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Abstract

Microarray-generated genomic data has recently sparked a wave of bioinformatics and data
mining research. However, such data presents significant challenges for further analysis due
to its high dimensionality and small sample sizes. Feature selection is a standard approach
to address this issue, as it can enhance classification performance while reducing dimen-
sionality. This paper introduces an Improved Gray Wolf Optimization-based Evolutionary
Multitasking (EMT-IGWO) feature selection approach tailored for high-dimensional clas-
sification. It adopts multi-population co-evolving searching modes that can be regarded
as a typical feature selection task via a specific information-sharing mechanism. Within
the proposed multitasking framework, both population diversity and global searching ca-
pabilities of EMT-IGWO are improved. Moreover, several enhancements are incorporated
into the two searching modes to help stagnant individuals escape from local optima with
higher probabilities. Computational results show that EMT-IGWO outperforms other com-
pared algorithms in effectiveness and efficiency evaluated across eight public gene expression
datasets.

Keywords: evolutionary multitasking, gray wolf optimization, feature selection, genomic
data classification

1. Introduction

Gene expression data in bioinformatics can be obtained by microarray technology, which is
used to explore the pathogenesis of certain diseases and diagnosis (Alhenawi et al., 2022).The
characteristics of this type data are features (genes) with high dimensions and small sample
sizes. However, some studies have indicated that only a few genes are relevant to accurately
classifying classification of different classes of the problem (Golub et al., 1999). Additionally,
given the limitations of microarray technology and experimental errors, there is a large
amount of noise and redundant features. Therefore, selecting an optimal gene subset to
achieve satisfactory classification performance is a challenging and popular topic in the
domains of machine learning and data mining.

Feature selection also called attribute selection (Gandhi and Prabhune, 2017), is a piv-
otal data preprocessing approach. It plays an important role in analyzing the aforemen-
tioned gene expression data, which can select informative genes contributing to subsequent
classification prediction (Bolón-Canedo et al., 2014). For a dataset with m features, there

© 2024 Y. Yu, D. Wang, Y. Chen, H. Wang & M. Huang.



Yu Wang Chen Wang Huang

are 2m possible feature subsets to choose from, which is also categorized as an NP-Hard
problem (Kılıç et al., 2021). Generally, popular feature selection methods can be classified
as filter methods (Gao et al., 2016; Manikandan and Abirami, 2021; Urbanowicz et al.,
2018), wrapper methods (Altarabichi et al., 2021; Li et al., 2021; Niu et al., 2018), and
embedded methods (Xu and Wu, 2020; Zhang et al., 2019). Moreover, researchers have
made other attempts to improve the classification performance, such as employing a meta-
heuristic feature selection method to search for optimal or near-optimal feature subsets
(Dokeroglu et al., 2022).

Gray Wolf Optimization (GWO), a meta-heuristic algorithm, is characterized by the
division of the social hierarchy of gray wolves and the hunting mechanism (Mirjalili et al.,
2014; Setiawan et al., 2021). The algorithm has fewer parameters and is more flexible, widely
used in feature selection problems. However, most of the GWO-based feature selection ap-
proaches are applicable to low-dimensional classification. As the dimension increases, such
algorithms are easily getting stuck in local optimum and leader wolf remaining stagnant.
Considering the limitations mentioned, exploring multi-task machine learning (ML) to en-
hance learning is a promising direction (Wang et al., 2024). In this paper, we introduce an
evolutionary multitasking (EMT) framework (Gupta et al., 2015) as an emerging paradigm
to address multiple optimization tasks simultaneously.

Building on this paradigm, we propose an evolutionary multitasking feature selection
approach based on an improved Gray Wolf Optimizer (GWO), termed EMT-IGWO. This
method significantly enhances classification performance on high-dimensional datasets and
reduces the running time. Unlike traditional EMT, which involves several problems (Gupta
et al., 2015), in this study we introduce two feature selection tasks relevant to distinct
subpopulations and adopt two different search modes, each performing an independent
search direction. In this multi-task system, the population’s diverse search modes ensure
a variety of individuals. Additionally, knowledge transfer allows the tasks to guide each
other’s search processes effectively. Moreover, we enhance our algorithm by adjusting the
convergence factor and employing a rank-based mutation approach to increase the possibility
of escaping local optima.

