
Under review as submission to TMLR

A persistent homology-based algorithm for unsupervised
anomaly detection in time series

Anonymous authors
Paper under double-blind review

Abstract

In this article, we propose a new algorithm for unsupervised anomaly detection in univariate
time series, based on topological data analysis. It relies on delay embeddings and on the
extraction of persistent cycles from the 1-dimensional persistent homology constructed from
the distance to measure Rips filtration. This filtration makes it possible to identify 1-cycles
(i.e. loops) corresponding to recurrent patterns by leveraging density information. Points
in those cycles are considered as normal, and the algorithm can then assign an anomaly
score to any point which is its distance to the normal set. In this paper, we describe the
algorithm, make a theoretical study, and test it on several real-world and synthetic datasets,
showing that it is competitive with state-of-the-art anomaly detection methods.

1 Introduction

Anomaly detection in time series is an important problem in data science, with applications in many fields
such as healthcare (Ansari et al., 2017) and engineering (Woike et al., 2014). A time series is a sequence of
real numbers x = (x[i])1≤i≤n (n will always denote the length of the time series). In the context of anomaly
detection, x is assumed to be composed of a normal behavior and anomalies, i.e. points or sequences of points
that differ from the normal behavior. More precisely, in several application contexts such as industrial
monitoring or healthcare, the time series is usually assumed to be composed of some repetitive/frequent
patterns, possibly of varying lengths (think for instance of an heartbeat in ECG data) among which some
occur a large number of times (the normal ones) and some have significantly fewer occurrences (the abnormal
ones) : see Figure 1 for an illustration.

Over the past years, several unsupervised anomaly detection algorithms have been developed from different
research areas (Liu et al., 2008; Breunig et al., 2000; Goldstein & Dengel, 2012; Yeh et al., 2018; Boniol et al.,
2021; Aggarwal & Aggarwal, 2017; Sakurada & Yairi, 2014; Malhotra et al., 2015; Li et al., 2007; Munir
et al., 2018; Schölkopf et al., 1999) (see Paparrizos et al. (2022) and Schmidl et al. (2022) for a comprehensive
review). Among them, some rely on a model and use the prediction or reconstruction error as an anomaly
detector and some are based on clustering or machine learning techniques applied on the subsequences in
order to detect outliers. For instance, LOF (Breunig et al., 2000) transforms the time series into a point
cloud and studies the density of each point to assess whether or not they correspond to normal or abnormal
behaviors. Some methods aim to find subsequences that represent the normal behavior and define anomalies
as subsequences that differ from normality. The fact that the patterns can have different lengths, that there
can be multiple normal patterns and multiple occurrences of an anomaly, and noise make it difficult to
build a universal anomaly detection algorithm (Paparrizos et al., 2022). The main differences between the
approaches actually lie in the implied definition given to the notion of normality.

Topological data analysis (TDA), and more specifically persistent homology (Edelsbrunner & Harer, 2010;
Boissonnat et al., 2018) is a set of techniques derived from algebraic topology, which allows to analyze the
structure of data by constructing a sequence of simplicial complexes (a filtration). The persistence diagram
sums up when connected components, loops or higher-dimensional simplices appear and disappear when
going through the filtration. TDA has been applied to many fields (Chazal & Michel, 2021) including time
series analysis. It is particularly adapted to study structured data such as time series with a periodic behavior
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(Perea & Harer, 2015; Emrani et al., 2014; Bonis et al., 2022; Bois et al., 2022), and methods from TDA
benefit from stability theorems that guarantee a certain robustness to noise (Chazal et al., 2014; Anai et al.,
2020). The most commonly used filtrations are the Čech and the Vietoris-Rips filtrations. As those filtrations
are not robust to the presence of outliers, new variants based on the notion of distance to a measure were
introduced in Chazal et al. (2011); Buchet et al. (2016); Anai et al. (2020), along with new stability theorems.
Other relevant filtrations are defined in De Silva & Carlsson (2004); Bell et al. (2019). The authors of Anai
et al. (2020); Ueda et al. (2022); Fernández et al. (2023) explain how sequences of persistence diagrams
can be used for change detection or anomaly detection in time series. However, these methods seems more
relevant for change detection than anomaly detection as it is not designed to handle typical cases such as
punctual anomalies, multiple normal behaviors or repeated anomalies. Indeed, they consist in computing
the persistence diagram corresponding to a sequence of growing subwindows of a time series and to compare
consecutive diagrams to detect changes. Thus, when there are multiple patterns, changes would be detected
at the first occurrence of each pattern but they would often not correspond to an anomaly. In the case of a
repeated anomaly a change would only be detected at its first occurrence and the following ones would be
missed. Moreover, this methods requires to compute many persistence diagrams which can lead to a high
computation time.

In the case of periodic functions, the importance of 1-dimensional persistent homology (the study of loops in
point clouds) was theoretically studied in Perea & Harer (2015) and it was applied to time series in Emrani
et al. (2014); Perea et al. (2015) by transforming the data into a point cloud and considering the most
important loop. By extension, 1-dimensional persistent homology is also relevant to study time series with
repetitive patterns.

In a nutshell, our method consists in transforming the time series into a point cloud and extracting 1-
cycles (i.e. loops) that are considered to correspond to normal patterns of the time series. We will use the
Vietoris-Rips filtration associated to the empirical distance to a measure as described in Anai et al. (2020).
Those cycles are identified on the persistence diagram because density information is used to construct the
filtration. Once “normal cycles” have been extracted, an anomaly score is defined for each point of the
embedding as its distance to the normal cycles. The specificity of our method is that it makes a global
study of the delay embedding to find loops corresponding to whole patterns and also integrates local density
information through the choice of the filtration, that is used to distinguish normal and abnormal points by
reading the persistence diagram.

Contributions. In this paper, we apply methods from topological data analysis to unsupervised anomaly
detection in time series. Our contributions are listed below.

• We propose a model of time series that makes it possible to formally define the anomaly detection
problem. It includes the possibility of having multiple normal or abnormal behaviors, repeating
anomalies and noise. We show examples of real-life time series that fit this model.

• We present a new method for anomaly detection based on persistent homology. The method uses a
delay embedding and the Vietoris-Rips filtration associated to the empirical distance to a measure
to find 1-cycles made of dense points and identify them to the normal behavior.

• We use a property of this filtration to deal with a subset of the point cloud while keeping information
from the whole data in order to significantly decrease computation time.

• We use our model to derive an upper bound on the interleaving distance between the filtration used
in our algorithm (with discrete, noisy data with anomalies) and a filtration obtained in an ideal
situation with a continuous signal without noise or anomalies.

• We study the behavior of our algorithm with different parameters and the influence of noise, and
show that it is competitive to state-of-the-art anomaly detection methods on different real-world
datasets.
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Table 1: Notations
Notation Description

t Time
n Length of the time series.
d Dimension of the time delay embedding.
τ Delay of the time delay embedding.

x = (x[t])t∈[0,1] Signal: a continuous function defined on [0, 1].
x̂ = (x̂[i])1≤i≤n Time series: a finite uniform subsampling of x.

ni Normal atom i.
ai Abnormal atom i.

xn (resp. xa) Normal (resp. abnormal) part of the signal.
x̂n (resp. x̂a) Normal (resp. abnormal) part of the time series.

Mni
(resp. Mai

) Number of normal (resp abnormal) atoms.
ηi (resp. αi) Activations of ni (resp. ai).
kni (resp. kai) Number of occurrences of ni (resp. ai).
lni (resp. lai) Length of atom ni (resp. ai).

kn Number of normal occurrences:
∑Mni
i=1 kni .

ka Number of abnormal occurrences:
∑Mai
i=1 kai .

kx Total number of occurrences: kn + ka.
V = (Vα)α∈R+ A filtration.

V Persistent homology module corresponding to the filtration V .
Diag(V) Persistence diagram corresponding to the persistence module V.
Xd,τ or X Time delay embedding of a signal or time series x, with

dimension d and delay τ (or, in Section 2.2, a subset of E).
µB (where B ⊂ E) A probability measure on E with support included in B.

dµB ,m Distance function to the measure µB with parameter m.
di Interleaving pseudo-distance.
db Bottleneck distance.
W2 Wasserstein distance with quadratic cost.
dH Hausdorff distance.
p ∈ N Parameter of the weighted filtrations.

m = q

Card(X̂) ∈]0, 1[ (with q ∈ N) Parameter m of the DTM.
Cech[X, f, p] (where B ⊂ E) Weighted Čech filtration with parameters (X, f, p).

with function f , and parameters m, p.
Rips[X, f, p] (where B ⊂ E) Weighted Rips filtration with parameters (X, f, p).

with function f , and parameters m, p.

The article is organized as follows. in Section 2, we introduce our model of time series and our definition
the anomaly detection problem, along with the theoretical background required for the rest of the paper.
Section 3 describes our algorithm. Section 4 contains the theoretical study. In Section 5, we present the
13 state-of-the-art anomaly detection methods and real-world and synthetic datasets. In Section 6, we use
these datasets to study the behavior of our algorithm with different parameters and the influence of noise,
compare it to state-of-the-art anomaly detection methods. Note that section 2.2, 2.3 and 4.1 present already
existing objects and results. Every other sections describe new research.

