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ABSTRACT

Recent discoveries on neural network pruning reveal that, with a carefully chosen
layerwise sparsity, a simple magnitude-based pruning achieves state-of-the-art
tradeoff between sparsity and performance. However, without a clear consensus
on “how to choose,” the layerwise sparsities are mostly selected algorithm-by-
algorithm, often resorting to handcrafted heuristics or an extensive hyperparameter
search. To fill this gap, we propose a novel importance score for global prun-
ing, coined layer-adaptive magnitude-based pruning (LAMP) score; the score is a
rescaled version of weight magnitude that incorporates the model-level `2 distortion
incurred by pruning, and does not require any hyperparameter tuning or heavy
computation. Under various image classification setups, LAMP consistently outper-
forms popular existing schemes for layerwise sparsity selection. Furthermore, we
observe that LAMP continues to outperform baselines even in weight-rewinding
setups, while the connectivity-oriented layerwise sparsity (the strongest baseline
overall) performs worse than a simple global magnitude-based pruning in this case.
Code: https://github.com/jaeho-lee/layer-adaptive-sparsity

1 INTRODUCTION

Neural network pruning is an art of removing “unimportant weights” from a model, with an intention
to meet practical constraints (Han et al., 2015), mitigate overfitting (Hanson & Pratt, 1988), enhance
interpretability (Mozer & Smolensky, 1988), or deepen our understanding on neural network training
(Frankle & Carbin, 2019). Yet, the importance of weight is still a vaguely defined notion, and thus a
wide range of pruning algorithms based on various importance scores has been proposed. One popular
approach is to estimate the loss increment from removing the target weight to use as an importance
score, e.g., Hessian-based approximations (LeCun et al., 1989; Hassibi & Stork, 1993; Dong et al.,
2017), coreset-based estimates (Baykal et al., 2019; Mussay et al., 2020), convex optimization
(Aghasi et al., 2017), and operator distortion (Park et al., 2020). Other approaches include on-the-fly1

regularization (Louizos et al., 2018; Xiao et al., 2019), Bayesian methods (Molchanov et al., 2017;
Louizos et al., 2017; Dai et al., 2018), and reinforcement learning (Lin et al., 2017).

Recent discoveries (Gale et al., 2019; Evci et al., 2020) demonstrate that, given an appropriate choice
of layerwise sparsity, simply pruning on the basis of weight magnitude yields a surprisingly powerful
unstructured pruning scheme. For instance, Gale et al. (2019) evaluates the performance of magnitude-
based pruning (MP; Han et al. (2015); Zhu & Gupta (2018)) with an extensive hyperparameter tuning,
and shows that MP achieves comparable or better performance than state-of-the-art pruning algorithms
that use more complicated importance scores. To arrive at such a performance level, the authors
introduce the following handcrafted heuristic: Leave the first convolutional layer fully dense, and
prune up to only 80% of weights from the last fully-connected layer; the heuristic is motivated by
the sparsity pattern from other state-of-the-art algorithms (Molchanov et al., 2017) and additional
experimental/architectural observations.

Unfortunately, there is an apparent lack of consensus on “how to choose the layerwise sparsity” for
the magnitude-based pruning. Instead, the layerwise sparsity is selected mostly on an algorithm-by-
algorithm basis. One common method is the global MP criteria (see, e.g., Morcos et al. (2019)),
∗Work done at KAIST
1i.e., simultaneously training and pruning
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Figure 1: The LAMP score is a squared weight magnitude, normalized by the sum of all “surviving
weights” in the layer. Global pruning by LAMP is equivalent to the layerwise magnitude-based
pruning with an automatically chosen layerwise sparsity.

where the layerwise sparsity is automatically determined by using a single global threshold on weight
magnitude. Lin et al. (2020) propose a magnitude-based pruning algorithm using a feedback signal,
using a heuristic rule of keeping the last fully connected layer dense. A recent work by Evci et al.
(2020) proposes a magnitude-based dynamic sparse training method, adopting layerwise sparsity
inspired from the network science approach toward neural network pruning (Mocanu et al., 2018).

Contributions. In search of a “go-to” layerwise sparsity for MP, we take a model-level distortion
minimization perspective towards MP. We build on the observation of Dong et al. (2017); Park
et al. (2020) that each neural network layer can be viewed as an operator, and MP is a choice that
incurs minimum `2 distortion to the operator output (given a worst-case input signal). We bring the
perspective further to examine the “model-level” distortion incurred by pruning a layer; preceding
layers scale the input signal to the target layer, and succeeding layers scale the output distortion.

Based on the distortion minimization framework, we propose a novel importance score for global
pruning, coined LAMP (Layer-Adaptive Magnitude-based Pruning). The LAMP score is a rescaled
weight magnitude, approximating the model-level distortion from pruning. Importantly, the LAMP
score is designed to approximate the distortion on the model being pruned, i.e., all connections with
a smaller LAMP score than the target weight is already pruned. Global pruning2 with the LAMP
score is equivalent to the MP with an automatically determined layerwise sparsity. At the same time,
pruning with LAMP keeps the benefits of MP intact; the LAMP score is efficiently computable,
hyperparameter-free, and does not rely on any model-specific knowledge.

We validate the effectiveness of LAMP under a diverse experimental setup, encompassing various
convolutional neural network architectures (VGG-16, ResNet-18/34, DenseNet-121, EfficientNet-B0)
and various image datasets (CIFAR-10/100, SVHN, Restricted ImageNet). In all considered setups,
LAMP consistently outperforms the baseline layerwise sparsity selection schemes. We also perform
additional ablation studies with one-shot pruning and weight-rewinding setup to confirm that LAMP
performs reliably well under a wider range of scenarios.

Organization. In Section 2, we briefly describe existing methods to choose the layerwise sparsity
for magnitude-based pruning. In Section 3, we formally introduce LAMP and describe how the `2
distortion minimization perspective motivates the LAMP score. In Section 4, we empirically validate
the effectiveness and versatility of LAMP. In Section 5, we take a closer look at the layerwise sparsity
discovered by LAMP and compare with baseline methods and previously proposed handcrafted
heuristics. In Section 6, we summarize our findings and discuss future directions. Appendices include
the experimental details (Appendix A), complexity analysis (Appendix B), derivation of the LAMP
score (Appendix C), additional experiments on Transformer (Appendix D), and detailed experimental
results with standard deviations (Appendix E).