In summary, the contributions of this paper are outlined below:

• This paper proposes an evolutionary multitasking feature selection paradigm based
on gray wolf optimization for genomic data classification.

• Multi-population co-evolving searching modes, i.e., an adaptive strategy for the up-
date process and dominance accumulation mechanism, implement knowledge transfer
between the two tasks, facilitating the diversity of the population and improving the
performance and robustness of the objective feature subset.

• The nonlinear multi-convergence factor and the rank-based mutation operation further
enhance the distinct searching modes, which maintain the search capability as well as
address the issue of being trapped in local optima.

• Computational experiments validate the effectiveness and efficiency of the EMT-
IGWO on eight gene expression datasets compared with other state-of-the-art al-
gorithms.
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2. Related Work

2.1. Maximum Information Coefficient

Maximum information coefficient (MIC), an indicator for evaluating the dependence of pairs
of variables (Reshef et al., 2011), is used here to capture the correlation between features and
labels. The calculation of the MIC value is based on mutual information (MI). Assuming
a binary input D = (x1, y1), (x2, y2), . . . , (xn, yn) and a − by − b grids, MIC(D) can be
obtained by Eqs. (1) and (2) (Wen et al., 2019):

MIC(D) = max
ab<B(n)

{M(D)a,b} (1)

M(D)a,b =
MI∗(D, a, b)

log(min{a, b})
(2)

where MI∗(D, a, b) is the maximal available MI in a−by−b grids with the limit ab < B(n).
Specifically, B(n) is set to n0.6 for an input with n samples. The MIC value is symmetric
and normalized into a range of [0, 1]. Given its properties of generalization and fairness, we
employ MIC to rank the features for the subsequent search.

2.2. Gray Wolf Optimization

2.2.1. Standard GWO

Gray Wolf Optimizer was firstly introduced by Mirjalili et al. (2014) to seek the global
optimum. The hierarchical mechanism employed by GWO involves the searching and hunt-
ing of prey, with each wolf serving as a feasible solution for potentially capturing the prey.
The top three optimal solutions within the population are named α, β, and δ, while the
lowest-ranked candidates are referred to as ω. The ω wolves update their positions based
on the positions of α, β, and δ leader wolves, which can be calculated from Eq. (3):

−→
X (t + 1) =

(−→
X 1 +

−→
X 2 +

−→
X 3

)
/3 (3)
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−→
A ·
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A ·
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where a is the convergence factor;
−→
A and

−→
C are two coefficient vectors involving random

vectors between [0, 1];
−→
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Dβ and
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−→
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−→
Xβ, and

−→
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vectors of ω, α, β, and δ wolves.
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2.2.2. Binary GWO for feature selection

In feature selection problems, the position of each wolf consists of the value 0 or 1. Therefore,
we need a transfer function to obtain Xd

i in discrete space (Pan et al., 2023).

sigmoid(x) =
1

1 + e−10(x−0.5)
(9)

Xd
i (t) =

{
1, if sigmoid

(
Xd

i (t)
)
> rand

0, else
(10)

Eq. (9) is the sigmoid function and Xd
i (t) represents the position of wolf i in the dth

dimension at iteration t.
Over the past few years, a large number of GWO-based feature selection methods have

been designed for the classification problems. Transfer function is an important part of
BGWO, Hu et al. (2020) tested various transfer functions and gave an updating equation
for a parameter, and the experimental results validated the effectiveness of the improved
BGWO algorithm. A two-phase mutation was integrated with BGWO algorithm (Abdel-
Basset et al., 2020) to reduce the number of the selected features without degrading the
classification performance. The experiments on 35 datasets showed its outperformance.
Previous works have made significant advancements in feature selection problems. However,
we have noticed that few GWO-based studies focus on high-dimensional classification tasks.

2.3. Evolutionary Multitasking

Evolutionary multitasking (EMT) addresses multiple related learning tasks simultaneously
via evolutionary computation (EC) (Lin et al., 2023). In a multitasking scenario, processing
one task may contribute to other search tasks because of the knowledge transferred. We
can give a description of the aforementioned EMT: This paradigm learns n related tasks,
denoted as {Ti}ni=1, simultaneously, and performance can be enhanced by the association
information between {Ti}ni=1.

