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Abstract

We introduce a new Slovak masked language001
model called SlovakBERT. This is to our best002
knowledge the first paper discussing Slovak003
transformers-based language models. We eval-004
uate our model on several NLP tasks and005
achieve state-of-the-art results. This evalua-006
tion is likewise the first attempt to establish a007
benchmark for Slovak language models. We008
publish the masked language model, as well as009
the fine-tuned models for part-of-speech tag-010
ging, sentiment analysis and semantic textual011
similarity.012

1 Introduction013

Fine-tuning pre-trained large-scale language mod-014

els (LMs) is the dominant paradigm of current NLP.015

LMs proved to be a versatile technology that can016

help to improve performance for an array of NLP017

tasks, such as parsing, machine translation, text018

summarization, sentiment analysis, semantic simi-019

larity etc. The state-of-the-art performance makes020

LMs attractive for any language community that021

wants to develop their NLP capabilities. In this022

paper, we concern ourselves with Slovak language023

and address the lack of language models, as well024

as the lack of established evaluation standards for025

this language.026

In this paper, we introduce a new Slovak-only027

transformers-based language model called Slovak-028

BERT1. Although several multilingual models al-029

ready support Slovak, we believe that developing030

Slovak-only models is still important, as it can lead031

to better results and more compute and memory-032

wise efficient processing of Slovak language. Slo-033

vakBERT has RoBERTa architecture (Liu et al.,034

2019) and it was trained with a Web-crawled cor-035

pus.036

Since no standard evaluation benchmark for Slo-037

vak exists, we created our own set of tests mainly038

1Available at https://github.com/...

from pre-existing datasets. We believe that our 039

evaluation methodology might serve as a standard 040

benchmark for Slovak language in the future. We 041

evaluate SlovakBERT with this benchmark and we 042

also compare it to other available (mainly multilin- 043

gual) LMs and other existing approaches. The tasks 044

we use for evaluation are: part-of-speech tagging, 045

semantic textual similarity, sentiment analysis and 046

document classification. We also publish the best 047

performing models for selected tasks. These might 048

be used by other Slovak researchers or NLP practi- 049

tioners in the future as strong baselines. 050

Our main contributions in this paper are: 051

• We published a Slovak-only LM trained on a 052

Web corpus. 053

• We established an evaluation methodology for 054

Slovak language and we apply it on our model, 055

as well as on other LMs. 056

• We published several fine-tuned models based 057

on our LM, namely a part-of-speech tagger, 058

a sentiment analysis model and a sentence 059

embedding model. 060

• We published several additional datasets for 061

multiple tasks, namely sentiment analysis test 062

sets and semantic similarity translated dataset. 063

The rest of this paper is structured as follows: In 064

Section 2 we discuss related work about language 065

models and their language mutations. In Section 3 066

we describe the corpus crawling efforts and how 067

we train SlovakBERT with the resulting corpus. In 068

Section 4 we evaluate the model with four NLP 069

tasks. 070

2 Related Work 071

2.1 Language Models 072

LMs today are commonly based on self-attention 073

layers called transformers (Vaswani et al., 2017). 074

Despite the common architecture, the models might 075

differ in the details of their implementation, as well 076
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as in the task they are trained with (Xia et al., 2020).077

