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Abstract

Link prediction on dynamic, large-scale graphs has been widely used in real-world appli-
cations, such as forecasting customer visits to restaurants or predicting product purchases.
However, graph data is often localized due to privacy and e�ciency concerns. Training
separate local models based on data in each region preserves privacy but often leads to less
accurate models, especially in smaller regions with fewer users and products. Federated
learning then collaboratively trains models on localized data to maintain model accuracy
and data privacy. However, the vanilla FL approach requires training the entire historical
graph of user interactions, introducing high computational costs during training. While
training on the most recent data may help reduce overhead, it decreases the model accuracy
and incurs data imbalance across clients. For instance, regions with more users will con-
tribute more training data, potentially biasing the model toward those users. We introduce
FedLink, a federated graph training framework for solving link prediction tasks on dynamic
graphs. By continuously training on fixed-size bu�ers of client data, we can significantly
reduce the computation overhead compared to training on the entire historical graph, while
still training a global model across regions. Experiments demonstrate that FedLink matches
the accuracy of training a centralized model while requiring 3.41◊ less memory and running
28.9% faster compared with full-batch federated graph training.

1 Introduction

Dynamic graphs have been widely applied in recent years, e.g., recommendations and advertisements by
predicting customer visits to restaurants and user purchases of products (Kazemi et al., 2020). In such
applications, we represent users and items (i.e., restaurants or products) as nodes in a graph, with links
between them representing purchases and node features representing characteristics of the users and items
that are relevant to their consumption behavior (Figure 1 left). This graph-based formulation allows us to
exploit recent advances in Graph Neural Networks (GNNs) for predicting the links between users and items
to make and update accurate predictions of user behavior (Zhang & Chen, 2018; Chen et al., 2022; Guo
et al., 2023; Wang et al., 2023; Huang et al., 2024). Moreover, by representing user data as a dynamic graph
that evolves as new user data is collected, e.g., as users visit new restaurants and new users engage with a
recommendation platform, we can capture temporal information that static graphs cannot collect and make
more up-to-date predictions (Pareja et al., 2020; Yu et al., 2023; Huang et al., 2023; You et al., 2022; Cong
et al., 2023). However, recent trends toward data localization introduce new challenges in applying these
dynamic GNN models across di�erent regions.

In practice, applying GNNs to dynamic graph recommendation data faces practical challenges. Instead of
training region-specific models only based on the local data, we would like to develop a unified GNN model
that trains on all regions’ data and applies to customers in all business regions. Such a centralized model is
often especially helpful for small regions with limited local data, since users in di�erent regions may exhibit
similar patterns and this model can thus benefit from data collected in more populated regions. Users may
also move from one region to another, e.g., Figure 1 (upper right) illustrates a user moving from Region A
to Region B. Thus, region-specific models likely will not generalize well to such users: link recommendation
models generally rely on generating user and link embeddings, and users’ embeddings from their old regions
may no longer generate accurate predictions in their new regions if the trained models are region-specific.
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Figure 1: (Left) Three examples use cases of federated learning on dynamic graphs; (Upper Right) Sample
architecture for federated training on local dynamic graphs in di�erent regions where: 1. Local graphs are
heterogeneous and di�er in their size comparing di�erent regions; 2. Clients can have temporal edges in
di�erent timestamps; 3. Originally, user (gray) who travel from one region to another will not carry their
historical link information to prevent privacy leakage, thus requiring users (green) to predict their behavior
in the new region; (Lower Right) Illustration of temporal imbalance within and across clients, from a uniform
time-interval data distribution on the left transitioning to a constant edge bu�er approach on the right.

.

Training a centralized GNN model, however, is more and more constrained by strict data protection regula-
tions such as Payment Aggregators and Payment Gateways (PAPG) in India and General Data Protection
Regulation (GDPR) in Europe (EU), which generally forbid data from being sent out of a region. Even
without these regulations, centralized training with billions of graph nodes at clients across the world incurs
high computation costs, (e.g. billions of users and places in Facebook) (Ching et al., 2015). Federated learn-
ing (Kairouz et al., 2021; Tan et al., 2022; Ghosh et al., 2020; Deng et al., 2020; Zhou et al., 2021) helps
meet these challenges by allowing servers in di�erent geographic regions to maintain local prediction models
that are periodically synchronized with a global model at a central server, thus keeping data at the locations
where it is generated. However, federated learning itself does not alleviate the computational overhead at
each client (region), which may need to train over millions of users and items in each training round.

Vanilla implementations of federated learning (e.g., STFL (Lou et al., 2021) and FedGraphnn (He et al.,
2021)) in our dynamic graph setting would train on the entire historical graph in each federated learning
iteration. However, doing so incurs high training overhead, as the historical graph may consist of billions
of links (e.g., for regions with millions of users who have visited millions of restaurants over the past few
months), which only grows over time. Training on the entire graph then requires enormous amounts of
both memory and training time. Reducing the memory and training time by training on only the recent
graph snapshot (e.g. a few days of data by 4D-FED-GNN+ (Gürler & Rekik, 2022)), however, limits model
accuracy as it only incorporates recent information on user preferences.

Other past works on federated graph learning (Wang et al., 2020; Yuan et al., 2022) iteratively train on
a time series of graphs for each region, e.g., based on snapshots taken every hour, day, etc. However, in
practice, many regions’ graphs may have only a few new links in each time slot (Jin et al., 2022), while some
regions, particularly those with larger populations, may have a vast amount of link interactions, as shown in
Figure 1 (lower right). Thus, restricting each client to only train on edges arriving in the last timeslot will
introduce a new challenge of spatial and temporal data heterogeneity across clients. Such client heterogeneity
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is known to hinder the convergence of federated learning algorithms (Ye et al., 2023), as it can skew the
trained model towards clients with more training data in any given round, at the expense of other clients.

To overcome the challenges of data heterogeneity and large training overhead, we realize that maintaining
bu�ers to store the same number of previously arrived edges at each client will dramatically
reduce the computation and memory cost for the training, solving our computational overhead challenge,
while also naturally including the same number of new links at each client in the training, solving our
heterogeneity challenge. Figure 1 (lower right) illustrates this idea. By enabling e�cient federated training,
this idea also ensures that our learned models will be more accurate for users moving between regions: users
can simply transfer their learned embeddings between regions, with minimal re-training needed when they
move from one region to another. We use this insight to make the following contributions:

• We introduce FedLink, a federated GNN training framework for solving link prediction tasks on
dynamic graphs. FedLink significantly reduces training overhead by continuously training on histor-
ical data bu�ers of the same size at each client, balancing data heterogeneity across di�erent clients
(regions).

• We theoretically analyze and empirically validate the e�ect of bu�er size on model performance
and indicate the tradeo�s between staleness, if a large bu�er with possibly outdated data is used,
and dataset size, as well as the increased memory and training time with larger bu�ers.