2 Background and problem formulation

In this section, we give the mathematical background required to understand the studied problem and the
proposed algorithm. Notations that are used throughout the paper are listed in Table 1.
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2.1 Model and problem

In this subsection, we introduce a model for time series which makes it possible to formally define the
anomaly detection problem.

Let x = (x[t])t∈[0,1] and ε = (ε[t])t∈[0,1] be real-valued functions defined on [0, 1]. We call x the signal and
ε is called the noise.

Remark 1. We will always use the term signal for continuous real-valued functions, and time series for
finite sequences of real numbers.

We use a convolutional sparse coding model (Papyan et al., 2017) with an additional hypothesis to describe
x as a sequence of atoms, which are either normal or abnormal. Formally, we assume that x can be written
in the following way:

x =
Mn∑
i=1

ni ∗ ηi +
Ma∑
i=1

ai ∗αi. (1)

The ni and ai are respectively normal and abnormal atoms of length lni
< 1 (resp. lai

), i.e. contin-
uous functions on [0, 1] with support [0, lni ] (resp. [0, lai ]) and such that ni(0) = ni(lni) = 0 (resp.
ai(0) = ai(lai) = 0). There are Mn normal atoms and Ma abnormal atoms. The ηi and αi are the
activations: binary functions on [0, 1] that take the value 1 only a finite number of times. Thus, ni ∗ ηi is a
signal where an occurrence of ni starts at each time t where ηi[t] = 1. For each i, the number of occurrences
of atom ni (resp. ai) is denoted by kni

= ||ηi||0 (resp. kai
= ||αi||0), where ||.||0 is the number of non-zero

values of a function or vector.

Finally, we define the normal and abnormal parts of the signal as

xn =
Mn∑
i=1

ni ∗ ηi and xa =
Ma∑
i=1

ai ∗αi

along with the numbers kn =
∑Mni
i=1 kni

, ka =
∑Mai
i=1 kai

, and kx = kn + ka.

Let n > 1 ∈ N. In the rest of the paper, we will always denote by ŝ the uniform subsampling of size n of
any given signal s = (s[t])t∈[0,1], that is ŝ = (ŝ[j])1≤j≤n, where ŝ[j] = s[ j−1

n−1 ]. All the above signals, atoms,
activations and quantities can be defined the same way in the discrete case starting from

x̂ =
Mn∑
i=1

n̂i ∗ η̂i +
Ma∑
i=1

âi ∗ α̂i.

With this model, we can formally define the anomaly detection problem.

Definition 1 (Anomaly detection problem). The anomaly detection problem consists in finding the set of
integers i ∈ [1, n] such that x̂a[i] ̸= 0, which means finding all the discrete abnormal activations and atom
lengths.

We now make some assumptions related to the model in the context of anomaly detection. The first
assumption states that all the ni ∗ ηi and ai ∗αi have disjoint supports, which implies that each point x[t]
is either normal or abnormal.
Assumption 1. if we denote by (ζi)1≤i≤Mn+Ma the list of all the activations ηi and αi, the assumption is:

∀i,∀t ∈ [0, 1], ζi[t] ̸= 0⇒ ∀j ̸= i,∀s ∈ [t, t+ lζi ], ζj [s] = 0.
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Figure 1: An example time series, with normal patterns in green and red (and the null parts in dark blue)
and three abnormal ones (in blue, orange and purple), with Gaussian noise of amplitude 0.1.

Assumption 2. The observed data ŷ (the time series) is a uniform subsampling of a noisy version of the
signal x: ŷ = x̂ + ε.

Assumption 3. For the anomaly detection problem, we will assume that max
i

(kai) is significantly lower
than min

i
(kni

), which means that anomalies are rare atoms.

Remark 2. • Assumption 1 implies that all the atoms start and end at zero. This will be crucial
for our method as we will transform the signal into a curve on which we will look for loops. The
assumption ensures that each pattern corresponds to at least one loop.

• Assumption 2 corresponds to the situation where a quantity assumed to vary continuously is mea-
sured at regular intervals, with noise corresponding to errors or perturbations. Note that the only
assumption we will make on the noise is that ||ε||∞ is small compared to the variations of the signal.
Thus, it could represent small variations at each occurrence of an atom, of noise due to the data
acquisition process. Moreover, introducing ε also makes it possible to study the problem without the
disjoint supports assumption as long as the overlap between supports causes a small enough change
in the infinity norm of x.

• Assumption 3 corresponds to the specificity of the anomaly detection problem (compared, for example,
to the pattern detection problem).

Our model is illustrated on Figure 1. All the atoms start and end at zero and have disjoint supports. The
green and red ones each occur ten times: they are the normal atoms. The blue one occurs twice, the orange
and purple one each occur once. Note that atoms can have significantly different lengths.

Figure 2 show two example of time series that fit our model, from real-world datasets included in the TSB-
UAD suite. The first one comes from the ECG dataset, which is a standard electrocardiogram dataset
with anomalies that represent ventricular premature contractions. This shows that our model is relevant
to study structured activities that present repetitive behaviors over time where anomalies in the real-world
manifest as anomalies on the signal (here: pathologies cause premature ventricular contractions that appear
as anomalies on the ECG). The second one comes from the NAB dataset, which is composed of labeled
real-world and artificial time series including AWS server metrics, online advertisement clicking rates, real
time traffic data, and a collection of Twitter mentions of large publicly-traded companies.

2.2 Topological data analysis background

In this subsection, we introduce the objects and results from TDA (mostly from Anai et al. (2020)) that
will be used in the rest of the paper. See Boissonnat et al. (2018); Edelsbrunner & Harer (2010); Chazal &
Oudot (2008); Chazal et al. (2012; 2014); Anai et al. (2020) for more complete background.
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Figure 2: Two example of real-world time series that fit our model, with anomalies in red. Left: Time series
from the ECG dataset. Right: Time series from the NAB dataset. See Paparrizos et al. (2022) for details
on the datasets.

2.2.1 Filtrations and persistence modules

For the rest of this paper, let Rd be endowed with the Euclidean norm || · ||.

Definition 2 (Simplicial complexes). A k-simplex on a set X ⊂ Rd is an unordered tuple σ = [x0, ..., xk] of
k+ 1 distinct elements of X. The elements x0, ..., xk are called the vertices of σ. If each vertex of a simplex
ρ is also a node of σ, then ρ is called a face of σ. A simplicial complex K is a set of simplices such that any
face of a simplex of K is a simplex of K.

Definition 3 (Filtrations and interleavings). A filtration is a family V = (Vα)α∈R+ of topological spaces or
simplicial complexes such that α ≤ β ⇒ Vα ⊂ Vβ. For ϵ ≥ 0, two filtrations V and W are called ϵ-interleaved
if for all α ≥ 0, Vα ⊂Wα+ϵ and Wα ⊂ Vα+ϵ. The interleaving pseudo-distance is then defined as

di(V,W ) = inf{ϵ ≥ 0|V and W are ϵ-interleaved}.

In our algorithm, the sets Vα will be simplicial complexes in Rd.

In the case of a filtration of simplicial complexes over a finite set, only a finite number of values of α
correspond to a strict inclusion in the filtration. We call filtration value of a simplex σ the lowest α such
that σ ∈ Vα.

Definition 4 (Persistence modules). Let K be a field. A persistence module is a family V = (Vb, (vba)0≤a≤b)
where the Vb are K-vector spaces and the vba are linear maps Va → Vb such that for all real numbers
a ≤ b ≤ c, vaa = Id and vba ◦ vcb = vca.

Definition 5 (Morphisms and interleavings of persistence modules). Let ϵ ≥ 0. An ϵ-morphism between two
persistence modules V and W is a family of linear maps ϕ = (ϕα : Vα →Wα+ϵ)α∈R+ such that the following
diagram commutes for all a ≤ b :

Va Vb

Wa+ϵ Wb+ϵ

vb
a

ϕa ϕb

vb+ϵ
a+ϵ

If ϵ = 0 and if all the ϕα are isomorphisms, ϕ is called an isomorphism of persistence modules.

An ϵ-interleaving between two persistence modules V and W is a pair (ϕ, ψ) of morphisms such that the
following diagrams commute for all a ∈ R:
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Va Va+2ϵ Va+ϵ

Wa+ϵ Wa Wa+2ϵ

va+2ϵ
a

ϕa ψa+ϵϕa+ϵ ψa

wa+2ϵ
a

The interleaving pseudo-distance is then defined as

di(V,W) = inf{ϵ ≥ 0|Vand Ware ϵ-interleaved}.

2.2.2 Persistent homology

Applying the (singular or simplicial) homology functor to a filtration and its inclusion maps gives a
persistence module of homology groups V = (Hi(Vα))α∈R+ for each dimension i ∈ [0, d]. If for all a ≤ b,
vba is of finite rank, then V is called q-tame and V can be decomposed into a direct sum of interval
modules

⊕
j I[αl(j),αj), where the [αl(j), αj) are left closed, right open intervals and each I[αl(j),αj) is a basic

persistence module that represent a feature that appears at index αl(j) and disappears at index αj (see
Chazal et al. (2012) for more details). In this case, the persistence diagram of V can be defined. The
persistence diagram Diag(V) of a i-dimensional persistent homology module V is a multiset {(αl(j), αj)},
such that a new homology class that appears in Hi(Vαl(j)) disappears in Hi(Vαj ) (αl(j) is called its birth
date and αj its death date, if the component never dies, αj = ∞). We call αj − αl(j) the persistence of
the point. By convention and to be able to define the bottleneck distance, we include every points (α, α)
to the diagram, with infinite multiplicity. 0-dimensional homology classes are connected components, and
1-dimensional classes are loops.