Perhaps the most common task is the so called078

masked language modeling (Devlin et al., 2019a),079

where randomly selected parts of text are masked080

and the model is expected to fill these parts with081

the original tokens. Masked language models are082

useful mainly as backbones for further fine-tuning.083

Another approach is to train a generative autore-084

gressive models (Radford et al., 2019), that always085

predicts the next word in a sequence, which can086

be used for various text generation tasks. Variants087

of LMs exist that attempt to make them more ef-088

ficient (Clark et al., 2020; Jiao et al., 2020), able089

to handle longer sentences (Beltagy et al., 2020) or090

fulfill various other requirements.091

2.2 Availability in Different Languages092

English is the most commonly used language in093

NLP, and a de facto standard for experimental094

work. Most of the proposed LM variants are in-095

deed trained and evaluated only on English. Other096

languages usually have at most only a few LMs097

trained, usually with a very safe choice of model098

architecture (e.g. BERT or RoBERTa). Languages099

with available native models are e.g. French (Mar-100

tin et al., 2020), Dutch (Delobelle et al., 2020) or101

Arabic (Antoun et al., 2020). There are also models102

for related Slavic languages, notably Czech (Sido103

et al., 2021) and Polish (Dadas et al., 2020).104

There is no Slovak-specific large scale LM avail-105

able so far. There is a Slovak version of WikiB-106

ERT model (Pyysalo et al., 2021), but it is trained107

only on texts from Wikipedia, which is not a large108

enough corpus for proper language modeling at this109

scale. The limitations of this model will be shown110

in the results as well.111

2.3 Multilingual Language Models112

Multilingual LMs are sometimes proposed as an al-113

ternative to training language-specific LMs. These114

LMs can handle more than one language. In prac-115

tice, they are often trained with more than 100116

languages. Training them is more efficient than117

training separate models for all the languages. Ad-118

ditionally, cross-lingual transfer learning might im-119

prove the performance with the languages being120

able to learn from each other. This is especially121

beneficial for low-resource languages.122

The first large-scale multilingual LM is123

MBERT (Devlin et al., 2019a) trained on 104 lan-124

guages. The authors observed that by simply expos-125

ing the model to data from multiple languages, the126

model was able to discover the multilingual signal 127

and it spontaneously developed interesting cross- 128

lingual capabilities, i.e. sentences from different 129

languages with similar meaning also have simi- 130

lar representations. Other models explicitly use 131

multilingual supervision, e.g. dictionaries, parallel 132

corpora or machine translation systems (Conneau 133

and Lample, 2019; Huang et al., 2019) 134

3 Training 135

In this section we describe our own Slovak masked 136

language model – SlovakBERT, the data that were 137

used for training, the architecture of the model and 138

how it was trained. 139

3.1 Data 140

We used a combination of available corpora and 141

our own Web-crawled corpus as our training data. 142

The available corpora we used were: Wikipedia 143

(326MB of text), Open Subtitles (415MB) and OS- 144

CAR corpus (4.6GB). We crawled .sk top-level 145

domain webpages, applied language detection and 146

extracted the title and the main content of each page 147

as clean text without HTML tags (17.4GB). The 148

text was then processed with the following steps: 149

• URL and email addresses were replaced with 150

special tokens. 151

• Elongated interpunction was reduced, i.e. if 152

there were sequences of the same interpunc- 153

tion character, these were reduced to one char- 154

acter (e.g. -- to -). 155

• Markdown syntax was deleted. 156

• All text content in braces {.} was eliminated 157

to reduce the amount of markup and program- 158

ming language text. 159

We segmented the resulting corpus into sen- 160

tences and removed duplicates to get 181.6M 161

unique sentences. In total, the final corpus has 162

19.35GB of text. 163

3.2 Model Architecture and Training 164

The model itself is a RoBERTa model (Liu et al., 165

2019). The details of the architecture are shown 166

in Table 1 in the SlovakBERT column. We use 167

BPE (Sennrich et al., 2016) tokenizer with the vo- 168

cabulary size of 50264. The model was trained 169

for 300k training steps with a batch size of 512. 170

Samples were limited to a maximum of 512 tokens 171

and for each sample we fit as many full sentences 172
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as possible. We used Adam optimization algo-173

