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Abstract

The current state-of-the-art for few-shot cross-
lingual transfer learning first trains on abundant
labeled data in the source language and then
fine-tunes with a few examples on the target
language, termed target-adapting. Though this
has been demonstrated to work on a variety of
tasks, in this paper we show some deficiencies
of this approach and propose a one-step mixed
training method that trains on both source and
target data with stochastic gradient surgery, a
novel gradient-level optimization. Unlike the
previous studies that focus on one language at
a time when target-adapting, we use one model
to handle all target languages simultaneously
to avoid excessively language-specific models.
Moreover, we discuss the unreality of utilizing
large target development sets for model selec-
tion in previous literature. We further show
that our method is both development-free for
target languages, and is also able to escape from
overfitting issues. We conduct a large-scale ex-
periment on 4 diverse NLP tasks across up to
48 languages. Our proposed method achieves
state-of-the-art performance on all tasks and
outperforms target-adapting by a large margin1,
especially for languages that are linguistically
distant from the source language, e.g., 7.36%
F1 absolute gain on average for the NER task,
up to 17.60% on Punjabi.

1 Introduction

The cost of linguistic data annotation and a plethora
of differences across language resources and struc-
tures of natural language processing (NLP) tasks
result in the problem that sufficient labeled data
is only available for a handful of high-resource
languages (Bender, 2011). The lack of data for
low-resource languages leads to the need for effec-
tive cross-lingual transfer learning, which aims to
leverage abundant labeled high-resource languages
to improve model performance on low-resource

1Code is available at: https://github.com/
fe1ixxu/Mixed-Gradient-Few-Shot.

ones. The majority of methods for cross-lingual
transfer are mainly based on multilingual language
models (LMs) (Devlin et al., 2019; Conneau et al.,
2020; Xue et al., 2021) which are pre-trained on
massive multilingual data. Zero-shot cross-lingual
transfer is widely explored where a multilingual
LM is trained on a large amount of labeled data in
the source language without any target data, and
then is directly evaluated on the target test set, fre-
quently achieving surprisingly good performance
(Wu and Dredze, 2019; Pires et al., 2019; Conneau
et al., 2020). Recently, Lauscher et al. (2020) em-
phasize the effective mechanism of few-shot cross-
lingual transfer for improving target-language per-
formance, where only a few (such as 10) extra
target examples can obtain substantial improve-
ments. The current state-of-the-art methods for
few-shot cross-lingual transfer learning (Lauscher
et al., 2020; Hedderich et al., 2020; Maurya et al.,
2021; Zhao et al., 2021) utilize the source-trained
model (the same model training on the source data
in zero-shot learning) to fine-tune on small target
examples, which is termed target-adapting.

In this paper, we dissect the potential weaknesses
of the ubiquitous target-adapting method and pro-
pose a one-step mixed training method that trains
on both source and target data with a novel gradient-
level optimization, stochastic gradient surgery.
Specifically, we highlight 6 benefits (contributions)
of our method in this paper as follows:
(1) State-of-The-Art Performance: Our proposed
method achieves significant improvements com-
pared to target-adapting on 4 diverse NLP tasks
across up to 48 languages. For instance, averaged
over all target languages, we demonstrate an ab-
solute F1 improvement of 7.36% on NER using
5-shot learning, with our best performance gains
on Punjabi where the gap is 17.60% (Section 4).
(2) One Model for All Languages: The target-
adapting step generally focuses on only one target
language. With the proposed method, we do not

https://github.com/fe1ixxu/Mixed-Gradient-Few-Shot
https://github.com/fe1ixxu/Mixed-Gradient-Few-Shot


need to fine-tune specialized models for every tar-
get language, which is of particular interest when
scaling to dozens or even hundreds of languages.
We discuss the benefits of mixed training one model
on all target languages, even when their number of
shots is extremely small (Section 3.2).
(3) Efficient Gradient De-Conflicting and Infor-
mation De-Dilution: Two issues arise when mixed
training uses data from all target languages in addi-
tion to the source language — conflicting gradients
among languages and target information dilution.
Stochastic gradient surgery efficiently de-conflicts
gradients and de-dilutes the target information (Sec-
tion 3.4 and 3.5).
(4) Single Language Friendly: Though our pro-
posed method normally uses information from mul-
tiple target languages, in the simplest setting, where
we only have a single target language, stochastic
gradient surgery trained on source and target still
substantially outperforms standard target-adapting.
The improvement is especially pronounced for lan-
guages linguistically distant from the source lan-
guage (Section 5.3).
(5) The Same Script Helps: For a specific lan-
guage, the model is able to use information learned
from other languages. In Section 5.4, we show that
this gain is most pronounced in languages that use
the same script.
(6) Development-Free for Target Languages:
Target development (dev) set used by previous stud-
ies (Hsu et al., 2019; Zhao et al., 2021) significantly
outnumber training examples in few-shot cross-
lingual learning, which is not realistic in the true
low-resource settings. However, target-adapting
can be prone to overfit on small examples with-
out target dev sets. In comparison, our proposed
method is development-free for target languages
and able to escape overfitting issues (Section 5.5).

2 Background and Related Works

2.1 Cross-Lingual Transfer Learning

Cross-lingual transfer learning enables systems to
co-learn the meaning of words across languages
and facilitates model transfer between languages,
particularly from high-resource to low-resource lan-
guages (Ruder et al., 2019), even for languages that
are linguistically distant (Xu et al., 2021; Yarmo-
hammadi et al., 2021). Language transfer is based
on finding a shared cross-lingual space for source
and target languages. One of the most common
methods is to align the source and target embed-

ding spaces, termed cross-lingual word embed-
dings (CLWEs) (Mikolov et al., 2013; Artetxe et al.,
2016; Conneau et al., 2018a; Vulić et al., 2019;
Xu and Koehn, 2021a). Recently, multilingual
pre-trained encoders have shown stronger effec-
tiveness over CLWEs for cross-lingual transfer in
various tasks (Artetxe and Schwenk, 2019; Wu and
Dredze, 2019). While some studies utilize static
pre-trained encoders for transfer learning (Wang
et al., 2019; Xu and Koehn, 2021b), the majority
of studies continuously train encoders for cross-
lingual transfer (Conneau et al., 2020; Luo et al.,
2021; Xue et al., 2021) based on the finding that
source and target representations are still aligned
after only fine-tuning on the source data (Hsu et al.,
2019).

2.2 Few-Shot Learning
Few-shot learning was firstly investigated in com-
puter vision (Fei-Fei et al., 2006). Currently, the
majority of studies for NLP tasks are designed for
one single language (usually English), e.g., model
agnostic meta-learning (Finn et al., 2017) and proto-
typical networks (Snell et al., 2017). However, lim-
ited few-shot studies are explored in cross-lingual
settings. Recent works mainly focus on zero-shot
cross-lingual transfer to evaluate the cross-lingual
generalization capabilities of multilingual represen-
tations, e.g., XTREME (Hu et al., 2020; Ruder
et al., 2021) and XGLUE (Liang et al., 2020).
Lauscher et al. (2020) further emphasize that ad-
ditional fine-tuning on a few inexpensive labeled
target-language instances is surprisingly effective
across broad NLP tasks. Zhao et al. (2021) high-
light the sensitivity of the selection of the few ex-
amples (shots) and suggest using the same shots
for fair comparisons. State-of-the-art methods for
few-shot cross-lingual learning follow the source-
training + target-adapting paradigm. In this pa-
per, we investigate deficiencies of this approach
and propose more effective methods which signifi-
cantly improve the transfer performance compared
to target-adapting.