While EMT has been utilized in a variety of domains, applications in feature selection
have still remained relatively limited. Wang et al. (2024) proposed a novel PSO-based multi-
task framework to achieve the information shared, which divided the initial population
into two subpopulations. Extensive experiments showed the strong competitiveness of the
approach compared with other algorithms. Chen et al. (2020) developed an EMT feature
selection method for high-dimensional classification by ranking the importance of features
and establishing two tasks according to the ranks, and two mechanisms were designed to
further improve the algorithm. The computational results exhibited the effectiveness of
the PSO-EMT algorithm. We note that both of the works above were performed based on
the PSO algorithm. Meanwhile, in Chen et al. (2020), a knee point scheme was used to
delineate whether a feature is important or not. However, the informative features may be
lost via an inappropriate threshold.

3. Methodology

This section begins with an overview and fitness function of the EMT-IGWO algorithm. It
then delves into the analysis of population initialization, followed by a detailed description
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of pivotal procedures involved in EMT. Finally, enhancements have been made to both
search modes.

3.1. Overview

Figure 1: The architecture of the EMT-IGWO algorithm

The architecture of our proposed approach is depicted in Fig. 1. It mainly consists of two
tasks: (i) Task 1 conducts one search process based on a modified GWO algorithm, which
learns the knowledge from Task 2. (ii) Task 2 performs the other search via a dominance
accumulation mechanism, and the mechanism utilizes the collective knowledge both from
Task 1 and Task 2. Through an overall analysis, the time complexity of the evolutionary
multitasking algorithm in this paper is O(T ∗N ∗ S ∗D) (T is the maximum iterations, N
is the number of wolves, S is the number of samples, and D is the number of the features).

3.2. Fitness Function

A fitness function is used to evaluate the performance of the candidate feature subset. The
fitness function of this paper involves two aspects: (i) classification error rate. (ii) dimension



Yu Wang Chen Wang Huang

of the optimal feature subset. Here, our target is to achieve small feature subsets without
degrading classification accuracy. Therefore, the mathematical formula can be denoted by
Eq. (11):

fitness = θ · error + (1− θ) · |S|
|F |

(11)

error = 1− 1

c
·

c∑
i=1

TPRi (12)

here, θ is a control parameter, a range from [0, 1], which balances the error rate and the
number of the selected feature subset. Since the classification performance is preferred to the
feature subset size, we set θ = 0.99 in this study (Pan et al., 2023); error indicates the error
rate of the learning algorithm; |S| represents the dimension of the selected feature subset
and |F | is the number of features in the initial dataset. Specially, a balanced accuracy
(Patterson and Zhang, 2007) is employed to handle the unbalanced data, which is given
in Eq. (12). c denotes the number of classes for the classification problem, and TPRi

represents the proportion of correctly identified instances in class i.

3.3. Population Initialization

A MIC-based approach (Qu et al., 2023) is used to generate the initial population, which
introduces a preference for features with higher MIC values. The detailed steps are as
follows: we first calculate the MIC values between features and labels. Then the chance
that one feature will be selected is obtained from Eqs. (13) and (14):

p(d) =
MICd∑|F |
d=1MICd

(13)

cp =

d∑
j=1

p(j) (14)

where p(d) is the selection probability of the dth feature. We then use a roulette wheel to
select the dth feature according to the cumulative probabilities, i.e., cp. One individual can
be achieved by repeating the above procedure |F | times.

3.4. Knowledge Transfer

In this study, we adopt two task subpopulations to search the feature space, dubbed SubP1

and SubP2. Each seeks to find an optimal feature subset independently with its own search
mode. Fig. 1 depicts that the best solution in SubP2 serves as one of dual leader wolves
γ in SubP1. Both updated SubP1 and SubP2 will provide the weights of features, which
helps SubP2 to conduct its dominance accumulation. Algorithm 1 presents the pseudocode
of the proposed EMT-IGWO algorithm.
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Algorithm 1 EMT-IGWO for feature selection

1: Input: Dataset, D; the number of iterations, T ; population size, 2N
2: Output: the optimal feature subset, best
3: MIC ← Calculate the MIC value for each feature on the dataset D
4: Initialize a population with 2N individuals based on the MIC value of each feature
5: Divide the population into two subpopulations with N individuals
6: Set the weight vector of features to 0
7: Record the global best and the best individual of SubP2