rithm (Kingma and Ba, 2015) with 5× 10−4 learn-174

ing rate and 10k warmup steps. Dropout (dropout175

rate 0.1) and weight decay (λ = 0.01) were used176

for regularization. We used fairseq (Ott et al.,177

2019) library for training, which took approxi-178

mately 248 hours on 4 NVIDIA A100 GPUs. We179

used 16-bit float precision.180

4 Evaluation181

In this section, we describe the evaluation method-182

ology and results for SlovakBERT and other LMs.183

We use two main methods to examine the perfor-184

mance of LMs:185

1. Fine-tuned performance. We fine-tune the186

LMs for various NLP tasks and we analyze the187

achieved results. We compare the results with188

existing solutions based on other approaches,189

e.g. rule-based solutions or solutions based190

on word embeddings.191

2. Probing. Probing is a technique that aims to192

measure the amount of relevant information193

on individual layers of LMs. We use simple194

linear probes in our work, i.e. the hidden rep-195

resentations from the LMs are used as features196

for linear classifiers.197

We conducted the evaluation on four different198

tasks: part-of-speech tagging, semantic textual sim-199

ilarity, sentiment analysis and document classifica-200

tion. For each task, we introduce the dataset that201

is used, various baselines solutions, the LM-based202

approach we took and the final results for the task.203

4.1 Evaluated Language Models204

We evaluate and compare several LMs that support205

Slovak language to some extent:206

XLM-R (Conneau et al., 2020) - XLM-R is a207

suite of multilingual RoBERTa-style LMs. The208

models support 100 languages, including Slovak.209

Training data are based on CommonCrawl Web-210

crawled corpus. Slovak part has 23.2 GB (3.5B211

tokens). The XLM-R models differ in their size,212

ranging from Base model with 270M parameters213

to XXL model with 10.7B parameters.214

MBERT (Devlin et al., 2019b) - MBERT is a215

multilingual version of the original BERT model216

trained with Wikipedia-based corpus containing217

104 languages. Authors do not mention the amount218

of data for each language, but considering the size 219

of Slovak Wikipedia, we assume that the Slovak 220

part has tens of millions of tokens. 221

WikiBERT (Pyysalo et al., 2021) - WikiBERT 222

is a series of monolingual BERT-style models 223

trained on dumps of Wikipedia. The Slovak model 224

was trained with 39M tokens. 225

226

Note that both XLM-R and MBERT models 227

were trained in cross-lingually unsupervised man- 228

ner, i.e. no additional signal about how sentences 229

or words from different languages relate to each 230

other was provided. The models were trained with 231

a multilingual corpora only, although language bal- 232

ancing was performed. 233

In Table 1 we provide a basic quantitative mea- 234

sures for all the models. We compare their architec- 235

ture and training data. We also measure tokeniza- 236

tion productivity on texts from Universal Depen- 237

dencies (Nivre et al., 2020) train set. We show the 238

average length of tokens for each model. Longer 239

tokens are considered to be better, because they can 240

be more semantically meaningful and also because 241

they are more computationally efficient. We also 242

show how many unique tokens were used (effective 243

vocabulary) for the tokenization of this particular 244

dataset. Multilingual LMs have smaller portion 245

of their vocabulary used, since they contain many 246

tokens useful mainly for other languages, but not 247

for Slovak. These tokens are effectively redundant 248

for Slovak text processing. 249

4.2 Part-of-Speech Tagging 250

The goal of part-of-speech (POS) tagging is to as- 251

sign a certain POS tag from the predefined set of 252

possible tags to each word. This task mainly evalu- 253

ates the syntactic capabilities of the models. 254

4.2.1 Data 255

We use Slovak Dependency Treebank from Uni- 256

versal Dependencies dataset (Zeman, 2017; Nivre 257

et al., 2020) (UD). It contains annotations for both 258

Universal (UPOS, 17 tags) and Slovak-specific 259

(XPOS, 19 tags) POS tagsets. XPOS uses a more 260

complicated system and it encodes not only POS 261

tags, but also other morphological categories in the 262

label. In this work, we only use the first letter from 263

each XPOS label, which corresponds to a typical 264

POS tag. The tagsets and their relations are shown 265

in Table 8. 266
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Model SlovakBERT XLM-R-Base XLM-R-Large MBERT WikiBERT
Architecture RoBERTa RoBERTa BERT BERT
Num. layers 12 12 24 12 12
Num. attention head 12 12 16 12 12
Hidden size 768 768 1024 768 768
Num. parameters 125M 278M 560M 178M 102M
Languages 1 100 100 104 1
Training dataset size (tokens) 4.6B 167B n/a 39M
Slovak dataset size (tokens) 4.6B 3.2B 25-50M 39M
Vocabulary size 50K 250K 120K 20K
Average token length * 3.23 2.84 2.40 2.70
Effective vocabulary * 16.6K 9.6K 6.7K 5.8K
Effective vocabulary (%) * 33.05 3.86 5.62 29.10

Table 1: Basic statistics about the evaluated LMs. *Data are calculated based on Universal Dependencies dataset.

