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Abstract

We propose the first learning scheme for functional differential equations (FDEs).
FDEs play a fundamental role in physics, mathematics, and optimal control. How-
ever, the numerical analysis of FDEs has faced challenges due to its unrealistic
computational costs and has been a long standing problem over decades. Thus, nu-
merical approximations of FDEs have been developed, but they often oversimplify
the solutions. To tackle these two issues, we propose a hybrid approach combining
physics-informed neural networks (PINNs) with the cylindrical approximation.
The cylindrical approximation expands functions and functional derivatives with an
orthonormal basis and transforms FDEs into high-dimensional PDEs. To validate
the reliability of the cylindrical approximation for FDE applications, we prove
the convergence theorems of approximated functional derivatives and solutions.
Then, the derived high-dimensional PDEs are numerically solved with PINNs.
Through the capabilities of PINNs, our approach can handle a broader class of
functional derivatives more efficiently than conventional discretization-based meth-
ods, improving the scalability of the cylindrical approximation. As a proof of
concept, we conduct experiments on two FDEs and demonstrate that our model can
successfully achieve typical L1 relative error orders of PINNs ∼ 10−3. Overall,
our work provides a strong backbone for physicists, mathematicians, and machine
learning experts to analyze previously challenging FDEs, thereby democratizing
their numerical analysis, which has received limited attention. Code is available at
https://github.com/TaikiMiyagawa/FunctionalPINN.

1 Introduction

Functional differential equations (FDEs) appear in a wide variety of research areas [91, 92, 79].
FDEs are partial differential equations (PDEs) involving functional derivatives, where a functional
F is a function of an input function θ(x) to a real number, i.e., F : θ 7→ F ([θ]) ∈ R, and a
functional derivative is defined as the derivative of functional w.r.t. the input function at x, denoted
by δF ([θ])/δθ(x). FDEs play a fundamental role in Fokker-Planck systems [27], turbulence theory
[67], quantum field theory [71], mean-field games [16], mean-field optimal control [18, 81], and
unnormalized optimal transport [32]. Major examples of FDEs include the Hopf functional equation
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in fluid mechanics, the Fokker-Planck functional equation in the theory of stochastic processes, and
the functional Hamilton-Jacobi equation in optimal control problems in density spaces.

Despite their wide applicability, numerical analyses of FDEs are known to suffer from significant
computational complexity; therefore, numerical approximation methods have been developed over
decades. They include the functional power series expansion [67], the Reynolds number expansion
[67], finite difference methods [18], finite element methods [79], tensor decomposition methods
[91, 79], and the cylindrical approximation [7, 29, 34, 88].

Figure 1: Overall architecture. An FDE is simpli-
fied to a high-dimensional PDE via the cylindrical
approximation. The PDE is solved with a PINN.
The approximated functional derivative can be effi-
ciently computed with automatic differentiation.

However, they tend to oversimplify the solution
of FDEs, prioritizing the reduction of computa-
tional costs. The functional power series expan-
sion is applicable only to input functions close to
the expansion center. Moreover, it has no conver-
gence guarantees in general [67]. The Reynolds
number expansion requires the Reynolds num-
ber to be close to zero, severely restricting its
applicability, because the Reynolds number for
turbulent flow can be ≳ 1000. Discretization-
based methods such as the finite difference and
element methods restrict spacetime resolution
and/or the class of input functions and functional
derivatives [79]. Existing methods relying on
the cylindrical approximation, akin to the spec-
tral method for PDEs, include tensor decomposition [91, 92] to reduce computational costs; however,
they tend to significantly simplify the class of input functions and functional derivatives. For instance,
their expressivity is limited to polynomials or Fourier series of a few degrees.

To address the notorious computational complexity and limited approximation ability, we propose a
hybrid approach combining physics-informed neural networks (PINNs) and the cylindrical approxi-
mation (Fig. 1). In the first stage, we expand the input function with orthonormal basis functions,
thereby transforming a given FDE into a high-dimensional PDE of the expansion coefficients. This
approximation is referred to as the cylindrical approximation. We prove the convergence of the
approximated functional derivatives and FDE solutions, validating the reliability of the cylindrical
approximation for FDE applications, which is our main theoretical contribution. In the second stage,
the derived high-dimensional PDE is numerically solved with a PINN, which is known to be a
universal approximator tailored to solve high-dimensional PDEs efficiently in a mesh-free manner.

A notable advantage of our approach is that, with the help of PINNs, it reduces the computational
complexity by orders of magnitude, compared with previous discretization-based methods. In fact, it
requires only O(mr), where m represents the “class size” of input functions and functional derivatives
(e.g., the degree of polynomials), and r (≥ 1) denotes the order of the functional derivative included
in the target FDE (typically 1 or 2). This is a notable reduction from the state-of-the-art cylindrical
approximation algorithm [91], which requires as large as O(m6). Consequently, our approach
substantially extends the class of input functions and functional derivatives that can be represented
by the cylindrical approximation. For instance, our approach extends the degrees of polynomials or
Fourier series used for the approximation from 6 [91] to 1000, showing unprecedented expressivity.

As a proof of concept, we conduct experiments on two FDEs: the functional transport equation and
the Burgers-Hopf equation. The results show that our model accurately approximates not only the
solutions but also their functional derivatives, successfully achieving typical L1 relative error orders
of PINNs ∼ 10−3 [19, 12, 20, 21, 47, 77, 84, 93, 94].

Our contribution is threefold. (1) We propose the first learning scheme for FDEs to address the
significant computational complexity and limited approximation ability. Our model exponentially
extends the class of input functions and functional derivatives that can be handled accurately and
efficiently. (2) We prove the convergence of approximated functional derivatives and FDE solutions,
ensuring the cylindrical approximation to be safely applied to FDEs. (3) Our experimental results
show that our model accurately approximates not only the FDE solutions but also their functional
derivatives.
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2 Related Work

FDEs are prevalent across numerous research fields [27, 24, 32, 16, 18, 81, 67, 71]. Research on
FDEs has mainly focused on their theoretical aspects and formal solutions, with very few algorithms
available to numerically solve general FDEs [18, 79, 91, 104]. In [18], a numerical method specialized
for the Hamilton-Jacobi functional equation for optimal control problems in density space is proposed,
based on spacetime discretization. Similarly, [79] employs spacetime discretization with tensor
decomposition. The state-of-the-art algorithm proposed in [91], the CP-ALS (Canonical Polyadic
tensor expansion & Alternating Least Squares) algorithm, uses the cylindrical approximation along
with the finite difference method and tensor decomposition, requiring O(m6) (see App. F.2 for
the derivation), whereas our model requires only O(mr) (r is 1 or 2 in most FDEs). Furthermore,
our model does not require such discretization, making it mesh-free. See App. B for an additional
introduction to FDEs and their approximations.

The cylindrical approximation originates from the theory of stochastic processes [34, 88]. It is
reminiscent of the spectral method for PDEs [66] and is a generalization to FDEs. Convergence
theorems of the cylindrical approximation are summarized in a recent seminal paper [92]. Note that
the cylindrical approximation in this paper (Eq. (2)) is different from the one in [92], tailored for
practical use. Consequently, our convergence theorems also differ from those in [92]. See App. C.4.2
for technical details. See App. A for more comparisons with other studies.

3 Proposed Approach

3.1 Step 1: Cylindrical Approximation

We first introduce the cylindrical approximation of functionals, functional derivatives, and FDEs,
beginning with the expansion of input functions and culminating in the transformation of FDEs into
high-dimensional PDEs. Additionally, we prove the convergence theorems for this approximation.
The rigorous mathematical background is reviewed in App. C for interested readers.

Firstly, we define the cylindrical approximation of functionals [7, 29, 34, 88]. Any function θ in a real
separable Hilbert space H can be represented uniquely in terms of an orthonormal basis {ϕk}∞k=0
as θ(x) =

∑∞
k=0 akϕk(x), where ak := (θ, ϕk)H are the coefficients (or spectrum) of θ in terms

of {ϕk}k≥0, and (·, ·)H denotes the inner product of H . Substituting this expansion to functional
F ([θ]), we can define a multivariable function f({ak}∞k=0) := F ([

∑∞
k=0 akϕk]) for any functional

F : H → R. Truncating k at m− 1 ∈ Z≥0 gives the cylindrical approximation of functionals:

f({ak}m−1
k=0 ) := F ([Pmθ]), (1)

where Pm is the projection operator s.t. Pmθ(x) :=
∑m−1

k=0 akϕk(x), and m is referred to as the
degree of approximation. See Thm. C.19 and Thm. C.20 for the uniform convergence and convergence
rate of this approximation, originally given by [75, 92].

Secondly, we define the cylindrical approximation of functional derivatives. The functional derivative
of F w.r.t. θ at x is defined as δF ([θ])

δθ(x) := lim
ϵ→0

F ([θ(y)+ϵδ(x−y)])−F ([θ(y)])
ϵ , where δ(x) denotes the Dirac

delta function. This definition is impractical to simulate on computers with spacetime discretization;
thus, we employ the expansion δF ([θ])

δθ(x) =
∑∞

k=0(
δF ([θ])

δθ , ϕk)Hϕk(x). The expansion is possible

because δF ([θ])
δθ(x) itself is a function of x in H and thus can be represented as an orthonormal basis

expansion. Note that the expansion coefficients ( δF ([θ])
δθ , ϕk)H are known to be equal to ∂f

∂ak
(see

App. C.4.2 for the proof). Hence, truncating θ at m − 1 gives the cylindrical approximation of
functional derivatives:

Pm
δF ([Pmθ])

δθ(x)
=

m−1∑
k=0

∂f

∂ak
ϕk(x) . (2)

Note that Eq. (2) is different from the cylindrical approximation adopted in [91, 92]. They do not
apply Pm to δF ([Pmθ])/δθ(x), and the emerging “tail term” Σ∞

k=m(δF ([θ])/δθ, ϕk)ϕk(x) is simply
ignored without any rationale.

The first main theoretical contribution of our work is the following convergence theorem of Eq. (2).
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Theorem 3.1 (Pointwise convergence of approximated functional derivatives (informal)). For arbi-
trary θ ∈ H and orthonormal basis {ϕ0, ϕ1, . . .}, Eq. (2) converges to δF ([θ])

δθ as m → ∞.

The formal statement and proof are given in App. D.1. The convergence rate is the same as ∥θ−Pmθ∥
if δF ([θ])/δθ(x) ∈ span{ϕ0, . . . , ϕm−1}. A technical discussion when this is not the case is
provided in App. D.

Figure 2: Cylindrical approximation
of FDE’s solution. The L1 relative
error, defined as 1

N

∑N
i=1 |F ([θi]) −

F ([Pmθi])|/|F ([θi])|, diminishes with
increasing m. The Burgers-Hopf equation
with the delta initial condition (Sec. 3.1.2) is
considered. Note that PINN’s training is not
included.

Finally, we define the cylindrical approximation of
FDEs [92]. In this paper, we consider the abstract
evolution equation, a class of FDEs having the fol-
lowing form:

∂F ([θ], t)/∂t = L([θ])F ([θ], t) (3)

with F ([θ], 0) = F0([θ]), where L([θ]) is a linear
functional operator, and F0 is a given initial condi-
tion. The abstract evolution equation is a crucial class
of FDEs in physics, mathematics, and engineering, in-
cluding the Hopf functional equation, Fokker-Planck
functional equation, and functional Hamilton-Jacobi
equation. The cylindrical approximation of the ab-
stract evolution equation is given by

∂f(a, t)/∂t = Lm([θ])f(a, t) (4)

with f(a, 0) = f0(a), where a :=
(a0, . . . , am−1)

⊤, f(a, t) := F ([Pmθ], t), and
f0(a) := F0([Pmθ]). The operator Lm([θ]) is the
cylindrical approximation of L([θ]). Examples are
given in Secs. 3.1.1 & 3.1.2.

The second main theoretical contribution of our work is the following convergence theorem of
solutions:
Theorem 3.2 (Convergence of approximated solutions (informal)). Under the cylindrical approxi-
mation (Eq. (2)), if the FDE depends on functional derivatives only in the form of the inner prod-
uct (v, δF ([θ])

δθ )H (v ∈ H), then, the solution of the approximated abstract evolution equation
(F ([Pmθ], t)) converges to the solution of the original one (F ([θ], t)) as m → ∞.

The proof is given in App. E. The convergence is visualized in Fig. 2. Similar theorems for the FDEs
with the second or higher-order functional derivatives can be shown in a similar way. The inner-
product assumption in Thm. 3.2 is satisfied by major FDEs, such as the Hopf functional equation,
Fokker-Planck functional equation, and functional Hamilton-Jacobi equation.

In the following, we apply the cylindrical approximation to two FDEs: the functional transport
equation (FTE) and the Burgers-Hopf equation (BHE).

3.1.1 Application 1: Functional Transport Equation

We first construct a simple FDE, the functional transport equation (FTE), which is a generalization
of the transport equation (the continuity equation) [53]. The FTE is provided by

∂

∂t
F ([θ], t) = −

∫
dxu(x)

δF ([θ], t)

δθ(x)
, (5)

with the initial condition F ([θ], 0) = F0([θ]), where x ∈ [−1, 1], and u(x) is a given function.
Specifically, we use the initial condition F ([θ], 0) = ρ0

∫
dxu(x)θ(x) with ρ0 a constant. The exact

solution is F ([θ], t) = F0([θ − ut]) = ρ0
∫
dxu(x)(θ(x)− u(x)t), as can be seen by substituting

this into Eq. (5). More details and motivations of the FTE are provided in App. E.1.

The cylindrical approximation of the FTE is given by

∂

∂t
f(a, t) = −

m−1∑
k=0

uk
∂

∂ak
f(a, t) (6)
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with the initial condition f(a, 0) = f0(a), where θ(x) =
∑m−1

k=0 akϕk(x), and f0(a) =

F0([Pmθ]) = ρ0Σ
m−1
k=0 ukak with uk := (u, ϕk)L2([−1,1]) =

∫
dxu(x)ϕk(x). We use the Leg-

endre polynomials as the orthonormal basis {ϕk}k≥0. The exact solution of Eq. (6) is f(a, t) =

ρ0
∑m−1

k=0 uk(ak − ukt).

In our experiments in Sec. 4, we consider two types of FTEs: (i) uk := υ0 for k = 1 (0 otherwise)
and (ii) uk := υ0 for k ≤ 14 (0 otherwise), where υ0 is a constant. For convenience, we call them
the linear and nonlinear initial conditions, respectively. The high-dimensional PDE thus obtained
(Eq. (6)) is solved with PINNs (Sec. 3.2).

3.1.2 Application 2: Burgers-Hopf Equation

The second FDE is the Burgers-Hopf equation (BHE), a crucial equation in turbulence theory:

∂F ([θ], t)

∂t
=

∫
dxθ(x)

∂2

∂x2

δF ([θ], t)

δθ(x)
(7)

with the initial condition F ([θ], 0) = F0([θ]), where x ∈ [−1/2, 1/2]. Specifically, we use the Gaus-
sian initial condition F0([θ]) = −µ

∫
dxθ(x)+ 1

2

∫
dx
∫
dx′C(x, x′)θ(x)θ(x′), where µ is a constant,

and C(x, x′) is the infinite-dimensional covariance matrix. The exact solution is F ([θ], t) = F0([Θ]),
where Θ([θ], x, t) := 1√

4πt

∫∞
−∞ dx′e−

1
4t (x−x′)2θ(x′). The derivation is provided in App. D.2.1.

Strictly speaking, Eq. (7) is a modification of the original BHE. The modification includes making
the BHE dimensionless and neglecting the advection term. For more technical details, see App. E.2.

The cylindrical approximation of the BHE is given by

∂

∂t
f(a, t) =

m−1∑
k=0

m−1∑
l=0

∫
dx

∂ϕk(x)

∂x2
ϕl(x)ak

∂

∂al
f(a, t) (8)

with the initial condition f(a, 0) = f0(a), where θ(x) =
∑m−1

k=0 akϕk(x), f0(a) = F0([Pmθ]) =

−µ̄a0 +
1
2Σ

m−1
k,l=0C̃klakal with C̃kl :=

∫
dx
∫
dx′C(x, x′)ϕk(x)ϕl(x

′). We use the Fourier series as
the orthonormal basis: {ϕk(x)}k≥0 = {1,

√
2 sin(πkx),

√
2 cos(πkx)}k≥1. Then, the exact solution

under the cylindrical approximation is given by

f(a, t) = −µa0 +ΣM−1
k,l=0

(
e−4π2(k2+l2)tC̃2k,2la2ka2l

+ e−4π2(k2+(l+1)2)tC̃2k,2l+1a2ka2l+1 + e−4π2((k+1)2+l2)tC̃2k+1,2la2k+1a2l

+ e−4π2((k+1)2+(l+1)2)tC̃2k+1,2l+1a2k+1a2l+1

)
/2 , (9)

where m = 2M (M ∈ N). The derivation is given in App. D.2.2.

In our experiments in Sec. 4, we adopt two types of the covariance matrices: (i) C̃ij = σ2 for all
i = j ≥ 0 (0 otherwise) and (ii) C̃ij = σ2 for i = j = 0 (0 otherwise), where σ2 is a constant.
Substituting (i) and (ii) into f0, we have two types of initial conditions, which we call the delta and
constant initial conditions, respectively. Again, the high-dimensional PDE thus obtained (Eq. (8)) is
solved with PINNs (Sec. 3.2).

3.2 Step 2: Solving Approximated FDEs with PINNs

Figure 3: PINN’s architecture.

We briefly introduce the foundation of PINNs
[77]. PINNs are universal approximators and
can solve PDEs. Let us consider a PDE
∂f(t, x)/∂t = N [f ] with an initial condition
B[f ]|t=0 = 0, where t ∈ [0, 1], x ∈ [−1, 1]. N
and B are operators defining the PDE and the
initial condition, respectively. The PINN aims
to approximate the solution f(t, x). Thus, the
inputs to the PINN are t and x, randomly sam-
pled from [0, 1] and [−1, 1], respectively. Note
that (t = 0, x) with x ∈ [−1, 1] are also input
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to the PINN to compute the boundary loss. The inputs are transformed through linear layers and
activation functions. The final output of the PINN is an approximation of f(t, x), denoted by f̂(t, x).
The loss function is the weighted sum of the residual loss ∥∂f̂(t, x)/∂t−N [f̂ ]∥ and the boundary
loss ∥B[f̂ ]|t=0∥, where ∥ · ∥ is a certain norm. The partial derivatives in the loss function can be
computed via automatic differentiation of the PINN’s output f̂ w.r.t. the inputs (t, x). Finally, the
weight parameters of the PINN are minimized through backpropagation.

Next, we explain how to apply PINNs to our high-dimensional PDEs: see Fig. 3. For concrete-
ness, consider the FTE (Eq. (6)) with the linear initial condition. The inputs to the PINN are
(t, a0, a1, . . . , am−1) and (0, a0, a1, . . . , am−1), randomly sampled from finite intervals, and the
outputs are f̂(a, t) and f̂(a, 0), respectively. Then, ∂f̂(a, t)/∂t and ∂f̂(a, t)/∂a are computed via
automatic differentiation, and we obtain the residual loss ∥∂f̂(a, t)/∂t+Σm−1

k=0 uk∂f̂(a, t)/∂ak∥ and
the boundary loss ∥f̂0(a)− ρ0Σ

m−1
k=0 ukak∥, where f̂0(a) := f̂(a, 0). These losses are minimized

via mini-batch optimization.

Table 1: Mean relative and absolute errors of
models trained on FTEs under linear (top two)
and nonlinear (bottom two) initial conditions.
I.C. is short for “initial condition”. The error bars
are the standard deviation over 10 training runs
with different random seeds. Note that this table
is not for the assessment of the theoretical conver-
gence of the cylindrical approximation (see Fig. 2,
App. H.6, and the footnote in Sec. 4.1 instead).

DEGREE RELATIVE ERROR (LINEAR I.C.)