2 RELATED WORK

This section gives a (necessarily non-exhaustive) survey of various layerwise sparsity selection
schemes used for magnitude-based pruning algorithms. Magnitude-based pruning of neural networks
dates back to the early works of Janowsky (1989); LeCun et al. (1989), and has been actively studied

2i.e., using a global threshold for LAMP score
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again under the context of model compression since the work of Han et al. (2015). In Han et al. (2015),
the authors propose an iterative pruning scheme where the layerwise pruning threshold is determined
by the standard-deviation-based heuristic. Zhu & Gupta (2018) propose a uniform pruning algorithm
with a carefully tuned gradual pruning schedule combined with weight re-growths. Gale et al. (2019)
refine the algorithm by adding a heuristic constraint of keeping the first convolutional layer fully
dense and keeping at least 20% of the weights surviving in the last fully-connected layer.

MP has also been widely used in the context of “pruning at initialization.” Frankle & Carbin (2019)
combine MP with weight rewinding to discover efficiently trainable subnetworks: for small nets,
the authors employ uniform layerwise sparsity, but use different rates for convolutional layers and
fully-connected layers (with an added heuristic on the last fully-connected layer); for larger nets,
authors use global MP. Morcos et al. (2019) consider transferring the “winning ticket” initializations,
using the global MP. Evci et al. (2020) proposes a training scheme for sparsely initialized neural
networks, where the layerwise sparsity is given by the Erdős-Rényi kernel method; the method
generalizes the scheme initially proposed by Mocanu et al. (2018) to convolutional neural networks.

We note that there is a line of results on the trainable layerwise sparsity; we refer the interested
readers to the recent work of Kusupati et al. (2020) for a concise survey. However, we do not make
direct comparisons to these methods, as our primary purpose is to deliver an easy-to-use layerwise
sparsity selection scheme without requiring the modification of training objective, or an extensive
hyperparameter tuning.

We also note that we focus on the unstructured sparsity. While such unstructured pruning techniques
have been considered less practical (compared to structured pruning), several recent breakthroughs
provide promising methods to bridge this gap; see Gale et al. (2020); Elsen et al. (2020).

3 LAYER-ADAPTIVE MAGNITUDE-BASED PRUNING (LAMP)

We now formally introduce the Layer-Adaptive Magnitude-based Pruning (LAMP) score. Consider
a depth-d feedforward neural network with weight tensors W (1), . . . ,W (d) associated with each
fully-connected/convolutional layer. For fully-connected layers, corresponding weight tensors are two-
dimensional matrices, and for 2d convolutional layers, corresponding tensors are four-dimensional.
To give a unified definition of the LAMP score for both fully-connected and convolutional layers,
we assume that each weight tensor is unrolled (or flattened) to a one-dimensional vector. For each
of these unrolled vectors, we assume (without loss of generality) that the weights are sorted in an
ascending order according to the given index map, i.e., |W [u]| ≤ |W [v]| holds whenever u < v,
where W [u] denote the entry of W mapped by the index u.3

The LAMP score for the u-th index of the weight tensor W is then defined as

score(u;W ) :=
(W [u])2∑
v≥u(W [v])2

. (1)

Informally, the LAMP score (Eq. 1) measures the relative importance of the target connection among
all surviving connections belonging to the same layer, where the connections with a smaller weight
magnitude (in the same layer) have already been pruned. As a consequence, two connections with
identical weight magnitudes have different LAMP scores, depending on the index map being used.

Once the LAMP score is computed, we globally prune the connections with smallest LAMP scores
until the desired global sparsity constraint is met; the procedure is equivalent to performing MP with
an automatically selected layerwise sparsity. To see this, it suffices to check that

(W [u])2 > (W [v])2 ⇒ score(u;W ) > score(v;W ) (2)

holds for any weight tensor W and a pair of indices u, v. From the definition of the LAMP score
(Eq. 1), it is easy to see that the logical relation (2) holds. Indeed, for the connection with a larger
weight magnitude, the denominator of Eq. 1 is smaller, while the numerator is larger.

We note that the global pruning with respect to the LAMP score is not identical to the global pruning
with respect to the magnitude score |W [u]| (or (W [u])2, equivalently). Indeed, in each layer, there

3This “order” among weights is required to handle the weights with equal magnitude.
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exists exactly one connection with the LAMP score of 1, which is the maximum LAMP score possible.
In other words, LAMP keeps at least one surviving connection in each layer. The same does not hold
for the global pruning with respect to the weight magnitude score.

We also note that the LAMP score is easy-to-use. Similar to the vanilla MP, the LAMP score does not
have any hyperparameter to be tuned, and is easily implementable via elementary tensor operations.
Furthermore, the LAMP score can be computed with only a minimal computational overhead; the
sorting of squared weight magnitudes required to compute the denominator in Eq. 1 is already a part
of typical vanilla MP algorithms. For more discussions, see Appendix B.

3.1 DESIGN MOTIVATION: MINIMIZING OUTPUT `2 DISTORTION

The LAMP score (Eq. 1) is motivated by the following observation: The layerwise MP is the solution
of the layerwise minimization of Frobenius distortion incurred by pruning, which can be viewed
as a relaxation of the output `2 distortion minimization with respect to the worst-case input. This
observation leads us to the speculation “Reducing the pruning-incurred `2 distortion of the model
output with respect to the worst-case output may be beneficial to the performance of the retrained
model (and perhaps that is why MP works well in practice).” This speculation is not entirely new; the
optimal brain damage (OBD; (LeCun et al., 1989)) is also designed around a similar philosophy of
loss minimization, without a complete understanding on how the benefit of loss minimization seems
to pertain after retraining.

Nevertheless, we use this speculation as a guideline to design LAMP as a natural extension of
layerwise MP to a global pruning scheme with an automatically determined layerwise sparsity. To
make arguments a bit more formal, consider a depth-d fully-connected4 neural net, whose output
given the input x is

f(x;W (1:d)) =W (d)σ
(
W (d−1)σ

(
· · ·W (2)σ

(
W (1)x

)
· · ·
)
, (3)

where σ denotes the ReLU activation and Wi denotes the weight matrix for the i-th layer, and
W (1:d) = (W (1), . . . ,W (d)) denotes the set of weight matrices.