Definition 6. The bottleneck distance between two persistence diagrams D and D′ is defined as:

db(D,D′) = inf
γ∈Γ(D,D′)

sup
(α,β)∈D

||(α, β)− γ((α, β))||∞

where Γ(D,D′) is the set of bijections from D to D′, and where ||(α, β) − (α′, β′)||∞ = |α − α′| when
β = β′ = +∞.

Note that if two filtrations are ϵ-interleaved, then the corresponding persistence modules are also
ϵ-interleaved. Moreover, the isometry theorem (Chazal et al., 2012) states that di(V,W) =
db(Diag(V),Diag(W)) for q-tame modules V and W. We will implicitly use this in Section 4, as a bound on
the interleaving distance between filtrations induces a bound on the bottleneck distance between persistence
diagrams, which are the objects studied by our algorithm.

2.2.3 DTM filtrations

Let X ⊂ Rd, f : X → R+ and p ≥ 1 be a real number. For x ∈ X and α ∈ R+, we define rx(α) as:

rx(α) =
{

−∞ if α < f(x)
(αp − f(x)p)

1
p otherwise

or rx(α) = α for p = ∞. Now, let us denote by B̄f (x, α) the closed ball B̄(x, rx(α)) (by convention,
a ball is empty if its radius is −∞). We can now define the weighted Čech filtration as a union of growing balls.

Definition 7. With the above notations, the weighted Čech filtration with parameters (X, f, p), Cech[X, f, p],
is defined by:

Cech[X, f, p]α =
⋃
x∈X

B̄f (x, α).
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Let N (Cech[X, f, p]) = (N (Cech[X, f, p]α))α≥0 denote the nerve of the above cover of X by closed Euclidean
balls, i.e. the filtration of simplicial complexes whose (i− 1)-simplices (with i− 1 ≤ d) are defined by

[x1, . . . , xi] ∈ N (Cech[X, f, p]α) ⇐⇒
i⋂

j=1
B̄f (xj , α) ̸= ∅.

The persistent nerve theorem (Chazal & Oudot (2008), Lemma 3.4) states that the persistence (singular)
homology module associated to the weighted Čech filtration is isomorphic to the persistence (simplicial)
homology module associated to its nerve. The latter is computable in practice (Edelsbrunner & Harer,
2010; Boissonnat et al., 2018).

Definition 8. With the above notations, the weighted Vietoris-Rips filtration with parameters (X, f, p),
Rips[X, f, p] is the flag complex of N (Cech[X, f, p]), i.e. the filtered simplicial complex such that each vertex
(or 0-simplex) x ∈ X has filtration value f(x), and such that for 2 ≤ i ≤ d+ 1:

[x1, . . . , xi] ∈ Rips[X, f, p]α ⇐⇒ ∀(j, k), B̄f (xj , α) ∩ B̄f (xk, α) ̸= ∅.

The Vietoris-Rips complex is easier to compute than the Čech complex in practice because one only needs
to know the filtration values of the 0 and 1 simplices to characterize the whole filtration. The following
proposition gives this value in the case p = 1, which we will use in this paper (see Anai et al. (2020) for
values when p = 2 or p =∞).

Proposition 1 (Anai et al. (2020)). Let x, y ∈ X. The filtration value of [x] in Rips[X, f, 1] is f(x), and
the filtration value of [x, y] in Rips[X, f, 1] is:{

max(f(x), f(y)) if ||x− y|| < |f(x)− f(y)|
||x−y||+f(x)+f(y)

2 otherwise.

In the rest of this paper, the function f will always be a distance to measure function. Those functions were
introduced in Anai et al. (2020) to make weighted filtrations robust to outliers.

Definition 9 (DTM). Let µ be a probability measure on Rd and let m ∈ [0, 1[. Let δµ,m be the function
defined on Rd by δµ,m(x) = inf

{
r > 0 | µ(B̄(x, r)) > m

}
. The distance to measure (DTM) µ with parameter

m is the function defined on Rd by:

dµ,m(x) =

√
1
m

∫ m

0
δ2
µ,u(x)du.

If X̂ is a finite subset of Rd, we denote by µX̂ the empirical measure on X̂. If m = q

Card(X̂) with q ∈ N, then:

∀x ∈ Rd, dµX̂ ,m
(x) =

√√√√1
q

q∑
i=1
||x−NN (i)(x)||2

where NN (i)(x) is the ith nearest neighbor to x. The DTM Čech and Vietoris-Rips filtrations for a measure
µ and a parameter m are defined as the filtrations Cech[X, dµ,m, p] and Rips[X, dµ,m, p].

2.3 Delay embeddings

A delay embedding is a way of transforming a signal/time series into a curve/point cloud of chosen dimension
d. Delay embeddings come from the field of dynamical systems, with strong theoretical guaranties (Takens,
1981; Sauer et al., 1991).
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Definition 10. Using the above notations, we define the delay embedding of a signal s with dimension d ≥ 2
and delay τ ∈ R as the following curve in Rd:

Sd,τ = (Sd,τ [t])t∈[0,1−(d−1)τ ] = ((s[t], s[t+ τ ], . . . , s[t+ (d− 1)τ ]))t∈[0,1−(d−1)τ ].

The delay embedding of the time series ŝ with dimension d ≥ 2 and delay τ̂ ∈ N is the following point cloud
in Rd:

Ŝd,τ̂ = (Ŝd,τ̂ [i])1≤i≤n−(d−1)τ̂

= ((ŝ[i], ŝ[i+ τ̂ ], . . . , ŝ[i+ (d− 1)τ̂ ]))1≤i≤n−(d−1)τ̂

=
((

s
[

i

n− 1

]
, s
[
i+ τ̂

n− 1

]
, . . . , s

[
i

n− 1 + (d− 1) τ̂

n− 1

]))
0≤i≤n−1−(d−1)τ̂

.

Note that if τ = τ̂
n−1 then Ŝd,τ̂ ⊂ Sd,τ . In the rest of the paper, we fix d and τ̂ for time series and use d and

τ = τ̂
n−1 for signals. When there is no ambiguity, we use S and Ŝ instead of Sd,τ and Ŝd,τ̂ .

In the following sections, we will use the embeddings X,Xn, Xa of the signals x,xn,xa, the embeddings
X̂, X̂n, X̂a of the time series x̂, x̂n, x̂a, and their noisy versions (Y = X + E being the notation for the
embedding of the noisy signal y = x + ε). Figure 3 shows a delay embedding of the time series from Figure
1. Each colored loop on Figure 3 corresponds to the atom of the same color on Figure 1. The presence
of noise makes loops corresponding to normal atoms (in green and red) thicker, as these atoms have more
occurrences.

3 Method

In this section, we describe our algorithm for unsupervised anomaly detection. We start by explaining the
main ideas behind the algorithm, and then describe its four steps: compute the DTM Rips filtration of a
subset of the delay embedding, identify the normal 1-cycles, extract them, and compute the anomaly scores.
We use the above notations for all parameters and mathematical objects.

3.1 Motivation

The solution to the anomaly detection problem described in Section 2 is a binary vector of length n: each
point ŷ[i] of the time series is either normal or abnormal. Our algorithm, like most anomaly detection
algorithms (Paparrizos et al., 2022; Schmidl et al., 2022), works by giving an anomaly score to each ŷ[i]
which should be high if the point is abnormal. A binary answer can then be obtained by choosing a
threshold over which points are considered abnormal. We do not give a specific method to choose the
threshold, as it depends on the application.

Our algorithm works by studying a delay embedding Ŷ of ŷ to identify a set of points as normal. Then,
each point of Ŷ is given an anomaly score which is its distance to the set of normal points. Finally, we get
an anomaly score for ŷ[i] by averaging the scores of all points in Ŷ of which ŷ[i] is a coordinate.

The idea behind our algorithm is that, if we consider our model of signals from Section 2 and if (d− 1)τ is
small enough, Assumption 1 implies that the embedding of each occurrence of atom should starts and ends
at (0, . . . , 0), so it has at least one loop. 1-dimensional persistent homology can be used to detect those
loops in Ŷ as homology classes of 1-cycles. Each point from a normal atom ni will have kni occurrences
and each point from an abnormal atom ai will have kai occurrences, so if max(kai) < q ≤ min(kni) (see
Assumption 3), then dµŶ ,

q
n−(d−1)τ̂

should be close to zero for normal points and strictly higher for abnormal
points, which would make it possible to discriminate the corresponding 1-cycles on the persistence diagram,

9
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Figure 3: Delay embedding of the time series from Figure 1 (PCA in 3D), with d = 10 and τ̂ = 4. Colors
corrrespond to the colors of atoms on Figure 1.

as their birth date will be different. Our set of normal points is then the set of 1-cycles detected as normal.