4 (1.26820± 0.31421)× 10−3

20 (2.01716± 0.21742)× 10−3

100 (6.24740± 0.33492)× 10−3

DEGREE ABSOLUTE ERROR (LINEAR I.C.)

4 (1.32203± 0.44061)× 10−3

20 (2.29632± 0.16459)× 10−3

100 (1.23312± 0.18931)× 10−3

DEGREE RELATIVE ERROR (NONLINEAR I.C.)

4 (1.79295± 0.28535)× 10−3

100 (7.63769± 0.90872)× 10−3

1000 (8.27096± 1.19378)× 10−3

DEGREE ABSOLUTE ERROR (NONLINEAR I.C.)

4 (2.37627± 0.15278)× 10−4

100 (1.84506± 0.15765)× 10−3

1000 (1.76470± 0.36885)× 10−3

Computational Complexity The total com-
putational complexity w.r.t. m up to the com-
putation of functional derivatives is given by
O(m) +O(mr) = O(mr), where r ≥ 1 is the
order of the functional derivative included in
the target FDE (typically 1 or 2). The first term
O(m) comes from the input layer of the PINN.
The second term O(mr) comes from the compu-
tation of functional derivatives under the cylin-
drical approximation (Eq. (2)). See App. F.4
for more detailed discussions on computational
complexity.

This is a notable reduction from discretization-
based methods such as finite difference and el-
ement methods, which typically require expo-
nentially large computational complexity w.r.t.
the dimension of PDE m. Also, O(mr) is sig-
nificantly smaller than the state-of-the-art cylin-
drical approximation algorithm, the CP-ALS
[91], which requires O(m6) (the derivation is
given in App. F.2). Consequently, given that
m represents the “class size” of input functions
and functional derivatives (Eqs. (1) & (2)), our
approach significantly extends the range of in-
put functions and functional derivatives that can
be represented via the cylindrical approxima-
tion. In fact, our approach extends the degrees
of polynomials or Fourier series used for the
approximation from 6 [91] to 1000 (Sec. 4).

Finally, we note that the selection of basis func-
tions influences computational efficiency. The choice depends on the specific FDE, boundary
conditions, symmetry, function spaces, and numerical stability. For further discussions, see App. F.3).

In summary, our proposed approach transforms an FDE into a high-dimensional PDE using cylindrical
approximation and then solves it with a PINN, which serves as a universal approximator of the solution
(Figs. 1 & 3). It is important to note that our model employs the basic PINN framework, allowing for
seamless integration with any techniques developed within the PINN community.

4 Experiment
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Table 2: Mean relative (top) and absolute (bottom) errors. The models are trained on the BHE.
The error bars are the standard deviation over 10 training runs with different random seeds. Note that
this table is not for the assessment of the theoretical convergence of the cylindrical approximation
(see Fig. 2, App. H.6, and the footnote in Sec. 4.1 instead).

INITIAL CONDITIONS

DEGREE DELTA CONSTANT

4 (2.93905± 0.17403)× 10−4 (12.1782± 8.54758)× 10−5

20 (2.20842± 0.28531)× 10−4 (6.14352± 1.28641)× 10−5

100 (2.41667± 0.25264)× 10−4 (5.50375± 1.75507)× 10−5

INITIAL CONDITIONS

DEGREE DELTA CONSTANT

4 (1.66451± 0.47547)× 10−5 (1.62849± 0.66896)× 10−5

20 (1.34640± 0.12105)× 10−5 (1.12371± 0.32367)× 10−5

100 (1.60980± 0.08952)× 10−5 (1.05558± 0.16673)× 10−5

Figure 4: Analytic solution (top four panels),
prediction (second four panels), and absolute
error (bottom four panels) of FTE with degree
100 under linear initial condition. The horizontal
axes represent ak for k = 0, 1, 2, 99, with all the
other coefficients set to 0. Our model successfully
learns the FTE.

As a proof of concept for our approach, we nu-
merically solve the FTE and BHE.1 These two
FDEs are suitable for numerical experiments
because their analytic solutions are available,
allowing for the computation of absolute and
relative errors, major metrics in the numerical
analysis of PDEs and FDEs. Note that the ana-
lytic solutions for most FDEs are currently un-
known due to their mathematical complexity.

Setups. We use a 4-layer PINN with 3× (lin-
ear + sin activation + layer normalization [6])
+ last linear layer. The total loss function is
the smooth L1 loss or the sum of L1 and L∞

losses. Softmax loss-reweighting is employed.
The optimizer is AdamW [59]. The learning
rate scheduler is the linear warmup with co-
sine annealing with warmup [58]. Latin hyper-
cube sampling [64, 39] is used for the train-
ing, validation, and test sets. For the BHE,
the sampling range is decayed quadratically
in terms of k ∈ {0, 1, . . . ,m − 1} to stabi-
lize the training. We use L1 relative and ab-
solute errors, standard performance metrics for
numerical analysis of PDEs and FDEs. Ab-
solute error 1

NΣN
i=1|f(ai, ti) − f̂(ai, ti)| is

used instead of relative error 1
NΣN

i=1|f(ai, ti)−
f̂(ai, ti)|/|f(ai, ti)| when the analytic solution
is close to zero because relative error in such a
region blows up by definition, regardless of the
model’s prediction. υ0, ρ0, µ̄, and σ2 are set
to 1, 1, 8, and 10, respectively. In App. G, we
provide more detailed setups for reproducibility, including the range of ak.

1Code: https://github.com/TaikiMiyagawa/FunctionalPINN.
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Figure 5: Absolute error of first-order functional derivative of FTE with degree 100 (top) and
1000 (bottom) under linear (top) and nonlinear (bottom) initial conditions. The error bars
represent the standard deviation over 10 runs with different random seeds.

Figure 6: Relative error of first-order functional derivative of BHE with degree 100 under delta
initial condition. The error bars represent the standard deviation over 10 runs. The top/bottom
four panels show the results with/without the loss function ∥W ([0], t)∥, respectively. With this loss
function, the error reduces by 10−1.
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4.1 Result : Functional Transport Equation

Tab. 1 shows the main result.2 Our model achieves typical relative error orders of PINNs ∼ 10−3,
even when the degree is as large as 1000, which means our model’s capability of representing
θ and δF ([θ], t)/δθ(x) as polynomials of degree 1000. This is a notable improvement from the
state-of-the-art algorithm [91], which can handle m ≤ 6.

Fig. 4 visualizes the analytic solution, prediction, and absolute error of a model trained on the FTE
with degree 100 under the linear initial condition. Note that some of the collocation points used for
plotting Fig. 4 are not in the training set, as can be seen from Figs. 11–16 in App. H.3. This aspect
highlights the model’s ability to extrapolate beyond its training data (ak ∼ 0).

Fig. 5 shows the absolute error of the first-order functional derivative estimated at t = 1 and θ = 0.
Again, θ = 0 is not included in the training set. The errors in the top four panels increase at the edges
of intervals (x = ±1) due to Runge’s phenomenon [80].

4.2 Result: Burgers-Hopf Equation

Figure 7: Analytic solution (top four panels),
prediction (second four panels), and absolute
error (last four panels) of BHE with degree 20
under delta initial condition. The horizontal axes
are ak (k = 0, 1, 2, or 19). The other coefficients
are kept 0. Our model successfully learns the BHE.

Tab. 2 shows the main result. Again, our model
successfully achieves ∼ 10−3, the typical order
of relative error of PINNs. See Fig. 2, App. H.6,
and the footnote in Sec. 4.1 for the assessment
of the theoretical convergence of the cylindrical
approximation.

Fig. 6 shows the relative error of first-order func-
tional derivatives at θ = 0. Note again that some
of the collocation points used for this figure are
not included in the training dataset, highlight-
ing the model’s ability to extrapolate beyond
its training dataset (ak ∼ 0). Additionally, the
error is reduced by a factor of 10−1 by incorpo-
rating a loss term corresponding to the identity
W ([0], t) = 0 (bottom four panels).

Fig. 7 visualizes the analytic solution, predic-
tion, and absolute error of a model trained on the
BHE with degree 20 under the delta initial con-
dition. The absolute error w.r.t. a0 is 10−4 times
smaller than the scale of the solution; i.e., the
model learns θ well in the direction of a0, which
dominates the analytic solution. Conversely, the
absolute error w.r.t. a19 is on par with the scale
of the solution. This result is anticipated because
the dependence of the solution on a19 is much
smaller than a0. This relationship is evident
from Eq. (9), which indicates that the higher de-
gree terms decay exponentially in terms of k, l,
and t, and the solution is dominated by ak with
k ≲ 1. Therefore, optimizing the model in the
direction of a19 has only a negligible effect on
minimizing the loss function.

Finally, many additional experimental results are provided in App. H, including a comparison with
the CP-ALS algorithm.

2Note that Tabs. 1 & 2 are not for the assessment of the theoretical convergence of the cylindrical approxima-
tion, unlike Fig. 2, because the analytic solutions used for error computation vary across each row, depending on
the degree. See App. H.6 instead, where we additionally perform a cross-degree evaluation.
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5 Limitations

One limitation of our work is that the spacetime dimension is limited to 1 + 1 (t and x) in our experi-
ments. However, generalization to 1 + d dimensions is feasible, albeit with additional computational
costs. For d > 1 dimensional spaces, we have several options for expansion bases [79].

Another limitation is that the orders of functional derivatives in FDEs in our experiments are lim-
ited to r = 1. However, extending to r ≥ 2 is straightforward. For instance, the cylindrical
approximation of the second-order functional derivative is expressed as δ2F ([θ], t)/δθ(x)δθ(y) ≈
Σm−1

k,l=0∂
2f(a, t)/∂ak∂alϕk(x)ϕl(y), which can be computed via backpropagation twice.

Furthermore, this paper focuses exclusively on the abstract evolution equation. While this includes
important FDEs (see Sec. 3), it does not cover certain equations, such as the Schwinger-Dyson
equation or the Wetterich equation. Nonetheless, the mathematical foundations regarding the existence
and uniqueness of these FDEs remain unestablished, which is beyond the scope of our paper. Once
these foundations are defined, applying our model to these equations would be straightforward. More
discussions on limitations, including technical ones, are provided in App. F.1.
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A Supplementary Related Work

Note on [91] & [92]. Most of the numerical results presented in [91] and [92] are derived from
simulations based on analytically specified functions and functionals, without involving the numerical
integration of FDEs. For instance, Fig. 2 in [92] does not depict the result of numerically solving an
FDE. Instead, it illustrates the approximation error of the cylindrical approximation of an analytically
given functional (refer to Eq. (127) in [92]). The performance of numerical integration of FDEs using
CPU-based algorithms is given in Fig. 38 in [91], which shows the application of the CP-ALS and
hierarchical Tucker (HT) methods for cases with m ≤ 6. Note that the HT is reported to be slower
than the CP-ALS [91].

Applications of functionals. Functionals play a fundamental role in stochastic systems [101,
27, 49], Fokker-Planck equations [27], the statistical theory of turbulence [43, 3, 67], the theory of
superfluidity [13, 83], quantum field theories [90, 91], mean-field games [16], many-body Schrödinger
equations [42], mean-field optimal control [99, 81], and unnormalized optimal transport [32].

Examples of FDEs. Examples of FDEs include the Schwinger-Dyson equation in quantum field
theory [46], the Hopf characteristic functional equation in fluid mechanics and random processes
[11, 49, 67], probability density functional equations, and effective Fokker-Planck systems [91].

Operator learning. Functionals can be seen as operators that map a function to a scalar; thus,
operator learning [4, 54, 60, 61] appears to be a promising approach to learning functionals. However,
this method requires simulation or observation data unless PINNs are used simultaneously [55, 95]. In
other words, operator learning methods solve inverse problems, while we focus on forward problems,
where only the equation to be solved is given.

Other approximation methods for FDEs. A common class of solvers for FDEs is based on
truncating power series expansions at a finite order [67]. This includes the functional Taylor expansion,
which expands a functional in terms of its argument functions. However, its applicability is limited
because solutions obtained from the functional Taylor expansion can only be used for input functions
close to the expansion center.

Another type of expansion used in the theory of functional renormalization group is the derivative
expansion [23]. It is an expansion in terms of derivatives of the input functions. However, solutions
are only feasible for inputs close to constants. For example, in the three-dimensional O(N) statistical
model, derivative expansions up to the sixth order have been executed [23], but they are limited to
calculations in uniform states and cannot handle non-uniform states.

Yet another expansion method uses the Reynolds number to distinguish between laminar and turbulent
flow and has been applied to the Hopf equation [67]. However, increasing the truncation order poses
a significant challenge. Specifically, calculating each expansion coefficient requires spatial integrals,
leading to an exponential increase in computational costs.

Influence functions can be used for approximating Gateaux derivatives. In [48], the proposed approach
is based on a finite-difference approximation of Gateaux derivatives, which requires a computational
mesh for input function space when solving FDEs. Such an approach is infeasible because the number
of mesh points grows exponentially with respect to the size of the input-function space.

High-dimensional PDEs. In our experiments, with the help of PINNs, we numerically solved
1000-dimensional PDEs, which are impossible to handle with discretization-based methods, such as
the finite element method. Numerical computation of high-dimensional PDEs is known to suffer from
the curse of dimensionality, making PDEs with dimensions d ≥ 40 particularly challenging [98].

However, rapid development in this field, especially in PINNs, has enabled solving much higher-
dimensional PDEs. For example, a 100,000-dimensional PDE is now tractable [44], which can be
combined with our model. Nevertheless, d ∼ O(100) is typically sufficient in practice as long as
input functions are regular. See also Fig. 10.

PINNs. PINNs are a type of mesh-free universal approximators of PDE solutions [77]. There are
several machine learning-based mesh-free solvers, e.g., [17].
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Automatic functional differentiation of higher-order functions. Automatic differentiation of
higher-order functions has a long history in theoretical computer science (see [68, 10] and the
references therein)." Most studies focus on the mathematical aspects of programming languages,
particularly how to implement reliable automatic functional differentiation, which is beyond our
scope. We cite two recent papers that explicitly mention functional derivatives. Di et al. [22] develop
a language to compute automatic functional derivatives; however, the implementation is not available.
Lin [56] provides a JAX implementation of functional derivatives w.r.t. parameterized input functions.
However, it supports only local, semilocal, and several nonlocal operators, limiting the functional
space. In contrast, our model extends its approximability as m increases.

Density functional theory (DFT). An alternative neural network-based approach to functional
analysis utilizes finite element methods for spacetime grid approximation, commonly employed in
first-principles computations of density functional theory (DFT) [26]. Examples include a neural
network, F̂ ({yj := f(rj)}j), approximating a target functional F ([f ]) by evaluating f at specific
grid points {rj}j . Functional derivatives at each grid point can be computed using automatic

differentiation: { δF ([f ])
δf(r) }r ≒ {∂F̂ ({yj}j)

∂yi
}i. However, the central focus of the machine learning

studies for DFT does not include solving PDEs, let alone FDEs.

Neural functional networks. Implicit Neural Representations (INRs) is another strategy to handle
functions as the inputs to neural networks [107, 9, 62, 28]. However, this method requires a large
number of weight parameters, resulting in substantial computational demands.
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B Additional Introduction to FDEs

B.1 Background

Functional differential equations (FDEs) are prevalent across various scientific fields, including the
Hopf equation in statistical turbulence theory [43], the Schwinger-Dyson equation in quantum field
theory [71], the functional renormalization group equation [97, 102, 72, 100], the Fokker-Planck
equation in statistical mechanics [27], and equations for the energy density functional in DFT [73, 82].
The strength of FDEs lies in their comprehensive nature, enabling the derivation of various statistical
properties of physical systems. For instance, the Hopf equation yields the characteristic functional,
encompassing all information about simultaneous correlations of velocities at different positions, a
crucial quantity in turbulence theory. Therefore, a highly accurate, efficient, and universal method for
solving FDEs significantly impacts a broad range of scientific research but is yet to be explored.

A common class of solvers for FDEs is based on truncating power series expansions at a finite
order [67]. This includes the functional Taylor expansion, which expands a functional in terms of
its argument functions. However, its applicability is limited because solutions obtained from the
functional Taylor expansion can only be used for input functions close to the expansion center.

Another type of expansion used in the functional renormalization group theory is the derivative
expansion [23]. It is an expansion in terms of derivatives of the input functions. However, solutions
are only feasible for inputs close to constants. For example, in the three-dimensional O(N) statistical
model, derivative expansions up to the sixth order have been executed [23], but they are limited to
calculations in uniform states and cannot treat non-uniform states.

Yet another expansion method uses the Reynolds number, distinguishing between laminar and
turbulent flow, and has been applied to the Hopf equation [67]. However, increasing the truncation
order poses a significant challenge. Specifically, calculating each expansion coefficient requires
spatial integrals, leading to an exponential increase in computational costs.

An alternative to solving FDEs is the cylindrical approximation [91]. In this method, the input
function is expanded using a set of basis functions truncated at a finite degree. The cylindrical
approximation transforms an FDE into a high-dimensional PDE, and discretization-based methods
are often used together. To address its high computational cost, tensor decomposition methods are also
used. Canonical Polyadic (CP) tensor expansion with the Alternating Least Squares (ALS) method
[91] is the state-of-the-art algorithm in this class. The reported results to date are limited to cases
with six or fewer basis functions. The computational cost related to m is at least O(m6), presenting
a challenge in increasing the number of bases m. In contrast, our model scales ∼ O(m) +O(mr),
where r is the order of the functional derivative included in the target FDE. r is typically 1 or 2, and
thus the dependence on m is ∼ O(m) or O(m2).

An alternative to solving FDEs is the cylindrical approximation [91]. In this method, the input
function is expanded using a set of basis functions truncated at a finite degree. The cylindrical
approximation transforms an FDE into a high-dimensional PDE, often solved using discretization-
based methods. To address the high computational cost, tensor decomposition methods are also used.
The CP-ALS method [91] is the state-of-the-art algorithm in this class. The reported results to date
are limited to cases with six or fewer basis functions. The computational cost related to m is at least
O(m6), presenting a challenge in increasing the number of basis functions m. In contrast, our model
scales as O(mr), where r is the order of the functional derivative in the target FDE. Typically, r is 1
or 2.

Below, we provide examples from the fields of turbulence, quantum field theory, and density functional
theory.

B.2 Turbulence

Turbulence appears everywhere, from natural systems (e.g., river flows and wind currents) to artificial
systems (e.g., water flow in pipes and airflow over airplane surfaces). Understanding its properties is
important both in natural sciences and in engineering. However, turbulence is a very complex system
involving many degrees of freedom, and the only way to theoretically represent the properties of
turbulence is through statistical methods. The Hopf equation [43] is an FDE that comprehensively
describes the properties of turbulence. For example, the Hopf equation for a fluid following the
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Navier-Stokes equations is written as follows:

∂Φ([θ], t)

∂t
=

3∑
k=1

∫
V

dxθk(x)

 i

2

3∑
j=1

∂

∂xj

δ2Φ([θ], t)

δθj(x)δθk(x)
+ ν∇2 δΦ([θ], t)

δθk(x)

 . (10)

Here, Φ([θ], t) is a characteristic functional of a test function θ(x) = (θ1(x), θ2(x), θ3(x)), and
ν is the kinematic viscosity. The characteristic functional contains all the information about the
correlations of velocities at different locations at the same time. Indeed, the moments of velocity can
be obtained from the derivatives of the characteristic functional as follows:

⟨ui1(x1, t) · · ·uin(xn, t)⟩m = (−i)n
δnΦ([θ], t)

δθi1(x1) · · · δθin(xn)

∣∣∣∣
θ=0

, (11)

where ui(x, t) is the ithe component of the velocity at (x, t). In particular, the Fourier transform
of the second-order cumulant is known as the energy spectrum, which represents the contribution
of eddies at various momentum scales to turbulence. The search for a comprehensive method to
describe the behavior of the energy spectrum across a wide range of momentum scales continues, and
for this reason, developing methods to solve the Hopf equation holds significant importance.