8: while t <= T do
9: Update the SubP1 through an adaptive strategy based on the knowledge from

SubP2; Upgrade the weight vector, the leader wolves and the global best
10: Update the SubP2 via a dominance accumulation mechanism utilizing the col-

lective knowledge; Upgrade the weight vector, the best individual of SubP2 and
the global best

11: t← t + 1
12: end while
13: return best

3.4.1. Case 1: Knowledge Transfer to SubP1

Standard GWO algorithm involves leader wolves of three levels. Each wolf will move a
certain distance towards the three top wolves. In our study, the fourth top wolf from
SubP2 is added to SubP1, which promotes the diversity of the population and avoids the
stagnation of leader wolves. We propose a novel adaptive strategy for the update process
to enhance the balance between the global search and local exploitation:

−→
X (t + 1) =

(−→
X 1 +

−→
X 2 +

−→
X 3 +

−→
X 4

)
4

·
(

1− t

T

)
+
−→
X 1 ·

t

T
(15)

We then map the search space into discrete space, which is calculated as follows:

Xd
i (t + 1) =


Xd

1 , if rand < (3t + T )/4T
Xd

2 , elif (3t + T )/4T =< rand & rand < (2t + 2T )/4T
Xd

3 , elif (2t + 2T )/4T =< rand & rand < (3T + t)/4T
Xd

4 , else

(16)

where Xd
i (i = 1, 2, 3) has been introduced in Eqs. (4) and (10). The best solution in

SubP2 works as one of dual leader wolves γ to obtain Xd
4 . t indicates the current iteration,

and T represents the maximum iteration.

3.4.2. Case 2: Knowledge Transfer to SubP2

Attention has paid to the influence of one feature on the entire feature subset. Therefore,
a dominance accumulation mechanism is proposed in this paper, and a weight vector of
features is employed to reflect the dominance of each feature. Detailed procedures are as
follows: We record the error rate of each individual at successive iterations. If the error
rate decreases after one evolution, the weights of features newly selected, dubbed F+, will
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improve. On the contrary, the weights of features discarded, denoted as F−, will decrease.
Simultaneously, if the error rate increases after one evolution, the weights of features newly
selected will decrease. Conversely, the weights of features discarded will improve. We
introduce Eqs. (17) and (18) to illustrate the steps above.

W(F ) =

{
W (F+) + ACCi ·MIC+

W (F−)−ACCi ·MIC− , if errori(t) < errori(t− 1) (17)

W(F ) =

{
W (F+)−ACCi ·MIC+

W (F−) + ACCi ·MIC− , if errori(t) > errori(t− 1) (18)

where W(F ) represents the weight vector of all features; W(F+) and W(F−) represent
that only the weights of the newly selected as well as the discarded features are updated,
respectively; ACCi indicates the classification accuracy of the current individual i; MIC+

and MIC− are, respectively, the MIC values of the features newly selected as well as
discarded. For those features unchanged, no available measure is taken. A converted
function is utilized to select the features, which is given in Eq. (19):

µ = 0.5 ∗
[
tanh

(
5 ∗

(
W(F )

sum(|W(F )|)
− 0.5

))
+ 1

]
(19)

where the selected probabilities µ of features can be calculated by Eq. (19). We then
compare the probability of each feature with a random value from [0, 1] to achieve the
subpopulation evolution in Task 2. The converted function can have small mapping values
when the variable is negative, which handles the features with weights less than 0.

Task 2 perform its search via the dominance accumulation mechanism, of which the
weight vector is updated based on the collective knowledge from Task1 and Task 2. The
focus on exploring the dominance of each feature can locate the informative attributes in
the optimal feature subset.