4.2.2 Previous work267

Since Slovak is an official part of the UD dataset,268

systems that attempt to cover multiple or all UD269

languages often support Slovak as well. The follow-270

ing systems were trained on UD data and support271

both UPOS and XPOS tagsets:272

UDPipe 2 (Straka, 2018) - A deep learning273

model based on multilayer bidirectional LSTM274

architecture with pre-trained Slovak word embed-275

dings. The model supports multiple languages, but276

the models themselves are monolingual.277

Stanza (Qi et al., 2020) - Stanza is a very similar278

model to UDPipe, it is also based on multilayer279

bidirectional LSTM with pre-trained word embed-280

dings.281

Trankit (Nguyen et al., 2021) - Trankit is282

based on adapter-style fine-tuning (Bapna and283

Firat, 2019) of XLM-R-Base. The adapters are284

fine-tuned for specific languages and they are able285

to handle multiple tasks at the same time.286

287

4.2.3 Our Fine-Tuning288

We use a standard setup for fine-tuning the LMs for289

token classification. The final layer of an LM that290

is used to predict the masked tokens is discarded.291

A classifier linear layer with dropout is used in its292

place to generate POS tag logits for each token.293

These logits are then transformed to a probability294

vector with softmax function and a cross-entropy295

is calculated for each token. The loss function for296

batch of samples is defined as an average cross-297

entropy across all the tokens. For inference, we298

simply pick the class with the highest probability299

for each token. Note that there is a discrepancy300

between what we perceive as words and what the301

models use as tokens. Some words might be tok-302

enized into multiple tokens. In that case, we only 303

make the prediction on the first token and the fi- 304

nal classifier layer is not applied to the subsequent 305

tokens for this word. We use Hugging Face 306

Transformers library for LM fine-tuning. 307

We use similar setup for probing, but with two 308

changes: (1) We freeze all the weights apart from 309

the classifier layer, and (2) we remove several top 310

layers from the LM, i.e. instead of making predic- 311

tions from the topmost layer, we make them from 312

other layer instead. This way we can analyze how 313

well the representations generated on each layer 314

work. 315

4.2.4 Results 316

We have performed a random hyperparameter 317

search with SlovakBERT. The range of individual 318

hyperparameters is shown in Table 6. We have 319

found out that weight decay is a beneficial regu- 320

larization technique, while label smoothing proved 321

itself to be inappropriate for our case. Other hy- 322

perparameters showed to have a very little reliable 323

effect, apart from learning rate, which proved to 324

be very sensitive. We have not repeated this tuning 325

for other LMs, instead, we only tuned the learning 326

rate. We have found out that it is appropriate to use 327

learning rate of 1 × 10−5 for all the models, but 328

XLM-R-Large. XLM-R-Large, the biggest model 329

we tested, needs smaller learning rate of 1× 10−6. 330

The results for POS tagging are shown in Ta- 331

ble 2. We report accuracy for both XPOS and 332

UPOS tagsets. WikiBERT seems to be the worst- 333

performing LM, probably because of its small train- 334

ing set. SlovakBERT seems to be on par with larger 335

XLM-R-Large. Other models lag behind slightly. 336

From existing solutions, only transformers-based 337

Trankit seems to be able to keep up. 338

We also analyzed the dynamics of the LM fine- 339

tuning. We analyzed the performance for various 340
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Model UPOS XPOS
UDPipe 2.0 92.83 94.74
UDPipe 2.6 97.30 97.87
Stanza 96.03 97.29
Trankit 97.85 98.03
WikiBERT 94.41 96.54
MBERT 97.50 98.03
XLM-R-Base 97.61 98.23
XLM-R-Large 97.96 98.34
SlovakBERT 97.84 98.37

Table 2: Results for POS tagging (accuracy).

checkpoints of our LM (checkpoints were made341

after 1000 training steps). We can see in Figure 1,342

that SlovakBERT was saturated w.r.t POS perfor-343

mance quite soon, after approximately 15k steps.344

We stopped the analysis after the first 125k steps,345

since the results seemed to be stable. Similar re-346

sults for probing can be seen in the same figure.347

We show the performance for all the layers for348

selected checkpoints. The performance on lay-349

ers peaks quite soon at layer 6 and then plateaus.350

The last layers even have degraded performance.351

This shows, that the morphosyntactic information352

needed for POS tagging is stored and processed353

mainly in the middle part of the model. This is in354

accord with the current knowledge about how LMs355

work, i.e. that they process the text in a bottom-up356

manner (Tenney et al., 2019).357
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Figure 1: Analysis of POS tagging learning dynamics.
Left: Accuracy after fine-tuning the different check-
points. Right: Accuracy of probes on all the layers of
different checkpoints.