More specifically, let us consider the fluid mechanics of aircraft or pipeline flow. For such systems,
the second-order functional derivative of the solution of the Hopf characteristic functional gives the
two-point correlation function of the velocity field at arbitrary two positions x and y and an arbitrary
time t. The Fourier transform of it w.r.t. x and y is called the energy spectrum, which indicates
which scales of motion are most energetic in the fluid flow. The energy spectrum is used to model
and predict the behavior of turbulence, e.g., constructing safe and efficient shapes of airplanes or
pipelines [69].

B.3 Quantum Field Theory

Quantum mechanics tells us that physical quantities in the microscopic world do not always have
deterministic values but fluctuate. In quantum field theory (QFT), which is a branch of quantum
mechanics and forms the basis of modern particle physics, particles are described as fluctuating
fields spreading throughout spacetime. QFT allows us to describe the properties of elementary
particles in a statistical way, i.e., the correlation functions of fields at different points in spacetime.
Therefore, developing methods to calculate correlation functions is very important for understanding
the properties of elementary particles.

Several FDEs provide information on the correlation function of fields. A well-known example is the
Schwinger-Dyson equation [71]. In the statistical model known as the ϕ4 model, which is described
by the following action

S([ϕ]) =

∫
dx

(
1

2
ϕ(x)

(
−∇2 +m2

)
ϕ(x) +

λ

4!
ϕ(x)4

)
, (12)

the Schwinger-Dyson equation is given as follows:

−∇2 δZ([J ])

δJ(x)
+m2 δZ([J ])

δJ(x)
− λ

3!

δ3Z([J ])

δJ(x)3
− iJ(x)Z([J ]) = 0. (13)

Here, Z([J ]) is a quantity known as the partition function, and by functionally differentiating this
quantity w.r.t. J(x), all correlation functions for the field ϕ(x) can be obtained. Another method
to describe the correlation functions is the functional renormalization group [97, 102, 72, 100]. The
renormalization group is a method of analyzing physical systems based on the operation of reducing
spacetime resolution. Under such operations, we can define an FDE for the effective action Γ([ϕ]),
which is calculated by the Legendre transformation of lnZ([J ]). Γ([ϕ]) contains all the information
of the correlation functions, similarly to Z([J ]). Γ([ϕ]) satisfies the following FDE [100]:

∂kΓk([ϕ]) =

∫
dx

∫
dx′∂Rk(x− x′)Gk([ϕ],x

′,x). (14)

k represents the momentum scale that specifies the resolution at which spacetime is observed,
Rk(x) is a function manually provided to realize the operation of the renormalization group, and
Gk([ϕ],x

′,x) is the regulated propagator defined as∫
dx′

(
δ2Γk([ϕ])

δϕ(x)δϕ(x′)
+Rk(x− x′)

)
Gk([ϕ],x

′,x′′) = δ(x− x′′). (15)
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B.4 Density Functional Theory

Density functional theory (DFT) is widely used in material science, quantum chemistry, and nuclear
physics. The properties of materials and molecules are determined by the state of electrons, which
follows the Schrödinger equation. Solving the Schrödinger equation becomes challenging especially
when the material contains many electrons. Hohenberg and Kohn demonstrated that it is possible
to determine the state of electrons by solving a variational equation for the density [42], instead of
solving the Schrödinger equation directly. This is a density-based variational equation and has been
shown to be easier to solve than the Schrödinger equation.

However, in DFT, exact calculations are usually not possible. The reason is that the Energy Density
Functional (EDF), which provides the variational equation for density, cannot be precisely determined.
Whether a good approximation for the EDF can be provided or not significantly influences the success
of DFT calculations. There has been a lot of research on finding EDFs, including empirical approaches,
for a long time. One recent approach is based on FDEs. Specifically, several FDEs are known to
describe the evolution of the EDF when the two-body interaction U(x − x′), e.g., the Coulomb
interaction between electrons, gradually increases [73, 82]. When the interaction is replaced with
λU(x− x′), and when λ gradually increases, the FDE becomes:

∂λΓλ([n]) =
1

2

∫
dτ

∫
dx

∫
dx′U(x− x′) [n(x, τ)n(x′, τ) +Gλ([n],x, τ,x

′, τ ′)− n(x, τ)δ(x− x′)] ,

(16)∫
dx′

∫
dτ ′

δ2Γλ([n])

δn(x, τ)δn(x′, τ ′)
Gλ([n],x

′, τ ′,x′′, τ ′′) = δ(x− x′′)δ(τ − τ ′′). (17)

Here, n(x, τ) is the density of electrons, and Γλ([n]) represents an effective action, which is an
extension of the EDF [31, 87]. In addition to the coordinates x and x′, a virtual dimension, known as
the imaginary time τ , is introduced. This FDE is expected to provide a new method for constructing
the EDF [73, 82]. For example, the EDF of the three-dimensional electron system is derived from
Eqs. (16–17) based on the functional Taylor expansion [105].
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C Theoretical Background of Cylindrical Approximation and Convergence

The mathematical background of our theoretical contribution is provided to make our paper self-
contained. This section is based on the recent development of the theory of cylindrical approximation
[92] and the classical spectrum theory [41, 85]. The differentiability of functionals is discussed
in App. C.3, showing that the solutions of the FDEs in our experiment are differentiable. The
equivalence and difference between the functional, Fréchet, and Gâteaux derivative are summarized
in App. C.3. They are equivalent in practical settings, and we do not distinguish them in this paper.

C.1 Continuity and Compactness of Functionals

Let X be a Banach space unless otherwise stated. In this paper, a functional on X is defined as a map
F from D(F ) ⊂ X to R, where D(F ) is the domain of F . Note that R cannot be replaced with Q in
all the statements below. We first define pointwise continuity, uniform continuity, compactness, and
complete continuity of functionals.
Definition C.1 (Pointwise continuity of F ). A functional F : X ⊃ D(F ) → R is continuous at
θ ∈ D(F ) ⊂ X if for any Cauchy sequence {θn}n ⊂ D(F ),

lim
n→∞

||θn − θ||X = 0 ⇒ lim
n→∞

|F ([θn])− F ([θ])| = 0, (18)

where || · ||X is the norm induced by X .
Definition C.2 (Uniform continuity of F ). A functional F : X ⊃ D(F ) → R is uniformly
continuous on D(F ) if

∀ϵ > 0, ∃δ > 0 s.t.

∀θ1, θ2 ∈ D(F ) satisfying||θ1 − θ2||X ≤ δ,

|F ([θ1])− F ([θ2])| < ϵ holds, (19)

where || · ||X is the norm induced by X .

We simply say “continuous” in the following.
Definition C.3 (Compactness of F ). A functional F : X ⊃ D(F ) → R is compact on D(F ) if F
maps any bounded subset of D(F ) into a pre-compact subset of R.

Recall that A ⊂ R is a pre-compact subset if the closure of A, denoted by Ā, is compact.
Definition C.4 (Complete continuity of F ). A functional F : X ⊃ D(F ) → R is completely
continuous on D(F ) if F is continuous and compact on D(F ).

Based on these concepts, functional derivatives are defined.

C.2 Boundedness, Closedness, Compactness, and Pre-compactness of Metric Space of
Functions

Next, we define boundedness, closedness, compactness, and pre-compactness of a metric space of
functions.
Definition C.5 (Boundedness of metric space of functions). Let X be a metric space of functions.
K ⊂ X is bounded if ∃M ∈ R s.t. ∀θ ∈ K, ||θ||X < M .
Definition C.6 (Closedness of metric space of functions). Let X be a metric space of functions.
K ⊂ X is closed if any convergent sequence in K has a limit in K.
Definition C.7 (Compactness of metric space of functions). Let X be a metric space of functions.
K ⊂ X is compact if any open cover of K has a finite subcover. Equivalently, K is compact if and
only if any sequence in K is a bounded subsequence whose limit is in K.
Definition C.8 (Pre-compactness of metric space of functions). Let X be a metric space of functions.
K ⊂ X is pre-compact if its closure K̄ is compact. Equivalently, K is pre-compact if and only if any
sequence in K has a convergent subsequence whose limit is in X .

A critical characteristic of pre-compactness is given by the following theorem (a necessary and
sufficient condition for the pre-compactness of metric spaces).
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Theorem C.9 (Necessary and sufficient condition of pre-compactness of metric space [65]). A subset
E of a real separable Hilbert space H is pre-compact if and only if E is (i) bounded, (ii) closed, and
(iii) for any orthonormal basis {ϕ0, ϕ1, . . .} of H and for any ϵ > 0, there exists m ∈ N s.t.

∀θ ∈ E,

∞∑
k=m+1

|(θ, ϕk)H |2 ≤ ϵ , (20)

where (·, ·)H is the inner product defined on H .

Eq. (20) is known as the equi-small tail condition. Thm. C.9 characterizes the domain of functions
D(F ) to which the cylindrical approximation can be applied. Note that boundedness is not a necessary
nor sufficient condition for the equi-small tail condition.

C.3 Differentiation of Functionals

Next, we define the Gâteaux differential, Fréchet differential, and functional derivative. Higher-order
functional derivatives can be defined in a similar way [91].

Definition C.10 (Gâteaux differential). A functional F : X
open
⊃ D(F ) → R is Gâteaux differen-

tiable at θ ∈ D(F ) if

dFG
η ([θ]) := lim

ϵ→0

F ([θ + ϵη])− F ([θ])

ϵ
(21)

exists and is finite for all η ∈ D(F ), where dFG
η ([θ]) is called the Gâteaux differential of F in the

direction η.

There are some patterns of differentiability conditions. One of them is:
Theorem C.11 (Gâteaux differentiability of Lipschitz functionals [63, 5, 57]). Let Banach space

X be separable. Then, any Lipschitz functional F : X
open
⊃ D(F ) → R is Gâteaux differentiable

outside a Gauss-null set.

Note that a Gauss-null set is a Borel set A ⊂ X s.t. ∀ non-degenerate Gaussian measure µ on
X , µ(A) is equal to 0. In this theorem, there is no guarantee for non-Lipschitz functionals, e.g.,
F ([θ]) =

∫
dx
√
|θ(x)|, where θ(0) = 0.

Under mild conditions, the Gâteaux derivative is defined, based on the Gâteaux differential.
Theorem C.12 (Gâteaux derivative [86]). If the following two conditions are satisfied, then the
Gâteaux differential dFη([θ]) of functional F : X

open
⊃ D(F ) → R at θ ∈ D(F ) in the direction

η ∈ D(F ) can be represented as a linear operator acting on η, denoted by F ′([θ]), s.t.

dFG
η ([θ]) = F ′([θ])η , (22)

where F ′([θ]) : D(F ) → R is a linear operator, or a linear functional, depending on θ and is called
the Gâteaux derivative of F at θ.

1. dFG
η ([θ]) exists in some neighborhood of θ0 ∈ D(F ) and is continuous w.r.t. θ at θ0.

2. dFG
η ([θ0]) is continuous w.r.t. η at η = η0, where ||η0||X = 0.

Next, we define the second type of differentials, Fréchet differential.

Definition C.13 (Fréchet differential). A functional F : X
open
⊃ D(F ) → R is Fréchet differentiable

at θ ∈ D(F ) if dFF
η ([θ]) ∈ R s.t.

lim
ϵ→0

|F ([θ + ϵη])− F ([θ])− dFF
η ([θ])|

ϵ
= 0 (23)

exists and is finite for all η ∈ D(F ), where dFF
η ([θ]) is called the Fréchet differential of F in the

direction η.

There are also some patterns of differentiability conditions. One of them is:
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Theorem C.14 (Fréchet differentiability of Lipschitz functionals [74]). Let K be a compact subset

of a Hilbert space H . Then, any locally-Lipschitz functional F : K
open
⊃ D(F ) → R is Fréchet

differentiable on a dense subset of K.

An example functional that is Gâteaux differentiable but Fréchet non-differentiable is F ([θ]) =
a3
k

a2
k+a2

l
,

where θ(x) =
∑∞

i=0 aiϕi(x) and k, l ∈ N.

Relationship between Gâteaux and Fréchet differential. If F has a continuous Gâteaux derivative
on D(F ), then F is Fréchet differentiable on D(F ), and these two derivatives are equal [86]. The
Gâteaux derivative of the aforementioned example, F ([θ]) =

a3
k

a2
k+a2

l
, is not continuous, and thus,

the Fréchet differentiability is not guaranteed. In the following, we consider functionals F that are
continuously Gâteaux differentiable in D(F ); therefore, we do not care about differentiability and
do not distinguish Gâteaux derivatives from Fréchet derivatives. Hereafter, we write dFη([θ]) :=
dFG

η ([θ]) = dFF
η ([θ]) = F ′([θ])η

Next, we define the third type of derivatives.

Definition C.15 (Functional derivative). The functional derivative of a functional F : X
open
⊃

D(F ) → R w.r.t. θ(x) is defined as

δF ([θ])

δθ(x)
:= lim

ϵ→0

F ([θ(y) + ϵδ(x− y)])− F ([θ(y)])

ϵ
, (24)

if it exists and is finite, where δ(x) is the Dirac delta.

Strictly speaking, this definition may be informal because θ(y) is a function, while δ(x − y) is a
distribution. The representation theorem below (Thm. C.17) is sometimes regarded as the definition
of the functional derivative.

Lem. C.16 and the Riesz representation theorem prove the following relation between the Fréchet
derivative and the functional derivative.
Lemma C.16 (Compactness of Fréchet derivative). Let K be a compact subset of a real separable
Hilbert space H . Let F be a continuous functional on H . If the Fréchet derivative F ′([θ]) exists at
θ ∈ K, then it is a compact linear operator.
Theorem C.17 (Representation theorem of Fréchet derivative). Let K be a compact subset of a real
separable Hilbert space H . Let F be a continuous functional on H . If the Fréchet derivative F ′([θ])
exists at θ ∈ K, then the following unique integral representation of the Fréchet derivative holds:

∀η ∈ H, F ′([θ])η =

(
δF ([θ])

δθ
, η

)
H

, (25)

where δF ([θ])
δθ(x) ∈ H .

The representation theorem C.17 is the foundation of the cylindrical approximation of functional
derivatives, which is shown below.

C.4 Cylindrical Approximation

C.4.1 Functionals

Let H be a real separable Hilbert space. The cylindrical approximation is based on the fact that
any θ ∈ H can be represented uniquely in terms of an orthonormal basis {ϕ0, ϕ2, . . .} as θ(x) =∑∞

k=0(θ, ϕk)Hϕk(x).

Thus, we can define

f(a0, a1, . . .) := F ([

∞∑
k=0

akϕk]), (26)

where ak := (θ, ϕk)H . Truncating k ≤ m − 1 (m ∈ N) gives the cylindrical approximation of
functionals:
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Definition C.18 (Cylindrical approximation of functionals [29, 7, 34, 88]). Let Pm be the projection
operator s.t. Pmθ :=

∑m−1
k=0 (θ, ϕk)Hϕk. Let Dm be the finite-dimensional space induced by Pm;

i.e., Dm := span{ϕ0, ϕ1, . . . , ϕm−1}. The cylindrical approximation of a functional F ([θ]) on H is
the m-dimensional multivariable function

f(a0, a1, . . . , am−1) := F ([Pmθ]) = F ([

m−1∑
k=0

akϕk(x)]) , (27)

where ak := (θ, ϕk)H . In short, F ([θ]) ∼ f(a0, . . . , am−1).

The cylindrical approximation of functionals is uniform:
Theorem C.19 (Uniform convergence of cylindrical approximation of functionals [75]). Let K be a
compact subset of a real separable Hilbert space H . Let F be a continuous functional on H . Then,

∀ϵ > 0, ∃M ∈ N s.t. ∀m ≥ M, ∀θ ∈ K, |F ([θ])− F ([Pmθ])| < ϵ (28)

holds; i.e., F ([Pmθ]) converges uniformly to F ([θ]) on K.

The convergence rate is given by the mean value theorem of functionals:
Theorem C.20 (Convergence rate of cylindrical approximation of functionals [92]). Let K be a
compact and convex subset of a real separable Hilbert space H . Let F be a continuously differentiable
functional on K. Then,

∀θ ∈ K, |F ([θ])− F ([Pmθ])| ≤ sup
η∈K

∥F ′([η])∥ ∥θ − Pmθ∥H . (29)

||F ′([η])|| is the operator norm of the linear operator F ′([η]); i.e., ∥F ′([θ])∥ := supη( ̸=0)∈H
|F ′([θ])η|
∥η∥H

.
The convergence rate of O(∥θ− Pmθ∥H) depends on the basis and is provided in [41] (Chapters 4 &
6) and [85] (Sec. 3.5) for several bases.

C.4.2 Functional Derivatives

The cylindrical approximation of functional derivatives is motivated by the representation theorem
C.17, which states that (i) δF ([θ])

δθ(x) ∈ H and (ii) F ′([θ])η = ( δF ([θ])
δθ(x) , η)H . Statement (i) means that

δF ([θ])
δθ(x) can be represented in terms of an orthogonal basis as

δF ([θ])

δθ(x)
=

∞∑
k=0

(
δF ([θ])

δθ(x)
, ϕk)Hϕk(x) . (30)

Statement (ii) means that

∂f

∂ak
= lim

ϵ→0

f(a0, . . . , ak + ϵ, . . .)− f(a0, . . . , ak, . . .)

ϵ
(31)

= lim
ϵ→0

1

ϵ

[
F ([

∞∑
l=0

alϕl + ϵϕk])− F ([

∞∑
l=0

alϕl])

]
(∵ Eq. (26)) (32)

= F ′([

∞∑
l=0

alϕl])ϕk (∵ Eqs. (21–22)) (33)

= (
δF ([θ])

δϕk
, ϕk)H (∵ Eq. (25)), (34)

where θ(x) =
∑∞

l=0 alϕl(x) with al = (θ, ϕl)H . Eqs. (30) and (34) gives

δF ([θ])

δθ(x)
=

∞∑
k=0

∂f

∂ak
ϕk(x) . (35)

Therefore, truncating k ≤ m − 1 (m ∈ N) gives the cylindrical approximation of functional
derivatives:
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Definition C.21 (Cylindrical approximation of functional derivatives [91, 92]). The cylindrical
approximation of a functional derivative δF ([θ])

δθ(x) ∈ H is defined as

δF ([Pmθ])

δθ(x)
=

m−1∑
k=0

∂f

∂ak
ϕk(x) +

∞∑
k=m

(
δF ([Pmθ])

δθ
, ϕk

)
H

ϕk(x) .

If δF ([Pmθ])
δθ(x) ∈ Dm, the second term on the left-hand side is equal to zero.∑∞

k=m

(
δF ([Pmθ])

δθ , ϕk

)
H
ϕk(x) is called the tail term in this paper.

In short, δF ([θ])
δθ(x) ∼∑m−1

k=0
∂f
∂ak

ϕk(x) for δF ([θ])
δθ(x) that satisfies the equi-small tail condition.

Note that this version of the cylindrical approximation of functional derivatives is different from ours
(Eq. 2). Specifically, in [91, 92], Pm is not applied to δF ([θ])/δθ(x), and the emerging tail term
Σ∞

k=m(δF ([θ])/δθ, ϕk)ϕk(x) is simply ignored without any rationale.

The cylindrical approximation of functional derivatives is uniform:

Theorem C.22 (Uniform convergence of cylindrical approximation of functional derivatives [92]).
Let K be a compact subset of a real separable Hilbert space H . Let F be a continuously differentiable
functional on K. Then,

∀ϵ > 0, ∃M ∈ N s.t. ∀m ≥ M, ∀θ ∈ K,

∥∥∥∥δF ([θ])

δθ
− δF ([Pmθ])

δθ

∥∥∥∥
H

< ϵ (36)

holds; i.e., δF ([Pmθ])
δθ converges uniformly to δF ([θ])

δθ .