3.5. Improvements for EMT-IGWO

3.5.1. Nonlinear multi-convergence factor

In traditional GWO, a fixed linear convergence factor is typically used to regulate the coeffi-
cient vector, potentially leading to premature convergence. Moreover, based on the fact that
the heuristic approach for the generation of the initial population often requires combining
with other strategies, especially the nonlinear convergence factor, it allows the population
to maintain the global search capability. Based on Pan et al. (2023), we additionally design
a nonlinear convergence factor, i.e., a2, and the nonlinear multi-convergence factor is thus
given:

a1 = 2 cos
(
π
2 ∗

(
t
T

)2)
a2 = 1 + cos

(
π ∗ t−1

T−1

)
a3 = cos

(
π
2 ∗

t
T

)
a4 = 2− cos

(
π
2 ∗

t
T

) (20)

where t indicates the current iteration, and T represents the maximum iteration. This
cosine non-linear convergence factor increases more chances for the population to jump out
of the local optimum.
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3.5.2. Rank-based mutation operation

Task 2 adopts a dominance accumulation mechanism to search for the optimal feature
subset. More attention is paid to the features with higher weights inevitably, which may
ignore the relationship between high-weight features and low-weight features. Therefore, a
rank-based mutation operation is proposed to flip the features according to the following
steps: (i) We divide one feature subset into two parts, the selected features and the discarded
features. (ii) The selected features are sorted in ascending order by their MIC values. (iii)
The discarded features are sorted in descending order by their MIC values. After that, the
features in two lists get flipped by probability computed from Eq. (21):

ρd = 0.1 ∗ e−d/m + 0.01 (21)

where ρd indicates the flipped possibility of the dth feature. m is the length of the selected
or discarded features. From the Eq. (21), we find that the discarded features with higher
MIC values have more opportunities to be flipped. On the other hand, the selected features
with lower MIC values have a higher probability to get flipped. Fig. 2 depicts an example
for this process.

Figure 2: An example of the rank-based mutation operation

4. Experiments

4.1. Datasets

Eight gene expression datasets are employed in computational experiments, which are avail-
able on Pan et al. (2023) and Scikit Feature Selection database (Li et al., 2017). The num-
ber of features is from 3312 to 12600 among these datasets. Table 1 shows the detailed
information of the involved datasets. The distribution of data is highly unbalanced. The
classification on such datasets is a challenging task.
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Table 1: Information of eight gene expression datasets

Datasets Features Instances Classes % Smallest class % Largest class

lung2 3312 203 5 3 68
DLBCL 5469 77 2 25 75

TOX 171 5748 171 4 23 26
Brain Tumor 1 5920 90 5 4 67
Prostate GE 5966 102 2 49 51

Adenoma 7457 36 2 50 50
Brain Tumor 2 10367 50 4 14 30
Lung Cancer 12600 203 5 3 68

4.2. Comparative Methods and Parameter Settings

To evaluate the classification performance of the proposed algorithm, we compare the
EMT-IGWO algorithm with all available features (Full) and binary GWO (BGWO). Three
state-of-the-art algorithms are also selected: the hybrid algorithm GWO and PSO (BG-
WOPSO) (Al-Tashi et al., 2019), the Grey-Wolf algorithm integrating a two-phase muta-
tion (TMGWO) (Abdel-Basset et al., 2020), and the correlation-guided updating strategy
and surrogate-assisted PSO (CUS-SPSO) (Chen et al., 2021). Since these methods have
good theoretical analysis and show good performance in feature selection, we choose these
methods as comparison methods in this study to ensure the fairness of the experiment.

This study uses the KNN as a classifier, where K is set to 5. For each dataset, 70% of the
instances are employed for training sets randomly, and the remaining 30% are selected as test
sets. During the training process, 5-fold cross-validation is employed. After the training,
selected features will be evaluated on the test set instances to obtain the corresponding
accuracy. Table 2 shows the parameter settings according to the characteristics of each
method. We use uniform parameter settings for each experiment and take the average
value to ensure the stability of the experimental results.

Table 2: Parameter settings
Method Population size MaxIter Parameter values

BGWO 30 100 a = 2− 2 ∗ (iter/MaxIter), A = [0, 2]

BGWOPSO 30 100 c1 = c2 = c3 = 0.5, w = 0.5 + rand/2, A = [0, 2]