Viewing MP as a relaxed layerwise `2 distortion minimization. We first focus on a single fully-
connected layer (instead of a full model), and consider the problem of minimizing the pruning-incurred
`2 distortion in the layer output, given the worst-case input signal. We then observe that the problem
can be relaxed to the minimization of Frobenius distortion in the weight tensor, whose solution
coincides with the layerwise MP. Formally, let ξ ∈ Rn be an input vector to a fully-connected layer
with the weight tensor W ∈ Rm×n. We want to prune the tensor to W̃ := M �W , where M
is an m × n binary matrix (i.e., having only 0s and 1s as its entries) satisfying some predefined
sparsity constraint ‖M‖0 ≤ κ imposed by the operational constraints (e.g., model size requirements).
We wish to find the pruning mask M that incurs the minimum `2 distortion in the output given the
worst-case `2-bounded input, i.e.,

min
M binary
‖M‖0≤κ

sup
‖ξ‖2≤1

‖Wξ − (M �W )ξ‖2. (4)

The minimax distortion (4) upper-bounds the minimum expected `2 distortion for any distribution
of ξ supported on the unit ball, and thus can be viewed as a data-oblivious version of the pruning
algorithms designed for loss minimization (using squared loss). By the definition of the spectral
norm,5 Eq. 4 is equivalent to

min
M binary
‖M‖0≤κ

‖W −M �W‖, (5)

where ‖ · ‖ denotes the spectral norm. Using the fact that ‖A‖ ≤ ‖A‖F holds for any matrix A6

(where ‖ · ‖F denotes the Frobenius norm), the optimization (5) can be relaxed to the Frobenius

4An extension to convolutional neural network is straightforward; see, e.g., (Sedghi et al., 2019).
5which is the operator norm with respect to the `2 norms, i.e., supξ 6=0

‖Wξ‖2
‖ξ‖2

,
6The inequality is a simple consequence of the Cauchy-Schwarz inequality: ‖Ax‖22 =

∑
i(
∑
j Aijxj)

2 ≤∑
i(
∑
j A

2
ij) · (

∑
j x

2
j ) = ‖A‖2F ‖x‖22, where subscripts denote weight indices.
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distortion minimization

min
M binary
‖M‖0≤κ

‖W −M �W‖F = min
M binary
‖M‖0≤κ

√√√√ ∑
i∈{1,...,m}
j∈{1,...,n}

(1−Mij)W 2
ij , (6)

where Wij ,Mij denote (i, j)-th entries of W,M , respectively. From the right-hand side of Eq. 6,
we see that the layerwise MP, i.e., setting Mij = 1 for (i, j) pairs with top-κ largest Wij , is the
optimal choice to minimize the Frobenius distortion incurred by pruning. This observation motivates
us to view the layerwise MP as the (approximate) solution of the output `2 distortion minimization
procedure, and speculate the connection between the small output `2 distortion and the favorable
performance of the pruned-retrained subnetwork (given the unreasonable effectiveness of seemingly-
naı̈ve MP as demonstrated by Gale et al. (2019)).

LAMP: greedy, relaxed minimization of model output distortion. Building on this speculation,
we now ask the following question: “How can we select the layerwise sparsity of MP to have small
model-level output distortion?” To formalize, we consider the minimization

min∑d
i=1 ‖M(i)‖0≤κ

sup
‖x‖2≤1

‖f(x;W (1:d))− f(x; W̃ (1:d))‖2, (7)

where κ denotes the model-level sparsity constraint imposed by the operational requirements and
W̃ (i) :=M (i) �W (i) denotes the pruned version of the i-th layer weight matrix.

Due to the nonlinearities from the activation functions, it is difficult to solve Eq. 7 exactly. Instead,
we consider the following greedy procedure: At each step, we (a) approximate the distortion incurred
by pruning a single connection, (b) remove the connection with the smallest score, and then (c) go
back to step (a) and re-compute the scores based on the pruned model.

Once we assume that only one connection is pruned at a single iteration of the step (a), we can use
the following upper bound of the model output distortion to relax the optimization (7): With W̃i

denoting a pruned version of Wi, we have

sup
‖x‖2≤1

‖f(x;W (1:d))− f(x;W (1:i−1), W̃ (i),W (i+1:d))‖2 ≤
‖W (i) − W̃ (i)‖F
‖W (i)‖F

 d∏
j=1

‖W (j)‖F


(8)

(see Appendix C for a derivation). Despite the sub-optimalities from the relaxation, considering the
right-hand side of Eq. 8 provides two favorable properties. First, the right-hand side is free of any
activation function, and is equivalent to the layerwise MP. Second, the score can be computed in
advance, i.e., does not require re-computing after pruning each connection. In particular, the product
term

∏d
j=1 ‖W (j)‖F does not affect the pruning decision, and the denominator can be pre-computed

with the cumulative sum
∑
v≥u(W

(i)[v])2 for each index u for W (i). This computational trick leads
us to the LAMP score (1).

4 EXPERIMENTS & ANALYSES

To empirically validate the effectiveness of the proposed method, we compare LAMP with following
layerwise sparsity selection schemes for magnitude-based pruning:

• Global. A global threshold on the weight magnitudes is imposed on every layer to meet the
global sparsity constraint, and the layerwise sparsity is automatically determined according to this
threshold; see, e.g., Morcos et al. (2019).

• Uniform. Every layer is pruned to have identical layerwise sparsity levels, which is in turn equal
to the global sparsity constraint; see, e.g., Zhu & Gupta (2018).

• Uniform+. Same as Uniform, but we impose two additional constraints: (1) we keep the first
convolutional layer unpruned, and (2) retain at least 20% of connections alive in the last fully-
connected layer; this heuristic rule is proposed by Gale et al. (2019).
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(a) VGG-16 (b) ResNet-20

(c) DenseNet-121 (d) EfficientNet-B0

Figure 2: Sparsity-accuracy tradeoff curves of VGG-16, ResNet-18, DenseNet-121, and EfficientNet-
B0. All models are iteratively pruned and retrained with CIFAR-10 dataset.

• Erdős-Rényi kernel. An extension of Erdős-Rényi method (originally given by Mocanu et al.
(2018)) accounting for convolutional layers, as proposed by Evci et al. (2020). The numbers of
nonzero parameters of sparse convolutional layers are scaled proportional to 1− nl−1+nl+wl+hl

nl−1·nl·wl·hl ,
where nl denotes the number of neurons at layer l, and wl, hl denotes the width and height of the
lth layer convolutional kernel.

As a default setup, we perform five independent trials for each baseline method, where in each trial
we use iterative pruning-and-retraining (Han et al., 2015): we prune 20% of the surviving weights at
each iteration. For the Restricted-ImageNet experiment, we provide the result from four trials. For a
clear presentation, we only report the average on the figures appearing in the main text. Standard
deviations for five-seed results in Section 4.1 will be given in Appendix E. Also, in Appendix D, we
report additional experimental results for language modeling tasks (Penn Treebank and WT-2) on
Transformers (Vaswani et al., 2017).