Note that this theorem proves the uniform convergence, while ours (Thm. 3.1) proves the pointwise
convergence. The difference comes from that the uniform convergence of the tail term, which is
assumed in the above theorem, can be violated when our cylindrical approximation Eq. (2) is used
because the tail term is absent in Eq. (2).

Similarly, the cylindrical approximation of Fréchet derivatives is uniform:

Theorem C.23 (Uniform convergence of cylindrical approximation of Fréchet derivatives [92]). Let
K be a compact subset of a real separable Hilbert space H . Let F be a continuously differentiable
functional on K. Then,

∀ϵ > 0, ∃M ∈ N s.t. ∀m ≥ M, ∀θ ∈ K, ∥F ′([θ])− F ′([Pmθ])∥ < ϵ (37)

holds; i.e., F ′([Pmθ]) converges uniformly to F ′([θ]).

The convergence rate is given by:

Theorem C.24 (Convergence rate of cylindrical approximation of Fréchet derivatives [92]). Let
K be a compact and convex subset of a real separable Hilbert space H . Let F be a differentiable
functional on K with continuous first- and second-order Fréchet derivatives. Then,

∀θ ∈ K, ∥F ′([θ])− F ′([Pmθ])∥ ≤ sup
η∈K

∥F ′′([η])∥∥θ − Pmθ∥H , (38)

where ∥F ′′([η])∥ := sup
ζ,ξ∈H,ζ ̸=0,ξ ̸=0

|F ′′([η])ζξ|
∥ζ∥H∥ξ∥H

.

In terms of a functional derivative, this is rewritten as∥∥∥∥δF ([θ])

δθ
− δF ([Pmθ])

δθ

∥∥∥∥
H

≤ sup
ζ∈K

(∥∥∥∥δ2F ([ζ])

δθδθ

∥∥∥∥) ∥θ − Pmθ∥H , (39)

where
∥∥∥ δ2F ([ζ])

δθδθ

∥∥∥ := supξ,ξ′∈H,ξ ̸=0,ξ′ ̸=0

∣∣∣ δ2F ([ζ])
δθδθ ξξ′

∣∣∣
∥ξ∥H∥ξ′∥H

:= supξ,ξ′∈H,ξ ̸=0,ξ′ ̸=0

∣∣∣( δ
δθ (

δF ([ζ])
δθ ,ξ)

H
,ξ′)

H

∣∣∣
∥ξ∥H∥ξ′∥H

;

i.e., we regard δ2F ([ζ])
δθδθ as an operator acting on H ×H .
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C.4.3 Pointwise Convergence of Functional Derivatives under Cylindrical Approximation

We prove the pointwise convergence of the functional derivative under the cylindrical approximation.
We already noted that the cylindrical approximation of functional derivatives (36) uniformly converges.
Below, we show that the convergence becomes pointwise if we omit the second term of the r.h.s. of
Eq. (36); i.e., we use

Pm
δF ([Pmθ])

δθ(x)
=

m−1∑
k=0

∂f

∂ak
ϕk(x) (Eq.(2))

as the approximated functional derivative.
Theorem C.25 (Thm. 3.1. Pointwise convergence of cylindrical approximation). Let K be a compact
subset of a real separable Hilbert space H . Let F be a continuously differentiable functional on K.
Then,

∀orthonormal basis {ϕ0, ϕ1, . . .}, ∀ϵ > 0, ∀θ ∈ K, ∃M ∈ N s.t. ∀m ≥ M,

∥∥∥∥δF ([θ])

δθ
− Pm

δF ([Pmθ])

δθ

∥∥∥∥
H

< ϵ,

(40)
where Pm is the projection onto span{ϕ0, . . . , ϕm−1}.

Now, the convergence becomes pointwise. Technically, this is because the set K ′ = { δF ([θ])
δθ : θ ∈

K} is not guaranteed to satisfy the equi-small tail condition

∀ orthonormal basis {ϕ0, ϕ1, . . .}, ∀ϵ′ > 0, ∃M ∈ N s.t. ∀m ≥ M, ∀θ ∈ K,

∞∑
k=m

∣∣∣∣(δF ([θ])

δθ
, ϕk

)
H

∣∣∣∣2 < ϵ ,

(41)

while its boundedness supθ∈K ∥ δF ([θ])
δθ ∥H < ∞ holds according to Thm. C.16. An example that

converges pointwisely but not uniformly is

F ([θ]) =

{∑∞
k=1 e

−(k−tan a0)
2

ak (0 ≤ a0 < π/2)

0 (a0 = π/2)
, ak = (θ, ϕk)H , (42)

defined on a compact subset

K =

{
θ : ak = (θ, ϕk)H , 0 ≤ ak ≤ π

2(k + 1)
for k = 0, 1, . . .

}
. (43)

Anyways, we have to use large m in either case (Eq. (36) or (2)) when we want to approximate
a complicated functional derivative, and the degree m that is required for a sufficiently small
approximation error depends on the smoothness, or spectral tail, of δF ([Pmθ])

δθ(x) . As discussed in
App. C.4.4, while the lack of uniform convergence may affect the convergence of the cylindrical
approximation for linear FDEs in general, this is not problematic in our experiment. We use Eq. (2)
as the approximated functional derivative in our experiment.

C.4.4 Abstract Evolution Equations

We first provide related theorems to the convergence of equations (consistency) [92] and then those
to the convergence of solutions (stability) [25, 36, 92].

Definitions. Let F(H) be a Banach space of functionals from a real separable Hilbert space H into
R. We consider an abstract evolution equation [36]

∂F ([θ], t)

∂t
= L([θ])F ([θ], t) with F ([θ], 0) = F0([θ]) , (44)

where F is in F(H), and L([θ]) is a linear operator in the set of closed, densely-defined, and
continuous linear operators on F(H) denoted by C(F). Let D(L) denote the domain of operator
L. Let Fm(H) be the Banach space of functionals on H such that Fm(H) := {Fm |Fm([θ], t) =
F ([Pmθ], t)}; in other words, Fm(H) is the set of cylindrically approximated functionals. Using
F(H) and Fm(H), we define a continuous linear operator Bm : F(H) ∋ F ([θ], t) 7→ F ([Pmθ], t) ∈
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Fm(H), which represents the cylindrical approximation of functionals. Bm allows us to decompose
the right-hand side of the abstract evolution equation:

Bm(L([θ])F ([θ], t)) = Lm([θ])Fm([θ], t) +Rm([θ], t), (45)

where Lm([θ]) is a linear operator acting on the m-dimensional multivariable function
f(a0, . . . , am−1, t) = Fm([θ], t) (note that Lm([θ]) have nothing to do with t), and Rm([θ], t)
is the functional residual.

Convergence of equations (consistency). Now, we can show that |L([θ])F ([θ]) −
Lm([θ])Fm([θ])| = O(∥θ − Pmθ∥H) [92].
Definition C.26 (Consistency of sequence of operators). A sequence of linear operators {Lm} ∈
C(Fm) is consistent with a linear operator L ∈ C(F) if ∀F ∈ D(L), ∃ a sequence Fm ∈ D(Lm) s.t.
∥F − Fm∥ m→∞−−−−→ 0 and ∥LF −LmFm∥ m→∞−−−−→ 0. If ∥LF −LmFm∥ m→∞−−−−→ O(m−p), {Lm} is
consistent with L to order p(> 0).
Theorem C.27 (Consistency of FDEs under cylindrical approximation [92]). Let H be a real
separable Hilbert space. Let F ∈ F(H) and L ∈ L(F). If L([θ])F ([θ]) is continuous in θ, then the
sequence of operators {Lm} is consistent with L on arbitrary compact subset K of H , provided that
∀θ ∈ K, |Rm([θ])| m→∞−−−−→ 0.
Corollary C.28 (Convergence of cylindrical approximation of FDEs [92]). Let H be a real separable
Hilbert space. Let F ∈ F(H) and L ∈ L(F). If L([θ])F ([θ]) is continuous in θ, then the
sequence of operators {Lm} is consistent with L to the same order as ∥θ − Pmθ∥H on arbitrary
compact, convex subset K of H , provided that ∀θ ∈ K, |Rm([θ])| = O(∥θ − Pmθ∥H) as m →
∞ and that L([θ])F ([θ]) is continuously Fréchet differentiable in K. In short, |L([θ])F ([θ]) −
Lm([θ])Fm([θ])| = O(∥θ − Pmθ∥H).

Convergence of solutions (stability). Next, we show that Fm([θ], t) → F ([θ], t) if and only if
the cylindrical approximation is stable and consistent. Let us consider the approximated abstract
evolution equation ∂Fm([θ],t)

∂t = Lm([θ])Fm([θ], t) with Fm([θ], 0) = BmF0([θ]). It is said to be
consistent with the original abstract evolution equation if Thm. C.27 holds.
Definition C.29 (Stability of approximated equation). Suppose that Lm of the approximated abstract
evolution equation generates a strongly continuous semigroup etLm . The approximated abstract
evolution equation is stable if ∃M,ω s.t. ∥etLm∥ ≤ Meωt, where M and ω are independent of m.
Theorem C.30 (Convergence of solutions under cylindrical approximation [25, 36, 92]). Let K
be a compact subset of a real separable Hilbert space H . Suppose that the approximated abstract
evolution equation is well-posed, in the sense of an initial value problem, in the time interval [0, T ]
with a finite T . Suppose also that L([θ]) ∈ C(F) generates a strongly continuous semigroup in
[0, T ]. Then, the approximated abstract evolution equation is stable and consistent in K if and only
if max

t∈[0,T ]
max
θ∈K

|Fm([θ], t) − F ([θ], t)| m→∞−−−−→ 0, provided that Fm([θ], 0)
m→∞−−−−→ F0([θ]). In short,

Fm([θ], t) → F ([θ], t) if and only if the cylindrical approximation is stable and consistent.

For example, the cylindrical approximation of the following initial value problem is stable and
consistent [92]: ∂F ([θ],t)

∂t =
∫ 2π

0
θ(x) ∂

∂x
δF ([θ],t)
δθ(x) dx with F ([θ], 0) = F0([θ]). To our knowledge, the

convergence rate has been unknown so far.

Remark 1. Most of the approximation results for compact subsets of real separable Hilbert spaces
hold also in compact subsets of Banach spaces admitting a basis. We refer the readers to Sec. 8 in
[92].

Remark 2. Finally, we comment on how the lack of uniform convergence of δF ([θ])
δθ −Pm

δF ([Pmθ])
δθ

affects the cylindrical approximation of linear FDEs. The difference δF ([θ])
δθ − Pm

δF ([Pmθ])
δθ is

manifested in the functional residual Rm([θ], t) in Eq. (45). The lack of uniform convergence may
have a negative effect on the consistency of the cylindrical approximation, given that the convergence
of Rm([θ], t) is required in Thm. C.27. This issue, however, is circumvented in many cases. In
fact, let us consider the scenario where functional derivatives in an FDE are expressed in terms of
the inner-product (v, δF ([θ])

δθ )H , which is satisfied by our examples (v = u in the FTE and v = Aa
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in Eq. (97)) (see App. E). Importantly, its cylindrical approximation (v, Pm
δF ([Pmθ])

δθ )H uniformly
converge to (v, δF ([θ])

δθ )H even if Pm
δF ([Pmθ])

δθ does not uniformly converge to δF ([θ])
δθ .

Lemma C.31 (Uniform convergence of inner products (ours)). Let K and K ′ be compact subsets of
a real separable Hilbert space H . Let F be a continuously differentiable functional on K. Then,

∀ϵ > 0, ∃M ∈ N s.t. ∀m ≥ M, ∀θ ∈ K, ∀θ′ ∈ K ′,

∣∣∣∣(θ′, δF ([θ])

δθ

)
H

−
(
θ′, Pm

δF ([Pmθ])

δθ

)
H

∣∣∣∣ < ϵ

(46)
holds; i.e.,

(
θ′, Pm

δF ([Pmθ])
δθ

)
H

converges uniformly to
(
θ′, δF ([θ])

δθ

)
H

on K and K ′.

The proof is given in App. D.1. In App. E, we employ this lemma to show the consistency of our
FDEs.

In short, Lem. C.31 states that the cylindrical approximation of inner products (v, Pm
δF ([Pmθ])

δθ )H

uniformly converge to (v, δF ([θ])
δθ )H even if Pm

δF ([Pmθ])
δθ does not uniformly converge to δF ([θ])

δθ .
Because of this mechanism, in App. E, we show that the uniform convergence of Rm is ensured,
which is one of the assumptions for stability. The full proof of the convergence of solutions is
provided in App. E.
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D Proofs I

D.1 Theorem: Pointwise Convergence of Functional Derivatives under Cylindrical
Approximation

Theorem D.1 (Thm. 3.1. Pointwise convergence of cylindrical approximation). Let K be a compact
subset of a real separable Hilbert space H . Let F be a continuously differentiable functional on K.
Then,

∀ orthonormal basis {ϕ0, ϕ1, . . .}, ∀ϵ > 0, ∀θ ∈ K, ∃M ∈ N

s.t. ∀m ≥ M,

∥∥∥∥δF ([θ])

δθ
− Pm

δF ([Pmθ])

δθ

∥∥∥∥
H

< ϵ, (47)

where Pm is the projection onto span{ϕ0, . . . , ϕm−1}.

Proof. The triangle inequality gives∥∥∥∥δF ([θ])

δθ
− Pm

δF ([Pmθ])

δθ

∥∥∥∥
H

≤
∥∥∥∥Pm

(
δF ([θ])

δθ
− δF ([Pmθ])

δθ

)∥∥∥∥
H

+

∥∥∥∥(1− Pm)
δF ([θ])

δθ

∥∥∥∥
H

≤
∥∥∥∥δF ([θ])

δθ
− δF ([Pmθ])

δθ

∥∥∥∥
H

+

√√√√ ∞∑
k=m

∣∣∣∣(δF ([θ])

δθ
, ϕk

)
H

∣∣∣∣2. (48)

The first term on the right-hand side converges to zero uniformly according to Thm. C.22. As for the
second term, we first note that δF ([θ])

δθ(x) is bounded on K in the sense of a function in H , according to

Lem. C.16. This, together with Parseval’s identity, implies ∥ δF ([θ])
δθ ∥2H =

∑∞
k=0 |(

δF ([θ])
δθ , ϕk)H |2 <

∞. Therefore, the sequence of the partial sums Sm =
∑m−1

k=0 |( δF ([θ])
δθ , ϕk)H |2 is a convergent

sequence and thus is a Cauchy sequence; i.e.,

∀ϵ′ > 0, ∃M ∈ N, s.t. ∀m,n ≥ M, |Sm − Sn| < ϵ′. (49)

By taking n → ∞, we can claim that

∀ orthonormal basis {ϕ0, ϕ1, . . .}, ∀ϵ′ > 0, ∀θ ∈ K, ∃M ∈ N

s.t. ∀m ≥ M,

∞∑
k=m

∣∣∣∣(δF ([θ])

δθ
, ϕk

)
H

∣∣∣∣2 < ϵ′ . (50)

Therefore, the second term on the right-hand side of Ineq. (48) converges pointwisely. The theorem
was thus proved.

Convergence rate. The convergence rates of the approximated functional derivative can be derived
from Ineq. (48). The first term on the r.h.s. converges at the same rate as ||θ − Pmθ|| (Eq. (39)). The
convergence rate of ||θ − Pmθ|| depends on the basis functions and is provided in [41] (Chapters 4 &
6) and [85] (Sec. 3.5) for several bases. The convergence rate of the second term on the r.h.s. depends
on the compact subset of functions K ∈ H under consideration, and further assumptions on K are
required.

Lemma D.2 (Lem. C.31. Uniform convergence of inner products). Let K and K ′ be compact subsets
of a real separable Hilbert space H . Let F be a continuously differentiable functional on K. Then,

∀ϵ > 0, ∃M ∈ N s.t. ∀m ≥ M, ∀θ ∈ K, ∀θ′ ∈ K ′,∣∣∣∣(θ′, δF ([θ])

δθ

)
H

−
(
θ′, Pm

δF ([Pmθ])

δθ

)
H

∣∣∣∣ < ϵ (51)

holds; i.e.,
(
θ′, Pm

δF ([Pmθ])
δθ

)
H

converges uniformly to
(
θ′, δF ([θ])

δθ

)
H

on K and K ′.
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Proof. Using the triangle inequality and the Cauchy-Schwarz inequality, we have∣∣∣∣(θ′, δF ([θ])

δθ

)
H

−
(
θ′, Pm

δF ([Pmθ])

δθ

)
H

∣∣∣∣
≤
∣∣∣∣(θ′, Pm

(
δF ([θ])

δθ
− δF ([Pmθ])

δθ

))
H

∣∣∣∣+ ∣∣∣∣(θ′, (1− Pm)
δF ([θ])

δθ

)
H

∣∣∣∣
≤∥θ′∥H

∥∥∥∥Pm

(
δF ([θ])

δθ
− δF ([Pmθ])

δθ

)∥∥∥∥
H

+

∣∣∣∣((1− Pm)θ′,
δF ([θ])

δθ

)
H

∣∣∣∣
≤∥θ′∥H

∥∥∥∥δF ([θ])

δθ
− δF ([Pmθ])

δθ

∥∥∥∥
H

+

∥∥∥∥δF ([θ])

δθ

∥∥∥∥
H

√√√√ ∞∑
k=m

|(θ′, ϕk)H |2. (52)

Note that δF ([θ])
δθ and θ′ are bounded on K and K ′, respectively; thus, C and C ′ s.t.

supθ∈K

∥∥∥ δF ([θ])
δθ

∥∥∥
H

≤ C < ∞ and supθ′∈K′ ∥θ′∥H ≤ C ′ < ∞. Therefore, Ineq. (52) gives∣∣∣∣(θ′, δF ([θ])

δθ

)
H

−
(
θ′, Pm

δF ([Pmθ])

δθ

)
H

∣∣∣∣ ≤ C ′
∥∥∥∥δF ([θ])

δθ
− δF ([Pmθ])

δθ

∥∥∥∥
H

+ C

∞∑
k=m

|(θ′, ϕk)H |2 .

(53)

Finally, according to Thm. C.9, the compactness of K ′ means

∀ϵ′ > 0, ∃M ∈ N s.t. ∀θ′ ∈ K ′, ∀m ≥ M,

∞∑
k=m

|(θ′, ϕk)H |2 < ϵ′. (54)

This, together with Ineq. (53) and Thm. C.22, proves the lemma.

Tail term. In the cylindrical approximation (2), Pm projects the “tail term”∑∞
k=m( δF ([θ])

δθ , ϕ)Hϕk(x) to zero, unlike the cylindrical approximation (36) adopted in [91, 92].
The tail term vanishes if one considers an inner product of a functional derivative and v ∈ Dm.
However, it is not always the case that functional derivatives appear in the form of ( δF ([θ])

δθ , v) with
v ∈ Dm in FDEs. In fact, in the FTE, the functional derivative appears as an inner product with
u(x), which can be chosen arbitrarily. The point is that Lem. C.31, which plays a fundamental
role in proving the convergence of approximated solutions, guarantees the convergence of the inner
product ( δF ([θ])

δθ , v) in a wider variety of situations including v /∈ Dm. In other words, our theorems
extend the class of FDEs whose uniform convergence of the approximated solution is theoretically
guaranteed.

D.2 Derivation of Exact Solution of Burgers-Hopf Equation

D.2.1 Derivation of Eq. (93)

We show the derivation of Eq. (93). It is based on the functional Taylor expansion

W ([Θ], τ) =

∞∑
n=0

1

n!