2.3 Gradient Surgery
Previous works on gradient optimization (Chen
et al., 2018; Sener and Koltun, 2018; Yu et al.,
2020) have successfully utilized gradient-level tech-
niques to improve the performance of multi-task
models. In fact, mixed training multilingual data
can be categorized into multi-task learning (Zhang
and Yang, 2018) but in a monolithic manner by



using a single language-agnostic objective on the
concatenated data from all languages. Recently,
multilingual machine translation utilizes gradient-
level regularization to improve the translation per-
formance (Wang et al., 2020; Yang et al., 2021;
Wang et al., 2021b). In this paper, our experiments
mainly focus on training multiple target languages,
so we propose stochastic gradient surgery (Sec-
tion 3.5) which improves upon the original gradient
surgery method (Yu et al., 2020) to improve the
overall performance.

3 Methods

3.1 Ordinary Few-Shot Learning

The current state-of-the-art few-shot cross-lingual
transfer learning method (Lauscher et al., 2020;
Hedderich et al., 2020; Zhao et al., 2021) includes
two stages, source-training and target-adapting. In
the source-training stage, a pre-trained LM such
as mBERT (Devlin et al., 2019) or XLM-R (Con-
neau et al., 2020) is fine-tuned with sufficient la-
beled data in the source language (which is usually
English). In the target-adapting stage, the source-
trained model is then fine-tuned only with a few
examples in the target language. We abbreviate the
name of this method to ord-FS.

3.2 Mixed Fine-Tuning on All Target
Languages

The ord-FS method brings up a question: is it nec-
essary to fine-tune a language-specific model for
each target language? Can we use one model
to handle all target languages to avoid excessively
language-specific models? One straightforward
method to have such a model is fine-tuning the
source-trained model on concatenated examples
of all target languages, instead of only one target.
Here, we are interested in whether more few exam-
ples of other target languages will improve/degrade
the overall performance. We abbreviate the name
of this method to mix-FT.

3.3 Mixed Training on Source and Target
Languages

Ord-FS and mix-FT follow the transductive trans-
fer2 learning method that first trains on the source
domain and then fine-tunes on the target domain
(Pan and Yang, 2009). However, recently, Xu et al.

2The pre-training (source-training) and the fine-tuning
(target-adapting) are the same task.

(2021) show that abruptly shifting the source do-
main to the target domain is not an optimized solu-
tion due to catastrophic forgetting (McCloskey and
Cohen, 1989). Thus, we should be careful about
the language domain gaps between the source and
target languages, especially for distant languages.
One naive but effective approach to preserve the
source knowledge and escape catastrophic forget-
ting is simply training both the source and target
data3 (all target languages), where we simplify
source-training and target-adapting into only one
mixed training step. We abbreviate the name of
this method to naive-mix-train.

3.4 Gradient Surgery in Mixed Training
One issue of naive-mix-train is conflicting gradi-
ents (Yu et al., 2020) among languages, which
makes training more difficult because gradients
point away from one another. We define that two
gradients are conflicting if they have a negative
cosine similarity. Another issue is that the infor-
mation of the target domain will be diluted due to
the overwhelming source data. Specifically, the
gradient of source data is much larger in magnitude
than the other languages in one batch training due
to the small or even no target training instances in
this batch. Hence, the source gradients will domi-
nate the average gradient and result in information
dilution of the target data and underestimation of
the target language performance.

The main idea of using gradient surgery (Yu
et al., 2020) to mitigate the two issues above is, in
each backpropagation step, projecting the dominant
gradient to the normal plane of a target gradient to
de-conflict their gradients and ‘remind’ the model
of target instances. Specifically, we denote gs as
the gradient for the source language and gt as the
gradient for the target language. We first compute
the cosine similarity between gs and gt and judge
gs and gt are conflicting gradients if their similarity
is negative. Next, we project gs into the normal
plane of gt only if they are conflicting:

g′s = gs −
gs · gt
∥ gt ∥2

gt (1)

The modified g′s replace the original dominant
source gradient to update the model parameters.

3.5 Stochastic Gradient Surgery
However, target data is usually not guaranteed to
exist in the batch due to the small training size.

3Target data is randomly interpolated in the source data.



Even though we assume that we have target data
for all target languages in each batch training, we
should detect conflicting gradients not just between
source and target languages, but also between every
target language. However, this is extremely com-
putationally expensive, especially when it comes
to large-scale languages for training. Based on this,
we propose stochastic gradient surgery approach,
composed of two parts, oracle dataset creation
and stochastic training.

Oracle Dataset Creation In the case of K-shot
learning, the oracle dataset comprises K training
instances4 for each target language. To not use any
external information, the oracle datasets of target
languages are exactly the K target instances used
in mixed training. Similar to Wang et al. (2020,
2021a); Yang et al. (2021), we create an oracle
dataset to ensure that we can pair any one of the tar-
get languages with the source language to operate
gradient surgery.

Stochastic Training In each batch training, we
randomly pick oracle data of a random target lan-
guage in a uniform distribution to conduct gra-
dient surgery with the source batch data. More-
over, in order to avoid that small number of tar-
get examples constrain the source gradients into a
sub-optimal place (especially for tasks which need
higher-level semantic understanding), we also have
a pre-set threshold α to control the probability of
gradient surgery in each training step. The gradi-
ent surgery is conducted only if a sampled value
p ∼ uniform[0, 1] is smaller than α.

The advantages of this method are that 1) we
only focus on gradient de-conflicting between the
source and one of the target languages, which only
computes the gradient one additional time to avoid
expensive computation, 2) and more importantly,
the source language could be a pivot language
which also helps gradients of target languages de-
conflict between each other (more discussion in
Section 5.2 ). The detailed workflow is shown
in Algorithm 1. We abbreviate the name of this
method to gradient-mix-train.

4 Experiments

4.1 Development-Free Training
Importantly, Zhao et al. (2021) notice that few-shot
learning easily tends to overfit quickly at a small

4XNLI use K examples from every class followed by the
“N-way K-shot" discussion in Section 4.3.

Algorithm 1: Stochastic Gradient Surgery
Input :Language Set L; Pre-Trained Model

θ; Mixed Training Data Dtrain;
Oracle Data Dl

oracle, l ∈ L; Pre-Set
Threshold α.

1 Initialize θ0 = θ, step t = 0
2 while not converged do

▷ Iterate batches Btrain from data Dtrain

3 for Btrain in Dtrain do
4 gtrain = ∇θtL(θt,Btrain)
5 Sample a language l from set L
6 goracle = ∇θtL(θt,Dl

oracle)
7 Sample a value p ∼ uniform[0, 1]

▷ Gradient surgery
8 if goracle · gtrain < 0 and p < α then
9 gtrain = gtrain − gtrain·goracle

∥goracle∥2 goracle

10 end
11 Update t← t+ 1
12 Update θt with gradient gtrain

13 end
14 end

number of shots, where the model performs best
on the dev set at the beginning of training. One
good solution to avoid overfitting is using target
dev set for early stopping. Previous studies (Hed-
derich et al., 2020; Zhao et al., 2021) utilize a large
amount of dev sets for each target language for
model selection, e.g., even around 10K dev exam-
ples for Arabic in the NER task. However, it is
unlikely that such a dev set would be available
in reality, especially for the extreme low-resource
training such as 1-shot and 5-shot learning, since it
would be more effective to use it for training instead
(Kann et al., 2019). The true standard setup of zero-
shot cross-lingual learning only uses the source
dev set (Zhao et al., 2021), and few-shot learning
should also follow this setup, particularly at a small
value of shots. Thus, we suggest only using the
source dev set for model selection. However, for
target-adapting, it does not makes sense to use the
source dev for model selection due to the different
languages in the training and dev steps. Hence, the
two-step methods, ord-FS and mix-FT, use the last
checkpoint for evaluation. Since naive-mix-train
and gradient-mix-train train on both source and
target data, they are suitable for using the source
dev set for target model selection. We show that
our methods substantially outperform target-
adapting whatever it uses unrealistic dev sets or



not in Section 4.4.
We consider all introduced methods in the ex-

periment, including two-step methods (ord-FS,
mix-FT), and one-step methods (naive-mix-train,
gradient-mix-train). Moreover, in order to inves-
tigate the difference between using and not using
dev sets, we add another baseline, ord-FS+dev,
whis is ord-FS with unrealistically large dev sets5

for model selection as Zhao et al. (2021) conduct.