• Experiments on link prediction across multiple regions demonstrate that FedLink significantly
reduces GPU memory usage (by up to 3.41◊) and training time (by up to 28.9%) compared to
full-batch federated graph training, with equivalent prediction accuracy.

We give an overview of related work in Section 2 before introducing our FedLink algorithm, along with
its theoretical foundation and empirical validation in Section 3. We then present extensive distributed
experiments to demonstrate FedLink’s performance on distinct subsets of the FourSquare dataset, which
contains 22,809,624 check-ins in 77 countries, in Section 4 and conclude in Section 5.

2 Related Work

Graph neural networks aim to learn representations of graph-structured data (Bronstein et al., 2017).
GCNs (graph convolutional networks) (Kipf & Welling, 2016), GraphSage (Hamilton et al., 2017), and
GAT (graph attention network) (Veli�koviÊ et al., 2017), for example, have shown excellent performance on
various graph learning tasks like classifying nodes based on their and their neighbors’ features. Dynamic
graphs provide temporal information on the links between nodes to further improve the task performance.
Many methods are proposed for training GNNs on dynamic graphs with recurrent structure (Chen et al.,
2022; Pareja et al., 2020; Yu et al., 2023) or with specific training methods (Huang et al., 2023; You et al.,
2022; Cong et al., 2023). Given such dynamic graphs, a popular task is that of link prediction (Zhang &
Chen, 2018), i.e., predicting whether a link will be formed between two nodes in the graph, given information
on the presence or absence of links between other pairs of nodes.

Recently, federated learning (Kairouz et al., 2021; Tan et al., 2022; Ghosh et al., 2020; Deng et al., 2020; Zhou
et al., 2021) has become popular for communication e�cient multi-device training with privacy preservation.
Many works have proposed methods to train GNN models on static graphs in a federated learning setting (Liu
et al., 2024; Wang et al., 2022a), e.g. GCFL (Xie et al., 2021), FedSage+ (Zhang et al., 2021b), FedGCN (Yao
et al., 2024a), and FedPub (Baek et al., 2023). The development of federated graph learning libraries
has also accelerated research progress in this area (Yao et al., 2024b). Moreover, several methods are
proposed for training GNNs on dynamic graphs in the federated learning setting, driven by the
plethora of applications that can be modeled with federated dynamic graphs. However, such works are mainly
application-specific, in particular considering tra�c flow forecasting and trajectory prediction. For example,
CNFGNN (Meng et al., 2021) provides a spatio-temporal model for a cross-node federated GNN, where each
client is a node in the graph, validating their algorithm in a tra�c flow forecasting application. ATPFL (Wang
et al., 2022b) combines Automated Machine Learning (AutoML) with federated learning for federated multi-
source trajectory prediction. Federated Community GCN (Xia et al., 2022), Spatial-Temporal Long and
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Short-Term Networks (FedSTN) (Yuan et al., 2022), and Attention-based Spatial-Temporal Graph Neural
Networks (ASTGNN) (Zhang et al., 2021a) have all proposed for tra�c speed forecasting with FL. However,
these works are specific to tra�c flow forecasting and trajectory prediction applications and thus cannot be
directly applied to more general problems or recommendation scenarios.

More generally, STFL (Lou et al., 2021) provides a spatio-temporal model for federated graph classification,
where the task is to classify the label of each client’s graph. Feddy (Jiang et al., 2022) considers temporal
information in the graph embedding by applying dynamic GNNs, while 4D-FED-GNN+ (Gürler & Rekik,
2022) focuses on the evolution graph learning task with missing time points. Each client trains a GNN
model on the graph constructed at the current time step. None of these works, however, explicitly consider
imbalances in data across clients or time, as we do in this work. Moreover, training on the entire historical
graph, as in STFL, can introduce significant computation overhead with potentially little gain: links formed
a long time ago may no longer be useful in predicting new links, e.g., if user tastes change over time. To the
best of our knowledge, FedLink is the first framework and algorithm for federated link prediction on dynamic
graphs that tackles these challenges, and we compare its performance to these baselines in Section 4.

3 FedLink

In this section, we first formalize our federated link prediction problem and introduce our FedLink training
algorithm. We then present a theoretical rationale and empirical validation for FedLink’s bu�er-based design.

3.1 Federated Link Prediction

Federated graph setup. Suppose we have N users and M items. We consider K clients each located in a
di�erent geographic region, e.g., di�erent countries, and one central server to coordinate among the clients.
We use i = 1, 2, . . . , Ik and j = 1, 2, . . . , Jk to respectively index users and items within each region k; while
users may move from one region to another, items do not (e.g., if the items are restaurants physically located
in specific regions). These users and items comprise the nodes of client k’s local graph. Each client k receives
a stream of link interactions (user-item interactions) occurring within its specific geographic region. More
formally, at a given time t œ [0, T ] in client k’s region, where k = 1, 2, . . . , K, suppose that user i has an
interaction with item j, which can be represented as an edge e

(i,j)

k,t in the graph. Client k then has a local
graph Gk,t = {ek,0, . . . , ek,s, . . . , ek,t} at time t including historical links, where we have suppressed the node
indices on each link for simplicity. At any given time t, we include only those nodes i, j in the graph that
have at least one edge connecting them to another node at some time s Æ t. Note that Gk,t grows over time
as more edges accumulate.

Link prediction formulation. For each client k at time T , we have user set Ik = [Ik], item set Jk = [Jk],
and local graph Gk,T . During training, we initialized the trainable global user embedding layer I œ RN◊d and
item embedding J œ RM◊d, where d is the dimension of the embedding vector. The goal of model training
is to learn the user and item representations ◊ = GNN(w, I, J , Gk,T ) by GNN model w and a predictor „.
The predictor „ takes these learned representations as input to estimate the following probability:

P
1

e
(i,j)

k,T Õ œ Gk,T Õ |◊, „; Ik; Jk; Gk,T

2
. (1)

Here, T represents the latest observed time in the training dataset, while T
Õ refers to a future time after

T . Based on this probability we can then predict new links of nodes in the future. In order to define the
relationship of „ and ◊, we can write the predicted probability as: P(e(i,j)

k,t ) = „(s(◊i, ◊j)) where s(◊i, ◊j)
is the cosine similarity between the user and item representations: s(◊i, ◊j) = ◊i·◊j

Î◊iÎÎ◊jÎ . The GNN model
typically consists of two or three layers (Zhang & Chen, 2018; Kipf & Welling, 2016; Yao et al., 2024a),
and the learned user and item representations ◊ are vector embeddings. The predictor „ maps the cosine
distance between user-item pairs to a probability score, which determines the likelihood of an interaction.

Federated learning for link prediction. Given the link prediction model above, we next explain how
federated learning can be used to train this model. In the next subsection, we explain how FedLink builds
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on this framework to handle the challenges of data heterogeneity, high computational overhead, and users
moving from one client to another.