Summary of observations. From the experimental results (Figs. 2 to 4), we observe that LAMP con-
sistently outperforms all other baselines, in terms of the sparsity-accuracy tradeoff. The performance
gap between LAMP and baseline methods seems be more pronounced with modern network archi-
tectures, e.g., EfficientNet-B0. We also observe that LAMP performs well under weight rewinding
setup, while the strongest baseline (Erdős-Rényi kernel) seems to be sensitive to such rewinding.

4.1 MAIN RESULTS

Our main experimental results are on image classification models. We explore a diverse set of model
architectures and datasets, with a base setup of VGG-16 (Simonyan & Zisserman, 2015) trained on
CIFAR-10 (Krizhevsky & Hinton, 2009) dataset. In particular, our experiments cover the following
models and datasets.
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(a) SVHN (b) CIFAR-100 (c) Restricted ImageNet (4 seeds)

Figure 3: Sparsity-accuracy tradeoff curves of pruned models trained for SVHN and CIFAR-100 (on
VGG-16) and Restricted ImageNet (on ResNet-34).

Models. We consider four network architectures for image classification experiments: (1) VGG-16
(Simonyan & Zisserman, 2015) adapted for CIFAR-10 to have batch normalization layers and one
fully-connected layer (as used in Liu et al. (2019); Frankle & Carbin (2019)); (2) ResNet-20/34 (He
et al., 2016); (3) DenseNet-121 (Huang et al., 2017); (4) EfficientNet-B0 (Tan & Le, 2019). For all
four models, we prune the weight tensors for fully-connected and convolutional units. Biases and
batch normalization layers are kept unpruned.

Datasets. We consider the following datasets; CIFAR-10/100 (Krizhevsky & Hinton, 2009), SVHN
(Netzer et al., 2011), and Restricted ImageNet (Tsipras et al., 2019). All datasets except for Restricted
ImageNet are used for training VGG-16; Restricted ImageNet is used for training ResNet-34.

Other details. Detailed experimental setup is given in Appendix A.

In Fig. 2, we provide sparsity-accuracy tradeoff curves for four different model architectures trained
on CIFAR-10 dataset. The first observation is that LAMP achieves the best tradeoff; in all four
models, LAMP consistently outperforms baseline methods. We also observe that Erdős-Rényi kernel
method also outperforms other baselines in VGG-16, ResNet-20, and EfficientNet-B0, but fails to
do so on DenseNet-121. Furthermore, the gap between LAMP and the Erdős-Rényi kernel method
seems to widen as the model architecture gets more complicated; the gap between two methods is
notable especially in EfficientNet-B0, where mobile inverted bottleneck convolutional layers replace
traditional convolutional modules. In particular, LAMP achieves 88.1% test accuracy when only
1.44% of all weights survive, while Erdős-Rényi kernel achieves 77.8%. Lastly, we observe that the
heuristic of Gale et al. (2019) seems to provide an improvement over the Uniform MP.

In Fig. 3, we present the tradeoff curves for three additional datasets: SVHN, CIFAR-100, and
Restricted ImageNet. Similar to Fig. 2, we observe that LAMP outperforms all other baselines and
Erdős-Rényi kernel remains to be the most competitive baseline.

4.2 ABLATIONS: ONE-SHOT PRUNING, WEIGHT REWINDING, AND SNIP

Modern magnitude-based pruning algorithms are often used in combination with customized pruning
schedules (e.g., Zhu & Gupta (2018)) or weight rewinding (e.g., Frankle & Carbin (2019); Renda
et al. (2020)). As a sanity check that LAMP perform reliably well along with such techniques, we
conduct following additional experiments.

• One-shot pruning. As an extreme case of pruning schedule, we test the scheme where we only
run a single training-pruning-retraining cycle, instead of iterating multiple cycles. We test the
one-shot pruning on VGG-16 trained with CIFAR-10 dataset.

• Weight rewinding. After pruning, we rewind the remaining weights to their values in the early
epoch, as in the “lottery ticket” experiments by Frankle & Carbin (2019). We perform iterative
magnitude-based pruning (IMP) on VGG-16, using the warm-up step and the training schedule
described in Frankle et al. (2020).

• SNIP. As an additional experiment, we test whether LAMP can provide a general-purpose layerwise
sparsity for pruning schemes other than MP. We test under the “pruning at initialization” setup with
SNIP scores (Lee et al., 2019). Baselines are similarly modified to use the SNIP score. We use
Conv-6 model on CIFAR-10 dataset (see Frankle & Carbin (2019) for more details of the model)
with a batch size of 128.
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(a) One-shot pruning (b) Weight rewinding (c) SNIP score

Figure 4: Sparsity-accuracy tradeoff curves under one-shot pruning, weight rewinding, and the SNIP
setup. One-shot pruning and the weight-rewinding experiments are done on VGG-16 trained on
CIFAR-10 dataset. SNIP experiment is performed on Conv-6 trained on CIFAR-10.

Again, other experimental details are given at the Appendix A.

Results for all three experiments are given in Fig. 4. On one-shot pruning, we confirm that LAMP
comfortably leads other baselines, as in the iterative pruning case. We note that the gap between
one-shot pruning and iterative pruning is quite small for LAMP; when 1.15% of all prunable weights
survive, iterative LAMP brings only 1.09% accuracy gain over one-shot LAMP. By contrast, the gain
from iteration for Uniform MP is 41.62% at the same sparsity level.

On the weight-rewinding experiment, we observe that LAMP remains beneficial over the baseline
methods. We also remark that the Global baseline tend to perform well in this case, even outper-
forming the Erdős-Rényi kernel method in the low-sparsity regime. This phenomenon seems to be
connected to the observation of Zhou et al. (2019) that the initial weights and final weights of a model
are highly correlated; global MP may help preserving connections with larger initial magnitudes,
which play important roles in terms of signal propagation at initialization (Lee et al., 2020).

On the SNIP experiment, we observe that LAMP achieves a similar performance to the Global SNIP.
Recalling that the SNIP score is designed for global pruning (Lee et al., 2019), such high performance
of LAMP is unexpected. We suspect that this is because LAMP is also designed for “output distortion
minimization,” which shares a similar spirit with the “gradient distortion minimization.”

5 LAYERWISE SPARSITY: GLOBAL MP, ERDŐS-RÉNYI KERNEL, AND LAMP

With the effectiveness of LAMP confirmed, we take a closer look at the layerwise sparsity discovered
by LAMP. We focus on answering two questions: Q1. Does layerwise sparsity distilled from LAMP
behave similarly to the heuristics constructed from experiences, e.g. the one given by Gale et al.
(2019)? Q2. Is there any other defining characteristic of LAMP sparsity patterns, which may help us
guide the design of (sparse) network architectures?