4.2 Tasks and Datasets

We consider two lower-level (structured prediction)
tasks, Wikiann Named-Entity Recognition (NER)
task (Pan et al., 2017) and Part-of-Speech Tagging
(POS) (Nivre et al., 2018) and two different types
of higher-level tasks, Typologically Diverse Ques-
tion Answering-Gold Passage6 (TyDiQA-GoldP)
(Clark et al., 2020) and Cross-lingual Natural Lan-
guage Inference (XNLI) (Conneau et al., 2018b).
We download datasets from the XTREME-R bench-
mark (Hu et al., 2020; Ruder et al., 2021). NER and
POS cover 48 and 38 languages, respectively. Our
experiments use 35 languages on POS because the
remaining three languages, Thai(th), Tagalog(tl)
and Yoruba(yo), do not have target training data
in XTREME-R. TydiQA and XNLI cover 9 and
15 languages, respectively. We conduct aforemen-
tioned methods on all tasks for all languages. En-
glish is the source language and the others are tar-
gets. Statistics about languages are listed in Ap-
pendix B.

4.3 Settings

Two-step training methods, ord-FS(+dev) and mix-
FT, have two different settings for source-training
and target-adapting. For one-step methods, naive-
mix-train and gradient-mix-train, their settings are
the same as source-training in the two-step meth-
ods. We run 10 epochs for NER and POS, 60 for
TyDiQA, and 10 for XNLI in both source-training
and target-adapting. The batch size of all tasks is 32
for source-training and K for target-adapting with a
2e-5 learning rate. Pre-set threshold α is 1 for NER
and POS and 0.1 for TyDiQA and XNLI unless
otherwise noted. The values of α are empirically
selected, which might not be optimal but strongly
effective. The model architecture of NER and POS
is based on pre-trained XLM-Rlarge attached with

5Detail information of dev sets are shown in Appendix A
6We try to not use translated data such as XQuAD (Artetxe

et al., 2020) to avoid unrealistic artifacts such as preserving
source words (Clark et al., 2020).

a feed-forward token-level classifier. For TydiQA,
the representations of all subwords in XLM-Rbase

are input to a span classification head —- a linear
layer computing the start and the end of the answer.
For XNLI, the model architecture is XLM-Rbase

with a simple softmax classifier on the vector of the
start token. The number of examples we consider
is K ∈ {1, 5, 10}. The sampling method is simply
extracting random K shots. The only exception
is XNLI, where we adopt the sampling method
of conventional few-shot classification learning —
“N -way K-shot" (Fei-Fei et al., 2006) — we sam-
ple K examples for N classes. Here, N is the total
number of classes in XNLI. We repeat every ex-
periment 5 times with 5 different random seeds7

suggested by Lauscher et al. (2020). All methods
use the same K shots for a fair comparison. We
finally report the average accuracy (XNLI) or F1
scores (other tasks) and their standard deviation.

4.4 Results

The main results on each task, conditioned on the
number of examples K and averaged across all
languages, are presented in Table 1. The full
results with each target language are shown in
Appendix C. For all values of K and all tasks,
gradient-mix-train performs the best among all
introduced few-shot learning methods.

The zero-shot cross-lingual transfer results
(K = 0) deliver similar results comparable to
Ruder et al. (2021). Similar to the findings in
Lauscher et al. (2020); Zhao et al. (2021), we notice
substantial improvements with ord-FS(+dev) on
lower-level tasks (NER and POS) and modest im-
provement on XNLI over zero-shot performance.

However, ord-FS significantly degrades the zero-
shot performance on TyDiQA because it suffers
from a tendency of overfitting on target training
instances (more discussion in Section 5.5). On
the other hand, with the help of dev sets in model
selection, ord-FS+dev achieves higher performance
than ord-FS on all tasks and particularly solve the
overfitting issue.

Compared to ord-FS, NER and TyDiQA benefit
most from mix-FT, e.g., from 65.91% to 70.60%
with K = 5 in NER. However, it still suffers from
the overfitting issue, but the impact decrease with
more target examples. Training source sentences
with target data (naive-mix-train) is a better solu-
tion. It consistently outperforms mix-FT on all

7Shots are different with different seeds.



K Methods NER POS TyDiQA XNLI
Avg. F1 (%) sd. Avg. F1 (%) sd. Avg. F1 (%) sd. Avg. Acc. (%) sd.

K = 0 Zero-Shot 64.56 - 77.32 - 55.80 - 73.55 -

K = 1

ord-FS+dev (Zhao et al., 2021) 65.92 0.84 80.37 0.16 55.81 1.01 73.95 0.19

ord-FS (Zhao et al., 2021) 64.11 0.98 80.24 0.19 47.44 1.47 73.70 0.17

mix-FT (Ours) 65.71 0.90 79.37 0.12 48.73 2.15 73.54 0.61

naive-mix-train (Ours) 67.31 0.58 80.04 0.23 57.03 0.56 73.29 0.43

gradient-mix-train (Ours) 69.58 0.99 81.14 0.27 57.64 1.02 74.09 0.54

K = 5

ord-FS+dev (Zhao et al., 2021) 68.22 0.69 83.15 0.23 55.60 1.07 74.08 0.36

ord-FS (Zhao et al., 2021) 65.91 0.91 82.95 0.20 51.19 1.29 73.73 0.60

mix-FT (Ours) 70.60 0.85 81.95 0.16 54.49 1.76 73.13 0.74

naive-mix-train (Ours) 72.06 0.68 82.79 0.19 58.59 1.45 73.69 0.80

gradient-mix-train (Ours) 73.27 0.60 83.48 0.24 59.34 1.04 74.41 0.26

K = 10

ord-FS+dev (Zhao et al., 2021) 69.85 0.60 84.92 0.07 55.59 1.62 74.19 0.39

ord-FS (Zhao et al., 2021) 68.75 0.67 84.66 0.08 53.17 1.56 74.03 0.38

mix-FT (Ours) 73.89 0.56 83.54 0.07 55.54 1.05 73.62 0.98

naive-mix-train (Ours) 74.13 0.45 84.52 0.17 58.88 1.37 74.23 0.37

gradient-mix-train (Ours) 75.92 0.61 85.03 0.16 59.47 1.73 74.44 0.38

Table 1: Main results of all methods with their standard deviation (sd.) of 5 repetitive experiments for all tasks with
K ∈ 1, 5, 10. Scores are averaged by all target languages. Best scores are bold. Cells are colored by performance
difference over zero-shot baseline: +3 or more , +0 to +3 , -0 to -3 , -3 or more . ord-FS+dev: ordinary few-shot
learning that fine-tunes on one target language each time with development set; ord-FS: the ord-FS+dev method
without development set; mix-FT: mixed fine-tuning on concatenated target examples together; naive-mix-train:
naively training both source and all target examples together; gradient-mix-train: utilizing stochastic gradient
surgery during the naive-mix-train.

