2018; Gao et al., 2019a,b) employed 522

prototypical network in few-shot RC and achieved 523

excellent performance. 524

Incremental learning is a setting where new infor- 525

mation is arriving continuously while prior knowl- 526

edge needs to be maintained. Combining incre- 527

mental learning with few-shot RC, incremental 528

few-shot RC constitutes a more realistic scenario, 529

where the model is required to leverage the rep- 530

resentations of base relations learned from large- 531

scale training dataset meanwhile effectively learn 532

the representations of novel relations from a few 533

support instances. To deal with this task, Ren et 534

al. (2020) proposed a prototypical network based 535

model consisting of two encoders for base relations 536

and novel relations, respectively. In this paper, we 537

argue that the previous work (Ren et al., 2020) is 538

sub-optimal and introduce a preferable solution. 539

6 Conclusion 540

In this paper, we presented a novel and effective 541

approach with iterative cross alignment and pro- 542

totype quadruplet loss for the task of incremental 543

few-shot learning. Benefit from the extensive inter- 544

action offered by the iterative cross alignment and 545

the feature space regularization brought by the pro- 546

totype quadruplet loss, our method outperformed 547

the state-of-the-art baseline method significantly, 548

as verified in our extensive experiments. Finally, 549

in our future works, we aim to further improve the 550

performance of our model under the one-shot task 551

setting, as well as accelerate the training process. 552
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