TMGWO 30 100 a = 2− 2 ∗ (iter/MaxIter), A = [0, 2], Mp = 0.5

CUS-SPSO 30 100
c1 = c2 = 1.5, w = 0.9− (iter/MaxIter)/2,

nc = 2, A = 0.15, B = 0.05

EMT-IGWO 40/Num Task 100
a1 = 2 cos

(
π
2 ∗

(
t
T

)2)
, a2 = 1 + cos

(
π ∗ t−1

T−1

)
,

a3 = cos
(
π
2 ∗

t
T

)
, a4 = 2− cos

(
π
2 ∗

t
T

)
, Num Task = 2

4.3. Computational Results and Discussions

We run the computational experiments on Python 3.8 with an Intel Xeon Platinum 8474C
vCPU and 80GB of memory. The following metrics are used for the evaluation of the
performance: 1) the size of the feature subset obtained (Size); 2) the average training time
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(Time); 3) the best classification accuracy (Best); 4) the average classification accuracy
(AVG) on ten independent runs and corresponding standard deviation (Std).

Table 3: Test results on datasets with high dimensions
Dataset Method Size Time (s) Best AVG±Std

lung2

Full 3312.00 — 98.36 92.95±3.20
BGWO 1636.00 58.25 98.36 95.08±3.28

BGWOPSO 159.33 56.71 95.08 91.26±3.83
TMGWO 147.70 3167.06 96.72 91.64±3.91

CUS-SPSO 1853.30 86.59 96.72 94.59±2.08
EMT-IGWO 369.50 56.50 100.00 96.23±2.32

DLBCL

Full 5469.00 — 95.83 87.50±4.93
BGWO 2740.00 36.15 95.83 90.97±4.87

BGWOPSO 358.83 43.37 91.67 84.03±6.13
TMGWO 130.63 4454.04 91.67 80.73±7.02

CUS-SPSO 2809.90 68.70 95.83 86.67±6.67
EMT-IGWO 544.40 73.21 95.83 92.92±3.25

TOX 171

Full 5748.00 — 78.85 68.08±8.08
BGWO 3360.33 75.55 78.85 69.23±8.60

BGWOPSO 306.17 65.08 76.92 68.59±5.25
TMGWO 943.13 6337.86 75.00 66.35±4.82

CUS-SPSO 3750.60 128.93 80.77 72.69±7.13
EMT-IGWO 1077.30 88.16 86.54 73.85±6.50

Brain Tumor1

Full 5920.00 — 82.14 71.43±5.98
BGWO 2928.50 39.48 82.14 73.21±7.41

BGWOPSO 57.33 42.06 85.71 73.81±9.76
TMGWO 151.50 4968.04 96.43 79.91±9.53

CUS-SPSO 2643.20 77.62 85.71 76.07±6.97
EMT-IGWO 536.10 97.44 89.29 83.21±6.20

Prostate GE

Full 5966.00 — 90.32 79.03±8.06
BGWO 2969.50 53.91 100.00 79.57±11.48

BGWOPSO 39.00 54.05 90.32 82.80±6.34
TMGWO 461.25 5473.78 90.32 81.85±7.30

CUS-SPSO 3089.60 91.53 90.32 81.29±6.58
EMT-IGWO 750.00 95.20 96.77 86.77±5.09

Adenoma

Full 7457.00 — 100.00 87.27±10.91
BGWO 3644.83 36.41 100.00 93.94±4.69

BGWOPSO 2.83 40.45 100.00 83.33±13.38
TMGWO 7.25 5664.25 100.00 92.05±5.83

CUS-SPSO 3069.80 71.85 100.00 88.18±5.82
EMT-IGWO 340.40 73.77 100.00 98.18±3.63

Brain Tumor2

Full 10367.00 — 80.00 61.33±12.58
BGWO 5165.67 41.69 80.00 66.67±10.33

BGWOPSO 111.17 48.36 80.00 68.89±10.89
TMGWO 400.88 8858.13 73.33 68.33±5.91

CUS-SPSO 5620.10 107.91 80.00 61.33±10.67
EMT-IGWO 1127.30 134.14 86.67 74.67±13.27

Lung Cancer

Full 12600.00 — 93.44 88.69±2.37
BGWO 6251.83 117.77 93.44 90.16±2.93

BGWOPSO 567.67 60.76 91.80 86.89±4.64
TMGWO 237.50 9900.34 93.44 87.70±5.26

CUS-SPSO 6449.80 233.81 93.44 88.20±3.93
EMT-IGWO 1484.30 177.07 98.36 91.31±3.74
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4.3.1. Results of Classification performance on Training and Test Datasets