In Fig. 5, we plot the layerwise survival rates and the number of nonzero weights discovered by itera-
tively pruning VGG-16 (trained on CIFAR-10), by Global MP, Erdős-Rényi kernel, and LAMP. Lay-
erwise survival rates are given for the global survival rates of {51.2%, 26.2%, 13.4%, 6.87%, 3.52%}
(from lighter to darker). Number of nonzero weights are plotted for the pruned models with total
{3.52%, 1.80%, 0.92%, 0.47%, 0.24%} fraction of all weights surviving.

We observe that LAMP sparsities share a similar tendency to sparsity levels given by the Erdős-Rényi
kernel method. In particular, both methods tend to keep the first and layer layers of the neural network
relatively dense; this property is reminiscent of the handcrafted heuristic given in Gale et al. (2019):
keep the first convolutional layer unpruned, and prune at most 80% from the last fully-connected
layer. While Global MP also keeps a large fraction of the last fully-connected layer unpruned, the first
convolutional layer gets pruned quickly. LAMP sparsities differ from Erdős-Rényi kernel sparsities
in two senses.

• Although LAMP demonstrates its tendency to keep the first and the last layers relatively unpruned,
this tendency is softer. When 3.52% of weights survive, LAMP keeps ∼ 79% and ∼ 62% of
weights unpruned from the first and last layers (respectively), while Erdős-Rényi kernel does not
prune any weight from those two layers.
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(a) Global (b) Erdős-Rényi kernel (c) LAMP (Ours)

Figure 5: Layerwise statistics of VGG-16 iteratively pruned on CIFAR-10. Top: Layerwise survival
rate for models with {51.2%, 26.2%, 13.4%, 6.87%, 3.52%} weights surviving. Bottom: Number
of nonzero weights for models with {3.52%, 1.80%, 0.92%, 0.47%, 0.24%} weights surviving.

• LAMP tends to keep the number of nonzero weights relatively uniform throughout the layers at
extreme sparsity levels (indeed, the first observation can be understood as a consequence of the
second observation). In contrast, Erdős-Rényi kernel method keeps the relative ratio constant,
regardless of the global sparsity level.

Following the second observation, we conjecture that having a similar number of nonzero connections
in each layer may be an essential condition to guarantee maximal memory capacity (see, e.g., Yun
et al. (2019)), given a global sparsity constraint on the neural network. Theoretical investigations of
the approximability by such sparse neural networks may be an interesting future research direction,
potentially leading to a more principled and robust pruning algorithms.

As an additional remark, we note that the layerwise sparsity discovered by LAMP behaves similarly
to that of AMC (He et al., 2018), which uses a reinforcement learning agent to search over the space
of all available layerwise sparsity. We provide further details in Appendix F.

6 CONCLUSION

In this paper, we investigate an under-explored problem on the layerwise sparsity for magnitude-based
pruning scheme. The proposed method, coined LAMP (Layer-Adaptive Magnitude-based Pruning), is
motivated from the `2 distortion minimization perspective on magnitude-based pruning, and provides
a consistent performance gain on a wide range of models and datasets. Furthermore, LAMP performs
reliably well when combined with one-shot pruning schedule or weight rewinding, which makes it an
attractive candidate as a “go-to” layerwise sparsity for the magnitude-based pruning. Taking a deeper
look at LAMP-discovered layerwise sparsities, we observe that LAMP automatically recovers the
handcrafted rules for the layerwise sparsity. Furthermore, we observe that LAMP tend to keep the
number of nonzero weights relatively uniform throughout the layers, as we consider more extreme
sparsity levels. We conjecture that such uniformity in the number of unpruned weights may be an
essential condition for a maximal expressive power of sparsified neural networks.
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A EXPERIMENTAL SETUPS

For any implementational details not given in this section, we refer to the code at:

https://github.com/jaeho-lee/layer-adaptive-sparsity

Optimizer. With an exception of the weight rewinding experiment, we use AdamW (Loshchilov &
Hutter, 2019) with learning rate 0.0003; we use vanilla Adam with learning rate 0.0003 for the weight
rewinding experiment, following the setup of Frankle & Carbin (2019). For other hyperparameters,
we follow the PyTorch default setup: ~β = (0.9, 0.999), wd = 0.01, ε = 10−8.

Pre-processing. CIFAR-10/100 dataset is augmented with random crops with a padding of 4 and
random horizontal flips. We normalize both training and test datasets with constants

(0.4914, 0.4822, 0.4465), (0.237, 0.243, 0.261).

SVHN training dataset is augmented with random crops with a padding of 2. We normalize both
training and test datasets with constants

(0.4377, 0.4438, 0.4728), (0.198, 0.201, 0.197).

Restricted ImageNet training dataset is augmented with Random resized crop to size 224 and random
horizontal flips. Restricted ImageNet test dataset is resized to 256 and then center-cropped to size
224. We normalize both training and test datasets with constants

(0.485, 0.456, 0.406), (0.229, 0.224, 0.225).

Models. Some of the models used for CIFAR-10 datasets are originally developed for ImageNet:
VGG-16, DenseNet-121, EfficientNet-B0. The models are adapted for CIFAR-10/100 datasets by
modifying only the average pooling and the (first) fully-connected layer (and not convolutional layers)
to fit the 32× 32 resolution of the input image.

Table 1: Optimization details.
Dataset Model Initial training iter. Re-training iter. Batch size

SVHN VGG-16 40000 30000 100
CIFAR-10 {VGG-16, EfficientNet-B0} 50000 40000 100
CIFAR-10 DenseNet-121 80000 60000 100
CIFAR-100 VGG-16 60000 50000 100
Restricted ImageNet ResNet-34 80000 80000 128

CIFAR-10 Conv-6 (SNIP) 50000 40000 128
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B COMPUTATIONAL AND IMPLEMENTATIONAL ASPECTS OF LAMP

In this section, we discuss the computational complexity of LAMP and describe how LAMP can be
implemented. We consider a depth-d neural network, with ni number of connections in i-th layer.
We also let n =

∑d
i=1 ni.

The global MP is comprised of two steps:

• Step 1. Pool and sort the weight magnitudes of all connections, taking O(n log n) operations.
• Step 2. Assign 0s to connections with smallest weights until the desired sparsity level is achieved,

taking O(n) computations.

The total computational cost is of order O(n log n). Similarly, we see that performing MP with any
pre-determined sparsity levels incurs O(

∑d
i=1 ni log ni) computations.

LAMP, on the other hand, can be done in four steps.