As usual in federated learning, training proceeds in rounds. Without loss of generality, suppose that training
takes place at rounds r = 1, 2, . . . , R; note that since we model edge arrivals as a continuous-time process,
new edges may arrive in between the training rounds. At a specific round r that takes place at time t, each
client k trains its local link prediction model on the local graph Gk,t with L local stochastic gradient descent
steps. Each client k then sends its updated GNN model w(r)

k and embedding layers (I(r)

k , J (r)

k ) to the global
server, which averages the received local models to update the global model w(r) and global embedding layers
(I(r)

, J (r)). Once R rounds of training have taken place, where R can be chosen to ensure convergence, each
client k uses the trained model and its local graph Gk,t to predict the future links.

3.2 FedLink Algorithm

A principal challenge in the federated learning process described above is that it incurs increasing com-

puting overhead over time as the graphs Gk,t grow with time t. Local graphs with millions of users and
items, for example, may require excessive memory and runtime overhead during the local training process
at each client. In addition to reducing this overhead, FedLink aims to adapt the federated learning process
to solve the following three challenges:

• Client Heterogeneity: Clients may experience significantly di�erent numbers of user-item inter-
actions, e.g., if they are regions with di�erent populations.

• Temporal Heterogeneity: The number of links arriving at each client may change over time. For
example, users are more likely to engage with products during the day compared to the night. These
patterns of user-item engagement may also vary by client, e.g., regions in di�erent time zones.

• Cross-client user nodes: Users may move between clients, e.g., vacationing in di�erent regions.

We use the main novel feature, constant edge bu�er with sharing of user embedding to overcome these
challenges. We outline the rationale, design, and e�ect of these two features below.

3.2.1 Constant Edge Bu�er

Since links arrive at each region in a continuous manner, a naïve federated learning approach would trigger
a model training round whenever a new link arrives. However, this may introduce prohibitive communica-
tion overhead due to communicating updated models with the central server whenever a new link arrives;
moreover, clients with infrequent link arrivals would not be able to update their model whenever a new link
arrives at a client with frequent link arrivals, as they may not yet have received any new links. Another
naïve approach would be to trigger a new federated learning training round at regular time intervals, e.g.,
midnight GMT every day. Due to temporal and client heterogeneity, however, clients would then train on
potentially very di�erent numbers of newly arrived links, as shown in Figure 1 (bottom middle).

To handle this heterogeneity in link arrivals, we formalize an alternative approach where the link stream
is partitioned into snapshots, which we call bu�ers, so as to maintain a constant number of edges (links)
C in each bu�er. Formally, given a temporal network G (here we drop the client index k for simplic-
ity) with m edges, let {e

1
, e

2
, e

3
, . . . , e

m≠1
, e

m} be its edge stream. Construct a sequence of bu�er graphs
{G1

, G2
, . . . , Gs

, . . . , GS} such that Gs =
)

e
i|C(s≠1) < i Æ Cs

*
, where S is the index of the largest non-empty

bu�er. In our implementation, we use a First-In-First-Out (FIFO) strategy for managing these bu�ers, en-
suring that the most recent edges displace the oldest ones when the bu�er reaches capacity. Figure 1 (bottom
right) illustrates the idea of a constant edge bu�er.

Algorithm 1 illustrates the FedLink algorithm. As in traditional federated learning, in each training round
r = 1, 2, . . . , R, clients running FedLink first receive the global models W (r) from the central server. Each
client then computes L local gradient steps with learning rate ÷. FedLink’s di�erence from traditional
federated learning on the fact that the client chooses one of its bu�ers to compute the gradient in each
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Algorithm 1 FedLink
Model parameters are represented by W = (w, I, J).
Each client k maintains bu�er graphs {G1

k, G2
k, . . . , GS

k }, each with constant number of edges C.
for round r = 1, . . . , R do

for each client k œ [K] do in parallel
Receive W (r)

Set W
(r,1)
k = W (r)

for local step l = 1, . . . , L do
Choose a bu�er Gs

k œ {G1
k, G2

k, . . . , GS
k }

Set g
(r,l)
Wk

= Òfk(W (r,l)
k ; Gs

k)
W

(r,l+1)
k = W

(r,l)
k ≠ ÷ g

(r,l)
Wk

// Update Parameters

end
�(r,L)

Wk
= W

(r,L+1)
k ≠ W

(r,1)
k

Send �(r,L)
Wk

to the server
end
// Server Operations

�(r)
W = 1

K

qK

k=1 �(r,L)
Wk

// Difference Aggregation

W (r+1) = W (r) + �(r)
W and broadcast to local clients // Update Global Models

end
// Perform Link Prediction

for each client k œ [K] do in parallel
Predict future links using equation 1 based on W R+1, Gk,T

end

local gradient step, instead of using the entire graph. The final gradient is then sent to the server, where
aggregation of the client models takes place as usual.

This approach of sampling a constant-size bu�er at each client significantly reduces training overhead com-
pared to training on the full historical graph. Clients only need to store the links (and associated nodes)
in the bu�er in memory when training the federated learning model, instead of storing the entire historical
graph. By sampling from past bu�ers, we also ensure that the model does not overfit to the most recent
bu�er, maintaining comparable model accuracy to using the entire historical graph.

Note that some users may move to another client while still having links in the bu�er; while intuitively
one might want to delete their associated links, the user may also return (e.g., if they temporarily travel
to another country for vacation). We therefore update the bu�er solely based on the age of the links and
not the location of the user. More sophisticated methods might instead attempt to learn the relevance of
each past link and update the bu�er based on this estimated relevance; however, estimating link relevance
to future predictions can be di�cult in practice, so we leave this idea to future work.

3.2.2 Cross-Client User Embeddings

We next outline how FedLink generates link predictions when users move across clients. To do so, we take
advantage of the fact that the link prediction mainly relies on the user and item embeddings (I, J), which
is shared across clients. Thus, in order to generate link predictions for a user newly arrived at a client k

Õ,
we can reuse the embedding I for this user that was learned at the user’s previous client k.

Since the items available at client k
Õ may di�er from those at client k, users may not receive as accurate

predictions after moving to client k
Õ as they might have at client k: their embedding was not trained to

predict link formation for client k
Õ’s items. However, we expect these predictions to be more accurate than

those that would be generated if client k
Õ had to learn this user’s embedding from scratch. We empirically

validate this intuition in Section 4’s evaluation.

3.3 Theoretical Analysis of FedLink

Since FedLink trains its GNN model on bu�ers of past data at each client, choosing the right bu�er size
may significantly impact the convergence of the training. While exactly quantifying the e�ects of bu�er size
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is di�cult, due to the complexity of the GNN model, in this section we explore how changing the bu�er size
a�ects convergence. To do so, we use a well-known graph model called the dynamic stochastic block model
(SBM) to model the evolution of the graph over time (Abbe, 2018; Keriven & Vaiter, 2022).