∫ 1
2

− 1
2

dξ1 · · ·
∫ 1

2

− 1
2

dξnW
(n)(τ, ξ1, . . . , ξn)Θ(ξ1) · · ·Θ(ξn). (55)

This turns Eq. (92) as follows:

∂

∂τ
W (n)(τ, ξ1, . . . , ξn) =

(
∂2

∂ξ21
+ · · ·+ ∂2

∂ξ2n

)
W (n)(τ, ξ1, . . . , ξn). (56)

In the momentum space, this is written in the following form

∂

∂τ
W̃ (n)(τ, k1, . . . , kn) = −

(
k21 + · · ·+ k2n

)
W̃ (n)(τ, k1, . . . , kn), (57)

W (n)(τ, ξ1, . . . , ξn) =
∑
k1

· · ·
∑
kn

e−ik1ξ1+···−iknξnW̃ (n)(τ, k1, . . . , kn), (58)
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where k1,··· ,n = 2πl1,··· ,n with l1,··· ,n ∈ Z. The solution of this equation is

W̃ (n)(τ, k1, . . . , kn) = e−(k
2
1+···+k2

n)τW̃ (n)(0, k1, . . . , kn). (59)

Using this result, Eq. (55) gives

W ([Θ], t) =

∞∑
n=0

1

n!

∑
k1

· · ·
∑
kn

W̃ (n)(τ, k1, . . . , kn)Θ̃(−k1) · · · Θ̃(−kn)

=

∞∑
n=0

1

n!

∫ 1
2

− 1
2

dξ1 · · ·
∫ 1

2

− 1
2

dξnW
(n)(0, x1, . . . , xn)

n∏
m=1

(∑
km

e−k2
mτ+ikmξmΘ̃(−km)

)

=

∞∑
n=0

1

n!

∫ 1
2

− 1
2

dξ1 · · ·
∫ 1

2

− 1
2

dξnW
(n)(0, ξ1, . . . , ξn)

n∏
m=1

(∫ 1
2

− 1
2

dξ′mΘ(ξ′m)
∑
km

e−k2
mτ+ikm(ξm−ξ′m)

)

=

∞∑
n=0

1

n!

∫ 1
2

− 1
2

dξ1 · · ·
∫ 1

2

− 1
2

dξnW
(n)(0, ξ1, . . . , ξn)

n∏
m=1

(∫ 1
2

− 1
2

dξ′mΘ(ξ′m)

∞∑
lm=−∞

e−4π2τl2m+2πilm(ξm−ξ′m)

)
,

(60)

where

Θ̃(k) =

∫ 1
2

− 1
2

dξeikξΘ(ξ). (61)

The Poisson’s summation formula transforms the summation w.r.t. lm:
∞∑

lm=−∞

e−4π2τl2m+2πilm(ξm−ξ′m) =

∞∑
q=−∞

∫ ∞

−∞
dye−2πiqy

(
e−4π2τy2+2πiy(ξm−ξ′m)

)
=

1√
4πτ

∞∑
q=−∞

e−
1
4τ (ξm−ξ′m−q)

2

. (62)

Plugging this into Eq. (60), we arrive at the following expression:

W ([Θ], τ) =

∞∑
n=0

1

n!

∫ 1
2

− 1
2

dξ1 · · ·
∫ 1

2

− 1
2

dξnW
(n)(0, ξ1, . . . , ξn)

n∏
m=1

(∫ 1
2

− 1
2

dξ′m
Θ(ξ′m)√
4πτ

∞∑
q=−∞

e−
1
4τ (ξm−ξ′m−q)

2

)
.

(63)

From this result, we conclude that the solution is given by

W ([Θ], τ) = W0([Θτ ([Θ])]), Θτ ([Θ], ξ) =
1√
4πτ

∞∑
q=−∞

∫ 1
2

− 1
2

dξ′e−
1
4τ (ξ−ξ′−q)

2

Θ(ξ′) (Eq. (93)).

D.2.2 Derivation of Eq. (104)

We show the derivation of Eq. (104). The cylindrical approximation of Eq. (93) is represented by

W ([P2MΘ], τ) = W0([Θτ ([P2MΘ])]), Θτ ([P2MΘ], ξ) =
1√
4πτ

∞∑
q=−∞

∫ 1/2

−1/2

dξ′e−
1
4τ (ξ−ξ′−q)

2

P2MΘ(ξ′).

The basis (103) satisfies

ϕk(ξ + ξ′) =


1 (k = 0)√
2 sin(π(k + 1)(ξ + ξ′)) (k : odd)√
2 cos(πk(ξ + ξ′)) (k : nonzero even)

=


1 (k = 0)√
2 sin(π(k + 1)ξ) cos(π(k + 1)ξ′) +

√
2 cos(π(k + 1)ξ) sin(π(k + 1)ξ′) (k : odd)√

2 cos(πkξ) cos(πkξ′)−
√
2 sin(πkξ) sin(πkξ′) (k : nonzero even)

=

{
cos(π(k + 1)ξ′)ϕk(ξ) + sin(π(k + 1)ξ′)ϕk+1(ξ) (k : odd)
cos(πkξ′)ϕk(ξ)− sin(πkξ′)ϕk−1(ξ) (k : even)

. (64)
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Using this relation, we evaluate Θτ ([P2MΘ], ξ) as

Θτ ([P2MΘ], ξ) =
1√
4πτ

∞∑
q=−∞

∫ 1/2

−1/2

dξ′e−
1
4τ (ξ′−q)2

2M−1∑
k=0

akϕk(ξ
′ + ξ)

=
1√
4πτ

∫ ∞

−∞
dξ′e−

ξ′2
4τ

M−1∑
k=0

[cos(2πkξ′)ϕ2k(ξ)− sin(2πkξ′)ϕ2k−1(ξ)] a2k

+
1√
4πτ

∫ ∞

−∞
dξ′e−

ξ′2
4τ

M−1∑
k=0

[cos(2π(k + 1)ξ′)ϕ2k+1(ξ) + sin(2π(k + 1)ξ′)ϕ2k+2(ξ)] a2k+1

=

M−1∑
k=0

(
e−4π2k2τϕ2k(ξ)a2k + e−4π2(k+1)2τϕ2k+1(ξ)a2k+1

)
, (65)

where ak = (ϕk,Θ)L2
p([−1/2,1/2]).

When the initial condition is given by Eq. (102),

W ([P2MΘ], τ) = −µ

∫ 1/2

−1/2

dξΘτ (ξ) +
1

2

∫ 1/2

−1/2

dξ

∫ 1/2

−1/2

dξ′C(ξ, ξ′)Θτ ([P2MΘ], ξ)Θτ ([P2MΘ], ξ′)

=− µa0 +
1

2

M−1∑
k=0

M−1∑
l=0

∫ 1/2

−1/2

dξ

∫ 1/2

−1/2

dξ′C(ξ, ξ′)

×
(
e−4π2k2τϕ2k(ξ)a2k + e−4π2(k+1)2τϕ2k+1(ξ)a2k+1

)(
e−4π2l2τϕ2l(ξ

′)a2l + e−4π2(l+1)2τϕ2l+1(ξ
′)a2l+1

)
=− µa0 +

1

2

M−1∑
k=0

M−1∑
l=0

(
e−4π2(k2+l2)τ C̃2k,2la2ka2l + e−4π2(k2+(l+1)2)τ C̃2k,2l+1a2ka2l+1

+e−4π2((k+1)2+l2)τ C̃2k+1,2la2k+1a2l + e−4π2((k+1)2+(l+1)2)τ C̃2k+1,2l+1a2k+1a2l+1

)
(Eq. (104)),

where we have introduced

C̃kl =

∫ 1/2

−1/2

dξ

∫ 1/2

−1/2

dξ′C(ξ, ξ′)ϕk(ξ)ϕl(ξ
′).
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E Proofs II: Details of Functional Transport Equation and Burgers-Hopf
Equation

In this Appendix, we provide the detailed background of the FTE and BHE and prove Thm. 3.2,
i.e., the convergence of solutions under the cylindrical approximation (2). The main materials are
Lem. C.31 and Thm. C.30. Technical assumptions are summarized in Thm. C.30.

E.1 Functional Transport Equation

x

y

y = g(x)u(x)
S

B

A

Figure 8: Two-dimensional fluid. Let u(x) = (0, u(x))⊤ denote velocity field. The surface S is
defined by y = g(x), which separates the space into two areas, A and B.

We introduce the functional transport equation (FTE), a generalization of the transport equation
(continuity equation) [53]. We consider a two-dimensional fluid system in x-y coordinates (Fig. 8).
We assume that the velocity field is given by u(x) = (0, u(x))⊤. The surface S, defined by y = g(x),
separates the space into two distinct areas, y > g(x) (area A) and y < g(x) (area B).

We calculate the amount of fluid entering the area A from B per unit time:

F ([g], t) =

∫
dxu(x)ρ(x, g(x), t) , (66)

where ρ(x, y, t) denotes the fluid density at (x, y) and at time t. Differentiating both sides w.r.t. t and
using the transport equation for the fluid density

∂

∂t
ρ(x, y, t) = −u(x)

∂

∂y
ρ(x, y, t) , (67)

we have
∂

∂t
F ([g], t) =−

∫
dxu(x)

δF ([g], t)

δg(x)
. (68)

We refer to this linear FDE as the FTE.

E.1.1 Analytic Solution

Let L2([−1, 1]) be a real Hilbert space of functions on [−1, 1] with the inner product

(f, g)L2([−1,1]) :=

∫ 1

−1

dxf(x)g(x), (69)
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where f, g ∈ L2([−1, 1]). Let F(L2([−1, 1])) be a Banach space of functionals that map L2([−1, 1])
to R. The functional transport equation

∂

∂t
F ([g], t) =−

∫ 1

−1

dxu(x)
δF ([g], t)

δg(x)
, F ([g], 0) = F0([g]), (70)

is a linear FDE in F(L2([−1, 1])), where F0 is a given functional. Here, u ∈ L2([−1, 1]) is assumed
to have a finite norm ∥u∥L2([−1,1]) < ∞.

The solution of this equation is given by

F ([g], t) =F0[gt], gt(x) := g(x)− u(x)t, (71)

as can be seen immediately by substituting this into Eq. (70).

E.1.2 Cylindrical Approximation and Convergence

We prove that the solution of the approximated equation converges to that of the non-approximated
original equation. Let {ϕ0, ϕ1, . . .} be an orthonormal basis of L2([−1, 1]) and Pm the projection
onto span{ϕ0, . . . , ϕm−1}. Following App. C.4.4, we apply Bm on both sides and the initial
condition, to obtain

∂

∂t
f(a, t) =−

m−1∑
k=0

uk
∂

∂ak
f(a, t) +Rm([g], t), f(a, 0) = f0(a), (72)

where we have introduced

f(a, t) := F ([Pmg], t), f0(a, t) := F0([Pmg]),

ak := (ϕk, g)L2([−1,1]) , uk := (ϕk, u)L2([−1,1]) . (73)

The residual functional Rm is defined as

Rm([g], t) :=−
(
u,

δF ([g], t)

δg

)
L2([−1,1])

+

(
u, Pm

δF ([Pmg], t)

δg

)
L2([−1,1])

. (74)

The cylindrical approximation of Eq. (70) is given by

∂

∂t
f(a, t) =−

m−1∑
k=0

uk
∂

∂ak
f(a, t), f(a, 0) = f0(a). (75)

We first prove the consistency of Eq. (75). According to Lem. C.31,3 Rm([g], t) uniformly converges
to zero on an arbitrary compact subset K in L2([−1, 1]) if F ([g], t) is a continuously differentiable
functional on K. Thus, we can use Thm. C.27, which proves the consistency of the cylindrical
approximation (75).

We next prove the stability (Def. C.29) of the cylindrical approximation (75) in the L∞(Rm) norm.
Suppose that f0(a) is bounded by a constant c independent of m.4 From the cylindrical approximation
of the solution Eq. (71), f(a, t) = F0[Pm(g(x)− u(x)t)], we see

sup
a

|f(a, t)| = sup
a

|F0[Pm(g(x)− u(x)t)]| = sup
a

|F0[Pmg(x)]| = sup
a

|f0(a)|. (76)

Therefore, we obtain

∥f(t)∥L∞(Rm) (=
∥∥etLmf0

∥∥
L∞(Rm)

) = ∥f0∥L∞(Rm) ≤ c, ∀m ∈ N, (77)

3In this case, K′ in Lem. C.31 is set to a singleton K′ = {u}. Obviously, this is compact because
∥u∥L2([−1,1]) < ∞.

4Strictly speaking, if ak are defined on an infinite interval, this assumption of boundedness is not valid for the
FDEs used in our experiments because ∥F0∥L∞(Rm) → ∞ as ak → ∞. However, the range of ak is usually
set to a finite interval in numerical experiments, and thus ∥F0∥L∞(Rm) is also finite; i.e., the assumption of
boundedness holds.
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for the operator Lm = −∑m−1
k=0 uk

∂
∂ak

. From this result, the operator norm of etLm is given by

∥etLm∥ = sup
f0 ̸=0

∥∥etLmf0
∥∥
L∞(Rm)

∥f0∥L∞(Rm)

= sup
f0 ̸=0

∥f(t)∥L∞(Rm)

∥f0∥L∞(Rm)

= 1. (78)

This shows that ∃M,ω s.t. ∀m ∈ N, ∥etLm∥ ≤ Meωt (M = 1 and ω = 0), and thus the cylindrical
approximation is stable in the sense of Def. C.29.

According to Thm. C.27, the fact that the cylindrical approximation (75) is consistent and stable
guarantees the convergence F ([Pmg], t)

m→∞−−−−→ F ([g], t) on a compact subset in a finite time
interval [0, T ] if F ([Pmg], 0)

m→∞−−−−→ F ([g], 0) (this is satisfied by the initial conditions used in our
experiment) and if the approximated functional transport equation is well-posed in [0, T ].

E.1.3 Initial Conditions

We define the initial condition F ([g], 0) in Eq. (70) as

F ([g], 0) = ρ0

∫ 1

−1

dxu(x)g(x) . (79)

The exact solution is given by

F ([g], t) =ρ0

∫ 1

−1

dxu(x) (g(x)− u(x)t) . (80)

Under the cylindrical approximation, the solution is

F ([Pmg], t) = f(a, t) =ρ0

m−1∑
k=0

uk(ak − ukt) . (81)

With υ0 being a constant and {ϕk}k≥0 being the Legendre polynomials, we consider two types of
u(x):

uk :=υ0 for k = 1, otherwise 0, (82)
uk :=υ0 for k ≤ 14, otherwise 0, (83)

corresponding to two types functional transport equations (70), initial conditions (79), and solutions
(81). For convenience, we call them the linear initial condition and the nonlinear initial condition,
respectively, though the form of Eq. (70) also changes in accordance with the form of u(x).

E.2 Burgers-Hopf Equation

The BHE, the one-dimensional analog of Eq. (10) in App. B.2, describes the statistical properties of
one-dimensional fluids and is a basic tool for studying turbulence, as mentioned in App. B.2. We
consider fluid in a one-dimensional box [−L/2, L/2] that evolves in accordance with the Burgers
equation

∂u(x, t)

∂t
+ u(x, t)

∂u(x, t)

∂x
= ν

∂2u(x, t)

∂x2
, (84)

where u(x, t) is a velocity field and ν is the kinematic viscosity. Specifically, we focus on the case
where the initial value u(x, 0) is given randomly, thus making u(x, t) a random field. Let us introduce
the characteristic functional

Φ([θ], t) = E
{u(x,0)}∼P0

[
exp

(
i

∫ L/2

−L/2

dxu(x, t)θ(x)

)]
, (85)

where P0 is the probability distribution for the initial velocity field u(x, 0), and θ(x) is called the test
function. It provides statistical properties of the velocity field because the functional derivatives are
equal to the moments of the velocity field:

E
{u(x,0)}∼P0

[u(x1, t) · · ·u(xn, t)] = (−i)n
δnΦ([θ], t)

δθ(x1) · · · δθ(xn)

∣∣∣∣
θ=0

, (86)
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as is already shown in Eq. (11) in App. B.2. The time evolution of Φ([θ], t) is known to follow the
BHE [91]:

∂Φ([θ], t)

∂t
=

∫ L/2

−L/2

dx θ(x)

(
i

2

∂

∂x

δ2Φ([θ], t)

δθ(x)δθ(x)
+ ν

∂2

∂x2

δΦ([θ], t)

δθ(x)

)
. (87)

The initial condition Φ([θ], 0) is determined by P0. For example, in the case of the Gaussian random
field, we have

Φ([θ], 0) = exp

(
i

∫ L/2

−L/2

dxµ(x)θ(x)− 1

2

∫ L/2

−L/2

dx

∫ L/2

−L/2

dx′C(x, x′)θ(x)θ(x′)

)
, (88)

where µ(x) is the mean velocity and C(x, x′) is the infinite-dimensional covariance matrix.

We modify Eqs. (87) and (88) to facilitate numerical computation. First, we replace −iθ(x) with θ(x)
and regard θ(x) as a real-valued function to avoid complex numbers. Second, we make Eqs. (87) and
(88) dimensionless, a common convention in numerical computation, by introducing

T :=
L2

ν
, τ :=

t

T
, ξ :=

x

L
, Θ(ξ) :=

L2

T
θ(Lξ) . (89)

Third, we introduce
W ([Θ], τ) := lnΦ([θ], t) (90)

to remove the exponential function in Φ([θ], t) and stabilize numerical computation. Note that the
functional derivatives of W ([Θ], τ) give the cumulants, not moments, of the velocity field. Fourth, we
neglect the advection term (the first term on the right-hand side of Eq. (87)). We derive the analytic
solution for the equation in the following.

E.2.1 Analytic Solution

Let us consider L2
p([−1/2, 1/2]), a real Hilbert space of periodic functions on [−1/2, 1/2] with the

inner product

(f, g)L2
p([−1/2,1/2]) :=

∫ 1/2

−1/2

dxf(x)g(x) , (91)

where f, g ∈ L2
p([−1/2, 1/2]). Let F(L2

p([−1/2, 1/2])) be a Banach space of functionals that map
L2
p([−1/2, 1/2]) to R. In F(L2

p([−1/2, 1/2])), the BHE without the advection term is given by

∂W ([Θ], τ)

∂τ
=

∫ 1
2

− 1
2

dξΘ(ξ)
∂2

∂ξ2
δW ([Θ], τ)

δΘ(ξ)
, W ([Θ], 0) = W0([Θ]). (92)

The exact solution of this equation is given by

W ([Θ], τ) = W0([Θτ ([Θ], ξ)]), Θτ ([Θ], ξ) :=
1√
4πτ

∞∑
q=−∞

∫ 1
2

− 1
2

dξ′e−
1
4τ (ξ−ξ′−q)

2

Θ(ξ′),

(93)

where W0 is a given functional. The proof is a bit technical and is given in App. D.2.1.

E.2.2 Cylindrical Approximation and Convergence

In this section, we prove the convergence of the solution for the BHE under the cylindrical approxi-
mation. Let {ϕ0, ϕ1, . . .} be an orthonormal basis of L2

p([−1/2, 1/2]) and Pm be the projection onto
span{ϕ0, . . . , ϕm−1}. Following App. C.4.4, we apply Bm on both sides and the initial condition, to
obtain

∂

∂τ
w(a, τ) =

m−1∑
k,l=0

Aklak
∂

∂al
w(a, τ) +Rm([Θ], τ), w(α, 0) = w0(a), (94)
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where we have introduced

w(a, τ) := W ([PmΘ], τ), w0(a, τ) := W0([PmΘ]), ak := (ϕk,Θ)L2
p([−1/2,1/2]) ,

Akl :=

(
φk,

∂2φl

∂ξ2

)
L2

p([−1/2,1/2])

. (95)

The residual functional is defined as

Rm([Θ], τ) =

(
∂2Θ

∂ξ2
,
δW ([Θ], τ)

δΘ

)
L2

p([−1/2,1/2])

−
(
∂2Θ

∂ξ2
, Pm

δW ([PmΘ], τ)

δΘ

)
L2

p([−1/2,1/2])

.

(96)

The cylindrical approximation of Eq. (92) is defined as

∂

∂τ
w(a, τ) =

m−1∑
k,l=0

Aklak
∂

∂al
w(a, τ) , w(a, 0) = w0(a). (97)

We first prove the consistency of Eq. (97). Let K be a compact subset in L2
p([−1/2, 1/2]) such that

{∂2Θ
∂ξ2 : Θ ∈ K} is compact. According to Lem. C.31, Rm([W ], τ) uniformly converges to zero on

K if W ([Θ], τ) is a continuously differentiable functional on K. Thus, we can use Thm. C.27, which
proves the consistency of Eq. (97).