• Step 1. Weight magnitudes are squared and sorted for each layer, which can be done with a
computation cost of O(

∑d
i=1 ni log ni).

• Step 2. LAMP score denominators
∑
v≥uW

2
i [v] for each layer is computed by summing-and-

storing the squared weight magnitudes according to a descending order; takes O(n) computations.
• Step 3. The LAMP score is computed by dividing squared weight magnitudes by the denominators,

using O(n) steps.
• Step 4. We sort and prune as in global MP, taking O(n log n) steps.7

We observe that step 4 is the dominant term, which is shared by the global MP. The first three steps
can be easily implemented in PyTorch as follows.

def lamp_score(weight):
normalizer = weight.norm() ** 2

sorted_weight, sorted_idx = weight.abs().view(-1).sort(descending=False)

weight_cumsum_temp = (sorted_weight ** 2).cumsum(dim=0)
weight_cumsum = torch.zeros(weight_cumsum_temp.shape)
weight_cumsum[1:] = weight_cumsum_temp[:len(weight_cumsum_temp) - 1]

sorted_weight /= (normalizer - weight_square_cumsum).sqrt()

score = torch.zeros(weight_cumsum.shape)
score[sorted_idx] = sorted_weight

score = score.view(weight.shape)

return score

7This cost can be further reduced, recalling that the LAMP scores in each layer are already sorted. All that
remains is a merging step.
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C DERIVATION OF INEQUALITY (8)

In this section, we prove the following inequality.

sup
‖x‖2≤1

‖f(x;W (1:d))− f(x;W (1:i−1), W̃ (i),W (i+1:d))‖2 ≤ ‖W (i) − W̃ (i)‖F ·
∏
j 6=i

‖W (j)‖F .

(9)

This inequality is a simplified and modified version of what is popularly known as “peeling” procedure
in the generalization literature (e.g., (Neyshabur et al., 2015)), and we present the proof only for the
sake of completeness. We begin by peeling the outermost layer as

‖f(x;W (1:d))− f(x;W (1:i−1), W̃ (i),W (i+1:d))‖2 (10)

=
∥∥∥W (d)

(
σ(f(x;W (1:d−1))− σ(f(x;W (1:i−1), W̃ (i),W (i+1:d−1)))

)∥∥∥
2

(11)

≤ ‖W (d)‖F ·
∥∥∥σ(f(x;W (1:d−1))− σ(f(x;W (1:i−1), W̃ (i),W (i+1:d−1)))

∥∥∥
2

(12)

≤ ‖W (d)‖F ·
∥∥∥f(x;W (1:d−1))− f(x;W (1:i−1), W̃ (i),W (i+1:d−1))

∥∥∥
2
, (13)

where we have used Cauchy-Schwarz inequality for the first inequality, and the 1-Lipschitzness of
ReLU activation with respect to `2 norm. We keep on peeling until we get

‖f(x;W (1:d))− f(x;W (1:i−1), W̃ (i),W (i+1:d))‖2 (14)

≤
(∏
j>i

‖W (j)‖F
)
· ‖f(x;W (1:i))− f(x;W (1:i−1), W̃ (i))‖2. (15)

The second multiplicative term on the right-hand side requires a slightly different treatment. Via
Cauchy-Schwarz, we get

‖f(x;W (1:i))− f(x;W (1:i−1), W̃ (i))‖2 =
∥∥∥(W (i) − W̃ (i)

)
σ(f(x;W (1:i−1)))

∥∥∥
2

(16)

≤ ‖W (i) − W̃ (i)‖F · ‖σ(f(x;W (1:i−1)))‖2. (17)

The activation functions from this point require zero-in-zero-out (ZIZO; σ(0) = 0) property to be
peeled, in addition to the Lipschitzness. Indeed, we can proceed as

‖σ(f(x;W (1:i−1)))‖2 = ‖σ(f(x;W (1:i−1)))− σ(0)‖2 ≤ ‖f(x;W (1:i−1))− 0‖2 (18)

= ‖f(x;W (1:i−1))‖2. (19)

Iteratively applying the Cauchy-Schwarz inequality and the step Eq. (19), we arrive at Eq. (9).
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D EXPERIMENTAL RESULTS ON LANGUAGE MODELING

In this section, we apply the proposed LAMP and baseline layerwise sparsities on language modeling
tasks. We note, however, that it is still unclear whether magnitude-based pruning approaches achieve
state-of-the-art results for pruning natural language processing tasks (see, e.g., Sanh et al. (2020),
for more discussions). In particular, NLP model architectures (e.g., embedding layers) and learning
pipelines (e.g., more prevalent use of pre-trained models) add more complications to model pruning,
obscuring how pruning algorithms should be fairly compared. We also note that we do not test
Uniform+ baseline for this task, as the heuristic is proposed explicitly for image classification models,
not language models (Gale et al., 2019).

Model. We consider the simplified version of Transformer-XL (Dai et al., 2018) architecture, which
has six self-attention layers (original has 16) and removed some regularizing heuristics, such as
exponential moving average and cosine annealing. Similar to the setting of Sanh et al. (2020), we
focus on pruning self-attention layers of the model (approximately 7.57M parameters).

Optimizer. We use AdamW (Loshchilov & Hutter, 2019) with learning rate 0.0003, following the
PyTorch default setup for other hyperparameters: ~β = (0.9, 0.999), wd = 0.01, ε = 10−8. We use
batch size 20 and maximum sequence length 70. We train the initial unpruned model for 200,000
iterations and re-train the model after pruning for 50,000 iterations.

Datasets. We use Penn Treebank (Marcus et al., 1993) and WikiText-2 (Merity et al., 2016) datasets.

We provide the experimental results in Tables 2 and 3. We observe that LAMP consistently achieves
the near-best performance among all considered methods. We note, however, that the gain is marginal.
We suspect that this marginal-ity is due to the fact that widths of the Transformer layers are relatively
uniform compared to image classification models. We do not observe any notable pattern among the
baseline methods.

Table 2: Test perplexities of Transformer-XL iteratively pruned and trained on Penn Treebank. Bold
denotes the pruning scheme with accuracy within one standard deviation from the highest.