4.3 Semantic Textual Similarity358

Semantic textual similarity (STS) is an NLP task359

where a similarity between pairs of sentences is360

measured. In our work, we train the LMs to gener-361

ate sentence embeddings and then we measure how362

much the cosine similarity between embeddings363

correlates with the ground truth labels provided by364

human annotators. We can use the resulting mod-365

els to generate universal sentence embeddings for 366

Slovak. 367

4.3.1 Data 368

Currently, there is no native Slovak STS dataset. 369

We decided to machine translate existing English 370

datasets, namely STSbenchmark (Cer et al., 2017) 371

and SICK (Marelli et al., 2014) into Slovak. These 372

datasets use a ⟨0, 5⟩ scale that expresses the simi- 373

larity of two sentences. The meaning of individual 374

steps on this scale is shown in Table 9. English STS 375

systems also usually use natural language inference 376

(NLI) data to perform additional pre-training. NLI 377

is a task where the goal is to identify cases of en- 378

tailment or contradiction between two sentences. 379

We translated SNLI (Bowman et al., 2015) and 380

MNLI (Williams et al., 2018) datasets to Slovak as 381

well. We use M2M100 (1.2B parameters variant) 382

machine translation system (Fan et al., 2021). 383

4.3.2 Previous Work 384

No Slovak-specific sentence embedding model has 385

been published yet. We use a naive solution based 386

on Slovak word embeddings and several available 387

multilingual models for comparison: 388

fastText (Bojanowski et al., 2017) - We use pre- 389

trained Slovak fastText word embeddings to gener- 390

ate representations for individual words. The sen- 391

tence representation is an average of all its words. 392

This represents a very naive baseline, since it com- 393

pletely omits the word order. 394

LASER (Artetxe and Schwenk, 2019) - LASER 395

is a model trained to generate multilingual sentence 396

embeddings. It is based on an encoder-decoder 397

LSTM machine translation system that is trained 398

with 93 languages. The encoder is shared across 399

all the languages and as such, it is able to generate 400

multilingual representations. 401

LaBSE (Feng et al., 2020) - LaBSE is an 402

MBERT model fine-tuned with parallel corpus to 403

produce mutlilingual sentence representations. 404

XLM-REN (Reimers and Gurevych, 2020) - 405

XLM-R model fine-tuned with English STS-related 406

data (SNLI, MNLI and STSbenchmark datasets). 407

This is a zero-shot cross-lingual learning setup, 408

i.e. no Slovak data are used and only English fine- 409

tuning is done. 410

4.3.3 Our Fine-Tuning 411

We use a setup similar to (Reimers and Gurevych, 412

2020). A pre-trained LM is used to initialize a 413
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Model Score
fastText 0.383
LASER 0.711
LaBSE 0.739
XLM-REN 0.801
WikiBERT 0.673
MBERT 0.748
XLM-R-Base 0.767
XLM-R-Large 0.791
SlovakBERT 0.791

Table 3: Spearman correlation between cosine similarity
of generated representations and desired similarities on
STSbenchmark dataset translated to Slovak.