Remark 3. One could argue that using 1-cycles is useless because points could be studied individually using
their filtration value (i.e. the birth dates on the 0-dimensional persistence diagram) which is the opposite
of a measure of the density of Ŷ around each point. This approach would then be similar to the LOF
algorithm (Breunig et al., 2000). However, in practice, data do not fit our ideal model (there can be noise,
differences between occurrences of the same atoms or non-disjoint supports) and there is no way to be certain
that max(kai) < q ≤ min(kni) so the filtration values can take a range of values and choosing a threshold
would be hard. Moreover, an abnormal atom with slow variations will give dense points in Ŷ which would
make the 0D approach or LOF fail. Considering 1D persistent homology and considering only cycles with a
high persistence makes the choice of normal points easier by focusing on a few cycles (and thus a few birth
dates) corresponding to structured components of Ŷ . It also makes it possible to eliminate atoms with slow
variations (because the corresponding cycles have low persistence).

3.2 Algorithm description

The input of our algorithm is a time series y. There are five parameters that will be described below:
d, τ̂ , npoints, q, ndiag.

3.2.1 Delay embedding, subsampling and DTM Rips filtration

We start by choosing a dimension d and a delay τ̂ and computing the delay embedding Ŷ = Ŷd,τ̂ . As point
clouds can be very large (they have n− (d− 1)τ̂ points), computing persistent homology can be too long for
the algorithm to be used in practice (O(n3) in the worst case for 1D persistent homology and cycle extraction

10
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(Boissonnat et al., 2018; Edelsbrunner et al., 2002)). To solve this problem, we choose a number npoints
and take a subsample Ỹ of Ŷ made of npoints points. In practice, we use a greedy method: we start with a
random point and, until we have npoints points, add the furthest one to the set of already chosen points.

We then choose an integer q > 1 and set the DTM parameter m to m = q

Card(Ŷ ) ∈]0, 1[ and compute the
filtration V = Rips[Ỹ , dµŶ ,m

, 1] with p = 1. We chose to always use p = 1 because among the three possible
values for which Anai et al. (2020) provides explicit formulas for the filtration values (1, 2, and ∞), p = 1
gives the strongest theoretical guarantees (see section 4) and the highest value to edges, which can give
more persistent cycles that are easier to identify on the diagram.

Remark 4. Note that the filtration values of points in Ỹ are their original values from dµŶd,τ̂
,m (subsampling

does not change the fact that V is a filtration). This is important to keep the density information from the
whole point cloud when subsampling (otherwise, the effect of the number of occurrences of normal atoms
would disappear).

3.2.2 Identifying normal cycles

The second step consists in identifying normal 1-cycles by reading the persistence diagram, and extracting
those cycles. Let Diag(V) be the persistence diagram corresponding to the filtration V . To identify normal
cycles, we propose an algorithm that relies on the choice of two thresholds: the persistence threshold (we
focus on the most persistent points, which describe important structures), and the birth date threshold
(among those points, we consider those with a birth date above the cycle to be abnormal).

To choose the persistence threshold, we sort the persistence of all points by decreasing order in a list L,
find the index i such that L[i] − L[i + 1] is maximal, and keep points corresponding to indices from 1 to
i+ndiag, where ndiag is a chosen parameter. See Algorithm 1 for a formal description. We will use ndiag ≥ 2
in practice, to keep at least three points and thus to be able to compare at least two differences in birth dates.

Algorithm 1 PersistenceThreshold (lists start at index 1)
Require: Diag(V), ndiag

1: L← [d-b for (b,d) in Diag(V)]
2: Sort L in decreasing order.
3: N ← length(L)
4: Diffs← [L[i]− L[i+ 1] for i = 1 . . . N − 1]
5: ithr ← argmax(Diffs)
6: return L[ithr+ndiag ]+L[ithr+ndiag+1]

2

We choose the birth date threshold as follows: we take the points that are above the persistence threshold
and the point with minimal birth date, and sort their birth dates by increasing value in a list L′ (indices
start at 1). Let idiff be the index such that the birth date difference is maximal and ipers the index of the
most persistent point. If ipers ≤ idiff , then the birth date threshold is set to the birth date of L′[idiff ]
(this is the typical case where we look for the highest difference). If idiff = 1, we consider that all the
persistent points are close from one another and are all normal cycles, so we set the threshold to +∞. If
1 < idiff < ipers, we set the threshold to the birth date of L[ipers], assuming that the most persistent cycle
is always normal. See Algorithm 2 for a formal description.

Finally, we keep all points above the persistence threshold and whose birth dates are below the birth date
threshold.

If there are no 1-cycles on the diagram, we take an arbitrary “cycle" as normal. In this case, one should
look for different parameters d and τ̂ to make the point cloud less dense.

11
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Algorithm 2 BirthDateThreshold (lists start at index 1)
Require: Diag(V), ndiag

1: L← [(b, d) for (b, d) in Diag(V)]
2: (bmin, dbmin)← min[b for (b, d) in L] for the lexicographic order.
3: p← PersistenceThreshold(Diag(V), ndiag)]
4: L′ ← [(bmin, dbmin

)] + [(b, d) for (b, d) in L if d− b ≥ p]
5: Sort L′ using the lexicographic order.
6: L′

birth ← [b for (b, d) in L′]
7: L′

pers ← [d− b for (b, d) in L′]
8: N ′ ← length(L′)
9: Diffs′

birth ← [L′
birth[i+ 1]− L′

birth[i] for i = 1 . . . N ′ − 1]
10: Diffs′

pers ← [L′
pers[i+ 1]− L′

pers[i] for i = 1 . . . N ′ − 1]
11: idiff ← argmax(Diffs′

birth)
12: ipers ← argmax(Diffs′

pers)
13: if idiff == 1 then
14: return +∞
15: end if
16: if 1 < idiff < ipers then
17: return L′

birth[ipers]+L′
birth[ipers+1]

2
18: else
19: return L′

birth[idiff ]+L′
birth[idiff +1]

2
20: end if

Figure 4: Left: persistence diagram of the DTM-filtration of the delay embedding from Figure 3, with
persistence and birth date thresholds in blue.. Right: subsampling of the delay embedding with 200 points,
and cycles detected as normal (in green and red).

Figure 4 illustrates our algorithm applied to the time series from Figure 1 (with delay embedding from
Figure 3). We used q = 10, ndiag = 2 and npoints = 200. On this example, the birth date threshold is
around 2.5, so the two points in the upper left corner are detected as normal (among the 5 most persistent
ones).

3.2.3 Cycle extraction

The cycle extraction step consists in computing a list of cycles Lcycles = (c1, . . . , cncycles
), each one

representing the homology class of a cycle identified as a normal at the previous step (a cycle is stored as a

12
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list of points).

In practice, we will compute persistent homology with coefficients in K = Z/2Z. In that case, the following
matrix reduction algorithm from Edelsbrunner et al. (2002) can be used.

Let us write our finite filtered simplicial complex as V = ∅ = V0 ⊂ V1 ⊂ · · · ⊂ VN such that Vi+1 = Vi ∪σi+1
(where σi+1 is a simplex), and let ∂ be the N ×N matrix of the boundary operator (∂i,j = 1 if σi is a face
of σj), with columns C1 . . . CN . Let low(Cj) be the greatest index i such that Cj [i] = ∂i,j ̸= 0 (or 0 if the
column only has zeros). The matrix reduction algorithm is described in Algorithm 3. The representative
cycle corresponding to a point (l(j), j) on the persistence diagram is

∑N
i=1 Cj [i]σi.

Algorithm 3 MatrixReduction
Require: ∂ = (C1 . . . CN )

1: for i = 1, . . . , N do
2: for j = N − 1, . . . , 1 do
3: if low(Ci) == low(Cj) ̸= 0: then
4: Cj ← Ci + Cj mod(2)
5: end if
6: end for
7: end for
8: return ∂

The green and red cycles on the point cloud Ỹ from Figure 4 are the two normal cycles extracted with this
method, corresponding to the two points evoked above (notice that we found the green and red cycle from
Figure 3).

3.2.4 Anomaly scores

Once the list Lcycles of normal cycles has been computed, an anomaly score is given to each point x ∈ Ŷ ,
which is its distance to Lcycles: d(x, Lcycles).

Finally, we get an anomaly score for yi by averaging the scores of all points in Ŷ of which yi is a coordinate:
Score(y)i ← mean({d(Ŷj , Lcycles) | max(0, i− (d− 1)τ̂) ≤ j ≤ i}).

One can choose a threshold to the anomaly score to get a binary answer. Typically, one can chose to keep
score only above a certain quantile. In Section 5, we will compare algorithms using the AUC-ROC curve
obtained by varying the threshold from 0 to 1 in order not to be biased by an arbitrary choice of threshold.
We do not give a specific method to choose the threshold, as it depends on the application (in Section
5, we will compare algorithms using the AUC-ROC curve of each anomaly score not to be biased by an
arbitrary choice of threshold). Figure 5 shows the results and ROC curve of our algorithm applied to the
signal from Figure 1 (with delay embedding from Figure 3 and normal cycles from Figure 4). The two cycles
corresponding to the normal patterns have been extracted so those patterns have an anomaly score close to
zero.