NER POS TyDiQA XNLI
lang. ∆ F1 (%) lang. ∆ F1 (%) lang. ∆ F1 (%) lang. ∆ Acc. (%)

pa 17.60 wo 3.82 bn 12.27 sw 2.36
zh 15.24 mr 3.51 te 11.14 ur 1.95
ar 14.14 hi 2.60 sw 10.58 ru 1.68
vi 13.22 tr 2.18 ar 9.45 fr 0.91
hi 12.68 fi 1.55 fi 9.05 zh 0.78

Table 2: Top-5 languages that achieve the highest im-
provement by using gradient-mix-train methods com-
pared to ord-FS on all tasks in 5-shot learning. Most
languages are distant from English.

tasks with various K, and importantly, overcomes
the serious overfitting on the TyDiQA task and
highly boosts the performance (e.g., from 48.73%
of mix-FT to 57.03% of naive-mix-train in 1-shot
learning). Furthermore, applying stochastic gradi-
ent surgery on mixed training (gradient-mix-train)
achieves the best performance on all tasks with all
settings of K and outperforms ord-FS by a signifi-
cant margin, such as up to 7.36% averaged absolute
improvement on NER in 5-shot learning. On the
other hand, the gap between our methods and ord-
FS in POS is smaller than in NER (the same type
of task). The reason could be that the strong POS
task baseline has already left less room for further
improvement.

5 Analysis and Discussion

5.1 Which Language Benefits Most?

Table 1 shows the strong effectiveness of gradient-
mix-train in improving the overall performance of
each task. Here, we are interested in taking a closer
look at the results of specific languages and investi-

gating which language benefits most. Take 5-shot
learning as an example. Table 2 illustrates the top-5
languages which boost most by using gradient-mix-
train over ord-FS in all tasks8, where the improve-
ment is up to 17.60% absolute F1 scores for pa in
the NER task. Most of the languages in the top-
5 list are linguistically distant from English. We
hypothesize that for such distant languages, the
model has difficulty in learning the target training
instances by abruptly shifting to the target domain.
For closely related languages, the model is able
to extrapolate the target-specific knowledge whose
priors are close to English so that the model is less
sensitive to these few target training examples than
distant languages. However, gradient-mix-train is
able to smoothly learn the distribution of source
domain and extrapolate (distant) target domains by
mixed training and gradient-level optimization.

5.2 Visualization of Gradient De-Conflicting

We take the NER task as an example to analyze
the gradient de-conflicting of stochastic gradient
surgery since it covers the most languages among
all tasks. In Figure 1, we use a symmetric heatmap
to visualize pair-wise gradient similarities, aver-
aged by all 5 checkpoints in 5-shot learning. Note
that languages in the figure are adjacent to other lan-
guages in the same linguistic language family. The
gradient of English is calculated by the randomly
picked 100 batches on average, and gradients of

8For the languages that benefit the least, gradient-mix-train
still yields large gains over the baseline on NER and TyDiQA.
We discuss this further in Appendix D.



(a) Gradient similarity across languages without gradient surgery

(b) Gradient similarity across languages with gradient surgery

Figure 1: Gradient similarities across 48 languages in the NER task with 5 shots. Deeper colors represent higher
cosine similarities. Conflicting gradients are directly marked as while cells in the heatmap. The similarities are
highly improved after stochastic gradient surgery. The gradients are averaged from 5 checkpoints.

the other target languages are calculated by their
5 training instances. To highlight the conflicting
gradients across languages, we directly mark the
cells with negative similarities as pure white color.

Figure 1a shows the gradient similarities of the
naive-mix-train model. As expected, gradient sim-
ilarities of many language pairs are conflicting
(white color cells), and gradients of most languages
are approximately orthogonal, where their similar-
ities are close to 0. It is worth mentioning that
gradients similarities between English and most
languages are conflicting. In comparison, in Fig-
ure 1b, we illustrates the gradient similarities of
gradient-mix-train, and the gradient similarities be-
tween English and most of the target languages are

positive. Moreover, gradients of most target lan-
guage pairs have higher similarities (deeper colors),
which also verifies the correctness of our statement
that target languages utilize English as a pivot lan-
guage to de-conflict and even improve their sim-
ilarities. The only two exceptions are th and ja,
the two hardest task in NER, whose F1 in zero-
shot learning is only 1.02% and 18.31%. Their
similarities with other languages are negative but
positive between themselves. However, gradient-
mix-train still achieve impressive improvement on
th (∆ = 3.13%) and ja (∆ = 5.40%) compared to
naive-mix-train (see the full results in Appendix C).
We also notice the clustering by membership close-
ness in the linguistic family, along with the diago-



(a) Performance on various subsets of languages in NER

(b) Performance on various subsets of languages in TyDiQA

Figure 2: Performance of gradient-mix-train on different sets of languages compared to ord-FS for (a) NER and (b)
TyDiQA. gradient-{all,subset,single} represents training on all/subset/single languages by using graident-mix-train.

nal of gradient similarity matrix, e.g., Indo-Aryan
(bn, gu, hi, mr, pa, ur). Moreover, some language
families are positive correlated, e.g., Slavic(bg, pl,
ru, uk) and Austronesian(id, jv, ms).

Figure 3: Dev F1 scores of ord-FS+dev in TyDiQA. 6
out of 8 target languages overfit quickly, where they
achieve the best performance at the first epoch.

5.3 Mixed Training with One Single Language

In some cases, people are only interested in one
target language and do not have resources for other
languages. Hence, we further explore the effective-
ness of gradient-mix-train in one target language
case. We conduct experiments on the NER and Ty-
DiQA tasks that show larger gaps among different
methods than other two tasks. Considering the high
expense of training the source data from scratch
for every target language, we run experiments on
subsets of languages for each task. For the NER
task, we test on 8 languages: ar, hi, my, pa, which
use different scripts from English, and hu, nl, fr,
tr, which share the same script with English. Fig-
ure 2a shows the results for NER. Gradient-mix-
train with only one single language is labeled as
gradient-single9 in the figure (blue, the second
bar). We can focus on comparing ord-FS (green,

9We reduce α for NER to 0.1 due to only one language
considered.



the first bar). We notice that gradient-single still
outperforms ord-FS by a large margin for 4 non-
Latin-script languages (e.g., 14.29% improvement
for ar). In comparison, their gap becomes smaller
when it comes to 4 Latin-script languages (e.g.,
1.78% improvement for nl). Numeric results are
shown in Appendix E. For the TyDiQA task, We
pick 5 languages: ar, fi, id, sw, te. We note that
gradient-single still highly boosts the performance
compared to ord-FS.