The convergence curves during the training process are depicted in Fig. 3. It can be observed
that EMT-IGWO method exhibits a significant advantage over the compared algorithms on
multiple training datasets. In addition, we can also find that EMT-IGWO still has excellent
search capacity in the late iterative stage. On the other hand, the performance of the
classification accuracy on the test datasets is an important measure of the robustness of one
approach. Table 3 shows the classification accuracy on 8 examined datasets. Remarkably,
EMT-IGWO achieves the highest average and best classification accuracy on almost all test
datasets. Specifically, the average classification accuracy of EMT-IGWO on the eight test
datasets is 87.14%, a significant improvement of 6.01% compared to the second-ranked CUS-
SPSO algorithm. Furthermore, the red lines are distributed mostly outside the entire spider
web in Fig. 4, which intuitively illustrates that our proposed approach performs better on
test datasets compared with other algorithms. It is noted that EMT-IGWO exhibits strong
performance on test datasets such as lung2, Adenoma, and DLBCL, and that the outer
perimeter of the spider web is well-represented by the red line.
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Figure 3: Convergence curves of different methods during the training process
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Figure 4: Classification accuracies of different methods on test datasets
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4.3.2. Results of the number of selected features

Table 3 shows the average feature subset size of all the methods. BGWOPSO ranks first in
terms of the dimension reduction. However, numerous informative features are lost, which
leads to its poor performance. In contrast, the average number of features selected by
EMT-IGWO is 778.66, second only to BGWOPSO and TMGWO. However, EMT-IGWO
achieves an average subset size of only approximately 11% of all available features on all the
examined datasets, which demonstrates the satisfactory dimension reduction capability of
EMT-IGWO. In general, EMT-IGWO has better tradeoff of the classification performance
and the dimension reduction capability compared to other approaches.

4.3.3. Results of running time

The running time of EMT-IGWO and the compared approaches are indicated in the fourth
column of Table 3. The training time of EMT-IGWO ranks third among all the five methods
on all the test datasets. Compared to the BGWOPSO, the cumulative training time of EMT-
IGWO is approximately 5 minutes longer than that of BGWOPSO. The main reason is that
further enhancement strategies are incorporated into EMT-IGWO for better classification
performance, the running time of which is acceptable. Obviously, the running time of
EMT-IGWO is less than 100s on over half of the examined datasets, which has exhibited
the efficiency of EMT-IGWO.

4.4. Statistical Significance Test

To further analyze the performance difference among all the methods, we use the Wilcoxon
signed-rank test to conduct the statistical significance test. Table 4 reveals the results of the
pairwise comparison. Here, the symbols ‘+’, ‘≈’, and ‘−’ illustrate that there are +, ≈ , and
− examples of EMT-IGWO that are superior to, similar to, and inferior to the compared
algorithms, respectively. From Table 4, the p-value obtained by the average classification
accuracy is all less than 0.05 under 95% confidence. Therefore, we can conclude that our
proposed EMT-IGWO can provide significant results compared to other algorithms.

Table 4: Wilcoxon signed-rank test analysis (AVG)

Comparison + ≈ − p-value

EMT-IGWO vs. BGWO 8 0 0 0.0078

EMT-IGWO vs. BGWOPSO 8 0 0 0.0078

EMT-IGWO vs. TMGWO 8 0 0 0.0078

EMT-IGWO vs. CUS-SPSO 8 0 0 0.0078

5. Conclusion

This paper introduces EMT-IGWO, a novel feature selection method for classifying large-
scale genomic data. EMT-IGWO employs a GWO-based evolutionary multitasking paradigm,
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offering several notable advantages. Each subpopulation operates in an independent search-
ing pattern, enabling diverse searching directions for each task. The transferred knowledge
between tasks increases population diversity and enhances searching capabilities. Addition-
ally, improvements in the search patterns prevent individuals from becoming trapped in
local optima. The experimental results showed that EMT-IGWO can effectively improve
classification accuracy while consuming acceptable runtime compared to state-of-the-art
methods. However, the dimension reduction capability of EMT-IGWO cannot provide a
significant advantage. In our future work, we aim to further improve the dimensionality
reduction capability of the proposed algorithm and extend our multi-task approach for ad-
dressing multiple related feature selection tasks that share common features simultaneously.
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