We next prove the stability (Def. C.29) of Eq. (97) in the L∞(Rm) norm. Suppose that w0(a) is
bounded by a constant c independent of m.5 From the cylindrical approximation of the solution
Eq. (71), w(a, t) = W0([PmΘτ [PmΘ]]), we see

sup
a∈Rm

|w(a, τ)| = sup
a∈Rm

|W0([PmΘτ [PmΘ]])| = sup
a∈Sτ

|W0([PmΘ])| ≤ sup
a∈Rm

|W0([PmΘ])| = sup
a∈Rm

|w0(a)|,
(98)

where

Sτ =

{
a′ : a′l =

m−1∑
k=0

(
1√
4πτ

∞∑
q=−∞

∫ 1/2

−1/2

dξ

∫ 1/2

−1/2

dξ′e−
1
4τ (ξ−ξ′−q)

2

ϕl(ξ)ϕk(ξ
′)

)
ak, a ∈ Rm

}
⊆ Rm. (99)

Therefore, we obtain

∥w(τ)∥L∞(Rm) =
∥∥etLmw0

∥∥
L∞(Rm)

≤ ∥w0∥L∞(Rm) ≤ c, ∀m ∈ N, (100)

for the operator Lm = −∑m−1
k,l=0 Aklak

∂
∂al

. From this result, the operator norm of etLm is evaluated
as

∥etLm∥ = sup
w0 ̸=0

∥∥etLmw0

∥∥
L∞(Rm)

∥w0∥L∞(Rm)

≤ 1. (101)

This shows that ∃M,ω s.t. ∀m ∈ N, etLm ≤ Meωt (e.g., M = 1 and ω = 0), and thus the cylindrical
approximation is stable in the sense of Def. C.29.

Therefore, the cylindrical approximation (97) is consistent and stable, and Thm. C.30 gives the
convergence W ([PmΘ], τ)

m→∞−−−−→ W ([Θ], τ) on a compact subset in finite time interval [0, T ] if
W ([PmΘ], 0)

m→∞−−−−→ W ([Θ], 0) and if Eq. (97) is well-posed in [0, T ].

5Strictly speaking, if ak are defined on an infinite interval, this assumption of boundedness is not valid for the
FDEs used in our experiments because ∥w0∥L∞(Rm) → ∞ as ak → ∞. However, the range of ak is usually
set to a finite interval in numerical experiments, and thus ∥w0∥L∞(Rm) is also finite; i.e., the assumption of
boundedness holds.
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E.2.3 Initial Conditions

We use the Gaussian random field as the initial condition:

W0([Θ]) = −µ

∫ 1/2

−1/2

dξΘ(ξ) +
1

2

∫ 1/2

−1/2

dξ

∫ 1/2

−1/2

dξ′C(ξ, ξ′)Θ(ξ)Θ(ξ′), (102)

where µ is the mean velocity and C(ξ, ξ′) is the covariance matrix. This is equivalent to the initial
distribution of the velocity field following the Gaussian distribution (102). We use the Fourier series
as the orthonormal basis:

ϕk(ξ) =


1 (k = 0)√
2 sin(π(k + 1)ξ) (k : odd)√
2 cos(πkξ) (k : nonzero even)

. (103)

Then, the analytic solution of Eq. (93) under the cylindrical approximation is given by

W ([P2MΘ], τ) =

− µa0 +
1

2

M−1∑
k=0

M−1∑
l=0

(
e−4π2(k2+l2)τ C̃2k,2la2ka2l + e−4π2(k2+(l+1)2)τ C̃2k,2l+1a2ka2l+1

+e−4π2((k+1)2+l2)τ C̃2k+1,2la2k+1a2l + e−4π2((k+1)2+(l+1)2)τ C̃2k+1,2l+1a2k+1a2l+1

)
,

(104)

where m = 2M and

ak := (ϕk,Θ)L2
p([−1/2,1/2]) , C̃ij :=

∫ 1/2

−1/2

dξ

∫ 1/2

−1/2

dξ′C(ξ, ξ′)ϕi(ξ)ϕj(ξ
′). (105)

The derivation is lengthy and is given in App. D.2.2. Note that the higher degree terms decay
exponentially in terms of k, l, and τ , and the solution is dominated by ak with k ≲ 1.

We use three types of covariance matrices:

C(ξ, ξ′) = σ2δ(ξ − ξ′), (106)

C(ξ, ξ′) = σ2
99∑
k=0

e−k/10ϕk(ξ)

99∑
l=0

e−l/10ϕl(ξ
′), (107)

C(ξ, ξ′) = σ2. (108)

Substituting them into Eq. (102), we have three types of initial conditions: the delta, moderate, and
constant initial condition, respectively. They are equivalent to

C̃ij = σ2 for all i = j ≥ 0 (0 otherwise), (109)

C̃ij = σ2e−i/10e−j/10 for i = j ≤ 99 (0 otherwise), (110)

C̃ij = σ2 for i, j = 0 (0 otherwise) . (111)

Eq. (106) is nonsmooth and represents the extremely short-range correlation of the initial velocity
field; the velocities at two points in an infinitesimally small neighborhood have no correlation. The
spectrum of C(ξ, ξ′) (Eq. (109)) has an infinite tail. Eq. (108) represents the extremely long-range
correlation of the initial velocity; the velocities at any two points have the same correlation σ2.
The spectrum of C(ξ, ξ′) (Eq. (111)) decays immediately. Eq. (107) represents a moderate-range
correlation of the two above; the velocities at two points have a periodic correlation. The spectrum of
C(ξ, ξ′) (Eq. (110)) decays exponentially. Theoretically, it is said that C(ξ, ξ′) that has a long tail of
spectrum is hard to simulate numerically [91]. In our experiment with PINNs, however, the error of
the solution is dominated by the optimization error of PINNs (Sec. 4) and strongly depends on the
training setups.
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F Supplementary Discussion

F.1 Limitations

Higher spacetime dimensions. In our experiments, the spacetime dimension is limited to 1 + 1 (t
and x). Generalization to 1 + d dimensions is feasible, albeit with increased computational costs.
For spaces with d > 1 dimensional spaces, multiple options exist for expanding θ [79]. Despite the
inclusion of additional spacetime dimensions, the computational complexity of our model, up to
computing functional derivatives, remains O(mr), where r is the order of the FDE. However, note
that m scales exponentially w.r.t. d, which is typically 1, 2, 3, or 4.

Higher-order functional derivatives. The order of functional derivatives in FDEs in our ex-
periments is limited to r = 1; however, extending to r ≥ 2 is straightforward. For ex-
ample, the cylindrical approximation of the second-order functional derivative is expressed as
δ2F ([θ], t)/δθ(x)δθ(y) ≈ Σm−1

k,l=0∂
2f(a, t)/∂ak∂alϕk(x)ϕl(y), which can be computed via back-

propagation twice.

To further reduce errors. The relative errors obtained in our experiments are ∼ 10−3, which might
be unsatisfactory in some applications This is a general problem inherent in PINNs, for which PINNs
are sometimes criticized. To further reduce the errors, one can use recently developed techniques
for solving high-dimensional PINNs [106, 44, 96, 45, 21, 103, 33]. These methods can be easily
equipped with our model; one of the strengths of our model is that it can be integrated with arbitrary
techniques developed for PINNs. See also App. F.7 for a better sampling of collocation points.

Challenges toward even higher degrees. Instability of the numerical integration for computing
ak given a function θ(x), i.e., ak =

∫
θ(x)ϕk(x)dx, is observed for large ks. This instability comes

from the intense oscillation of ϕk for large k ≳ 500, as we confirmed in our preliminary experiments.
This is a general problem in numerical computation, not exclusive to our model. Nevertheless,
such higher degrees are unnecessary to approximate smooth functions. Extremely large degrees
are required only when one wants to include nonsmooth or divergent functions in the domain of
functionals D(F ). Training on such functions with the cylindrical approximation is an open problem
Dealing with highly oscillatory functions is also a central research interest in numerical methods for
non-smooth dynamical systems [1].

Inclusion and diversity of functions What class of functions can the cylindrical approximation
represent? The equi-small tail condition (Thm. C.9) characterizes the domain of functions D(F ) to
which the cylindrical approximation can be applied. In most of the convergence theorems in App. C,
such as Thm. C.19, the compactness of K ⊂ H is assumed, which can be ensured if Thm. C.9 holds.
In other words, the equi-small tail condition is part of a sufficient condition for the convergence of
the cylindrical approximation. Surprisingly or not, step functions and ReLU satisfy the equi-small
tail condition. In contrast, functions with divergent norms (|θ|H = ∞), which are not typically of
interest, cannot be handled in the cylindrical approximation.

Inclusion and diversity of functionals We assume functional differentiability in this paper. Central
theorems of differentiability are given in App. C.3, where functional Lipschitzness is assumed. An
example of non-Lipschitz functionals is F ([θ]) =

∫
dx
√

|θ(x)| with θ(0) = 0.

Inclusion and diversity of FDEs In this paper, we consider the abstract evolution equation, a
crucial class of linear FDEs. It does not include, for instance, Eq. (13) in quantum field theory or
Eq. (14) in functional renormalization group theory. Nevertheless, the cylindrical approximation is
applicable to these equations, although the theoretical (non-)convergence of solutions is currently
unknown. Finally, note that the approximated functional derivatives converge to the non-approximated
ones independently of the specific FDEs.

F.2 Computational Complexity of CP-ALS

In Sec. 1, we mentioned the computational complexity of the state-of-the-art method (CP-ALS)
(O(m6T )) We derived it from Eqs. (567) and (568) in [91] in Sec. 7.2.2 in [91]. These equations
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require O(m5) including the summation over the indices e (= 0, . . . ,m2) and z (= 0, . . . ,m2),
and the Hadamard matrix product over the index k (= 1, . . . ,m). They are computed for each q
(= 1, . . .m) and timestep t (= 1, . . . , T ), leading to O(m5 ×m× T ) = O(m6T ) in total. Note that
Eqs. (567) and (568) in the published version [91] correspond to Eqs. (568) and (569) in the arXiv
version (arXiv:1604.05250v3).

F.3 Choice of Bases

We use the Fourier series for periodic systems and the Legendre polynomials for non-periodic
systems. Both are common basis functions in numerical computation. Legendre polynomials are part
of the Jacobi polynomials family, a typical class of orthogonal bases. Many Jacobi polynomials are
numerically unstable and require careful treatment; for example, the Hermite polynomials change
scales factorially with degree (1/

√
m!) and often result in nan. The Laguerre polynomials have

similar issues. The Chebyshev polynomials of the first kind and the Legendre polynomials are suitable
for numerical computation; they are bounded, defined on a finite interval, and their weight functions
are regular (note that the weight function of the Chebyshev polynomials of the first kind, 1/

√
1− x2,

can be easily regularized by changing variables). Moreover, the Chebyshev and Legendre polynomials
are known to minimize the L∞ and L2 approximation errors, respectively [41]. Nevertheless, we did
not observe a significant performance difference between them in curve-fitting experiments, and we
use the Legendre polynomials in our experiments.

How to choose basis functions? The choice depends on the FDE, boundary conditions, symmetry,
function spaces, and numerical stability. The Fourier series is suitable for periodic functions, but for
non-periodic functions, it exhibits the Gibbs phenomenon, causing large numerical errors. Therefore,
Legendre polynomials are a good choice for non-periodic functions. The choice of bases is a common
concern in numerical analysis, such as in the finite element and spectral methods.

Generalization to other bases: Riesz basis Our approach can be generalized to general non-
orthonormal bases, such as Riesz bases [37, 76, 14, 30, 52, 51, 15], where the orthonormality
condition (ϕk, ϕl)H = δkl is replaced with (ϕk, ϕl)H = gkl. Here, gkl is a certain matrix, or a metric,
whose choice significantly affects the computational costs of the approximated FDEs. Sparse metrics
are preferred for efficient computation. See also App. F.4.

F.4 Computational Complexity Revisited

We showed the computational complexity of our model up to the computation of functional derivatives
is given by O(mr). This does not include the computational complexity of the loss function of
PINNs. It could be > O(mr), strongly depending on the form of the FDE and/or the choice of the
orthonormal basis. For concreteness, let us consider Eq. (97) (BHE). While the BHE is first-order,
the computational complexity of the loss function can be O(m2) if matrix Akl in Eq. (97) is not
diagonal. This is the case if we use the Legendre polynomials instead of the Fourier series.

On the other hand, the choice of the basis function can improve computational complexity. For
example, the computational complexity of the second-order FDE can reduce from O(m2) to O(m1)
when the approximated FDE includes only the diagonal elements of {∂2f(a, t)/∂ak∂al}m−1

k,l=0. Again,
whether it is the case or not depends on the form of the FDE and/or the choice of the orthonormal
basis.

F.5 Comparison with DFT

In first-principles computations of density functional theory (DFT), an NN-based approach that
utilizes finite element methods for spacetime grid approximation is commonly employed. For
example, an NN, F̂ ({yj := f(rj)}j), approximating a target functional F ([f ]) by evaluating f at
specific grid points {rj}j . Functional derivatives at each grid point can be computed using automatic

differentiation: { δF ([f ])
δf(r) }r ≒ {∂F̂ ({yj}j)

∂yi
}i. However, the central focus of this area does not include

solving PDEs, let alone FDEs. Moreover, this method requires the discretization of spacetime, leading
to numerical error of derivatives, while in our approach, such discretization is not necessary, and
spacetime differentiation can be performed analytically if the basis functions are analytic.
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The finite element methods for spacetime and the cylindrical approximation (basis function expansion)
are similar in the sense that they replace spacetime degrees of freedom with other quantities: spacetime
grid points and expansion coefficients, respectively. Even when their degrees of freedom for a given
problem are comparable, the latter (our approach) is suitable for solving FDEs.

F.6 FDE Has Multiple Meanings

The term "Functional Differential Equation" (FDE) varies in meaning across research areas. In
mathematics, an FDE typically refers to a differential equation with a deviating argument, e.g.,
f ′(x) = xf(x + 3). In physics, it denotes a PDE involving functional derivatives, such as the
abstract evolution equation described in the main text. Additionally, FDE can imply a functional
equation involving functional derivatives, e.g., δF ([θ])

δθ(x) = A(x)F ([θ]), where A(x) is a given function.
Research on the last interpretation is limited, and the uniqueness, existence, and practical applications
remain ambiguous.

F.7 Radial Gaussian Sampling

The region θ ∼ 0, or ak ∼ 0k is the central focus when solving the BHE. Thus, sampling as many
collocation points from θ ∼ 0 as possible is of crucial importance. To make the training set free
from the curse of dimensionality, we can use the following sampling method based on the polar
coordinates:

1. Sample a unit vector v ∈ Rd, where d is the dimension of the input space.
2. Sample a real number (radius) r > 0 from a Gaussian distribution N (0, σ2) (or a truncated

Gaussian distribution).
3. Obtain a training collocation point rv ∈ Rd.

The collocation points thus obtained obviously concentrate around θ ∼ 0 more than the Latin
hypercube sampling, which we used in our experiment.

F.8 Curvilinear Patterns in Fig. 4 and Noisy Patterns in Fig. 7 and

The white curves in Fig. 4 represent locations where the predictions and the exact solutions happen
to coincide. The noisy patterns that occur for ak, k ≥ 1 in Fig. 7 are because the solution is almost
independent of ak with k ⪆ 1. Thus, optimizing the model in the directions of ak with k ⪆ 1 have
only a negligible effect on minimizing the loss function, keeping the random predictions of the model.
If we delve deeper, they might be related to the loss landscapes of PINNs [8, 35], which is also an
interesting research topic.

F.9 Second-order Functional Derivatives

Fig. 9 shows the estimated second-order derivative of the FTE’s solution at θ = 0 and t = 0 under
the linear initial condition. The error is as small as ∼ 10−3, despite that θ ∼ 0 is not included in the
training set due to the curse of dimensionality and that the second-order information is not included
in the loss function.

However, such small errors only emerge when the analytic solution is so simple that, e.g., it includes
only one coefficient: f(a, t) = ρ0υ0(a1 − υ0t). The errors of the second-order derivatives obtained
from other conditions and equations were significant (≳ 103 in some cases). We could reduce the
error by (i) using another sampling method for training sets that does not suffer from the curse of
dimensionality (an example is given in App. F.7) and (ii) adding the second-order derivative to the
loss function (e.g., differentiate both sides of the BHE w.r.t. ak and use it to the residual loss for
PINNs).
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Figure 9: Second-order derivative at θ = 0 & t = 1. The model is trained on the FTE with degree
100 under the linear initial condition. The errors are as small as ∼ 10−3.
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G Detailed Experimental Settings

We describe detailed setups of our experiment, including those on the advection-reaction functional
equation (ARE) (App. H.4). The experimental settings for the ARE align with those provided in [91].

Datasets. The training, validation, and test sets are sampled with Latin hypercube sampling [64, 39]
with range [0, 1], [−1, 1], [0, 0.001], [−0.1, 0.1], [0, 0.5], and [h − 0.01, h + 0.01] for t (FTE), ak
(FTE), t (BHE), ak (BHE), t (ARE), and ak (ARE), respectively, where h := 0.698835274542439.
Training mini-batches are randomly sampled every time a mini-batch is created. For the BHE, we
decay the sampling range quadratically in terms of k ∈ {0, 1, . . . ,m}. This sampling stabilizes the
training because most of the loss comes from the region where k and ak are large, which can be seen
from the definition of the BHE. That is, all the terms on the right-hand side are proportional to one of
aks, while aks for large ks are negligible in the analytic solution. Therefore, the collocation points
with large aks with large ks can be seen as noise in training. Note that this decaying sampling does
not limit the quality of the solution at all because the solution is the characteristic function and we
are interested only in θ(x) ≈ 0, e.g., δW ([θ],t)

δθ(x) |θ=0 = ⟨u(x)⟩ (see also App. B.2).

Miscellaneous settings. We use a 4-layer PINN with 3× (linear + sin activation + layer normaliza-
tion) + last linear layer. Unless otherwise noted, the widths are 1024 for the ARE and FTE and 2048
for the BHE. The batch size is 1024. The activation function is the sin function. The loss function
for the FTE with the nonlinear initial condition (main text) and the ARE is the sum of the L1 and
L∞ losses. The loss function for the others is the smooth L1 loss. The optimizer is AdamW [59].
The learning rate scheduler is the linear warmup with cosine annealing with warmup [58], which is
defined as the following scheduler:

scheduler1 = torch.optim.lr_scheduler.LinearLR(
optimizer, start_factor=start_factor, total_iters=milestone)

scheduler2 = torch.optim.lr_scheduler.CosineAnnealingWarmRestarts(
optimizer, T_0=T_0, T_mult=T_mult, eta_min=eta_min)

scheduler = torch.optim.lr_scheduler.SequentialLR(
optimizer, schedulers=[scheduler1, scheduler2], milestones=[milestone])

See PyTorch official documentation [70] for the detailed definitions of the parameters. eta_min is set
to 0. start_factor is set to 10−10. ρ0 = 1 and υ0 = 1 are used for the FTE. µ̄ = 8 and σ2 = 10
are used for the BHE. The Legendre polynomials and real Fourier series are used for the FTE and
BHE, respectively, as the orthonormal basis. For the ARE, the modified Chebyshev polynomials
described in [91] are used.

Hyperparameter tuning. The full search space is given Tab. 3. Unless otherwise noted, the number
of iterations is 300,000 and 500,000 for the BHE and FTE, respectively. The number of trials for
hyperparameter tuning is 50. Optuna [2] is used for hyperparameter tuning with the TPE sampler and
median pruner. The number of tuning trials is 50 for all conditions, and the best hyperparameters
within the 50 trials are used. See the config file in our repository for more details.