Siamese network. Both branches of the network414

are identical LMs with a mean-pooling layer at415

the top that generates the final sentence embed-416

dings. The embeddings from the two sentences are417

compared using cosine similarity. The network is418

trained as a regression model, i.e. the final com-419

puted similarity is compared with the ground truth420

similarity with mean squared error loss function.421

We use SentenceTransformers library for422

the fine-tuning.423

We also performed a layer-wise analysis, where424

we analyzed which layers have the most viable425

representations for this task. We conducted the426

mean-pooling at different layers and ignored all the427

subsequent layers. This is similar to probing, but428

probing is usually done with frozen LM layers. In429

this case, we can not freeze the layers, since all the430

additional layers we added (mean-pooling, cosine431

similarity calculation) are not parametric.432

4.3.4 Results433

We compare the systems using Spearman correla-434

tion between the cosine similarity of the generated435

sentence representations and the ground truth data.436

The original STS datasets are using ⟨0, 5⟩ scale.437

We normalize these scores to ⟨0, 1⟩ range so that438

they can be directly compared to the cosine simi-439

larities. We performed a hyperparameter search in440

this case as well. Again, we have found out that441

the results are quite stable across various hyperpa-442

rameter values, with learning rate being the most443

sensitive hyperparameter. The details of the hyper-444

parameter tuning are shown in Table 7. We show445

the main results in Table 3.446

We can see that the results are fairly similar to447

POS tagging w.r.t. how the LMs are relatively or-448

dered. The existing solutions are worse, except449

for XLM-REN trained with English data, which 450

is actually the best performing model in our ex- 451

periments. It seems that their model fine-tuned 452

with real data without machine-translation-induced 453

noise works better, even if it has to perform the 454

inference cross-lingually on Slovak data. 455

We also experimented with Slovak-translated 456

NLI data in a way where the model was first fine- 457

tuned on NLI task and then the final STS fine- 458

tuning was performed. However, we were not able 459

to outperform the purely STS fine-tuning with this 460

approach and the results remained virtually the 461

same. This result is in contrast with the usual case 462

for English training, where the NLI data regularly 463

improve the results (Reimers and Gurevych, 2019). 464

We theorize that this effect might be caused by 465

noisy machine translation. 466

Figure 2 shows the learning dynamics of STS. 467

On the left, we can see that the performance takes 468

much longer to plateau than in the case of POS. 469

This shows that the model needs longer time to 470

learn about semantics. Still, we can see that the 471

performance ultimately stabilizes just below 0.8 472

score. Similarly, unlike POS, we can see that the 473

best performing layers are actually the last layers 474

of the model. 475
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Figure 2: Analysis of STS learning dynamics. Left:
Spearman correlation after fine-tuning with various
checkpoints. Right: Spearman correlation on all the
layers with selected checkpoints.

4.4 Sentiment Analysis 476

The goal of sentiment analysis is to identify the af- 477

fective sentiment of a given text. It requires seman- 478

tic analysis of the text, as well as certain amount of 479

emotional understanding. 480

4.4.1 Data 481

We use a Twitter-based dataset (Mozetič et al., 482

2016) annotated on a scale with three values: nega- 483

tive, neutral and positive. Some of the tweets have 484

already been removed since the dataset was created. 485
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Therefore, we work with a subset of the original486