5.4 Do the Same Scripts Help?

Continuing the previous discussions in Section 5.3,
we add a new baseline, gradient-all (red, the last
bar in Figure 2), which uses gradient-mix-train
method with all languages (original settings). Inter-
estingly, gradient-all outperforms gradient-single
on all selected languages except for ar in NER, and
a similar phenomenon also happens in TyDiQA.
Note that ar is the only language that uses Arabic
script in TyDiQA and only shares the same script
with yo and kk among 48 languages in NER. It
brings a question that do small examples of other
languages which use the same scripts help in few-
shot learning? Hence, we move our experiments
further on using gradient-mix-train with subsets of
languages. We still consider the languages used
in Section 5.3. Note that these languages are care-
fully selected. In NER, only my and pa share the
same script (Brahmic) among 4 distant languages,
and hu, nl, fr, tr share the Latin script from differ-
ent language families. In TyDiQA, only fi,id and
sw use the same script (Latin). We train 4 similar
languages and 4 distant languages in NER, respec-
tively. For TyDiQA, we train all 5 languages. The
results of mixed training on subset of languages is
denoted as gradient-subset10 (pink, the third bar)
in Figure 2. As expected, gradient-subset achieves
better performance than gradient-single on all simi-
lar languages and on my among distant languages
in the NER task. As for other languages using dis-
tinct scripts, their performance slightly degenerates
compared to gradient-single. A similar discussion
also holds for the high-level TyDiQA task, but gaps
between gradient-single and gradient-subset are
smaller. In conclusion, to pursue the best perfor-
mance, we recommend using gradient-mix-train
with languages that share the same script or only a
single language that uses a distinct script.

10α is 0.4 for NER to ensure that each language has the
same chance of explosion as gradient-single during training.

5.5 Escaping from Overfitting

The overfitting causes the significant degeneration
of ord-FS performance in TydiQA. Figure 3 shows
that 6 out of 8 target languages achieve the best dev
score at the first epoch and decrease significantly
afterwards. However, the phenomenon of degener-
ation is imperceptible in other tasks because only a
few languages hit the same overfitting issue, e.g.,
6.38% of languages achieve the best score at the
first epoch in 1-shot learning for NER, and none of
them has the issue in 10-shot learning. Different
from two-step methods, one of the biggest bene-
fits of gradient-mix-train is the perfect fit for only
using the source dev set to avoid overfitting (for
model selection) because training and dev steps
use the same (dominant) language. Thus, although
gradient-mix-train can also be further improved
by using unrealistic target dev sets, the gaps are
smaller compared to ord-FS (Appendix F).

6 Conclusion

We study the deficiencies of target-adapting in few-
shot cross-lingual transfer and propose a mixed
training method with gradient-level optimization.
Our best model achieves state-of-the-art on four
diverse NLP tasks with all values of K. Moreover,
we are the first to use a single model to train all
target languages and find that languages can benefit
from others that share the same scripts. We also
show the effectiveness of our method compared to
target-adapting in a single target language case, and
the gaps are still significant. Finally, we propose
only using source dev set in few-shot settings and
show that our method is development-free for tar-
gets and also able to escape from overfitting issues.
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A Size of Dev Sets

In Figure 4, we show the size of dev sets that we
used in our experiments, which are also the dev sets
used by Zhao et al. (2021). Data of all tasks are
downloaded from the XTREME-R benchmark (Hu
et al., 2020; Ruder et al., 2021), where train/dev/test
sets are already split. We can notice that the dev
size of all languages in all tasks are tremendously
higher than the largest number (10) of shots we
pick in few-shot cross-lingual learning. However,
in reality, if we only have access to a few training
instance, we usually do not have a such large dev
set. For tasks such as NER, POS and XNLI, we
sample shots from the target training sets and di-
rectly use their supported dev sets. For TyDiQA
which only supports train and dev sets in XTREME-
R, we sample shots from the target training sets but
use the remaining training data as dev sets, and we
use dev sets for test.

B Language Statistics

In this paper, we cover a total of 49 languages
in our whole experiments, including NER, POS,
TyDiQA, and XNLI tasks. The list of full names of
languages is shown in Table 3, with their ISO 639-1
code, script, and language families. We checkmark
under the column of the task in the Table if the
language is involved in the task.

C Full Results

The full results of NER, POS, TyDiQA and XNLI
are shown in Table 4, Table 5, Table 6 and Table 7,
respectively. In each task, we report F1 scores (or
accuracy) of all covered languages in 1-,5-, or 10
shot learning by using all introduced methods. Best
score among methods in each language is bold.

D Languages Benefits Least

In Table 8, we show the list of top-5 language
which benefits least by using gradient-mix-train
in 5-shot learning. In NER and XNLI, we can no-
tice a reverse phenomenon in the top-5 languages
which benefit most — most of the languages are
linguistically closer to English, at least using the
same (Latin) script. In NER and TyDiQA tasks,
although the gap left by gradient-mix-train is much
smaller than top-5 languages which benefits most,
the improvements are still significant.

E Mixed Training with Subsets of
Languages

Here, we show the numeric results of Figure 2a and
Figure 2b in Table 9 and Table 10, respectively.

F Our Methods with Dev Sets

We take ar in the NER task as an example to show
that gradient-mix-train can be further improved
by utilizing large dev sets (around 10K). Figure
5 shows F1 scores of gradient-mix-train and ord-
FS both with and without dev sets with increasing
epoch numbers. Methods with the help of the dev
set start showing its effectiveness in model selec-
tion when it comes to large enough epoch num-
bers. Importantly, the gap led by the dev set in
gradient-mix-train is smaller than the one in ord-
FS, which shows that gradient-mix-train is able to
select approximately optimal model even without
target dev sets by using the source dev set. It is
also worth mentioning that gradient-mix-train even
significantly outperforms the best performance of
ord-FS with only 2 epoch of source (and target)
data training. Still, ord-FS starts training based on
10-epoch source-trained model.



Langugae ISO 639-1 code Script Language Family NER POS TyDiQA XNLI
Afrikaans af Latin IE:Germanic
Arabic ar Arabic Afro-Asiatic
Azerbaijani az Latin Turkic
Bulgarian bg Cyrillic IE:Slavic
Bengali bn Brahmic IE:Indo-Aryan
German de Latin IE:Germanic
Greek el Greek IE:Greek
English en Latin IE:Germanic
Spanish es Latin IE:Romance
Estonian et Latin Uralic
Basque eu Latin Basque
Persian fa Perso-Arabic IE:Iranian
Finnish fi Latin Uralic
French fr Latin IE:Romance
Gujarati gu Brahmic IE:Indo-Aryan
Hebrew he Jewish Afro-Asiatic
Hindi hi Devanagari IE:Indo-Aryan
Hungarian hu Latin Uralic
Indonesian id Latin Austronesian
Italian it Latin IE:Romance
Japanese ja Ideograms Japonic
Javanese jv Brahmic Austronesian
Georgian ka Georgian Kartvelian
Kazakh kk Arabic Turkic
Korean ko Hangul Koreanic
Lithuanian lt Latin IE:Baltic
Malayalam ml Brahmic Dravidian
Marathi mr Devanagari IE:Indo-Aryan
Malay ms Latin Austronesian
Burmese my Brahmic Sino-Tibetan
Dutch nl Latin IE:Germanic
Punjabi pa Brahmic IE:Indo-Aryan
Polish pl Latin IE:Slavic
Portuguese pt Latin IE:Romance
CuscoQuechua qu Latin Quechuan
Romanian ro Latin IE:Romance
Russian ru Cyrillic IE:Slavic
Swahili sw Latin Niger-Congo
Tamil ta Brahmic Dravidian
Telugu te Brahmic Dravidian
Thai th Brahmic Kra-Dai
Tagalog tl Brahmic Austronesian
Turkish tr Latin Turkic
Ukrainian uk Cyrillic IE:Slavic
Urdu ur Perso-Arabic IE:Indo-Aryan
Vietnamese vi Latin Austro-Asiatic
Wolof wo Latin Niger-Congo
Yoruba yo Arabic Niger-Congo
Mandarin zh Chinese ideograms

Table 3: Statistics about languages considered in this paper, including the scripts and language family of every
language. A language used in a task is checkmarked under the column of the task.