4 Theoretical study

In this section, we recall stability theorems for DTM filtrations, define a probability measure on delay
embeddings of signals and use it (and some additional assumptions) to derive an upper bound on the
interleaving distance between the filtration used in our algorithm (with discrete, noisy data with anomalies)
and a filtration obtained in an ideal situation with a continuous signal without noise or anomalies.

13
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Figure 5: Top left: signal from Figure 1 with anomalies in red. Bottom: Anomaly score obtained with
our algorithm (distance to the cycles from Figure 4, normalized). Top right: ROC curve (AUC = 0.98).

4.1 Overview of existing stability theorems for DTM filtrations

Here, we recall stability results from Anai et al. (2020). In this subsection, X and Y will denote any subsets
of Rd. Let V [X, dµ,m, p] be either the DTM Čech or the DTM Vietoris-Rips filtration, and let V[X, dµ,m, p]
be the associated persistence module.

Proposition 2 (Anai et al. (2020), Prop. 3.1). If X is bounded, V[X, dµ,m, p] is q-tame.

Let W2 denote the Wasserstein distance with quadratic cost between µ and ν :

W2(µ, ν) = inf
π∈Π(µ,ν)

√∫
Rd×Rd

||u− v||2dπ(u, v)

where Π(µ, ν) is the set of transport plans between µ and ν (see Santambrogio (2015) for more details). Let
dH denote the Hausdorff distance between sets, defined as

dH(X,Y ) = max
(

sup
x∈X

d(x, Y ), sup
y∈Y

d(X, y)
)
.

Proposition 3 (Anai et al. (2020), Prop. 4.3). Let µX and µY be two probability measures on Rd with
compact supports X and Y . Then

di(V [X, dµX ,m, p], V [Y, dµY ,m, p]) ≤ m− 1
2W2(µX , µY ) + 2

1
p dH(X,Y ).

The following result is specific to the case p = 1 (weaker results are given for p > 1 in Anai et al. (2020)).

Proposition 4 (Anai et al. (2020), Prop. 4.4). Let µ be a probability measure on Rd with compact support
supp(µ) and let c(µ,m) = sup

supp(µ)
dµ,m.

14
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If supp(µ) ⊂ X and supp(µ) ⊂ Y , then V [X, dµ,m, 1] and V [Y, dµ,m, 1] are c(µ,m)-interleaved and thus

di(V [X, dµ,m, 1], V [Y, dµ,m, 1]) ≤ c(µ,m).

4.2 Upper bound on the interleaving distance between the real and ideal filtrations

The idea of our study is to define a filtration of Xn, which represents the ideal case of continuous data
without any anomaly nor noise, and to show that this filtration is close in terms of interleaving distance to
the filtration V [Ŷ , dµŶ ,m

] constructed from the observed data Ŷ = X̂ + E and associated empirical measure.
As explained in Section 2, a bound on the interleaving distance between filtration also induces a bound on the
interleaving distance between the associated persistence modules and on the bottleneck distance between the
associated persistence diagrams, which we use in our algorithm to identify normal cycles. So our algorithm
should find cycles that approximate the true normal set Xn. We start by making additional assumptions
and defining a probability measure µXn on Xn, and use the DTM filtration V [Xn, dµXn ,m

] as our filtration
of Xn to state our main result.

4.2.1 Assumption of the theorem and probability measure on curves

In this section, we add some assumption on our model from Section 2 and define a probability measure on
Rd whose support is the curve X = Xd,τ (or Xn) that is adapted to the anomaly detection problem, i.e.
such that sections corresponding to anomalies have a low probability.

We assume that the delay τ is small enough so that the curve always returns to 0 between two atoms, and
at the beginning and end:

Assumption 4. Let (ζi)1≤i≤Mn+Ma denote all the activations. We assume that:

1. ∀i,∀t ∈ [0, 1], ζi[t] ̸= 0⇒ ∀j ̸= i,∀s ∈ [t, t+ lζi
+ (d− 1)τ ], ζj [t] = 0.

2. ζi[j] = 0 for all i and for all j ≤ (d− 1)τ and j ≥ 1− (d− 1)τ .

Note that a small enough τ exists because of Assumption 1.

Remark 5. This assumption ensures that each occurrence of an atom gives (at least) one loop in the delay
embedding. It also ensures that each occurrence is complete, which is not mandatory but will make it simpler
to compute the probability of each atom.

Let us now define the probability measure µX . Here, X−1(R) denotes the pre-image of R under the function:{
[0, 1− (d− 1)τ ] → Rd

t 7→ X[t] = (x[t],x[t+ τ ], . . . ,x[t+ (d− 1)τ ]).

Definition 11. Let λ denote the Lebesgue measure on R. µX is the Borel measure on Rd such that for any
d-rectangle R = I1 × · · · × Id where the Ii are open or closed intervals:

µX(R) = λ(X−1(R))
1− (d− 1)τ .

It is clear that µX is a probability measure with support X.

Assumption 5. let Ni (resp. Ai) be the delay embedding of ni ∗ ηi (resp. ai ∗ αi). We assume that the
intersection of any pair of sets among the Ni \ {0} and Ai \ {0} has null measure.
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In this case, for any i, µX(Ni \ {0}) = kni
lni

and µX(Ai \ {0}) = kai lai
.

Remark 6. • Assumption 5 makes sense in the context of anomaly detection as it implies that except
for a set of null measure, a point xt is either normal or abnormal (i.e. normal and abnormal atoms
cannot coincide on an interval).

• If the atom lengths are equal, then the probability of each atom is proportional to its number of
occurrences.

• If the signal is constant on an interval, there will be a point with non zero probability in X. It is the
case for 0, which we consider to be part of the normal behavior.

• Here, it can already be noticed that the algorithm could fail if an abnormal atom was too long.

The measure µXn is defined the same way starting from Xn (which is X without the anomalies).

4.2.2 Theorem statement

The aim of the section is to prove the following result:

Theorem 1. With the above notations and assumptions, if xn is continuously differentiable, and with p = 1
for DTM filtrations, we have:

di(V [Ŷ , dµŶ ,m
], V [Xn, dµXn ,m

]) ≤ (bn + ||ε||∞)
√
d
(
m− 1

2 + 2
)

+m− 1
2
√
d||xa||∞

√√√√Ma∑
i=1

kai
lai

+
√
d

3 ·
m||x′

n||∞
min
i

(kni
)

with bn −→
n→+∞

0.

Notice that the sampling
∑Ma
i=1 kai

lai
is the proportion or the signal that is abnormal, so it can be assumed

to be small in the context of anomaly detection. So with a high sampling frequency n, a low noise amplitude
||ε||∞, and if normal atoms occur many times, the bound should be small (after choosing m not too close to
zero).

We divide the proof of this theorem in three steps:

• Sampling step: Proposition 5 bounds di(V [X̂, dµX̂ ,m
, p], V [X, dµX ,m, p]).

• Noise step: Proposition 6 bounds di(V [Ŷ , dµŶ ,m
, p], V [X̂, dµX̂ ,m

, p]).

• Anomaly step: Proposition 7 bounds di(V [X, dµX ,m], V [Xn, dµXn ,m
]).

We then conclude using the triangular inequality.
Remark 7. We now make an additional remark regarding the optional subsampling step in our algorithm.
Let Ŷ be any finite point cloud in Rd. This steps consists in computing the filtration on Ỹ , which is a subset
of Ŷ , but we still use the DTM function dµŶ ,m

so Proposition 3 gives:

di(V [Ŷ , dµŶ ,m
], V [Ỹ , dµŶ ,m

]) ≤ 2dH(Ŷ , Ỹ ).

In particular, one can take only one point for each occurrence of an atom while still using the information
from the number of occurrences through dµŶ ,m

(which would not be the case we used dµỸ ,m
, leading
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to an important change in the filtration values that would make it hard to discriminate anomalies from
normal atoms). This is very useful in practice as computing persistent homology on large datasets can be long.

Remark 8. Finally, we give a link between this section and Section 3.1. If m = q
n−(d−1)τ̂ with max(kai) <

q ≤ min(kni), then for all normal point y ∈ Y , dµX̂ ,m
(y) ≤

√
d(bn + ||ε||∞). So all normal points are dense,

and for each abnormal point, at least q−max(kai) neighbors which are considered to compute their DTM do
not correspond to the same point from a distinct occurrence. This does not guarantee that abnormal point
have a lower density as a single point can appear several times in one occurrence, or the variations can be
very slow. So our algorithm can fail to detect an anomaly (even with a small kai) if its variations are slow
but still forms a large enough 1-cycle to be considered significant. This could especially happen with a large
atom length lai

, which reflects in our model as we approximate a measure µX such that µX(Ai \ 0) = kai
lai

.

4.2.3 Sampling step

The next result states that if the signal is well-sampled (i.e. if n is large) then there should be little
difference between studying a continuous signal x or a sampled version x̂. Recall that τ = τ̂

n−1 . For
simplicity, we assume that 1

τ ∈ N, so Card(X̂) = 1−(d−1)τ
τ (points can be counted multiple times).