3.3.1 Dynamic Stochastic Block Model

For positive integers K and n, a probability vector p œ [0, 1]K , and a symmetric connectivity matrix B œ
[0, 1]K◊K , we define a static SBM as a random graph with n nodes split into K classes. The goal of a
prediction method for the SBM is to correctly divide nodes into their corresponding classes, based on the
graph structure. Each node is independently and randomly assigned a class in {1, ..., K} according to the
distribution p. Undirected edges are independently created between any pair of nodes in classes i and j with
probability Bij , which equals – if i = j (i and j are in the same class) and µ– if i ”= j (i and j are in di�erent
classes), where – œ (0, 1) and µ œ (0, 1) are given parameters.

We consider a set of discrete time steps t = 1, 2, . . . , T . At each time step t, the Dynamic SBM generates
new intra- and inter-class edges according to the probabilities – and µ– as defined for the SBM above. All
edges persist over time. We assume a constant number of nodes n, number of classes K, and connectivity
matrix B. Let Yt œ {0, 1}n◊K denote the matrix representing the nodes’ class memberships at each time
t, where Yik = 1 indicates that node i belongs to the k-th class, and is 0 otherwise. We model changes in
nodes’ class memberships as a Markov process with a constant transition probability matrix H œ [0, 1]K◊K .
Let Á œ (0, 1) denote the probability a node changes its membership. At each time step, node vi in class j

changes its membership to class k with the following probability (independently from other nodes):

Hj,k = P
#
Y

t
ik = 1|Y t≠1

ij = 1
$

=

Y
]

[

1 ≠ Á, j = k

Á

K ≠ 1 , j ”= k,

While Á may vary across classes j in practice, for simplicity we suppose it is the same for each class.

We suppose that our learning task is to classify the nodes of the graph, i.e., to group nodes together so as
to recover the membership matrix Y up to column permutation at each time t. We expect link prediction
to give similar convergence results, but as the analysis is more involved we present the node classification
analysis for simplicity. We thus evaluate estimates Ŷ of the membership matrix by defining the relative error
of a classification estimate Ŷ as

E(Ŷ , Y ) = min
fiœP

ÎŶ fi ≠ Y Î0, (2)

where P is the set of all K ◊ K permutation matrices and Î.Î0 counts the number of non-zero elements of
a matrix.

3.3.2 Class Behavior Over Time

We observe the behavior of class evolution over time by using the relative error function in (2) to characterize
the change in classification over time, i.e. E(Yt≠· , Yt). Without loss of generality, we remove the permutation
and keep class indices for columns of Y constant for all membership matrices. Since node transitions are
independent, the probability matrix E[Yt|Yt≠1] = Yt≠1H

T allows us to find the expectation of the relative
error between adjacent time steps. This is obtained by modeling the error as n individual Markov chains
between correct and incorrect classifications for each node. The probability of incorrectly predicting a node’s
class using the previous time step’s information is Á (the probability of class shifting between time steps).
Therefore, E[E(Yt≠1, Yt)] = 2ÎYt≠1Î0Á = 2ÎYtÎ0Á = 2nÁ, since every classification mistake increments the
error metric by 2. For further time steps, due to the penalty function used in E(·, ·), we construct a two-state
Markov chain for each user, where the states denote whether the user is in the same or di�erent class as the
current time. Then as t æ Œ, the system reaches a stationary distribution and E[E(Yt≠· , Yt)] = 2n

K≠1

K ¥ 2n

for large K. We will approximate the error over time by the following continuous function:

E(t) = 2n ≠ 2n(1 ≠ Á)÷t (3)

with an arbitrary convergence factor ÷ (Li & Orabona, 2019).
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3.3.3 Bu�er Error

We can now use Equation (3)’s bound on the convergence at time t to derive the dependence on bu�er
size. At each client k, we model a link arrival rate of ⁄k i.i.d and with bounded variance across clients
Var(1/⁄) Æ Ÿ

2. Assuming relatively uniform arrivals, the bu�er at a client will evenly cover a time period
‘/⁄k with each link being representative of a current or outdated membership graph. As such, each link
in the bu�er also has a representative error dependent on how long in the past it has arrived at the client.
We will approximate a summation over all representative errors of links present in the bu�er of size C by
integrating E(·) over the period (0, C/⁄k) to determine a local bu�er classification error for each client:

Ebuf (C, ⁄k) =
⁄ C/⁄k

0

E(·)d· = 2nC/⁄k ≠ (1 ≠ Á)÷C/⁄k ≠ 1
÷log(1 ≠ Á) (4)

Globally, the mean bu�er classification error across all clients is: Eclassification = 1

K

qK
k Ebuf (‘, ⁄k). Simply

analyzing the sum of the first terms of Ebuf , we can observe a linear relation between bu�er size and
classification error due to data staleness: as we increase C, we incorporate more and more older data. While
the second term of Ebuf also depends on C, its dependence on C decays exponentially for large C, and the
term overall is bounded from above by 1

÷ log(1≠‘)
. Thus, we expect the e�ect of increasing C to be dominated

by the first term in Ebuf . However, from existing analysis of federated learning such as Ye et al. (2023), it is
also known that consistent dataset size across clients reduces variance on gradients and thus training error.
Moreover, the rate of convergence ÷ is in general an increasing function of the bu�er size, as larger bu�ers
allow more data to be used in the training. Thus, when choosing the bu�er size, we should be mindful of
the tradeo�s between staleness e�ects and dataset size, as well as the increased memory and training time
overhead caused by larger bu�ers. Experiments in the next subsection validate these tradeo�s.

3.3.4 Bu�er Selection

Building upon our theoretical analysis of classification error and bu�er size trade-o�s, we conduct experiments
to determine optimal bu�er sizes specific to our dataset. Our experiments evaluate regions with populations
varying from below 100,000 to over a million check-ins, with the US the largest country with 1,990,327
check-ins. We test bu�er sizes ranging from 10,000 to 1,000,000 for the original data and from 10,000 to
500,000 for the 50% downsampled data, measuring the impact on AUC scores.

As shown in Figure 2, we observe a critical trade-o� between bu�er size, model performance, and GPU usage.
The model’s AUC shows a concave pattern as bu�er size increases, which validates the trade-o�s between
bu�er size and AUC Score. The GPU memory usage also increases with bu�er size. Small bu�er sizes
are insu�cient to capture enough historical information, especially for larger countries like the US, whose
AUC continues to increase with larger bu�er sizes. Larger bu�er sizes exceed the historical data available
in smaller regions, making them suboptimal and exhibiting approximately linear decreases for large bu�er
sizes, consistent with Equation (4). We use these identified optimal bu�er ranges to proceed with further
experiments.

4 Experiments

We finally validate FedLink on a real dataset that is naturally distributed across di�erent geographical
regions. We first describe the dataset, our baseline algorithms, and experiment settings before presenting
our results. In order to assess the e�ectiveness of FedLink, we address the following research questions (RQs)
to guide our experiments:

RQ1. System E�ciency: Does FedLink improve computational e�ciency in terms of GPU memory usage
and training time compared to baseline methods?