K Methods ar he vi id jv ms tl eu ml ta te af nl en de el bn hi mr ur fa fr it pt es
K = 0 Zero-Shot 45.75 55.35 78.67 52.47 61.35 69.65 71.95 56.37 65.79 55.82 52.85 78.34 83.76 84.50 78.78 78.38 74.39 69.71 61.87 54.85 56.82 79.78 81.39 81.91 76.64

K = 1

ord-FS+dev 51.62 55.86 78.10 55.51 63.32 69.18 72.27 59.12 65.27 57.92 53.39 78.53 83.43 84.50 78.72 78.91 74.15 70.84 63.66 61.52 65.64 79.17 81.63 81.81 76.82
ord-FS 50.16 52.98 72.25 55.23 60.88 65.05 70.08 58.26 64.64 55.85 52.89 77.77 82.14 84.50 77.76 77.49 68.87 69.8 62.5 54.33 65.63 77.89 80.46 78.71 75.4
mix-FT 51.24 57.53 77.55 51.46 61.81 64.44 70.2 62.64 67.17 59.58 57.46 80.05 83.33 84.50 79.21 78.46 73.12 72.0 64.64 56.95 63.56 80.23 80.80 81.61 77.51
naive-mix-train 54.59 58.21 77.06 58.38 63.38 69.92 73.94 64.31 66.27 61.48 57.47 78.27 83.78 84.40 78.84 79.25 77.01 72.43 66.41 67.16 72.43 80.90 81.33 82.37 80.14
gradient-mix-train 61.75 60.39 79.41 60.49 65.86 71.00 74.98 67.32 69.45 63.69 61.08 79.74 84.12 83.91 79.75 80.69 78.82 74.32 67.9 72.77 77.33 82.39 81.30 83.37 82.20

K = 5

ord-FS+dev 60.99 58.72 77.29 73.27 70.44 75.17 73.62 67.96 68.10 56.88 53.58 81.31 83.16 84.50 78.37 78.41 73.30 65.69 67.31 72.02 75.58 78.91 80.30 81.03 81.07
ord-FS 57.69 58.18 68.01 72.43 68.12 73.99 68.57 67.54 65.51 56.05 52.08 79.26 82.11 84.50 75.87 74.11 68.42 64.08 66.31 69.54 75.45 76.99 72.38 77.95 78.36
mix-FT 65.90 64.45 76.80 80.09 69.41 71.63 71.67 71.12 71.58 66.29 63.55 82.30 83.81 84.50 80.20 80.08 73.31 75.09 71.49 74.32 76.00 82.24 81.72 82.69 83.11
naive-mix-train 67.65 64.92 79.34 82.51 70.17 75.84 75.68 70.91 72.17 67.09 63.15 82.15 84.95 84.42 80.34 80.96 77.97 75.80 74.13 76.77 80.31 83.44 82.30 84.20 84.84
gradient-mix-train 71.83 66.04 81.23 83.90 72.42 75.51 76.41 71.64 72.55 67.42 63.42 81.99 84.77 83.98 80.84 81.17 79.29 76.76 73.76 79.96 82.50 83.64 82.04 84.52 85.47

K = 10

ord-FS+dev 64.33 61.77 76.13 78.96 71.28 77.80 72.29 71.66 69.27 57.31 58.84 81.54 82.60 84.50 79.39 79.08 74.60 70.97 66.89 78.05 80.47 79.32 81.07 81.40 80.76
ord-FS 64.59 60.97 74.65 77.72 70.99 77.61 68.58 69.94 67.30 55.03 57.81 81.35 81.88 84.50 78.67 75.63 70.77 71.42 67.31 72.86 80.28 77.75 80.27 79.70 82.13
mix-FT 71.84 66.90 79.75 85.57 73.82 79.83 74.90 73.73 74.59 70.69 65.88 83.43 85.02 84.50 81.38 81.30 78.22 77.29 76.38 79.25 82.25 82.76 82.97 84.77 85.68
naive-mix-train 74.96 67.46 81.15 85.21 73.61 76.39 76.41 74.74 74.42 69.22 65.55 82.71 84.82 84.54 80.70 81.81 79.61 77.71 75.17 80.18 84.23 83.86 82.75 84.75 85.30
gradient-mix-train 75.48 69.17 82.01 86.89 77.93 77.53 77.87 77.35 76.58 72.33 66.69 82.68 85.42 84.05 81.86 82.72 80.90 78.93 77.55 83.87 84.32 83.91 83.51 85.35 86.40

bg ru ja ka ko th sw yo my zh kk tr et fi hu qu pl uk az lt pa gu ro Avg.
K = 0 Zero-Shot 81.32 70.60 18.31 66.37 57.28 1.02 69.86 32.90 51.97 27.06 50.46 79.30 77.79 79.65 80.13 54.62 80.89 74.48 67.61 76.87 48.62 61.59 82.98 64.56

K = 1

ord-FS 80.68 72.08 17.81 66.20 57.77 3.46 72.22 46.61 51.38 26.05 50.25 81.53 78.59 80.27 80.05 55.60 81.46 75.29 68.35 77.16 54.64 62.68 83.13 65.92
ord-FS 79.22 68.02 14.92 64.82 54.94 2.13 72.07 45.24 49.72 20.68 49.60 81.51 76.79 79.48 79.08 56.06 81.15 71.14 67.59 76.28 53.96 60.03 81.16 64.11
mix-FT 80.24 72.60 18.37 69.36 60.02 2.09 69.35 36.54 55.52 26.62 53.28 80.70 79.95 80.77 80.87 52.46 81.22 75.83 69.49 77.50 51.92 61.08 81.05 65.71
naive-mix-train 82.06 72.01 21.64 71.42 60.67 2.04 70.59 39.90 54.99 31.24 53.36 81.14 78.80 79.99 80.54 56.13 81.02 77.47 69.29 77.87 55.29 61.95 81.89 67.31
gradient-mix-train 82.85 73.12 26.49 73.23 62.33 2.81 74.03 50.45 58.66 34.47 56.00 82.57 80.78 81.34 82.16 54.53 82.37 78.78 73.09 79.16 63.03 61.79 81.62 69.58

K = 5

ord-FS 80.49 72.83 19.34 69.44 58.08 3.59 75.25 56.54 58.57 25.20 58.83 81.56 80.05 80.82 80.75 52.71 82.53 77.52 68.75 76.87 54.93 59.56 83.37 68.22
ord-FS 76.01 70.96 18.51 65.33 54.57 3.03 74.72 55.88 52.44 24.12 56.66 79.97 76.98 79.56 79.91 53.11 82.58 74.82 68.62 75.71 52.28 54.96 79.41 65.91
mix-FT 82.69 73.77 21.58 73.08 65.44 3.83 74.02 53.59 59.82 30.89 61.81 83.57 80.85 82.15 82.42 58.27 82.34 78.17 72.04 79.55 60.23 62.71 82.81 70.60
naive-mix-train 84.34 74.12 25.05 73.91 64.09 4.64 74.68 57.02 59.00 35.55 61.40 84.09 80.86 81.95 82.62 61.85 82.63 80.27 72.37 80.09 65.26 65.56 85.71 72.06
gradient-mix-train 84.36 74.91 30.45 73.99 65.82 7.77 77.48 60.97 63.78 39.37 61.47 85.21 82.16 82.88 83.06 62.66 83.48 80.27 73.78 81.43 69.89 63.57 85.28 73.27