Table 3: Search space of hyperparameters. Learning rates and weight decays are sampled log-
uniformly. N = 300,000 and 500,000 for the BHE and FTE, respectively. T_0, T_mult, and
milestone are used for the aforementioned scheduler. For the ARE and the main text results of
FTE with the nonlinear initial condition, weight decay is fixed to 0 and the search space of learning
rates is from 10−7 to 10−4.

HYPERPARAMETERS SEARCH SPACE

LEARNING RATE FROM 10−6 TO 10−3

WEIGHT DECAY FROM 10−7 TO 10−4 (OTHERS)
T_0 N/5, N/2, OR N

T_mult 1 OR 2
milestone 0, N/10, OR N/100
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Remaining hyperparameters. We show the hyperparameters used in our experiments in Tabs. 4–10

Table 4: Hyperparameters: FTE with linear initial condition.

DEGREE

HYPERPARAMETERS 4 20 100
LEARNING RATE 8.675× 10−6 1.878× 10−5 2.839× 10−5

WEIGHT DECAY 4.534× 10−6 6.184× 10−7 2.008× 10−5

T_0 250000 500000 500000
T_mult 2 1 1

milestone 0 5000 0

Table 5: Hyperparameters: FTE with nonlinear initial condition (main text).

DEGREE

HYPERPARAMETERS 4 100 1000
LEARNING RATE 8.456× 10−6 1.042× 10−5 1.130× 10−5

WEIGHT DECAY 0 0 0
T_0 500000 500000 250000

T_mult 1 1 1
milestone 5000 0 5000

Table 6: Hyperparameters: FTE with nonlinear initial condition (Appendix).

DEGREE

HYPERPARAMETERS 4 10 20
LEARNING RATE 4.837× 10−6 5.810× 10−5 6.076× 10−6

WEIGHT DECAY 8.637× 10−5 2.877× 10−5 2.068× 10−7

T_0 250000 500000 500000
T_mult 2 2 2

milestone 0 50000 50000
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Table 7: Hyperparameters: BHE with delta initial condition.

DEGREE

HYPERPARAMETERS 4 20 100
LEARNING RATE 6.680× 10−5 1.372× 10−4 1.204× 10−4

WEIGHT DECAY 4.429× 10−6 6.644× 10−7 4.893× 10−7

T_0 300000 300000 150000
T_mult 2 1 1

milestone 0 0 3000

Table 8: Hyperparameters: BHE with constant initial condition.

DEGREE

HYPERPARAMETERS 4 20 100
LEARNING RATE 5.131× 10−5 9.989× 10−5 8.637× 10−5

WEIGHT DECAY 1.083× 10−5 9.353× 10−7 8.378× 10−5

T_0 300000 150000 300000
T_mult 2 1 1

milestone 3000 3000 30000

Table 9: Hyperparameters: BHE with moderate initial condition.

DEGREE

HYPERPARAMETERS 4 20 100
LEARNING RATE 2.248× 10−5 3.254× 10−5 1.209× 10−5

WEIGHT DECAY 3.669× 10−5 1.771× 10−6 1.423× 10−6

T_0 300000 300000 300000
T_mult 1 2 1

milestone 3000 0 0

Table 10: Hyperparameters: ARE.

DEGREE

HYPERPARAMETERS 6
LEARNING RATE 6.3105× 10−5

WEIGHT DECAY 0
T_0 250000

T_mult 1
milestone 5000
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How to choose weight parameters for each training. We use validation relative error, i.e., the
relative error between the prediction and the analytic solution, as the measure for choosing the best
weight parameter during each training trial.

Loss reweighting. The softmax reweighting is used to adaptively balance the residual and bound-
ary loss functions. See the code below and our official code at GitHub (https://github.com/
TaikiMiyagawa/FunctionalPINN), where list_tensors is [residual loss, boundary loss] of a
mini-batch.

@torch.no_grad()
def softmax_coeffs(

list_tensors: List[Tensor],
temperature: float = 0.25) -> Tensor:
"""
# Args
- list_tensors: List of scalar loss Tensors.
- temperature: Temperature parameter. Default is 0.25

# Returns
- coeffs: Tensor with shape [len(list_tensors),].
"""
ts = torch.tensor(list_tensors)
ts /= torch.max(ts) + EPSILON # generates scale-invariant weight
coeffs = torch.softmax(ts / temperature, dim=0)
return coeffs

This function generates the loss reweighting factors coeffs = [λ1, λ2], where total loss is defined as
λ1 × residual loss + λ2 × boundary loss.

Float vs. double. No significant differences in performance measures were observed throughout
our training. Accordingly, we used float32 to reduce computational time.

Libraries and GPUs. All the experiments are performed on Python 3.11.8 [89], PyTorch 2.2.0
[70], Numpy 1.26.0 [38], and Optuna 3.5.0 [2]. An NVIDIA A100 GPU is used.

Runtime. The training process takes 2–3 hours, but this duration can be significantly improved
because it largely depends on the implementation of components such as data loaders. See App. H.2
for more details on runtime. GPU memory consumption is about 400 MBs for the ARE and 800–
1500 MBs for the FTE and BHE. We note that previous approaches to numerically solving FDEs
rely on CPU processing, where performance varies significantly with the level of parallelization.
Consequently, directly comparing the computational speed of our GPU-based approach with these
methods is inherently challenging.

Figure 2. F ([θ]) is approximated by F ([P1000θ]) for convenience.
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H Additional Experimental Results

H.1 Pmθ Converges to θ

The convergence rate of functional derivatives in Thm. 3.1 is given by ∥θ − Pmθ∥. The convergence
of ∥θ − Pmθ∥ is visualized in Fig. 10 for four functions including non-smooth functions.

Figure 10: Cylindrical approximation of θ(x) (red) by Pmθ(x) (blue) with degree 10 (top four
panels) and 100 (bottom four panels). L1 absolute error 1

N

∑N
i=1 |θ(xi)− Pmθ(xi)| decreases as

m increases. N = 105. xi ∈ [−π, π] are linearly spaced. GeLU [40], sinc, ReLU, and Laplacian
functions [78] are used. The basis is the Legendre polynomials.

H.2 Runtime

Tab. 11 shows training runtime. The runtime remains nearly constant and does not significantly vary
from m ∼ 1 to m ∼ 100. This aspect is of practical significance as it indicates that the computational
time of our model remains stable across a broad range of m.

This consistency in runtime may be attributed to the efficiency of the PyTorch library, where operations
such as matrix multiplication and automatic differentiation are highly optimized. On the other hand,
GPU memory consumption does show variation, ranging from 800 to 1500 MBs as stated App. G, as
is naturally expected.

Finally, the previous approaches to numerically solving FDEs rely on CPU processing, where
performance significantly varies with the level of parallelization; thus, a direct comparison of
computational speed with our GPU-based approach is inherently challenging.
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Table 11: Degree vs. runtime. “x:yz” denotes “x hours yz minutes.” A “RUN” refers to a training
process with 500k, 300k, and 500k iterations for the FTE, BHE, and ARE, respectively.

FTE WITH 500K ITERATIONS
DEGREE 4 20 100

#RUNS 11 8 3
RUNTIME 2:18 ± 0:04 2:09 ± 0:10 2:33 ± 0:02

BHE WITH 300K ITERATIONS
DEGREE 4 20 100

#RUNS 10 9 8
RUNTIME 2:36 ± 0:02 2:29 ± 0:06 2:28 ± 0:00

ARE WITH 500K ITERATIONS
DEGREE 6

#RUNS 10
RUNTIME 3:05 ± 0:04
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H.3 Latin Hypercube Sampling and Curse of Dimensionality

We show the histograms of the L2 norm of collocation points in the test sets. The sampling method is
the Latin hypercube sampling, as mentioned in Sec. 4. Apparently, the collocation points s.t. norms
∼ 0 are not sampled, which would cause the curse of dimensionality in training. In other words, the
Latin hypercube sampling cannot completely address the curse of dimensionality in sampling.

Why does extrapolation mean (Sec. 4)? Firstly, Figs. 11–16 show that no collocation points such
that ∥a∥ ≈ 0 were included in the training sets. Secondly, Figs. 4 & 7 plot the errors of PINN
predictions at the collocation points where a = (0, 0, . . . , 0, ak, 0, . . . , 0) with k = 0, 1, 2, 19, or 99.
Therefore, the collocation points such that ak ≈ 0 in Figs. 4 & 7 were not included in the training
sets, but the errors were as small as the region where ak ̸≈ 0. We refer to this as "extrapolation."
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Figure 11: Histogram of L2 norms of 4-dimensional coefficients in test set for the FTE.
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Figure 12: Histogram of L2 norms of 20-dimensional coefficients in test set for the FTE.
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Figure 13: Histogram of L2 norms of 100-dimensional coefficients in test set for the FTE.
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Figure 14: Histogram of L2 norms of 4-dimensional coefficients in test set for the BHE.
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Figure 15: Histogram of L2 norms of 20-dimensional coefficients in test set for the BHE.
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Figure 16: Histogram of L2 norms of 100-dimensional coefficients in test set for the BHE.
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H.4 Comparison with Baseline: Advection-reaction Functional Equation (ARE)

We consider the advection-reaction functional equation (ARE).

∂F ([θ], t)

∂t
= −

∫ 2π

0

dxθ(x)
∂

∂x
(
δF ([θ], t)

δθ(x)
) (112)

We follow the experimental setting described in [91].

In [91], the reported time-dependent relative error of the CP-ALS and HT fluctuates from ∼ 10−8

to ∼ 10−1, and the temporally-averaged relative error is estimated to be ≲ 10−2 (the bottom two
panels in Fig. 38 in [91]), where we roughly approximated the time-dependent error curves as an
exponential function of the form y = 10−6+10t.

Our preliminary results are shown in Tab. 12. We observe that the learned functional is almost
constant in time, a failure mode of PINNs, causing large errors. We anticipate the result can improve
with further hyperparameter optimization [50].

Table 12: Relative and absolute errors. The models are trained on the ARE. The error bars are the
standard deviation over 10 training runs with different random seeds. Relative and absolute error
represent the averaged relative and absolute error over all collocation points and all runs. Best relative
and absolute error represent the relative and absolute error of the best collocation point averaged over
all runs. The worst relative and absolute errors represent the averaged relative and absolute errors of
the worst collocation point averaged over all runs.

DEGREE RELATIVE ERROR ABSOLUTE ERROR

6 (0.954940± 2.86337)× 10−1 (6.17040± 1.83985)× 10−2

DEGREE BEST RELATIVE ERROR BEST ABSOLUTE ERROR

6 (0.12016± 2.49220)× 10−1 (0.58046± 1.73938)× 10−2

DEGREE WORST RELATIVE ERROR WORST ABSOLUTE ERROR

6 (9.29019± 2.85457)× 10−1 (8.49163± 2.0718)× 10−2
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H.5 Relative and Absolute Errors When W ([0], t) = 0 Is Included In Loss

We show the histograms of the relative and absolute errors for the models trained on the BHE with
the loss term corresponding to the identity W ([0], t) = 0. They are almost the same as those for
the models trained without W ([0], t) = 0, but the errors of the first-order derivative are 10−1 times
smaller, as shown in Sec. 4.
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Figure 17: Histogram of relative and absolute error. The model is trained on the BHE of degree 4
with the delta initial condition. A single random seed is used for the training.
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Figure 18: Histogram of relative and absolute error. The model is trained on the BHE of degree
100 with the delta initial condition. A single random seed is used for the training.
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Figure 19: Histogram of relative and absolute error. The model is trained on the BHE of degree 4
with the constant initial condition. A single random seed is used for the training.
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Figure 20: Histogram of relative and absolute error. The model is trained on the BHE of degree
100 with the constant initial condition. A single random seed is used for the training.
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H.6 Cross-degree Evaluation

In this section, we attempt to empirically investigate the theoretical convergence of the cylindrical
approximation. The convergence is illustrated in Fig. 2, where PINN’s training is not included,
while our focus here is the convergence of the solutions estimated via PINN’s training. According
to the convergence theorem of the cylindrical approximation and the universal approximability of
PINNs, the models trained on Dm = span{ϕ0, . . . , ϕm−1} with a large m have a high capability
of expression, and they can cover Dn with n ≤ m. On the other hand, the models trained on Dm

with a small m have a high capability of expression only for small ms, and they cannot cover Dn for
n ≥ m. In theory, this phenomenon can be observed by performing a cross-degree evaluation, in
which we use training data sampled from Dm and then evaluate the trained model on Dm′ , where m
may not equal to m′.

The results are shown in Tabs. 13–22 below. Contrary to the aforementioned intuition, most of the
cross-degree evaluations seem to contradict the convergence theorem of FDE solutions under the
cylindrical approximation. Possible reasons are:

1. This is because of the curse of dimensionality, i.e., the optimization error of PINNs in
high dimensions. Higher-dimensional PDEs require a much larger number of iterations to
train PINNs; however, our experiments are performed with a fixed number of iterations
(500,000 and 300,000 for the FTE and the BHE, respectively). Changing the number
of iterations depending on the degree and applying other techniques for training PINNs
[106, 44, 96, 45, 21, 103, 33] would decrease the optimization error, and we can focus on
the approximation error and thus will observe the decay of error w.r.t. increasing m.

2. In addition, note that FDEs in our experiments, except for the FTE with the nonlinear
initialization, are dominated by a0 and/or a1 only. Therefore, they show a tiny effect
on relative and absolute errors by definition. Nevertheless, the FTE with the nonlinear
initialization (Tabs. 15 and 16) does not show the theoretical convergence either, which
means the optimization error of PINNs, rather than the cylindrical approximation error,
dominates the errors anyways.

3. One can see a strong dependence of the errors on the experimental setups for PINNs. The
absolute errors of the FTE under the nonlinear initial condition are reduced by a factor of 2
by simply changing the width of the PINN and the number of training iterations (1024 to
2048 and 5× 105 to 8× 105, respectively): from

• (2.46499± 0.26492)× 10−3 for m = 4,
• (20.3384± 1.0449)× 10−3 for m = 10, and
• (98.8854± 2.7068)× 10−3 for m = 20,

to
• (1.43591± 0.1832)× 10−3 for m = 4,
• (11.0609± 0.3671)× 10−3 for m = 10, and
• (55.2715± 2.3179)× 10−3 for m = 20,

where the error bars are the standard deviation over 10 runs. Note that the hyperparameters
are different from those used in the main text. Moreover, as shown in Fig. 6, simply adding
a regularization term ∥W ([0], t)∥ to the loss function reduces relative errors by an order of
magnitude.

Therefore, to observe the convergence of the cylindrical approximation after PINN’s training, careful
hyperparameter tuning and optimization are needed. Note that optimizing PINNs for high-dimensional
PDEs is an active field of research that has been developing (see Apps. A and F) and is of independent
interest.

59



H.6.1 Relative and Absolute Errors of Functional Transport Equation

Table 13: Mean relative error ×103 (functional transport equation with linear initialization)
on test set. The model is trained on the functional transport equation with the linear initialization
condition. The error bars represent the standard error of mean with sample size 10 corresponding to
different training seeds.

TRAINING SET DEGREE

TEST SET DEGREE 4 20 100

4 1.26821± 0.09936 2.56697± 0.20431 14.6402± 2.1739
20 0.559035± 0.026630 2.01716± 0.06875 5.82534± 0.49499

100 0.483585± 0.010872 1.88511± 0.05292 6.24740± 0.10591

Table 14: Mean absolute error ×104 (functional transport equation with linear initialization)
on test set. The model is trained on the functional transport equation with the linear initialization
condition. The error bars represent the standard error of mean with sample size 10 corresponding to
different training seeds.

TRAINING SET DEGREE

TEST SET DEGREE 4 20 100

4 1.32203± 0.13933 3.06281± 0.28009 15.2530± 0.7296
20 1.34579± 0.14329 2.29632± 0.05205 13.4665± 0.7117

100 1.32709± 0.14107 2.27854± 0.05028 12.3312± 0.5986

Table 15: Mean relative error ×103 (functional transport equation with nonlinear initialization)
on test set. The model is trained on the functional transport equation with the nonlinear initialization
condition. The error bars represent the standard error of mean with sample size 10 corresponding to
different training seeds.

TRAINING SET DEGREE

TEST SET DEGREE 4 10 20

4 1.09131± 0.02945 2.06847± 0.06531 7.51237± 0.25359
10 1.14029± 0.03166 3.59902± 0.05139 8.61269± 0.10351
20 1.11229± 0.02789 3.62669± 0.06044 11.7414± 0.1112
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Table 16: Mean absolute error ×103 (functional transport equation with nonlinear initialization)
on test set. The model is trained on the functional transport equation with the nonlinear initialization
condition. Note that the hyperparameters are different from those used in the main text. The error
bars represent the standard error of mean with sample size 10 corresponding to different training
seeds.

TRAINING SET DEGREE

TEST SET DEGREE 4 10 20

4 2.46499± 0.08377 9.00259± 0.21308 47.5449± 0.6410
10 2.46885± 0.08409 20.3384± 0.3304 69.6191± 0.7526
20 2.48688± 0.08436 20.5866± 0.3346 98.8854± 0.8560
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H.6.2 Relative and Absolute Errors of Burgers-Hopf Equation

Table 17: Mean relative error ×104 (BHE with delta initialization) on test set. The model is
trained on the BHE with the delta initialization condition. The error bars represent the standard error
of mean with sample size 10 corresponding to different training seeds.

TRAINING SET DEGREE

TEST SET DEGREE 4 20 100

4 2.93905± 0.05503 2.97886± 0.03187 2.99835± 0.03851
20 2.24827± 0.07876 2.20842± 0.09022 2.23898± 0.05530

100 4.11689± 0.34740 2.98177± 0.20264 2.41667± 0.07989

Table 18: Mean absolute error ×105 (BHE with delta initialization) on test set. The model is
trained on the BHE with the delta initialization condition. The error bars represent the standard error
of mean with sample size 10 corresponding to different training seeds.

TRAINING SET DEGREE

TEST SET DEGREE 4 20 100

4 1.66451± 0.15036 1.35700± 0.03771 1.62045± 0.02767
20 1.66216± 0.15005 1.34640± 0.03828 1.60869± 0.02892

100 1.66510± 0.15030 1.34980± 0.03779 1.60980± 0.02831

Table 19: Mean relative error ×105 (BHE with constant initialization) on test set. The model is
trained on the BHE with the constant initialization condition. The error bars represent the standard
error of mean with sample size 10 corresponding to different training seeds.

TRAINING SET DEGREE

TEST SET DEGREE 4 20 100

4 12.1782± 2.70298 8.32134± 0.72992 8.44530± 1.4148
20 9.07441± 1.50640 6.14352± 0.40680 5.99939± 0.68357

100 8.26214± 1.17503 5.75086± 0.35933 5.50375± 0.55500
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Table 20: Mean absolute error ×105 (BHE with constant initialization) on test set. The model is
trained on the BHE with the constant initialization condition. The error bars represent the standard
error of mean with sample size 10 corresponding to different training seeds.

TRAINING SET DEGREE

TEST SET DEGREE 4 20 100

4 1.62849± 0.21154 1.12380± 0.10234 1.05562± 0.05272
20 1.62892± 0.21162 1.12371± 0.10235 1.05556± 0.05272

100 1.62931± 0.21148 1.12369± 0.10231 1.05558± 0.05273

Table 21: Mean absolute error ×103 (BHE with moderate initialization) on test set. The model is
trained on the BHE with the moderate initialization condition. The error bars represent the standard
error of mean with sample size 10 corresponding to different training seeds.

TRAINING SET DEGREE

TEST SET DEGREE 4 20 100

4 1.32699± 0.06872 1.60725± 0.03521 1.84851± 0.01689
20 1.24102± 0.04793 1.63232± 0.02236 1.92692± 0.00862

100 1.18515± 0.04836 1.55581± 0.02152 1.82844± 0.00684

Table 22: Mean absolute error ×104 (BHE with moderate initialization) on test set. The model is
trained on the BHE with the moderate initialization condition. The error bars represent the standard
error of mean with sample size 10 corresponding to different training seeds.