RQ2. Model Accuracy: Does FedLink’s approach with a bu�er method maintain accuracy comparable
to traditional FL methods while addressing data heterogeneity across di�erent regions?

RQ3. Bu�er & Data e�ciency Analysis: How do di�erent components of FedLink (sharing user
embeddings, bu�er mechanisms, dataset size) contribute to its overall performance and e�ciency?

8
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Figure 2: Impact of bu�er size on AUC scores and GPU usage for (left) original data and (right) 50%
downsampled data across di�erent regions. The optimal bu�er sizes that balances AUC scores and GPU
usage are marked with yellow highlights.

4.1 Datasets

We use subsets of the Foursquare Global-scale Check-in Dataset (Yang et al., 2016) with User Social Net-
works1 for our experiments. This dataset contains detailed global check-in data of users from 415 cities in
77 countries, with each city recording at least 10,000 check-ins between April 2012 and September 2013.

In our federated learning setup, each country serves as a separate client, where each check-in is represented
as an edge connecting a user to a venue within that country. By using this extensive dataset, we select
a representative subset of 10 countries for our experiments to evaluate the model’s performance across
di�erent geographical regions and data size. The subset of the dataset we used for our experiment features
the following statistics:

Check-ins: 7,705,646 check-ins made by 40,484 users across 1,273,946 venues.
Population Distribution: Selected countries show significant variation in user population sizes, reflecting
real-world demographic di�erences, shown in Figure C.1.
Check-in Distribution: The check-in volumes also vary across countries, with the United States (US)
having 1,990,327 check-ins, while Spain (ES) having 212,161 check-ins for example, shown in Figure C.2.
Traveled user percentage: Approximately 1.39% of users have check-ins across multiple countries, which
we refer to as traveled users.

In addition to Foursquare, we also evaluate our approaches on the TGBL-Wiki(Huang et al., 2023)(Kumar
et al., 2019) dataset from the Temporal Graph Benchmark (TGB). This dataset contains temporal user-page
interactions from Wikipedia, represented as a heterogeneous graph. More detailed can be found in B.5.

Interactions: 157,474 timestamped interactions between 4,613 users and 4,614 pages, with timestamps
ranging from 0 to 2,678,373.

4.2 Baselines

In order to evaluate the performance of our proposed method, we compare FedLink against several baseline
models representing di�erent federated training approaches and environment settings:

• Local (Hamilton et al., 2017): A Graph Neural Network (GNN) model that trained solely on
full-batch local graph data without federated learning, demonstrating the baseline predictive power
of GNN.

• STFL (Lou et al., 2021): A static GNN model added with a spatio-temporal federated learning
framework to incorporate historical edge relationships, serving as a baseline for federated learning
without bu�er mechanisms.

1https://sites.google.com/site/yangdingqi/home/foursquare-dataset?pli=1
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• 4D-FED-GNN+ (Gürler & Rekik, 2022): A federated GNN model using a longitudinal approach to
analyze temporal patterns within single-day edges. This comparison highlights FedLink’s advantage
in retrieving longer-term historical data.

• FedDGL (Xie et al., 2024): A federated dynamic graph learning framework that addresses tem-
poral evolution and data heterogeneity through global knowledge distillation and prototype-based
regularization.

• Feddy (Jiang et al., 2022): A federated dynamic graph neural network that uses position prediction
and secure aggregation to model temporal evolution, combining spatial graph convolution with
temporal aggregation for dynamic federated learning.

• FedLink: Our proposed federated learning method, which employs edge bu�ers and includes the
transmission of embeddings for users who have traveled.

• FedLink-NoEmb: FedLink, without sending embeddings for traveled users across clients.

• FedLink-Local: FedLink, using bu�ers for local training without any aggregation across clients.
This serves as a control to understand the impact of bu�er usage alone.

• FedLink-MiniBatch: FedLink that uses traditional random mini-batch sampling with the same
batch size as the bu�er, instead of our constant edge bu�er approach.

4.3 Experiment Settings

Building upon our baseline methods, we evaluate FedLink’s link prediction performance in our four subsets
of countries in the Foursquare dataset. Based on the bu�er size analysis in Section 3.3.4, we employ bu�er
sizes of 200,000 and 300,000, which demonstrated an optimal range for computational e�ciency and model
performance. In order to capture patterns of check-in behaviors and su�cient user travel across countries,
we analyze the data over a 30-day period. The training settings for each model are as follows:

• Local Training (Local and FedLink-Local): Both methods perform 60 local training iterations.
Local uses the complete dataset, while FedLink-Local uses a single bu�er per iteration.

• Federated Training (STFL and 4D-Fed-GNN+): Both methods perform 20 global training
rounds with 3 local iterations per client. STFL processes full historical data, while 4D-FED-GNN+
uses single-day data, representing scenarios with limited computational capacity.

• Federated Training with Bu�er (FedLink, FedLink-NoEmb): Both methods perform 20
global training rounds with 3 local iterations per client, processing one bu�er per iteration. FedLink
shares user embeddings across clients for traveled users, while FedLink-NoEmb operates without
this cross-client information sharing.

4.4 Experiment Results

RQ 1: System Evaluation: We evaluate FedLink’s system e�ciency across di�erent country combinations
by measuring training time, GPU memory usage, and AUC scores, as shown in Table 1. FedLink shows
strong computational e�ciency across all experimental settings. With a bu�er size of 200,000, FedLink
achieves comparable or faster training times to 4D-FED-GNN+ which only processes single-day data and
runs 28.9% faster than STFL. Moreover, FedLink also demonstrate its memory e�ciency by requiring 3.41◊
less GPU usage compared to full-batch methods like STFL, while maintaining competitive AUC scores across
all country combinations. More detailed usage of system evaluation by country can be found in Table C.1.

RQ 2: Model Accuracy Evaluation: As shown in Table 1, FedLink achieves comparable AUC scores
across all experimental settings, consistently ranking among the top two methods with STFL and Local
models. Figure 4.4 further illustrates the e�ciency-performance trade-o� of FedLink, where its position in
the upper-left corner indicates optimal balance: achieving high AUC scores while requiring significantly less

10
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Table 1: Performance comparison across six experimental settings. Measurements include training time
(seconds), GPU memory usage (GB), and AUC scores. Results for Exp 1-4 averaged over 10 runs across a
30-day period using FedLink with bu�er size 200,000 for 1,200 iterations. Exp 5-6 are TGBL-Wiki dataset
results with single-run scores. Bold indicates best results, bold italics indicate second-best.