K = 10

ord-FS 78.95 72.32 22.54 71.23 62.22 5.82 76.51 57.17 58.48 31.20 65.38 80.82 81.30 80.94 81.13 50.86 81.05 78.40 69.38 78.37 62.70 62.31 83.58 69.59
ord-FS 77.27 68.68 22.70 70.97 60.73 4.89 78.16 59.85 57.31 30.01 64.89 78.57 80.14 80.49 79.04 51.5 80.25 76.07 69.59 77.89 60.36 59.63 81.46 68.75
mix-FT 84.78 75.28 27.05 75.88 68.80 5.78 75.87 56.57 64.89 38.63 65.73 85.45 82.24 84.23 83.78 63.32 83.44 81.21 74.86 82.03 70.85 67.14 86.27 73.89
naive-mix-train 85.28 75.49 27.50 77.33 67.66 6.28 78.48 60.32 63.25 39.60 67.08 84.93 81.73 82.71 82.98 63.05 83.12 82.14 73.96 81.21 70.65 69.77 86.61 74.13
gradient-mix-train 86.11 76.30 35.52 77.96 69.77 10.10 79.95 64.32 68.17 45.48 68.42 86.53 83.29 84.15 84.28 66.84 83.94 83.22 75.57 82.85 75.97 67.29 86.84 75.92

Table 4: Full results (F1) of the NER task.

K Methods af ar bg de el en es et eu fa fi fr he hi hu id it ja
K = 0 Zero-Shot 89.39 69.52 88.65 88.50 86.40 96.12 89.18 86.74 73.20 74.49 86.22 87.79 68.91 75.50 83.75 83.32 89.63 27.82

K = 1

ord-FS 89.76 73.91 89.62 89.02 86.55 96.12 90.04 87.02 76.72 79.17 86.51 88.60 77.14 80.28 84.67 83.45 90.73 64.19
ord-FS 89.76 73.91 89.55 89.01 86.30 96.12 90.04 86.86 76.72 79.16 86.38 88.60 77.16 80.25 84.63 83.49 90.62 64.19
mix-FT 90.16 71.58 89.33 88.81 86.46 96.12 89.85 86.90 75.72 76.14 86.57 88.63 72.06 77.97 83.81 82.88 89.99 52.06
naive-mix-train 90.14 72.17 89.16 88.73 86.79 96.10 89.65 87.69 76.50 76.55 86.86 88.16 72.93 79.56 83.70 83.55 90.08 58.95
gradient-mix-train 90.10 75.40 90.58 88.98 86.83 96.09 90.37 88.34 77.76 76.97 87.41 89.41 74.24 82.05 84.61 84.22 90.98 64.58

K = 5

ord-FS+dev 91.15 77.74 91.65 89.63 90.24 96.12 91.30 88.19 80.37 81.47 86.63 90.54 83.02 82.80 86.59 83.94 92.54 74.72
ord-FS 91.11 77.60 91.75 89.68 90.15 96.12 91.31 88.07 80.02 81.37 86.54 90.61 82.72 82.75 86.63 83.96 92.48 75.38
mix-FT 89.86 72.07 91.95 89.34 88.27 96.12 91.36 87.56 79.36 79.68 87.14 90.33 79.35 82.58 85.25 83.44 90.85 70.14
naive-mix-train 90.27 77.85 91.81 89.25 89,39 96,09 91.07 87.76 80.61 80.45 87.20 90.02 80.97 85.08 84.98 84.31 91.12 72.96
gradient-mix-train 90.65 79.40 93.13 89.58 89.97 96.07 91.55 88.73 81.08 81.05 87.89 90.67 81.36 85.77 85.61 84.67 91.98 73.53

K = 10

ord-FS+dev 92.72 80.16 93.03 90.63 91.94 96.12 91.95 89.12 81.84 83.81 87.21 91.77 85.41 84.62 88.82 85.20 93.44 80.64
ord-FS 92.85 80.26 93.23 90.56 91.76 96.12 91.89 89.10 81.80 83.66 86.92 91.83 85.23 84.68 88.72 85.12 93.30 80.11
mix-FT 90.67 79.62 93.12 89.55 90.23 96.12 91.90 88.48 82.35 83.17 87.91 91.10 84.15 87.05 86.57 84.73 92.39 78.85
naive-mix-train 91.28 80.67 93.24 89.58 90.96 96.07 91.90 88.48 82.35 83.17 87.91 91.10 84.15 87.05 86.57 84.73 92.39 78.85
gradient-mix-train 91.69 81.36 93.94 89.96 91.13 96.11 92.03 89.27 82.76 83.18 88.47 91.72 84.51 87.29 87.39 85.42 92.92 78.26

kk ko mr nl pt ru ta te tr ur vi zh lt pl uk wo ro Avg.
K = 0 Zero-Shot 78.97 54.11 83.51 89.67 89.69 89.71 77.81 86.78 75.45 67.45 58.83 39.67 84.40 85.01 85.69 28.89 85.58 77.32

K = 1

ord-FS 78.81 54.16 82.99 89.65 90.19 89.93 77.72 86.54 75.86 73.50 60.30 60.76 84.73 85.18 86.14 36.85 86.16 80.37
ord-FS 79.42 53.42 81.76 89.41 90.20 89.88 76.86 86.27 75.73 73.24 60.02 60.71 84.59 84.94 86.13 36.84 86.07 80.24
mix-FT 79.78 55.04 83.97 89.56 89.85 90.10 77.37 86.08 76.13 70.46 58.50 59.48 84.72 84.85 86.37 34.76 85.89 79.37
naive-mix-train 79.72 54.68 83.90 89.62 90.29 90.10 77.17 85.56 76.18 74.15 59.17 61.71 85.07 85.61 86.27 38.06 86.36 80.04
gradient-mix-train 80.43 55.26 83.74 89.65 90.58 90.59 78.70 86.85 76.62 77.67 59.89 63.52 85.49 86.75 87.32 40.92 87.15 81.14

K = 5

ord-FS+dev 85.88 55.33 83.94 89.81 90.85 91.12 78.44 85.12 75.97 82.00 68.23 73.88 85.49 85.98 87.04 44.40 87.97 83.15
ord-FS 80.86 55.28 82.39 89.90 90.81 91.03 78.62 85.72 75.91 81.86 68.24 73.58 85.58 85.86 87.03 44.29 88.07 82.95
mix-FT 81.27 55.92 85.46 89.43 90.75 90.71 77.66 85.76 77.04 76.94 60.85 69.91 85.31 86.98 87.45 40.07 87.22 81.95
naive-mix-train 81.81 55.95 84.65 89.75 90.98 90.89 78.45 85.62 77.40 81.83 62.91 72.95 85.85 87.06 87.27 45.76 87.57 82.79
gradient-mix-train 82.09 56.34 85.12 89.68 91.25 91.32 80.07 86.26 77.50 83.93 63.90 72.87 86.47 87.99 88.21 48.09 88.03 83.48

K = 10

ord-FS+dev 91.13 56.19 83.02 90.05 91.48 91.68 79.25 86.21 76.31 85.11 72.46 77.33 86.81 88.41 88.24 51.06 89.02 84.92
ord-FS 82.21 56.46 83.39 90.07 91.40 91.48 79.49 86.25 76.03 85.22 72.38 77.76 86.83 88.44 88.10 51.44 89.02 84.66
mix-FT 82.16 57.34 85.73 89.57 91.24 81.37 78.80 86.29 77.58 81.88 63.35 74.73 86.11 87.82 88.44 46.80 87.75 83.54
naive-mix-train 82.80 57.35 84.80 89.74 91.66 91.65 79.39 86.34 77.88 85.50 67.98 77.19 86.95 88.42 88.42 53.09 88.62 84.52
gradient-mix-train 83.23 57.46 86.90 89.83 91.75 92.30 79.84 86.77 78.21 85.77 69.94 77.05 87.63 88.97 89.11 55.26 88.70 85.03

Table 5: Full results (F1) of the POS task.