dataset.487

We cleaned the data by removing URLs, retweet488

prefixes, hashtags, user mentions, quotes, asterisks,489

redundant whitespaces and trailing punctuation.490

We have also deduplicated the samples, as there491

were cases of identical samples (i.e. retweets) or492

very similar samples (i.e. automatically generated493

tweets). These duplicates had in some cases differ-494

ent labels. After the deduplication, we were left495

with 41084 tweets with 11160 negative samples,496

6668 neutral samples and 23256 positive samples.497

Additionally, we have also manually annotated a498

series of test sets containing reviews from various499

domains: accommodation, books, cars, games, mo-500

biles and movies. Each domain has approximately501

100 manually labeled samples. These are published502

along with this paper. They serve to check how503

well the model behavior transfers to other domains.504

This dataset is called Reviews in the results below,505

while the original Twitter-based dataset is called506

Twitter.507

4.4.2 Previous Work and Baselines508

The original paper introducing the Twitter dataset509

introduced an array of traditional classifiers (Naive510

Bayes and 5 SVM variants) to solve the task. The511

authors report the macro-F1 score for positive and512

negative classes only. Additionally, unlike us, they513

worked with the whole dataset. Approximately514

10K tweets have been deleted since the dataset was515

introduced. (Pecar et al., 2019) use the same ver-516

sion of the dataset as we do. They use approaches517

based on word embeddings and ELMO (Peters518

et al., 2018) to solve the task. Note that both pub-519

lished works use cross-validation, but no canonical520

dataset split is provided in either of them.521

There are several existing approaches we use for522

comparison:523

NLP4SK2 - A rule-based sentiment analysis sys-524

tem for Slovak that is available online525

Amazon - We also translated the Slovak data526

into English and used Amazon’s commercial527

sentiment analysis API and tested its performance528

on our test sets.529

530

We implemented several baseline classifiers that531

were trained with the same training data as the LMs532

in our experiments:533

2http://arl6.library.sk/nlp4sk/webapi/
analyza-sentimentu

TF-IDF linear classifier - A perceptron trained 534

with SGD algorithm. The text is represented with 535

TF-IDF using N-grams as basic text units. 536

fastText classifier - We used the built-in fastText 537

classifier with and without pre-trained Slovak word 538

embedding models. 539

Our STS embedding linear classifier - A 540

perceptron trained with SGD algorithm. The text is 541

represented using the sentence embedding model 542

we have trained for STS. 543

544

We performed a random search hyperparameter 545

optimization for all the approaches. 546

4.4.3 Our Fine-Tuning 547

We fine-tuned the LMs as classifiers with 3 classes. 548

The topmost layer of an LM is discarded and in- 549

stead a multilayer perceptron classifier with one 550

hidden layer and dropout is applied on the rep- 551

resentation of the first token. Categorical cross- 552

entropy loss function is used as loss function. The 553

class with the highest probability coming from the 554

softmax function is selected as the predicted la- 555

bel during inference. We use Hugging Face 556

Transformers library for fine-tuning. 557

4.4.4 Results 558

We report macro-F1 scores for all three classes as 559

our main performance measure. The LMs were 560

trained on the Twitter dataset. We calculate aver- 561

age F1 from our Reviews dataset as an additional 562

measure. 563

Again, we have performed a hyperparameter op- 564

timization of SlovakBERT. The results are similar 565

to results from POS tagging and STS. We have 566

found out that learning rate is the most sensitive 567

hyperparameter and that a small amount of weight 568

decay is a beneficial regularization. The main re- 569

sults are shown in Table 4. We can see that we 570

were able to obtain better results than the results 571

that were reported previously. However, the com- 572

parison is not perfect, as we use slightly different 573

datasets for the aforementioned reasons. 574

The LMs are ordered in performance similarly 575

to how they are ordered in the two previous tasks. 576

SlovakBERT seems to be among the best perform- 577

ing models, along with the larger XLM-R-Large. 578

The LMs were also able to successfully transfer 579

their sentiment knowledge to new domains and 580

they achieve up to 0.617 macro-F1 in the reviews 581
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Model Twitter F1 Reviews F1
3-class 2-class 3-class

(Mozetič et al., 2016)* - 0.682 -
(Pecar et al., 2019)* 0.669 - -
Amazon 0.502 0.472 0.766
NLP4SK 0.489 0.468 0.815
TF-IDF 0.571 0.603 0.412
fastText 0.591 0.622 0.416
fastText w/ emb. 0.606 0.631 0.426
STS embeddings 0.581 0.597 0.582
WikiBERT 0.580 0.597 0.398
MBERT 0.587 0.622 0.453
XLM-R-Base 0.620 0.651 0.518
XLM-R-Large 0.655 0.716 0.617
SlovakBERT 0.672 0.705 0.583

Table 4: Macro-F1 scores for sentiment analysis task.
The 2-class F1 score for Twitter is calculated only from
positive and negative classes – a methodology intro-
duced in the original dataset paper. *Indicates different
evaluation sets.

as well. However, both Amazon commercial sen-582

timent API and NLP4SK have even better scores,583

even though their performance on Twitter data was584

not very impressive. This is probably caused by the585

underlying training data they use in their systems,586

that might match our Reviews datasets more than587

the tweets used for our fine-tuning.588

4.5 Document Classification589

The final task which we evaluate our LMs on is590

classification of documents into 6 news categories.591

The goal of this task is to ascertain how well LMs592

handle common classification problems. We use593

a Slovak Categorized News Corpus (Hladek et al.,594

2014) that contains 4.7K news articles classified595

into 6 classes: Sports, Politics, Culture, Economy,596

Health and World. We do not use the Culture cate-597

gory, since it contains significantly smaller number598

of samples.599

Unfortunately, no existing work has used this600

dataset for document classification, so there are no601

existing results publicly available. We use the same602

set of baselines and LM fine-tuning as in the case603

of sentiment analysis, since both these tasks are604

text classification tasks, see Section 4.4 for more605

details.606

4.5.1 Results607

The main results from our experiment are shown608

in Table 5. We can see that the LMs are again the609

best performing approach. In this case, the results610

are quite similar with SlovakBERT being the best611

by a narrow margin. The baselines achieved signifi-612

cantly worse results. Note that our sentence embed-613

Model F1
TF-IDF 0.953
fastText 0.963
fastText w/ emb. 0.963
STS embeddings 0.935
WikiBERT 0.935
MBERT 0.985
XLM-R-Base 0.987
XLM-R-Large 0.985
Our model 0.990