Exp 1 (US, BR, ID, TR, JP) Exp 2 (MX, PH, ES, GB, IT)

Methods Time(s) GPU(GB) AUC Methods Time(s) GPU(GB) AUC

STFL 2.406 6.003 0.870 STFL 2.082 1.220 0.848
Local 2.250 5.997 0.877 Local 1.867 1.220 0.847

4D-FED-GNN+ 1.964 2.065 0.579 4D-FED-GNN+ 1.857 0.894 0.567

FedDGL 1.932 1.892 0.873 FedDGL 1.950 0.933 0.832

Feddy 2.759 7.574 0.871 Feddy 2.389 2.386 0.841

FedLink 1.866 2.065 0.876 FedLink 1.997 0.894 0.848
Exp 3 (US, JP, BR, MX, ES) Exp 4 (DE, NL, KR, FR, CA)

Methods Time(s) GPU(GB) AUC Methods Time(s) GPU(GB) AUC

STFL 2.058 5.832 0.869 STFL 1.752 0.886 0.861

Local 1.889 5.812 0.876 Local 1.624 0.869 0.860

4D-FED-GNN+ 1.649 1.789 0.587 4D-FED-GNN+ 1.484 0.678 0.598

FedDGL 1.897 1.773 0.867 FedDGL 1.519 0.790 0.862
Feddy 2.254 6.184 0.871 Feddy 2.081 1.214 0.858

FedLink 1.782 1.789 0.871 FedLink 1.463 0.676 0.864
Exp 5 (TGBL-Wiki, Early Period) Exp 6 (TGBL-Wiki, Later Period)

Methods Time(s) GPU(MB) AUC Methods Time(s) GPU(MB) AUC

STFL 0.735 0.589 0.868 STFL 0.762 0.618 0.859
Local 0.711 0.589 0.866 Local 0.738 0.618 0.852

4D-FED-GNN+ 0.582 0.303 0.824 4D-FED-GNN+ 0.607 0.319 0.806

FedDGL 0.713 0.706 0.869 FedDGL 0.740 0.713 0.855

Feddy 1.185 0.943 0.864 Feddy 1.234 0.996 0.851

FedLink 0.617 0.365 0.875 FedLink (Bu�er) 0.649 0.371 0.867

Figure 3: Comparison between di�erent methods showing: (a) the relationship between training time and
AUC Score, and (b) the relationship between GPU memory usage and AUC Score. FedLink optimally
balances AUC scores with training time and memory usage across all methods.

GPU memory and training time. Further, the only method (4D-FED-GNN+) achieving similar e�ciency
shows substantially lower AUC scores. This result highlights that FedLink is the only method that can
balance e�ciency with predictive performance.

RQ 3: Ablation Study: In order to evaluate the contribution of each component within FedLink, we
conduct an ablation study comparing three variants: Complete FedLink model with bu�er mechanism and
cross-client embedding transmission; FedLink-NoEmb, which removes cross-client embedding for traveled
users; and FedLink-Local, which uses only local bu�er training without federated learning. FedLink constantly
achieves the highest AUC scores among all variants, demonstrating the e�ectiveness of both federated learning
setting and bu�er mechanisms, as shown in Table 2. The results of isolating only traveled users for di�erent
FedLink methods are in Table C.4.
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Table 2: Ablation study by removing the FL part and the cross-client embedding part to test the e�ect on
AUC Scores for di�erent bu�er sizes. Federated aggregation significantly contributes to FedLink’s perfor-
mance.

Bu�er Size = 200,000
Methods US BR ID TR JP
FedLink (FL+Bu�er) 0.837±0.003 0.930±0.004 0.834±0.004 0.929±0.003 0.842±0.005
FedLink-Local 0.828±0.003 0.931±0.004 0.827±0.003 0.923±0.004 0.840±0.005
FedLink-NoEmb 0.832±0.003 0.931±0.006 0.829±0.006 0.931±0.005 0.836±0.007
FedLink-MiniBatch 0.823±0.005 0.926±0.004 0.825±0.005 0.921±0.005 0.834±0.006

Bu�er Size = 300,000
Methods US BR ID TR JP
FedLink (FL+Bu�er) 0.848±0.003 0.940±0.004 0.906±0.004 0.966±0.003 0.950±0.005
FedLink-Local 0.832±0.003 0.926±0.006 0.890±0.006 0.963±0.005 0.946±0.007
FedLink-NoEmb 0.847±0.003 0.938±0.004 0.904±0.004 0.965±0.003 0.946±0.006
FedLink-MiniBatch 0.831±0.005 0.934±0.006 0.893±0.006 0.957±0.004 0.941±0.007

Figure 4: Performance comparison under data downsampling (100% vs 50%). Results demonstrate that
FedLink maintains consistent AUC scores even with down-sampled data across both country sets. FedLink
maintains comparable AUC scores with 50% data size across both country sets, while achieving reduced
GPU memory consumption and faster training time.

To evaluate FedLink’s performance under di�erent data sizes, we conduct extensive downsampling exper-
iments. Our experimental results demonstrate FedLink’s resilience to data reduction, maintaining among
highest accuracy with 50% downsampling of the training data shown in Figure C.5. Note that our experi-
ments show that GPU memory scales proportionally with dataset size. This e�ciency-performance balance
is valuable for resource-constrained deployments. We also performed downsampling experiments for 50%,
25%, and 2% data size for di�erent country combinations, which can be found in Table B.2.

5 Conclusion

In this paper, we propose FedLink, a federated link prediction algorithm for dynamic graphs. FedLink is
motivated by the problem of recommending items, e.g., restaurants, to users in multiple regions. While it
is desirable to train a model across regions to take full advantage of all available data, privacy constraints,
and computational overhead may prohibit centralized training of a dynamic GNN model across all regions.
FedLink addresses the challenges of computational overhead and privacy concerns in situations where graph
data is localized, such as recommending restaurants to users in multiple countries. This approach has the
added benefit of accommodating users who move across countries, by allowing them to simply share the
user embedding across countries. Moreover, FedLink maintains edge bu�ers of fixed size at each client,
thus alleviating the e�ects of temporal and inter-client heterogeneity in link arrivals over time. Using the
Foursquare dataset, we show that FedLink significantly reduces memory requirements and improves training
speed while matching the accuracy of centralized training. Future work includes extending FedLink to
other dynamic graph applications and generalizing the standard federated learning convergence analysis to
address the unique challenges of dynamic graph settings. Our methodology also has the potential to extend
to time-series data analysis, node classification, and graph classification.
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6 Appendix

A Background

A.1 Graph Convolutional Network

A multi-layer Graph Convolutional Network (GCN) Kipf & Welling (2016) with row normalization has the
layer-wise propagation rule

H
(l+1) = „( ÂD≠1 ÂAH

(l)
W

(l)), (5)

where ÂA = A + IN , IN is the identity matrix, ÂDii =
q

j
ÂAij and W

(l) is a layer-specific trainable weight
matrix. The activation function is „, typically ReLU (rectified linear units), with a softmax in the last
layer for node classification. The node embedding matrix in the l-th layer is H

(l) œ RN◊D, which contains
high-level representations of the graph nodes transformed from the initial features; H

(0) = X.