Surv. weights 26.2% 21.0% 16,8% 13.4% 10.8% 8.59% 6.87% 5.50% 4.40% 3.52%

Global 71.38±0.39 71.78±0.34 73.23±0.38 73.67±0.10 76.23±0.43 78.21±0.31 80.92±0.10 83.98±0.36 88.62±0.25 92.30±0.54

Uniform 71.57±0.46 71.74±0.39 73.27±0.36 74.18±0.34 76.98±0.41 79.25±0.29 81.79±0.13 84.95±0.35 89.41±0.39 92.44±0.69

Erdős-Rényi ker. 71.53±0.33 71.94±0.20 73.56±0.31 74.43±0.20 77.15±0.33 79.38±0.26 82.03±0.13 85.01±0.38 89.34±0.31 92.75±0.55

LAMP (Ours) 71.51±0.38 71.79±0.24 73.11±0.37 73.74±0.21 76.23±0.27 78.27±0.18 80.73±0.09 83.60±0.35 88.06±0.24 91.24±0.38

Table 3: Test perplexities of Transformer-XL iteratively pruned and trained on WT-2. Bold denotes
the pruning scheme with accuracy within one standard deviation from the highest.

Surv. weights 26.2% 21.0% 16,8% 13.4% 10.8% 8.59% 6.87% 5.50% 4.40% 3.52%

Global 87.62±0.28 90.43±0.58 91.35±0.21 94.65±0.30 96.34±0.35 100.07±0.48 103.56±0.48 107.95±0.74 112.20±0.34 117.03±0.63

Uniform 87.88±0.26 90.46±0.69 91.58±0.29 95.01±0.21 96.72±0.79 100.83±0.32 104.25±0.28 108.31±0.53 112.71±0.25 117.01±0.50

Erdős-Rényi ker. 88.01±0.23 90.62±0.64 91.99±0.28 95.40±0.36 97.13±0.72 100.83±0.38 104.49±0.51 108.51±0.90 112.56±0.47 116.69±0.34

LAMP (Ours) 87.73±0.26 90.76±0.54 91.47±0.33 94.58±0.30 96.10±0.53 99.62±0.19 103.01±0.22 106.60±0.46 110.87±0.63 115.31±0.64
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E DETAILED EXPERIMENTAL RESULTS (WITH STANDARD DEVIATIONS)

Table 4: Test accuracies of VGG-16 iteratively pruned and trained on CIFAR-10. Bold denotes the
pruning scheme with accuracy within one standard deviation from the highest.

Surv. weights 6.87% 4.40% 2.81% 1.80% 1.15% 0.74% 0.47% 0.30% 0.19% 0.12%

Global 91.30±0.23 90.80±0.23 89.28±0.30 85.55±2.38 81.56±3.73 54.58±22.07 41.91±18.63 31.93±21.24 21.87±21.21 11.72±2.29

Uniform 91.47±0.19 90.78±0.12 88.61±1.09 84.17±4.46 55.68±12.20 38.51±24.83 26.41±8.83 16.75±6.62 11.58±2.79 9.95±0.28

Uniform+ 91.54±0.19 91.20±0.28 90.16±0.12 89.44±0.15 87.85±0.26 86.53±0.05 84.84±0.41 82.41±0.44 74.54±5.41 24.46±14.98

Erdős-Rényi ker. 92.34±0.25 91.99±0.14 91.66±0.29 91.15±0.24 90.55±0.19 89.51±0.50 88.21±0.38 86.73±0.25 84.85±0.28 81.50±0.42

LAMP (Ours) 92.24±0.24 92.06±0.21 91.71±0.30 91.66±0.21 91.07±0.40 90.49±0.21 89.64±0.32 88.75±0.29 87.07±0.37 84.90±0.59

Table 5: Test accuracies of ResNet-20 iteratively pruned and trained on CIFAR-10. Bold denotes the
pruning scheme with accuracy within one standard deviation from the highest.

Surv. weights 20.97% 13.42% 8.59% 5.50% 3.52% 2.25% 1.44% 0.92% 0.59% 0.38%

Global 87.48±0.28 86.97±0.39 86.29±0.23 85.02±0.35 83.15±0.33 80.52±0.36 76.28±0.50 70.69±0.32 47.47±11.13 12.02±3.77

Uniform 87.24±0.28 86.70±0.20 86.09±0.21 84.53±0.34 82.05±0.23 77.19±2.36 64.24±14.50 47.97±2.91 20.45±8.73 13.35±2.66

Uniform+ 87.30±0.29 87.00±0.23 86.27±0.13 85.00±0.15 83.23±0.19 80.40±0.31 76.40±0.45 69.31±1.27 52.06±2.53 20.19±8.44

Erdős-Rényi ker. 87.63±0.10 87.49±0.31 86.83±0.27 85.84±0.23 84.08±0.34 81.76±0.37 78.70±0.25 74.40±0.52 66.42±1.46 50.90±3.28

LAMP (Ours) 87.54±0.37 87.12±0.11 86.56±0.21 85.64±0.26 84.18±0.23 81.56±0.26 78.63±0.50 74.20±0.81 67.01±0.92 51.24±8.48

Table 6: Test accuracies of DenseNet-121 iteratively pruned and trained on CIFAR-10. Bold denotes
the pruning scheme with accuracy within one standard deviation from the highest.

Surv. weights 5.50% 4.40% 3.52% 2.82% 2.25% 1.80% 1.44% 1.15% 0.92% 0.74%

Global 90.16±0.36 89.52±0.36 88.83±0.44 88.00±0.43 86.85±0.47 85.32±0.58 77.68±8.01 45.30±27.75 49.65±21.88 20.96±19.49

Uniform 90.24±0.11 89.50±0.13 88.44±0.19 87.94±0.45 86.83±0.41 85.00±1.54 82.16±3.37 70.13±13.69 66.46±18.72 48.71±21.42

Uniform+ 90.25±0.18 89.70±0.20 89.03±0.17 88.22±0.27 87.40±0.41 86.26±0.44 84.55±0.45 81.87±0.77 69.25±19.28 58.91±8.26

Erdős-Rényi ker. 90.21±0.29 89.79±0.29 88.92±0.07 88.20±0.23 87.25±0.36 86.22±0.30 84.11±0.50 81.82±0.90 59.06±25.61 59.07±25.70

LAMP (Ours) 90.89±0.17 90.11±0.13 89.72±0.26 89.12±0.35 88.39±0.26 87.75±0.18 86.53±0.33 85.13±0.31 82.92±0.66 79.23±1.29

Table 7: Test accuracies of EfficientNet-B0 iteratively pruned and trained on CIFAR-10. Bold denotes
the pruning scheme with accuracy within one standard deviation from the highest.