Proposition 5 (Stability for sampling). Let bn = sup
|t−s|≤ 1

n−1

(|x[t] − x[s]|). With the above notations and

assumptions we have:

di(V [X̂, dµX̂ ,m
, p], V [X, dµX ,m, p]) ≤ bn

√
d
(
m− 1

2 + 2
1
p

)
.

Proof. From Proposition 3 we get:

di(V [X̂, dµX̂ ,m
, p], V [X, dµX ,m, p]) ≤ m− 1

2W2(µX̂ , µX) + 2
1
p dH(X̂,X).

It is immediate from the definitions that dH(X̂,X) ≤ bn
√
d.

Let us now derive an upper bound for W2(µX̂ , µX). We refer to Santambrogio (2015); Villani et al. (2009)
for and introduction to optimal transport. Let ⌊.⌋ denote the floor function, we define T as :

T :
{
X → X̂

Xt 7→ X̂ [⌊(n− 1)t⌋+ 1]

So T (X[t]) = X̂[⌊(n− 1)t⌋+ 1] = X
[

⌊(n−1)t⌋
n−1

]
with

∣∣∣t− ⌊(n−1)t⌋
n−1

∣∣∣ < 1
n−1 .

We have for any measurable bounded function f :∫
X̂

f(y)dµX̂(y) =
∑
y∈X̂

f(y)µX̂({y})

= 1
Card(X̂)

∑
y∈X̂

f(y)

= τ

1− (d− 1)τ
∑
y∈X̂

f(y)
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and ∫
X

f(T (x))dµX(x) =
∑
y∈X̂

∫
{T−1(y)}

f(y)dµX(x)

=
∑
y∈X̂

f(y)µX({T−1(y)})

=
∑
y∈X̂

f(y) τ

1− (d− 1)τ .

So µX̂ = µX ◦ T−1 and π = (µX , µX ◦ T−1) is a (deterministic) transport plan and thus:

W2(µX̂ , µX) ≤
√∫

Rd×Rd

||u− v||2dπ(u, v)

≤

√∫
Rd

||u− T (u)||2dµX(u)

≤ bn
√
d.

4.2.4 Noise step

The next result states that the construction is robust to noise.

Proposition 6 (Stability in the presence of noise). With the above notations and assumptions we have:

di(V [Ŷ , dµŶ ,m
, p], V [X̂, dµX̂ ,m

, p]) ≤ ||ε||∞
√
d
(
m− 1

2 + 2
1
p

)
.

Proof. As for the previous proof, we use Proposition 3 to derive a Hausdorff distance term and a Wasserstein
distance term. The fact that for all t, ||(X̂ + E)t − X̂t|| ≤ ||ε||∞

√
d immediately implies that dH(X̂, Ŷ ) ≤

||ε||∞
√
d. Let T be the function from X̂ to Ŷ defined by T (X̂[i]) = Ŷ [i] so that µŶ = µX̂ ◦ T−1 and

π = (µX̂ , µX̂ ◦ T−1) is a (deterministic) transport plan and thus:

W2(µX̂ , µŶ ) ≤
√∫

Rd×Rd

||u− v||2dπ(u, v)

= 1
Card(X̂)

√∑
x∈X̂

||x− T (x)||2

≤ ||ε||∞
√
d.

4.2.5 Anomaly step

We now fix p = 1 and use Proposition 4 to bound the change in interleaving distance between the filtrations
obtained respectively with and without anomalies (and the associated DTMs). We note V [X, dµX ,m] instead
of V [X, dµX ,m, 1].
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Proposition 7 (Stability in the presence of anomalies). With the above notations and assumptions, if xn
is continuously differentiable:

di(V [Xn, dµXn ,m
], V [X, dµX ,m]) ≤ m− 1

2
√
d||xa||∞

√√√√Ma∑
i=1

kai lai +
√
d

3 ·
m||x′

n||∞
min
i

(kni)
.

Proof. From Propositions 3 (which still applies in this case where supp(µXn) = Xn ⊂ X with X compact)
and 4 we have:

di(V [X, dµX ,m], V [Xn, dµXn ,m
]) ≤ di(V [X, dµX ,m], V [X, dµXn ,m

])
+ di(V [X, dµXn ,m

], V [X, dµXn ,m
])

≤ m− 1
2W2(µX , µXn) + c(µXn ,m).

Let us first give an upper bound on W2(µX , µXn). Let T : X → Xn be equal to the identity function on Xn
and to the null function on X \Xn. Recall that X = Xn∪Xa and that by assumption µX(Xn∩(Xa \0)) = 0.
Also notice that µX = µXn on Xn \ 0.

For any measurable bounded function f we have:

∫
X

f(T (x))dµX(x) =
∫
Xn

f(T (x))dµX(x) +
∫
Xa\0

f(T (x))dµX(x)

=
∫
Xn\0

f(x)dµX(x) + f(0)µX(0) +
∫
Xa\0

f(0)dµX(x)

=
∫
Xn\0

f(x)dµXn(x) + f(0)µX(0) + f(0)µX(Xa \ 0)

=
∫
Xn\0

f(x)dµXn(x) + f(0)
(

1−
Mn∑
i=1

kni
lni
−

Ma∑
i=1

kai
lai

)

+ f(0)
(
Ma∑
i=1

kai
lai

)

=
∫
Xn\0

f(x)dµXn(x) + f(0)µXn(0)

=
∫
Xn

f(x)dµXn(x).

The fourth equality comes from the fact that
∑Mn
i=1 kni

lni
and

∑Ma
i=1 kai

lai
are respectively the amount of

time taken by normal and abnormal atoms (the rest of the time is spent at 0), so µX(0) = 1−
∑Mn
i=1 kni lni −∑Ma

i=1 kai
lai

and µX(Xa \ 0) =
∑Ma
i=1 kai

lai
. The fifth equality comes from the fact that when we use µXn ,

we replace all the abnormal atoms with 0, so µXn(0) = 1−
∑Mn
i=1 kni

lni
.

19



Under review as submission to TMLR

The above calculation implies that µXn = µX ◦ T−1 and π = (µX , µX ◦ T−1) is a (deterministic) transport
plan and thus:

W2(µX , µXn) ≤
√∫

Rd×Rd

||u− v||2dπ(u, v)

≤

√∫
Rd

||u− T (u)||2dµX(u)

≤

√∫
Xa

||u||2dµX(u)

≤
√
d||xa||2∞µX(Xa)

≤
√
d||xa||∞

√√√√Ma∑
i=1

kai lai

where the fourth inequality comes from the fact that for all u = (u1, . . . , ud) ∈ Xa we have: ∀i, ui ≤ ||xa||∞.

Let us now compute an upper bound on c(µXn ,m). Let t, s ∈ [0, 1 − (d − 1)τ ]. As xn is continuously
differentiable we have:

||Xn[t]−Xn[s]||2 =
d−1∑
i=0
|xn[t+ iτ ]− xn[s+ iτ ]|2 ≤ d|t− s|2 · ||x′

n||2∞.

Let u ∈]0, 1[. We will compute an upper bound on δµXn ,u
(see Definition 9 for the definition). For all r ≥ 0

we have:
|t− s| ≤ r√

d||x′
n||∞

⇒ ||Xn[t]−Xn[s]|| ≤ r

so, as there are at least min
i

(kni) occurrences of each atom in xn:

µXn(B̄(Xn[t], r)) ≥
r ·min

i
(kni

)
√
d||x′

n||∞

and thus:
r >

u
√
d||x′

n||∞
r ·min

i
(kni

) ⇒ µXn(B̄(Xn[t], r)) > u.

So we have δµXn ,u
(Xn[t]) ≤ u

√
d||x′

n||∞
min

i
(kni

) and:

dµXn ,m
(Xn[t]) =

√
1
m

∫ m

0
δ2
µXn ,u

(Xn[t])du

≤
√
d

3 ·
m||x′

n||∞
min
i

(kni
) .

Note that Proposition 4 enabled us to replace 2dH(X,Xn) with c(µXn ,m) in the upper bound (compared
to using only Proposition 3). The latter can be equal to

√
d||x||∞ in some cases, whereas the former has a

factor 1
min

i
(kni

) that is assumed to be small in our anomaly detection problem.
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Indices Anomaly Several normal Repeating
type atoms anomalies

1− 20 Punctual x x
21− 40 Sequential x x
41− 60 Punctual ✓ x
61− 80 Sequential ✓ x
81− 100 Sequential ✓ ✓
101− 120 Both ✓ ✓

Table 2: Characteristics of each part of the synthetic datasets.

5 Experimental setup

This section describes the datasets and anomaly detection methods we will use to test our algorithm in
Section 6.

5.1 Synthetic dataset

We generated 120 time series following the model described in Section 2. Each atom is generated specifying
a random length, choosing a random integer N , computing N points on a Gaussian random walk starting at
zero, and interpolating them with cubic splines to get an atom of the desired length, which is then multiplied
by a random amplitude factor between 0.5 and 2. Atoms length is set to 1 for punctual anomalies and can
take values between 150 and 400 for normal atoms and sequential anomalies. N is set to 1 for punctual
anomalies and can take values between 5 and 15 for normal atoms and sequential anomalies. For each time
series, each normal atom has at most 15 occurrences, and at least 7 more occurrences than the most frequent
anomaly: at least 8 when anomalies do not repeat, and 10 when they can have several occurrences (up to
3). Time series have lengths between 1964 and 13234. The dataset can be found at https://github.com/
Alex-B-4/A-persistent-homology-based-algorithm-for-unsupervised-anomaly-detection-in-time-series.