In general, for a GCN with L layers of the form 5, the output for node i will depend on neighbors up to
L steps away. We denote this set by N L

i as L-hop neighbors of i. Based on this idea, the clients can first
communicate the information of nodes. After the communication of information, we can then train the
model.

B Experiments

B.1 Foursquare Dataset

We organize our experiments into four sets according to di�erent country sizes as follows:
Large Countries (EXP 1): Top five countries with the highest check-in volumes: United States (US),
Brazil (BR), Indonesia (ID), Turkey (TR), and Japan (JP) ;
Midsized countries (EXP 2): Five countries with relatively limited data: Mexico (MX), Philippines
(PH), Spain(ES), UK(GB), and Italy(IT);
Combinations (EXPs 3): Combinations of large and small countries (US, JP, BR, MX, ES) to assess
FedLink’s performance under client data heterogeneity;
Small Countries (EXP 4)Five small countries with size around 5% of the size of US: Germany(DE),
Netherlands(NL), South Korea(KR), France(FR), and Canada(CA).

We present Fig C.1 to show the population distribution across the ten countries selected for our experiments.
This population heterogeneity allow us to assess our model’s ability to handle di�erent levels of data density
and user activity patterns.

Figure C.1: Distribution of user population across selected 10 countries in the Foursquare dataset.
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Figure C.2: Distribution of check-ins across selected 10 countries in the Foursquare dataset.

B.2 Experimental Results

We present detailed performance metrics for di�erent country combinations in Table C.1, showing training
time for each country, total completion time, and GPU memory usage during training. The total training
time per round is determined by the slowest client, as federated learning requires all clients to complete
their local training before proceeding with global model updates. These detailed measurements demonstrate
FedLink’s computational e�ciency compared to baseline methods. We also present detailed test AUCs for
di�erent experiments, showing AUC score for each country in Table C.2. To ensure model convergence,

Figure C.3: Bu�er Size E�ect on AUC scores for five countries(US, BR, ID, TR, JP) on original data (left)
and 50% downsampled data (right).

we monitor AUC scores over increasing training rounds. Our experiments use 180 global rounds, as we
observe that model performance stabilizes well aorund this point, as shown in Figure C.4 for the convergence
patterns.

B.3 Bu�er Selection

As shown in Fig C.3, we performed experiments on varying bu�er size and evaluated its e�ect on model
AUC and GPU usage. Detailed bu�er size analysis on di�erent countries are as follows:

1. For the US dataset, it is the largest country in number of check-ins, and is the only one that will
benefit from increasing bu�er size even beyond 500K with continuously improved AUC, as it haven’t
reach its full batch check-in size.

2. For medium-sized countries (BR, TR, MX), the improvement plateaus around 200K, and actual
performance decreases beyond 500K.
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Table C.1: Training Time of FedLink with bu�er size 200,000 on clients for 1200 Iterations. Each result
represents the total training time, averaged over 10 runs. FedLink consistently trains faster and has lower
GPU memory usage, than all other algorithms except 4D-FED-GNN+ which has a much lower AUC.

US BR ID TR JP Total Time (s) Training GPU (GB)
STFL 2.172 2.085 2.293 2.312 2.406 2.406 5.997
Local 2.009 1.998 2.223 2.250 2.210 2.250 5.997
4D-FED-GNN+ 1.864 1.637 1.768 1.714 1.730 1.864 2.065

FedLink 1.758 1.630 1.650 1.673 1.766 1.766 2.065

MX PH ES GB IT Total Time (s) Training GPU (GB)
STFL 1.688 2.082 1.755 1.624 1.551 2.082 1.220
Local 1.540 1.867 1.580 1.577 1.549 1.867 1.220
4D-FED-GNN+ 1.493 1.857 1.488 1.481 1.480 1.857 0.894

FedLink 1.583 1.996 1.602 1.689 1.690 1.996 0.894
US BR JP MX ES Total Time (s) Training GPU (GB)

STFL 2.058 1.881 1.711 1.866 1.994 2.058 5.832
Local 1.798 1.837 1.650 1.889 1.809 1.889 5.830
4D-FED-GNN+ 1.606 1.601 1.594 1.649 1.583 1.649 1.789
FedLink 1.648 1.630 1.630 1.782 1.781 1.782 1.789

US IT GB TR ES Total Time(s) Training GPU(GB)
STFL 2.015 1.894 1.723 1.879 1.982 2.015 4.449
Local 1.806 1.860 1.662 1.867 1.814 1.860 4.447
4D-FED-GNN+ 1.650 1.614 1.607 1.643 1.596 1.650 1.302
FedLink 1.554 1.627 1.624 1.632 1.639 1.639 1.301

DE NL KR FR CA Total Time(s) Training GPU(GB)
STFL 1.552 1.684 1.752 1.651 1.696 1.752 0.886
Local 1.487 1.624 1.583 1.598 1.554 1.624 0.886
4D-FED-GNN+ 1.393 1.401 1.484 1.422 1.379 1.484 0.678
FedLink 1.347 1.408 1.395 1.463 1.421 1.463 0.676
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Table C.2: Test AUCs on di�erent test sets with varied countries combination. Each result is tested over a
30-day period with a 200,000 bu�er size. The result is averaged over 10 runs. FedLink consistently achieves
the best (bold) or second-best (bold italics) AUC compared with local training and STFL which require
significantly more training time.

US BR ID TR JP
STFL 0.842±0.004 0.927±0.006 0.832±0.006 0.922±0.004 0.828±0.008
Local 0.841±0.008 0.931±0.007 0.836±0.009 0.931±0.006 0.851±0.008

4D-FED-GNN+ 0.561±0.006 0.595±0.007 0.539±0.012 0.614±0.004 0.588±0.014
FedLink 0.847±0.003 0.930±0.004 0.834±0.004 0.929±0.003 0.842±0.005

MX PH ES GB IT
STFL 0.876±0.004 0.865±0.004 0.839±0.003 0.824±0.004 0.836±0.004
Local 0.873±0.006 0.865±0.009 0.838±0.009 0.822±0.010 0.837±0.010
4D-FED-GNN+ 0.640±0.002 0.544±0.002 0.546±0.002 0.568±0.002 0.536±0.001
FedLink 0.877±0.004 0.865±0.003 0.839±0.005 0.821±0.006 0.837±0.005

US BR JP MX ES
STFL 0.831±0.003 0.929±0.006 0.832±0.008 0.899±0.005 0.853±0.008
Local 0.838±0.008 0.931±0.007 0.843±0.009 0.908±0.006 0.865±0.008

4D-FED-GNN+ 0.560±0.012 0.594±0.013 0.590±0.012 0.646±0.012 0.547±0.014
FedLink 0.828±0.005 0.929±0.001 0.835±0.004 0.903±0.005 0.859±0.003

US IT GB TR ES
STFL 0.842±0.005 0.853±0.007 0.872±0.004 0.871±0.003 0.854±0.009
Local 0.843±0.010 0.864±0.007 0.864±0.008 0.879±0.004 0.866±0.007

4D-FED-GNN+ 0.552±0.007 0.563±0.009 0.571±0.011 0.583±0.008 0.547±0.013
FedLink 0.840±0.006 0.861±0.003 0.873±0.007 0.874±0.003 0.863±0.004

Figure C.4: AUC scores convergence analysis for FedLink over global training rounds

3. For smaller countries (JP, GB, ES), and the downsampled version of medium sized countries in
Figure C.3(right), optimal performance is achieved at even smaller bu�er sizes between 100K-
150K.