Surv. weights 41.0% 26.2% 16.8% 10.7% 6.87% 4.40% 2.82% 1.80% 1.15% 0.74%

Global 89.66±0.21 89.55±0.30 88.80±0.32 87.64±0.35 84.36±0.59 79.25±0.67 11.09±2.14 10.62±1.38 10.00±0.00 10.00±0.00

Uniform 88.99±0.31 88.26±0.32 86.48±0.38 83.40±0.38 23.65±28.16 10.83±0.83 10.00±0.00 10.00±0.00 10.00±0.00 10.00±0.00

Uniform+ 89.18±0.35 88.03±0.19 86.71±0.40 84.16±0.65 36.64±35.77 10.45±0.67 10.00±0.00 10.19±1.62 10.00±0.00 10.00±0.00

Erdős-Rényi ker. 89.54±0.17 90.09±0.09 90.01±0.31 89.62±0.26 88.82±0.39 87.08±0.32 84.72±0.24 81.53±0.44 51.31±25.77 13.40±3.04

LAMP (Ours) 89.52±0.51 89.95±0.20 89.97±0.23 90.21±0.28 89.91±0.14 89.79±0.33 89.30±0.08 88.51±0.37 86.79±0.73 65.76±20.07

Table 8: Test accuracies of VGG-16 iteratively pruned and trained on SVHN. Bold denotes the
pruning scheme with accuracy within one standard deviation from the highest.

Surv. weights 6.87% 4.40% 2.82% 1.80% 1.15% 0.74% 0.47% 0.30% 0.19% 0.12%

Global 95.75±0.17 95.46±0.10 94.91±0.48 61.06±30.93 65.06±11.01 49.51±24.23 26.83±19.39 15.37±5.95 7.79±1.60 14.72±3.65

Uniform 95.78±0.16 95.52±0.10 95.35±0.14 94.98±0.19 93.26±1.42 64.32±15.03 29.54±10.21 19.63±7.54 13.73±6.97 17.94±4.85

Uniform+ 95.70±0.13 95.68±0.17 95.42±0.11 95.05±0.15 94.57±0.16 93.87±0.10 93.07±0.16 92.25±0.25 74.88±25.75 17.67±14.33

Erdős-Rényi ker. 96.00±0.09 95.89±0.11 95.59±0.15 95.47±0.10 95.16±0.08 94.81±0.16 94.30±0.18 93.74±0.27 93.48±0.27 93.06±0.25

LAMP (Ours) 95.98±0.15 95.87±0.13 95.74±0.10 95.58±0.07 95.35±0.18 95.16±0.08 94.71±0.18 94.24±0.17 94.05±0.15 93.97±0.19

Table 9: Test accuracies of VGG-16 iteratively pruned and trained on CIFAR-100. Bold denotes the
pruning scheme with accuracy within one standard deviation from the highest.

Surv. weights 13.42% 8.59% 5.50% 3.52% 2.25% 1.44% 0.92% 0.59% 0.38% 0.24%

Global 68.02±0.22 67.20±0.13 66.82±0.25 65.68±0.28 63.25±0.37 60.18±0.33 53.52±1.97 33.66±18.02 7.80±2.97 4.29±6.04

Uniform 67.92±0.23 67.43±0.37 66.41±0.54 63.94±0.71 57.62±2.01 48.88±4.56 32.60±14.16 14.99±8.65 3.94±3.67 3.35±2.80

Uniform+ 67.94±0.32 67.41±0.16 66.37±0.09 65.51±0.33 63.43±0.35 60.76±0.29 57.93±0.39 55.40±0.22 51.90±1.30 33.35±13.08

Erdős-Rényi ker. 68.07±0.42 67.92±0.36 67.45±0.22 67.09±0.31 65.86±0.18 64.15±0.31 62.04±0.37 60.07±0.35 58.58±0.58 55.88±0.51

LAMP (Ours) 68.07±0.58 68.22±0.27 67.84±0.31 67.37±0.28 66.35±0.53 65.25±0.23 63.46±0.28 62.37±0.28 60.77±0.42 58.05±0.42

17



Published as a conference paper at ICLR 2021

(a) Global (b) Erdös-Rényi kernel (c) LAMP (Ours)

Figure 6: Layerwise survival rates of one-shot pruned ResNet-50 trained on ImageNet dataset. The
global survival rates are {80.0%, 41.0%, 21.0%} (from lighter to darker).

F PEAKS AND CRESTS OF LAMP SPARSITY

In this section, we compare the layerwise sparsity discovered by LAMP (and other non-uniform
baselines) to the sparsity discovered by AMC (He et al., 2018), which uses a reinforcement learning
agent to explicitly search for the optimal layerwise sparsity. In particular, we focus on whether the
“peaks and crests” phenomenon observed for AMC-discovered layerwise sparsity also takes place
in the layerwise sparsity induced by LAMP: He et al. (2018) observe that the layerwise sparsity
of ResNet-50 (trained on ImageNet) and pruned by AMC exhibits what they call peaks and crests,
i.e., the sparsity oscillates between high and low periodically; see Figure 3 of He et al. (2018). The
authors speculate that such phenomenon takes place, because AMC automatically learns that 3× 3
convolution has more redundancy than 1× 1 convolution and can be pruned more.

To see if LAMP also automatically discovers such “peaks and crests,” we prune the ImageNet-
pretrained ResNet-50 model with one-shot LAMP, global MP, and Erdös-Rényi kernel. The layerwise
survival ratios are reported in Fig. 6. From the figure, we observe that LAMP also discovers different
sparsity ratio for 1 × 1 convolution and 3 × 3 convolution layers; 3 × 3 convolutional filters are
pruned more. Such pattern is more noticeable in the later layers, where more weights are pruned. In
other words, LAMP discovers a layerwise sparsity similar to that of AMC, even without training a
reinforcement learning agent. We note, however, a slight discrepancy in the setting: AMC reports the
sparsity from an iterative pruning setup, and the results in Fig. 6 are from a one-shot pruning setup.

In the model pruned with global MP, such pattern does not stand out. In the model pruned with
Erdös-Rényi kernel method, peaks and crests are extremely evident, even more than those discovered
by AMC.
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Figure 7: Performance of LAMP and baselines on VGG-16 trained on CIFAR-10 dataset, using the
training schedules from Liu et al. (2019).

G LAMP WITH AN EXTENSIVE TRAINING SCHEDULE

In this section, we depart from the standardized training setup in the main text which uses Adam with
weight decay Loshchilov & Hutter (2019), without any learning rate decay. Instead, we validate the
effectiveness of LAMP using the optimizer and hyperparameters extensively tuned for the maximum
performance of the model. In particular, we use configurations from Liu et al. (2019) for training
VGG-16 on the CIFAR-10 dataset. The experimental result is reported in Fig. 7. Similar to the
experiments appearing in the main text, we observe that LAMP continues to outperform or match the
performances of the baselines.
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