Table 5: Macro-F1 scores for document classification
task.

ding model has the worst results on this task, while 614

it had competitive performance in sentiment classi- 615

fication. We theorize, that the sentence embedding 616

model was trained on sentences and is therefore 617

less capable of handling longer texts, typical for 618

the dataset used here. 619

5 Conclusions 620

We have trained and published SlovakBERT – a 621

new large-scale transformers-based Slovak masked 622

language model using 19.35GB of Web-crawled 623

Slovak text. We proposed an evaluation bench- 624

mark with multiple tasks for Slovak language and 625

evaluated several models. We conclude, that Slo- 626

vakBERT achieves state-of-the-art results on this 627

benchmark, but multilingual language models are 628

still competitive, especially larger but computation- 629

ally less efficient models such as XLM-R-Large. 630

We also release the fine-tuned models for the Slo- 631

vak community. 632

The lack of evaluation benchmarks is still an is- 633

sue for many mid-resource language, i.e. languages 634

that have sizeable corpus of text available on the 635

Web, but they do not have annotated natural lan- 636

guage understanding datasets available. Our work 637

was limited by this as well, as we were forced to 638

used datasets that created by machine translation 639

(in case of STS), noisy datasets (in case of senti- 640

ment analysis) or datasets with almost saturated 641

performance (in case of document classification). 642

Creating new high-quality datasets for the evalua- 643

tion of Slovak is our future work. 644

6 Ethical Consideration 645

SlovakBERT was trained using a Web-crawled cor- 646

pus. This is a common practice in current NLP, 647

yet, it raises some ethical concerns. Models trained 648

8



with huge poorly documented corpora might en-649

code in them various societal biases. The Slovak650

texts written on the Web are not representative of651

all the Slovak users. Certain demographics groups652

might be underrepresented and the model might not653

reflect them accordingly. We do not study these ef-654

fects in this work and we do not recommend using655

our model for sensitive applications without fur-656

ther analysis. Unfortunately, there are no datasets,657

benchmarks or other resources able to measure658

these effects in Slovak language as of yet.659
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A Hyperparameter Values934

Hyperparameter Range Selected
Learning rate [10−7, 10−3] 10−5

Batch size {8, 16, 32, 64, 128} 32
Warmup steps {0, 500, 1000, 2000} 1000
Weight decay [0, 0.1] 0.05
Label smoothing [0, 0.2] 0
Learning rate scheduler Various3 linear

Table 6: Hyperparameters used for POS tagging. Adam
was used as an optimization algorithm.

Hyperparameter Range Selected
Learning rate [10−7, 10−3] 10−5

Batch size {8, 16, 32, 64, 128} 32
Warmup steps {0, 500, 1000, 2000} 1000
Weight decay [0, 0.2] 0.15
Learning rate scheduler Various4 cosine with hard restarts

Table 7: Hyperparameters used for STS tagging. Adam
was used as an optimization algorithm.

3See the list of schedulers supported by Hugging Face
Transformers library.

4See the list of schedulers supported by Sentence Trans-
formers library.
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B Tagging Schemata935

XPOS UPOS
Tag Description Tag Description
A adjective ADJ adjectiveG participle
E preposition ADP adposition
D adverb ADV adverb
Y conditional morpheme AUX auxiliary
V verb VERB verb

O conjuction CCONJ coordinating conjunction
SCONJ subordinating conjunction

P pronoun DET determiner

PRON pronounR reflexive pronoun
J interjection INTJ interjection

S noun NOUN noun
PROPN proper noun

N numeral NUM numeral0 digit
T particle PART particle
Z punctuation PUNCT punctuation
W abbreviation

X otherQ unidentifiable
# non-word element
% citation in foreign language

SYM symbol

Table 8: Slovak POS tagsets and their mapping (Zeman,
2017).

Label Meaning
0 The two sentences are completely dissimilar.
1 The two sentences are not equivalent, but are on the same topic.
2 The two sentences are not equivalent, but share some details.
3 The two sentences are roughly equivalent, but some important information

differs.
4 The two sentences are mostly equivalent, but some unimportant details differ.
5 The two sentences are completely equivalent, as they mean the same thing.

Table 9: Annotation schema for STS datasets (Marelli
et al., 2014).
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