The dataset is divided in six equal parts, depending on the anomaly type of the time series (punctual or
sequential), on the presence or absence of multiple normal atoms and on the possibility for anomalies to have
several occurrences (two or three). Table 2 shows the characteristics of each part.

5.2 Real-world datasets and methods from TSB-UAD

Our real-world datasets are the 18 public datasets provided by the TSB-UAD benchmark suite (Paparrizos
et al., 2022), for a total of 1980 univariate time series with labeled anomalies. Table 3 shows the names,
sizes (i.e. number of time series), average lengths and data types of 18 datasets.

For each time series, we compute the area under the ROC curve (AUC-ROC) obtained by looking at all the
possible thresholds on the anomaly score. The same method is applied to 13 anomaly detection algorithms
(Liu et al., 2008; Breunig et al., 2000; Goldstein & Dengel, 2012; Yeh et al., 2018; Boniol et al., 2021;
Aggarwal & Aggarwal, 2017; Sakurada & Yairi, 2014; Malhotra et al., 2015; Li et al., 2007; Munir et al.,
2018; Schölkopf et al., 1999; Lu et al., 2022) in Paparrizos et al. (2022). Table 4 provides a succinct
description of the methods. Using the AUC-ROC, the evaluation does not depend on the choice of a
threshold for each algorithm. The datasets and the implementations of the 13 methods can be found at
https://github.com/TheDatumOrg/TSB-UAD/tree/main.

6 Results

In this section, we start by showing the results our the benchmark on real-world datasets. Then, we use
the synthetic dataset to study the influence of our five parameters and of noise on the performance and
computation time of our algorithm.
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Name Size Average lengths Data type
Dodgers 1 50400.0 Freeway traffic

ECG 53 230351.9 Electrocardiogram
IOPS 58 102119.2 Performance indicators for machines

MGAB 10 100000.0 Differential equations (used for biological models)
NAB 58 6301.7 Server metrics and internet traffic

NASA-MSL 27 2730.7 Spacecraft telemetry
NASA-SMAP 54 8066.0 Spacecraft telemetry
Sensorscope 23 27038.4 Environmental data

YAHOO 367 1561.2 Metrics on Yahoo services
KDD21 250 77415.06 Composite dataset
Daphnet 45 21760.0 Acceleration sensors on Parkison’s disease patients

GHL 126 200001.0 Metrics on Gasoil reservoirs
Genesis 6 16220.0 Industrial time series
MITDB 32 650000.0 Electrocardiogram

OPP 465 31616.9 Motion sensors on humans
Occupancy 10 5725.8 Environmental data

SMD 281 25562.3 Server metrics
SVDB 115 230400.0 Electrocardiogram

Table 3: Characteristics of the real-world datasets from TSB-UAD.

Method Unsupervised Delay embedding Description
TDA ✓ ✓ Our method: TDA to find normal 1-cycles

IForest1 Liu et al. (2008) ✓ x Random forest on time series to find outliers
IForest Liu et al. (2008) ✓ ✓ Random forest on delay embedding to find outliers

LOF Breunig et al. (2000) ✓ ✓ Outlier score based on local density
HBOS Goldstein & Dengel (2012) ✓ ✓ Outlier score based on histograms

MP Yeh et al. (2018) ✓ x Distance between closest subsequence as anomaly score
DAMP (Lu et al., 2022) ✓ x A version of the Matrix Profile designed to better handle multiple anomalies

NORMA Boniol et al. (2021) ✓ x Clustering to find normal subsequences
PCA Aggarwal & Aggarwal (2017) ✓ ✓ PCA to define a normal hyperplane

AE Sakurada & Yairi (2014) x x Reconstruction error as anomaly score, based on deep learning
LSTM Malhotra et al. (2015) x x Prediction error as anomaly score, based on deep learning

POLY Li et al. (2007) ✓ x Prediction error as anomaly score, based on polynomial interpolation
CNN Munir et al. (2018) x x Prediction error as anomaly score, based on deep learning

OCSVM Schölkopf et al. (1999) x ✓ SVM to find normal points on delay embedding

Table 4: Overview of the anomaly detection methods used in our benchmark. The “Delay embedding”
column indicates if the methods uses a delay embedding or not.

6.1 Benchmark on real-world data

Here, we show the results of our algorithm on the TSB-UAD benchmark described in Section 5.2. The
parameters of our algorithm are chosen the same way for all time series. We estimate a period L for the
time series using the first maximum of the autocorrelation function (we used the find_length function from
TSB-UAD, which was used for all other methods using a delay embedding). We empirically chose τ̂ = 6
(in practice, if τ̂ is too small, the embedding will stay close to the line spanned by (1, . . . , 1) and it will be
harder to detect cycles). In Perea & Harer (2015) Perea and Harer show that in the case of trigonometric
functions, dτ̂ should be a multiple of the period to maximize persistence in 1D homology. With this in mind,
we empirically set d = max(40,min(120, ⌊L3 ⌋)). We chose q = ⌊nL⌋ following the intuition from Section 3.1,
as this value would approximate the number of normal occurrences in the case where there is one normal
atom. Finally, we use ndiag = 2 and npoints = 400.

The algorithm was implemented in Python. The DTM filtration was computed with the GUHDI li-
brary (Maria et al., 2014). The cycle extraction algorithm was implemented with dionysus1(more specif-

1https://pypi.org/project/dionysus/
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TDA IForest IForest1 LOF MP PCA NORMA HBOS POLY OCSVM AE CNN LSTM DAMP
Dodgers 0.79 0.79 0.64 0.54 0.52 0.77 0.79 0.3 0.69 0.64 0.73 0.68 0.39 0.62

ECG 0.88 0.75 0.61 0.56 0.58 0.71 0.95 0.68 0.70 0.64 0.73 0.52 0.54 0.72
IOPS 0.82 0.54 0.78 0.50 0.72 0.74 0.76 0.64 0.68 0.71 0.63 0.61 0.61 0.50

MGAB 0.58 0.57 0.58 0.96 0.91 0.54 0.55 0.54 0.51 0.52 0.71 0.58 0.56 0.55
NAB 0.76 0.45 0.56 0.48 0.49 0.69 0.58 0.68 0.75 0.61 0.54 0.52 0.50 0.54

NASA-MSL 0.64 0.57 0.69 0.52 0.52 0.75 0.55 0.77 0.81 0.64 0.70 0.57 0.57 0.67
NASA-SMAP 0.83 0.72 0.68 0.68 0.62 0.74 0.80 0.77 0.80 0.65 0.77 0.68 0.64 0.77
SensorScope 0.52 0.56 0.56 0.55 0.50 0.54 0.59 0.56 0.62 0.51 0.52 0.52 0.53 0.56

YAHOO 0.64 0.62 0.81 0.86 0.86 0.57 0.92 0.57 0.76 0.50 0.79 0.96 0.94 0.78
KDD21 0.75 0.65 0.57 0.78 0.90 0.58 0.88 0.60 0.58 0.60 0.79 0.74 0.66 0.76
Daphnet 0.70 0.74 0.68 0.78 0.44 0.69 0.46 0.69 0.77 0.45 0.44 0.47 0.44 0.50

GHL 0.86 0.94 0.94 0.54 0.42 0.91 0.64 0.92 0.76 0.45 0.63 0.47 0.47 0.53
Genesis 0.84 0.78 0.66 0.68 0.35 0.85 0.6 0.59 0.87 0.70 0.72 0.73 0.53 0.71
MITDB 0.71 0.70 0.61 0.61 0.69 0.67 0.86 0.70 0.68 0.65 0.80 0.58 0.51 0.66

OPP 0.48 0.49 0.52 0.45 0.82 0.52 0.65 0.54 0.28 0.38 0.70 0.47 0.57 0.65
Occupancy 0.53 0.86 0.78 0.53 0.32 0.78 0.53 0.89 0.80 0.66 0.69 0.79 0.71 0.53

SMD 0.77 0.85 0.73 0.69 0.51 0.80 0.61 0.77 0.87 0.61 0.63 0.61 0.58 0.57
SVDB 0.77 0.72 0.58 0.59 0.74 0.68 0.92 0.71 0.67 0.68 0.79 0.58 0.55 0.70

Table 5: Average AUC-ROC on each dataset. Results for methods other than TDA come from Paparrizos
et al. (2022).

ically, with a modified version of cyclonysus2). The code can be found at https://github.com/Alex-B-4/
A-persistent-homology-based-algorithm-for-unsupervised-anomaly-detection-in-time-series. Results for
the other methods come from Paparrizos et al. (2022) except for DAMP, for which we used the implemen-
tation from TSB-UAD.

Table 5 shows the average AUC-ROC obtained on each dataset with our method (TDA) with the above
parameters, and the results of the TSB-UAD benchmark (Paparrizos et al., 2022). Figure 6 shows the critical
diagrams comparing the average rank of each method using the Friedman test followed by the Wilcoxon or
Nemenyi test with α = 0.05, as described in Demšar (2006).