B.4 Ablation Study

We also present detailed experimental results for ablation study for downsampling data. Table B.2 presents
model performance under various data reduction scenarios (50%, 25%, and 2% of original data) across
di�erent country combinations.
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Table C.3: Test AUCs on down-sampled test sets with varied countries combination with 50%, 25%, 2% size
reduction on di�erent country combination’s data input. Each result is tested over a 30-day period with
a 200,000 bu�er size. The result is averaged over 10 runs. FedLink consistently achieves the best (bold)
or second-best (bold italics) AUC compared with local training and STFL which require significantly more
training time.

US(50%) BR(50%) ID(50%) TR(50%) JP(50%)
STFL 0.836±0.004 0.915±0.003 0.835±0.006 0.920±0.004 0.804±0.007
Local 0.835±0.008 0.926±0.008 0.8412±0.008 0.928±0.005 0.843±0.007

4D-FED-GNN+ 0.549±0.007 0.586±0.008 0.529±0.010 0.613±0.003 0.579±0.010
FedLink 0.843±0.004 0.928±0.004 0.833±0.003 0.917±0.003 0.847±0.005

US(50%) BR(50%) JP(50%) MX(50%) ES(50%)
STFL 0.831±0.004 0.929±0.006 0.832±0.006 0.899±0.005 0.853±0.008
Local 0.838±0.008 0.931±0.007 0.843±0.009 0.908±0.006 0.865±0.008

4D-FED-GNN+ 0.560±0.012 0.594±0.013 0.590±0.012 0.646±0.012 0.547±0.014
FedLink 0.828±0.005 0.929±0.001 0.835±0.004 0.903±0.005 0.859±0.003

US(25%) BR(25%) JP(25%) MX(25%) ES(25%)
STFL 0.683±0.006 0.834±0.006 0.720±0.005 0.780±0.008 0.701±0.006
Local 0.687±0.008 0.835±0.007 0.735±0.009 0.798±0.006 0.713±0.008

4D-FED-GNN+ 0.508±0.012 0.519±0.013 0.538±0.012 0.546±0.012 0.509±0.014
FedLink 0.693±0.005 0.837±0.001 0.731±0.004 0.793±0.005 0.709±0.003

US(2%) BR(2%) JP(2%) MX(2%) ES(2%)
STFL 0.831±0.004 0.929±0.006 0.832±0.006 0.899±0.005 0.853±0.008
Local 0.838±0.008 0.931±0.007 0.843±0.009 0.908±0.006 0.865±0.008

4D-FED-GNN+ 0.560±0.012 0.594±0.013 0.590±0.012 0.646±0.012 0.547±0.014
FedLink 0.828±0.005 0.929±0.001 0.835±0.004 0.903±0.005 0.859±0.003
Method Full Data 50% Large 50% Small 25% Data 2% Data
STFL 0.913±0.004 0.859±0.005 0.869±0.006 0.744±0.006 0.869±0.006
Local 0.915±0.008 0.870±0.009 0.754±0.008 0.877±0.008 0.877±0.008

4D-FED-GNN+ 0.567±0.009 0.566±0.009 0.587±0.013 0.509±0.014 0.549±0.010
FedLink 0.916±0.003 0.874±0.004 0.871±0.004 0.802±0.004 0.889±0.007

Table C.4: Test AUCs for only traveled users under the three ablation study methods of FedLink, FedLink-
Local and FedLink-NoEmb.

US BR ID TR JP
FedLink (FL+Bu�er) 0.808±0.001 1.000±0.001 0.964±0.036 0.833±0.001 0.923±0.182

FedLink-Local 0.552±0.002 0.732±0.158 0.548±0.124 0.531±0.004 0.610±0.215
FedLink-NoEmb 0.759±0.003 0.724±0.086 0.813±0.108 0.783±0.164 0.811±0.007

Table C.4 specifically focuses on traveled users, comparing performance across three variants: FedLink,
FedLink-Local, and FedLink-NoEmb. This analysis shows the importance of both federated learning and
embedding sharing mechanisms for predicting traveled users. FedLink consistently outperforms other variants
on traveled users, demonstrating the e�ectiveness of cross-client information sharing for users who move
between regions.

B.5 TGBL-Wiki

The dataset of TGBL-Wiki includes 157474 edges with timestamps from 0 to 2678373. There are total of
4613 users and 4614 items, with 133892 user-item interactions.

To evaluate temporal performance across di�erent time periods, we partition the TGBL-Wiki dataset into
two temporal subsets based on timestamp ordering: an earlier period containing the first half of interactions
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Figure C.5: Performance comparison under data downsampling (100% vs 50%). Results demonstrate that
FedLink maintains consistent AUC scores even with down-sampled data across both country sets. FedLink
maintains comparable AUC scores with 50% data size across both country sets, while achieving reduced
GPU memory consumption and faster training time.

(timestamps 0 to 1339186) and a later period containing the second half (timestamps 1339187 to 2678373).
This temporal split allows us to assess how federated learning methods perform on older versus newer
interaction patterns, providing insights into temporal generalization capabilities.

C Example Use Cases

We evaluate our novel training method on the Foursquare dataset, demonstrating its e�ectiveness in real-
world location-based service scenarios.

C.1 Link Prediction on Tabular Data

Most user data in Adobe is stored in tabular format, where each row in the table represents information on a
user information (e.g., user IP address, location, website, and purchased product). User information is also
updated with time. However, entries in this table may be missing, e.g., due to faulty data collection. By
modeling the user table information as a dynamic graph, we can perform link prediction on the tabular data
and fill in the missing part of the table, allowing us to more easily use it for various tasks (e.g., purchase
behavior prediction).

C.2 Website Behavior Prediction

Predicting websites to be visited by users allows dynamic pre-caching of the site content, reducing commu-
nication costs and response latency. By modeling visits as a user-website bipartite graph, we can predict
frequently visited websites. Such visit behavior is cyclic and dynamic, requiring regular updates and on-time
predictions.

C.3 User Identity Verification

Identity verification helps to validate users’ product subscriptions. By modeling users and their behavior as
nodes in a dynamic graph, we can detect anomalous behavior and classify nodes as “good” users and “bad”
actors.
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