K Methods ar bn fi id ko ru sw te en Avg.
K = 0 Zero-Shot 62.53 42.24 61.82 70.62 42.99 57.75 56.40 43.23 65.51 55.80

K = 1

ord-FS+dev 62.20 45.92 59.33 71.15 38.70 58.70 53.63 47.12 65.51 55.81
ord-FS 48.53 33.91 54.56 63.36 40.43 49.59 47.56 23.49 65.51 47.44
mix-FT 50.93 36.83 54.04 61.72 38.46 51.35 46.26 33.48 65.51 48.73
naive-mix-train 62.46 42.52 62.32 72.32 43.44 58.28 54.87 49.86 67.17 57.03
gradient-mix-train 62.60 45.07 62.88 72.43 46.05 58.82 55.47 47.64 67.81 57.64

K = 5

ord-FS+dev 58.59 46.68 59.23 69.87 41.19 59.33 54.47 45.50 65.51 55.60
ord-FS 54.07 36.85 54.82 65.39 40.91 53.46 47.61 42.04 65.51 51.19
mix-FT 58.67 43.59 57.46 67.09 44.04 54.65 56.17 43.23 65.51 54.49
naive-mix-train 62.42 47.51 61.64 72.39 46.06 59.16 57.62 53.96 66.58 58.59
gradient-mix-train 63.52 49.11 63.87 73.29 46.17 59.09 58.20 53.19 67.58 59.34

K = 10

ord-FS+dev 61.78 44.67 59.32 69.96 41.29 59.23 52.73 45.79 65.51 55.59
ord-FS 59.46 43.21 56.21 65.88 40.67 52.64 53.45 41.61 65.51 53.17
mix-FT 60.51 44.64 58.42 67.23 44.99 56.39 58.12 44.09 65.51 55.54
naive-mix-train 64.87 48.02 62.12 72.63 47.91 60.43 60.44 46.18 67.32 58.88
gradient-mix-train 64.17 47.46 63.37 72.77 47.26 60.48 60.13 52.73 66.85 59.47

Table 6: Full results (F1) of the TyDiQA task.

K Methods ar bg de el es fr hi ru sw th tr ur vi zh en Avg.
K = 0 Zero-Shot 72.28 77.15 75.97 74.71 78.56 77.19 69.10 73.95 62.08 71.52 72.32 65.39 74.15 73.67 85.19 73.55

K = 1

ord-FS+dev 72.08 77.49 76.19 75.47 79.21 77.99 69.16 74.69 62.29 72.31 72.46 66.00 74.60 74.20 85.19 73.95
ord-FS 71.60 77.43 76.09 75.29 78.95 77.64 69.42 74.47 61.46 72.27 72.10 65.55 74.72 74.20 85.19 73.70
mix-FT 71.56 77.28 75.88 74.81 78.42 77.33 69.34 74.39 61.58 71.64 72.08 65.40 74.33 73.84 85.19 73.54
naive-mix-train 71.52 76.83 75.89 74.74 77.88 77.25 68.99 74.67 62.80 71.07 71.77 65.17 73.74 72.23 83.84 73.29
gradient-mix-train 71.97 77.76 76.12 75.27 78.47 77.74 70.06 75.47 64.08 72.49 72.10 66.25 74.90 74.48 84.20 74.09

K = 5

ord-FS+dev 71.98 77.72 76.55 75.48 78.69 77.48 70.16 74.76 62.29 72.68 72.30 65.82 75.31 74.77 85.19 74.08
ord-FS 71.57 77.25 76.18 75.39 78.64 77.03 69.94 74.44 61.59 72.33 71.92 65.21 74.93 74.37 85.19 73.73
mix-FT 70.85 76.37 75.23 74.20 77.41 76.79 69.09 74.19 61.89 71.27 71.13 65.28 74.00 74.05 85.19 73.13
naive-mix-train 72.02 77.43 76.12 74.74 78.19 77.41 69.63 74.67 62.95 72.02 72.22 65.86 74.33 73.86 83.90 73.69
gradient-mix-train 72.05 77.89 76.54 75.48 78.83 77.94 70.64 76.12 63.94 72.83 72.40 67.15 75.31 75.15 83.90 74.41

K = 10

ord-FS+dev 71.74 77.51 76.73 75.33 79.03 77.69 70.11 75.09 62.46 72.92 72.76 66.00 75.28 75.03 85.19 74.19
ord-FS 71.31 77.65 76.38 74.83 79.20 77.43 70.12 75.20 62.43 72.77 72.72 65.58 75.14 74.84 85.19 74.03
mix-FT 71.32 76.77 75.80 74.58 77.77 77.11 69.72 74.73 62.15 72.36 71.78 65.96 74.44 74.67 85.19 73.62
naive-mix-train 72.22 77.67 76.47 75.39 78.29 77.52 70.53 75.57 63.05 72.51 72.35 66.76 74.69 74.65 84.23 74.23
gradient-mix-train 71.74 78.04 76.61 75.29 78.89 77.79 70.95 75.90 63.74 73.15 72.41 67.07 75.48 75.43 84.10 74.44

Table 7: Full results (accuracy) of the XNLI task.

NER POS TyDiQA XNLI
lang. ∆ F1 (%) lang. ∆ F1 (%) lang. ∆ F1 (%) lang. ∆ Acc. (%)

pl 0.90 vi -4.35 ko 5.25 es -0.32
ms 1.51 ja -1.85 ru 5.62 tr -0.31
nl 2.66 he -1.36 id 7.90 de 0.23
af 2.73 hu -1.02 fi 9.05 vi 0.34
sw 2.76 zh -0.71 ar 9.45 fr 0.36

Table 8: Top-5 languages that achieve the least improvement by using gradient-mix-train compared to ord-FS on all
tasks in 5-shot learning.

ar hi my pa hu nl fr tr
ord-FS 57.69 64.08 52.44 52.28 79.91 82.11 76.99 79.97
gradient-single 71.98 72.82 57.67 63.60 80.28 83.89 81.51 80.10
gradient-subset 70.57 71.79 61.18 62.99 81.65 83.96 81.90 82.37
gradient-all 71.83 76.76 63.78 69.88 83.06 84.77 83.64 85.21

Table 9: Numeric results of Figure 2a.



Figure 4: The size of dev sets that we use in the experiments for each language in each task.

ar fi id sw te
ord-FS 54.07 54.82 65.39 47.61 42.04
gradient-single 64.43 62.52 72.78 56.91 54.28
gradient-subset 64.04 63.17 72.44 57.48 54.49
gradient-all 63.52 63.87 73.29 58.20 53.19

Table 10: Numeric results of Figure 2b.

Figure 5: F1 scores of gradient-mix-train(+dev) and ord-FS(+dev) with increasing number of epochs. The large dev
set helps model selection after certain epochs. Gradient-mix-train shows less gap led by the dev set than ord-FS and
can select approximately optimal model by only using the source dev set.