These results show that our method is competitive with the state-of-the-art in anomaly detection on 18
standard datasets. It has the best score on 4 of them, the best average rank (though the difference with the
best methods is not significant as shown on Figure 6), and it is in the top 5 on 13 datasets. We found three
reasons to explain what can make our algorithm perform well or not. First, our algorithm was designed for
the problem described in Section 2, which makes it appropriate for structured data with repetitive patterns
but datasets can differ from our model in several ways: the absence of a clear normal behavior, a trend, or
a lack of continuity (for example binary time series or time series with very fast variations) or too much
noise can lead to a delay embedding with no relevant normal cycles to detect. Anomalies can also have a
nature that our algorithm cannot detect, such as a longer pause between two atoms. The second reason is
the choice of parameters. Even though our heuristics to choose the parameters seem relevant (see Sections
6.2 and 6.3), it is still not optimal to have the same rule to choose parameters for datasets with different
types of data, lengths, sampling rates... The delay embedding parameters d and τ̂ should not be too low or
else the curve will not have enough space to form persistent cycles, but if they are too high points of the
delay embedding will represent different atoms and the structure will be higher to detect. Moreover, if dτ̂
is significantly larger than the length of an anomaly, there will be false positive because the algorithm will
detect too many indices as abnormal. We believe that q and ndiag have less influence on performance (see
Sections 6.2 and 6.3). The third reason is the quality of the subsampling Ỹ . If the time series is short, or
if it has many repetitive patterns, then 400 points can be enough to represent the whole point cloud, but
many time series have more than 100000 points so if they have numerous and/or long atoms then it is not
enough and the distance between points will be too low for cycles to persist (this is studied in more details
in Section 6.4.

2https://github.com/sauln/cyclonysus
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Figure 6: Critical diagrams for α = 0.05. Top: Friedman test + Wilcoxon test. Bottom: Friedman test +
Nemenyi test.

6.2 Influence of the embedding dimension and delay

Here, we study the influence of the delay embedding parameters d and τ̂ by looking at the performance of
our algorithm on our synthetic dataset with different pairs of parameters (d, τ̂), while the other parameters
are fixed. Figure 7 is a heat map that shows the average AUC-ROC on the whole dataset when d varies
between 3 and 70 and τ̂ varies between 1 and 11. We fixed npoints = 100 and ndiag = 2. We set q = ⌊nL⌋,
where L is found using the autocorrelation function, as in Section 5.

On Figure 7, there is one zone where the AUC-ROC is above 0.81 and the AUC-ROC decreases as parameters
go away from this zone (below or above), going to the 0.78− 0.81 zone then to the 0.75− 0.78 zone... until
reaching 0.6 at the top right and bottom left corners. The shape of the zones AUC ≥ 0.81, AUC ≥ 0.78,
and AUC ≥ 0.75 and of their frontiers suggest that the best scores are obtained when the product dτ̂ is
constant. This product represent the time window represented by each point of the delay embedding. The
window should be large enough to capture complex patterns but the window should not cover several atoms.
In our dataset, atom lengths can have random values between 50 and 400. Figure 7 suggests that dτ̂ should
be approximately between 40 and 80. This empirically confirms the intuition from Section 5 and Perea &
Harer (2015) that the product dτ̂ should be of the order of the atom lengths. Moreover, an AUC-ROC above
0.84 is never reached with d above 30 or below 10, nor with τ̂ above 8 or below 2. This indicates that each
parameter should not take extreme values. Indeed, for a given value of the product dτ̂ , if τ̂ is too small then
the delay embedding will be concentrated around the line x1 = x2 = · · · = xd, and if it is too high then
points on the embedding will not represent the local variations that constitue the shape of the atoms.

6.3 Influence of the number of neighbors and points on the diagram

Here, we study the parameters q, which has an influence on the filtration values and thus on the persistence
diagram, and ndiag, which influences the way we read the persistence diagram. We look at the performance
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Figure 7: Heat map representing the average AUC-ROC on the whole dataset with different values of d and
τ̂ .

of our algorithm on our synthetic dataset with different pairs of parameters (q, ndiag), while the other
parameters are fixed. Figure 8 shows the average AUC-ROC on the whole dataset when q varies between
1 and 140 and ndiag varies between 2 and 16 (as explained in 3.2.2, we always set ndiag ≥ 2). We fixed
npoints = 100, d = 15 and τ̂ = 5.

On Figure 8, we can see zones of constant AUC-ROC separated by almost horizontal lines, except for
2 ≤ ndiag ≤ 6 where the zone AUC = 0.92 gets thinner as ndiag decreases. Moreover, the AUC-ROC
significantly decreases when q gets lower than 20. This suggests that the algorithm is robust to changes of
q and ndiag except for very low values of q (the proposed heuristic makes q proportional to n to avoid this
situation), and that setting ndiag a little higher than 2 can make it easier to reach optimal performance, but
considering more cycles can make it harder to find the right birth date threshold.

6.4 Computation time and influence of the subsampling parameter

A nice property of our method is the possibility of computing persistent homology on a subset of the point
cloud while keeping density information about the whole point cloud in the filtration. This makes the
complexity of the algorithm go from O(n3) (Edelsbrunner et al., 2002) to O(n3

points + n2), as persistent
homology is computed on a point cloud of size npoints, but the distance matrix of the full points cloud
must be computed. Figure 9 shows the computation time when npoints varies from 50 to 600 (on average
on the 20 first time series of the dataset), on a normal and logarithmic scale (to empirically confirm the
theoretical complexity), along with the AUC-ROC (to study the compromise between computation time and
performance). We set d = 15, τ̂ = 15, q = 50 and ndiag = 2.
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Figure 8: Heat map representing the average AUC-ROC on the whole dataset with different values of q and
ndiag.

Figure 9: Left: computation time (in seconds) as a function of npoints. Middle: computation time as a
function of npoints, logarithmic scale. Right: AUC-ROC as a function of npoints. All quantities are averaged
over 20 time series.

On Figure 9, it appears that the AUC-ROC stops increasing after npoints = 200, at a value above 0.95.
Computing persistent homology without subsampling (i.e. on thousands of points) would take hours for
each time series, but these examples show that performance can be almost optimal for values of npoints
significantly smaller than n (here, of the order of 10 times smaller, which makes computation about 1000
times faster). This study, and the fact that our algorithm performed well with npoints = 400 on time series
with lengths above 100000 in our benchmark from Section 6.1, indicate that the algorithm has a certain
scalability as with npoints can increase slower than n.
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Figure 10: Average AUC-ROC of each algorithm on the whole synthetic dataset, when the noise ratio of the
centered Gaussian noise varies between 0 and 1.

6.5 Robustness to noise and benchmark on synthetic data

Here, we study the robustness of our algorithm to noise, and compare it to the unsupervised methods from
the benchmark of Section 5 whose code is publicly available, and DAMP (Lu et al., 2022). For each signal
y = x + ε, we define the noise ratio as Var(ε)

Var(x) (the inverse of the signal-to-noise ratio). Figure 10 shows the
average AUC-ROC of each algorithm on the whole synthetic dataset, where centered Gaussian noise is added
to each time series, with a noise ratio between 0 and 1. Note that the real benchmark is in Section 6.1, we
only make comparisons here to gain insights our algorithm. It should be noted that since the synthetic data
are generated according to the exact model used by our method, the comparison is biased.

Figure 10 shows that our algorithm clearly outperforms all the other unsupervised methods up to a noise
ratio of 30%, and stays in the top performers for higher noise ratios (it seems that the AUC-ROC of about
0.7 corresponds to a points where only easy anomalies are detected, which would explain the fact that it
can be reached by all the algorithms, even with a lot of noise). When looking into more details at our study
on synthetic data, it appears that our algorithm usually performs better than the others when there are
multiple normal atoms or repeating anomalies. However, LOF can outperform it in the case of punctual
anomalies, especially when the normal behavior is complex (several atoms or a lot of noise). Also note
that the significant decline in performance of the Matrix Profile and DAMP in the presence of noise can be
explained by the fact that they use a z-normalized Euclidean distance, which can amplify the noise when
looking at sequences between atoms so those sequences are detected as anomalies and can even hide other
anomalies.

Our method gets an AUC-ROC above 0.8 for noise ratios up to approximately 20%. Too much noise can fill
the loops so the main cycles are less persistent and thus more difficult to identify on the persistence diagram.
All the other methods except the Matrix Profile and DAMP are very robust to noise. However, it would
seem more relevant to study those methods on data for which they perform very well to see how much noise
makes them fail.
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7 Conclusion

This article describes an unsupervised anomaly detection algorithm based on 1D persistent homology. We
proposed a model of time series in which the anomaly detection problem is well defined, which enabled
us to create our method and to derive mathematical properties of the method. The algorithm empirically
proved to be competitive to state-of-the-art anomaly detection methods on different real-world datasets.
The subsampling step induces a time/performance compromise that enabled us to significantly decrease
computation time. Future research could improve compromise by using faster ways of extracting cycles or
finding sparse versions of the filtrations. Another research perspective would be to adapt the algorithm
to more general models of time series, for example to deal with the presence of a linear trend, or with
multivariate time series.
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