TRAINING SET DEGREE

TEST SET DEGREE 4 20 100

4 3.91187± 0.10867 5.49339± 0.03494 6.73537± 0.01891
20 3.93392± 0.11011 5.63933± 0.03427 6.87334± 0.01884

100 3.90431± 0.10875 5.60266± 0.03403 6.82414± 0.01860
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H.7 Loss Curves and Learning Rate Scheduling

Loss curves and learning rates are provided in Figs. 21–29.

Figure 21: Learning rate scheduling. FTE with nonlinear initial condition with degree 1000.

Figure 22: Training loss. FTE with nonlinear initial condition with degree 1000.

Figure 23: Validation loss. FTE with nonlinear initial condition with degree 1000.
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Figure 24: Learning rate scheduling. BHE with delta initial condition with degree 100.

Figure 25: Training loss. BHE with delta initial condition with degree 100.

Figure 26: Validation loss. BHE with delta initial condition with degree 100.
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Figure 27: Learning rate scheduling. ARE with degree 6.

Figure 28: Training loss. ARE with degree 6.

Figure 29: Validation loss. ARE with degree 6.
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H.8 Additional Figures: Functional Transport Equation

H.8.1 Worst Coefficients and Best Coefficients

We provide the worst-/best-case relative/absolute error. The mean and minimum of errors in the
test set do not strongly depend on training random seeds, while the maximum of errors intensely
fluctuates. This observation tells us that the worst-case relative and absolute errors are not stable
measures of performance.

Table 23: Relative error at the collocation point with the smallest relative error. The models are
trained on the functional transport equation.

INITIAL CONDITION

DEGREE LINEAR

4 0.00000± 0.00000
20 0.00000± 0.00000

100 0.00000± 0.00000

INITIAL CONDITION

DEGREE NONLINEAR

4 0.00000± 0.00000
10 0.00000± 0.00000
20 0.00000± 0.00000

Table 24: Absolute error at the collocation point whose absolute error is smallest. The models are
trained on the functional transport equation.

INITIAL CONDITION

DEGREE LINEAR

4 0.00000± 0.00000
20 0.00000± 0.00000

100 0.00000± 0.00000

INITIAL CONDITION

DEGREE NONLINEAR

4 0.00000± 0.00000
10 0.00000± 0.00000
20 0.00000± 0.00000

Table 25: Relative error at the collocation point whose relative error is largest. The models are trained
on the functional transport equation.

INITIAL CONDITION

DEGREE LINEAR

4 51.4467± 22.3805
20 23.0638± 11.7964

100 52.0792± 19.0932

INITIAL CONDITION

DEGREE NONLINEAR

4 2.60833± 1.03956
10 8.17635± 3.50015
20 13.9782± 7.87448
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Table 26: Absolute error at the collocation point whose absolute error is largest. The models are
trained on the functional transport equation.

INITIAL CONDITION

DEGREE LINEAR

4 (7.91653± 2.14557)× 10−3

20 (8.39847± 1.54967)× 10−3

100 (34.2531± 6.2608)× 10−3

INITIAL CONDITION

DEGREE NONLINEAR

4 0.19718± 0.01640
10 1.07628± 0.06364
20 2.53652± 0.08511
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H.8.2 First-order Functional Derivative: Linear Initial Condition & Relative Error

The relative errors of the first-order functional derivative are provided. The models are trained under
the linear initial condition.
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Figure 30: Degree 4.
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Figure 31: Degree 20.
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Figure 32: Degree 100.
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H.8.3 First-order Functional Derivative: Nonlinear Initial Condition & Relative Error

The relative errors of the first-order functional derivative are provided. The models are trained under
the nonlinear initial condition.
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Figure 33: Degree 4.
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Figure 34: Degree 10.
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Figure 35: Degree 20.
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H.8.4 First-order Functional Derivative: Linear Initial Condition & Absolute Error

The absolute errors of the first-order functional derivative are provided. The models are trained under
the linear initial condition.
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H.8.5 First-order Functional Derivative: Nonlinear Initial Condition & Absolute Error

The absolute errors of the first-order functional derivative are provided. The models are trained under
the nonlinear initial condition.
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H.8.6 Time-dependent Relative and Absolute Errors at θ = 0: Linear Initial Condition

The time-dependent relative and absolute errors at θ = 0 are provided. The models are trained under
the linear initial condition.
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H.8.7 Time-dependent Relative and Absolute Errors at θ = 0: Nonlinear Initial Condition

The time-dependent relative and absolute errors at θ = 0 are provided. The models are trained under
the nonlinear initial condition.
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H.8.8 Time-averaged Pointwise Relative Error: Linear Initial Condition

The time-averaged pointwise relative errors are provided. The models are trained under the linear
initial condition.
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H.8.9 Time-averaged Pointwise Relative Error: Nonlinear Initial Condition

The time-averaged pointwise relative errors are provided. The models are trained under the nonlinear
initial condition.
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H.8.10 Time-averaged Pointwise Absolute Error: Linear Initial Condition

The time-averaged pointwise absolute errors are provided. The models are trained under the linear
initial condition.

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
a0

1

2

3

4

5

6

T
im

e-
av

er
ag

ed
ab

so
lu

te
er

ro
r

×10−5

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
a1

0.00000

0.00025

0.00050

0.00075

0.00100

0.00125

0.00150

T
im

e-
av

er
ag

ed
ab

so
lu

te
er

ro
r

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
a2

1

2

3

4

5

T
im

e-
av

er
ag

ed
ab

so
lu

te
er

ro
r

×10−5

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
a3

1.0

1.5

2.0

2.5

3.0

3.5

T
im

e-
av

er
ag

ed
ab

so
lu

te
er

ro
r

×10−5

Figure 54: Degree 4.

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
a0

0.00010

0.00012

0.00014

0.00016

0.00018

0.00020

0.00022

T
im

e-
av

er
ag

ed
ab

so
lu

te
er

ro
r

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
a1

0.0000

0.0005

0.0010

0.0015

0.0020

T
im

e-
av

er
ag

ed
ab

so
lu

te
er

ro
r

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
a2

0.00008

0.00010

0.00012

0.00014

0.00016

0.00018

0.00020

T
im

e-
av

er
ag

ed
ab

so
lu

te
er

ro
r

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
a19

0.00010

0.00012

0.00014

0.00016

0.00018

0.00020

0.00022

T
im

e-
av

er
ag

ed
ab

so
lu

te
er

ro
r

Figure 55: Degree 20.

87



−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
a0

0.0002

0.0004

0.0006

0.0008

T
im

e-
av

er
ag

ed
ab

so
lu

te
er

ro
r

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
a1

0.000

0.002

0.004

0.006

0.008

0.010

0.012

T
im

e-
av

er
ag

ed
ab

so
lu

te
er

ro
r

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
a2

0.0002

0.0004

0.0006

0.0008

T
im

e-
av

er
ag

ed
ab

so
lu

te
er

ro
r

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
a99

0.0002

0.0004

0.0006

0.0008

T
im

e-
av

er
ag

ed
ab

so
lu

te
er

ro
r

Figure 56: Degree 100.

88



H.8.11 Time-averaged Pointwise Absolute Error: Nonlinear Initial Condition

The time-averaged pointwise absolute errors are provided. The models are trained under the nonlinear
initial condition.
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Figure 58: Degree 10.
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Figure 59: Degree 20.
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H.9 Additional Figures: Burgers-Hopf Equation

H.9.1 Worst Coefficients and Best Coefficients

We provide the worst-/best-case relative/absolute error. The mean and minimum of errors in the
test set do not strongly depend on training random seeds, while the maximum of errors intensely
fluctuates. This observation tells us that the worst-case relative and absolute errors are not stable
measures of performance.

Table 27: Relative error at the collocation point whose relative error is smallest. The models are
trained on the BHE. The error bars are the standard deviation over 10 training runs with different
random seeds.

INITIAL CONDITION

DEGREE DELTA MODERATE CONSTANT

4 (7.52793± 7.45055)× 10−10 (1.03507± 1.15271)× 10−8 (6.89188± 9.74890)× 10−10

20 (7.74760± 3.91492)× 10−10 (1.04685± 0.68460)× 10−8 (5.03755± 4.77551)× 10−10

100 (10.6824± 4.8721)× 10−10 (2.21203± 1.65951)× 10−8 (2.03155± 2.45872)× 10−10

Table 28: Absolute error at the collocation point whose absolute error is smallest. The models
are trained on the BHE. The error bars are the standard deviation over 10 training runs with different
random seeds.

INITIAL CONDITION

DEGREE DELTA MODERATE CONSTANT

4 (2.24063± 1.79890)× 10−10 (2.87494± 2.50505)× 10−9 (1.84662± 2.89692)× 10−10

20 (3.64107± 1.88671)× 10−10 (1.64646± 1.14713)× 10−9 (1.73323± 1.31036)× 10−10

100 (3.87652± 2.24305)× 10−10 (4.42345± 3.11587)× 10−9 (0.98167± 1.1928)× 10−10

Table 29: Relative error at the collocation point whose relative error is largest. The models are
trained on the BHE. The error bars are the standard deviation over 10 training runs with different
random seeds.

INITIAL CONDITION

DEGREE DELTA MODERATE CONSTANT

4 9.34454± 1.45301 13.4754± 11.0877 4.32330± 5.31288
20 3.60415± 0.86643 7.64168± 2.60517 0.404178± 0.207159

100 7.63891± 2.85191 1.03030± 0.19394 0.168201± 0.176840

91



Table 30: Absolute error at the collocation point whose absolute error is largest. The models are
trained on the BHE. The error bars are the standard deviation over 10 training runs with different
random seeds.

INITIAL CONDITION

DEGREE DELTA MODERATE CONSTANT

4 (2.16137± 0.40053)× 10−4 (2.89219± 0.18509)× 10−3 (2.97723± 1.06194)× 10−4

20 (1.16468± 0.16788)× 10−4 (4.13474± 0.05627)× 10−3 (2.51673± 1.15930)× 10−4

100 (2.41825± 0.66709)× 10−4 (4.64874± 0.04121)× 10−3 (2.55274± 0.48728)× 10−4
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H.9.2 First-order Functional Derivative: Delta Initial Condition & Relative Error

The relative errors of the first-order functional derivative are provided. The models are trained under
the delta initial condition.
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Figure 60: Degree 4.
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Figure 61: Degree 20.
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Figure 62: Degree 100.
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Figure 63: Degree 4. W ([0], τ) = 0 is included in the loss function.

94



−0.4 −0.2 0.0 0.2 0.4
x

−8.0075

−8.0050

−8.0025

−8.0000

−7.9975

−7.9950

−7.9925

−7.9900

F
ir

st
-o

rd
er

de
ri

va
ti

ve

Prediction (tau=0.000)

Analytic (tau=0.000)

−0.4 −0.2 0.0 0.2 0.4
x

0.0000

0.0001

0.0002

0.0003

0.0004

R
el

at
iv

e
er

ro
r

tau=0.000

−0.4 −0.2 0.0 0.2 0.4
x

−8.0075

−8.0050

−8.0025

−8.0000

−7.9975

−7.9950

−7.9925

−7.9900

F
ir

st
-o

rd
er

de
ri

va
ti

ve

Prediction (tau=0.001)

Analytic (tau=0.001)

−0.4 −0.2 0.0 0.2 0.4
x

0.0000

0.0001

0.0002

0.0003

0.0004

R
el

at
iv

e
er

ro
r

tau=0.001

Figure 64: Degree 100. W ([0], τ) = 0 is included in the loss function.
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H.9.3 First-order Functional Derivative: Constant Initial Condition & Relative Error

The relative errors of the first-order functional derivative are provided. The models are trained under
the constant initial condition.
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Figure 65: Degree 4.
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Figure 66: Degree 20.
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Figure 67: Degree 100.
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H.9.4 First-order Functional Derivative: Moderate Initial Condition & Relative Error

The relative errors of the first-order functional derivative are provided. The models are trained under
the moderate initial condition.
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Figure 68: Degree 4.
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Figure 69: Degree 20.
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Figure 70: Degree 100.
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Figure 71: Degree 4. W ([0], τ) = 0 is included in the loss function.
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Figure 72: Degree 100. W ([0], τ) = 0 is included in the loss function.
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H.9.5 First-order Functional Derivative: Delta Initial Condition & Absolute Error

The absolute errors of the first-order functional derivative are provided. The models are trained under
the delta initial condition.
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Figure 73: Degree 4.

−0.4 −0.2 0.0 0.2 0.4
x

−8.005

−8.000

−7.995

−7.990

−7.985

F
ir

st
-o

rd
er

de
ri

va
ti

ve

Prediction (tau=0.000)

Analytic (tau=0.000)

−0.4 −0.2 0.0 0.2 0.4
x

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

A
bs

ol
ut

e
er

ro
r

tau=0.000

−0.4 −0.2 0.0 0.2 0.4
x

−8.005

−8.000

−7.995

−7.990

−7.985

F
ir

st
-o

rd
er

de
ri

va
ti

ve

Prediction (tau=0.001)

Analytic (tau=0.001)

−0.4 −0.2 0.0 0.2 0.4
x

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

A
bs

ol
ut

e
er

ro
r

tau=0.001

Figure 74: Degree 20.
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Figure 75: Degree 100.
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Figure 76: Degree 4. W ([0], τ) = 0 is included in the loss function.
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Figure 77: Degree 100. W ([0], τ) = 0 is included in the loss function.
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H.9.6 First-order Functional Derivative: Constant Initial Condition & Absolute Error

The absolute errors of the first-order functional derivative are provided. The models are trained under
the constant initial condition.
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Figure 78: Degree 4.
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Figure 79: Degree 20.
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Figure 80: Degree 100.
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H.9.7 First-order Functional Derivative: Moderate Initial Condition & Absolute Error

The absolute errors of the first-order functional derivative are provided. The models are trained under
the moderate initial condition.
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Figure 81: Degree 4.
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Figure 82: Degree 20.
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Figure 83: Degree 100.
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Figure 84: Degree 4. W ([0], τ) = 0 is included in the loss function.
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Figure 85: Degree 100. W ([0], τ) = 0 is included in the loss function.
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H.9.8 Time-dependent Relative and Absolute Errors at θ = 0: Delta Initial Condition

The time-dependent relative and absolute errors at θ = 0 are provided. The models are trained under
the delta initial condition.
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Figure 86: Degree 4.
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Figure 87: Degree 20.
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Figure 88: Degree 100.
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H.9.9 Time-dependent Relative and Absolute Errors at θ = 0: Constant Initial Condition

The time-dependent relative and absolute errors at θ = 0 are provided. The models are trained under
the constant initial condition.
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Figure 89: Degree 4.
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Figure 90: Degree 20.
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Figure 91: Degree 100.
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H.9.10 Time-dependent Relative and Absolute Errors at θ = 0: Moderate Initial Condition

The time-dependent relative and absolute errors at θ = 0 are provided. The models are trained under
the moderate initial condition.
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Figure 92: Degree 4.
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Figure 93: Degree 20.
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Figure 94: Degree 100.
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H.9.11 Time-averaged Pointwise Absolute Error: Delta Initial Condition

The time-averaged pointwise absolute errors are provided. The models are trained under the delta
initial condition.
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Figure 95: Degree 4.
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Figure 96: Degree 20.
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Figure 97: Degree 100.
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H.9.12 Time-averaged Pointwise Absolute Error: Constant Initial Condition

The time-averaged pointwise absolute errors are provided. The models are trained under the constant
initial condition.
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Figure 98: Degree 4.
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Figure 99: Degree 20.
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H.9.13 Time-averaged Pointwise Absolute Error: Moderate Initial Condition

The time-averaged pointwise absolute errors are provided. The models are trained under the moderate
initial condition.
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H.9.14 Time-averaged Pointwise Relative Error: Delta Initial Condition

The time-averaged pointwise relative errors are provided. The models are trained under the delta
initial condition.
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H.9.15 Time-averaged Pointwise Relative Error: Constant Initial Condition

The time-averaged pointwise relative errors are provided. The models are trained under the constant
initial condition.
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H.9.16 Time-averaged Pointwise Relative Error: Moderate Initial Condition

The time-averaged pointwise relative errors are provided. The models are trained under the moderate
initial condition.

−0.100 −0.075 −0.050 −0.025 0.000 0.025 0.050 0.075 0.100
a0

10−6

10−5

10−4

10−3

T
im

e-
av

er
ag

ed
re

la
ti

ve
er

ro
r

−0.002 −0.001 0.000 0.001 0.002
a1

10−2

100

102

104

T
im

e-
av

er
ag

ed
re

la
ti

ve
er

ro
r

−0.002 −0.001 0.000 0.001 0.002
a2

10−1

100

101

102

103

104

T
im

e-
av

er
ag

ed
re

la
ti

ve
er

ro
r

−0.0006 −0.0004 −0.0002 0.0000 0.0002 0.0004 0.0006
a3

101

102

103

104

105

T
im

e-
av

er
ag

ed
re

la
ti

ve
er

ro
r

Figure 110: Degree 4.

−0.100 −0.075 −0.050 −0.025 0.000 0.025 0.050 0.075 0.100
a0

10−6

10−5

10−4

10−3

T
im

e-
av

er
ag

ed
re

la
ti

ve
er

ro
r

−0.002 −0.001 0.000 0.001 0.002
a1

10−2

10−1

100

101

102

103

104

T
im

e-
av

er
ag

ed
re

la
ti

ve
er

ro
r

−0.002 −0.001 0.000 0.001 0.002
a2

10−1

100

101

102

103

104

T
im

e-
av

er
ag

ed
re

la
ti

ve
er

ro
r

−2 −1 0 1 2
a19 ×10−5

107

T
im

e-
av

er
ag

ed
re

la
ti

ve
er

ro
r

Figure 111: Degree 20.

128



−0.100 −0.075 −0.050 −0.025 0.000 0.025 0.050 0.075 0.100
a0

10−5

10−4

10−3

T
im

e-
av

er
ag

ed
re

la
ti

ve
er

ro
r

−0.002 −0.001 0.000 0.001 0.002
a1

10−1

100

101

102

103

104

T
im

e-
av

er
ag

ed
re

la
ti

ve
er

ro
r

−0.002 −0.001 0.000 0.001 0.002
a2

10−1

100

101

102

103

104

T
im

e-
av

er
ag

ed
re

la
ti

ve
er

ro
r

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
a99 ×10−6

107

1.2× 107

1.4× 107

1.6× 107

1.8× 107

T
im

e-
av

er
ag

ed
re

la
ti

ve
er

ro
r

Figure 112: Degree 100.

129



NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Our contribution is summarized at the end of Introduction. How much the
results can be expected to generalize to other settings is also discussed in App. F.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitations are discussed in Sec. 5 and App. F.1.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: The full set of assumptions and complete proofs for each theoretical result is
given in Sec. 3, Apps. C, D, and E. In particular, App. C is dedicated to the mathematical
background for non-experts of functional analysis, making our paper as self-contained as
possible.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: All the information for reproduction is given in Sec. 4 and App. G. We also
provide our code in the supplementary materials. See also our GitHub https://github.
com/TaikiMiyagawa/FunctionalPINN.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Our code is given in the supplementary materials and GitHub (https://
github.com/TaikiMiyagawa/FunctionalPINN).

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All the information for reproduction is given in Sec. 4 and App. G. We also
provide our code in the supplementary materials.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Error bars (standard deviations) are reported in Sec. 4 and App. H.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Compute resources are reported in App. G.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We carefully read the NeurIPS Code of Ethics and checked our work complies
it.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This paper presents work whose goal is to advance the field of functional
differential equations, and there is no societal impact which we feel must be specifically
highlighted here.

Guidelines:
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We appropriately cite relevant assets. The license and terms of use are
mentioned in our code.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We carefully read and follow the NeurIPS Code and Data Submission Guide-
lines.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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