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ABSTRACT

Mean field type games (MFTGs) describe Nash equilibria between large coali-
tions: each coalition consists of a continuum of cooperative agents who maximize
the average reward of their coalition while interacting non-cooperatively with a
finite number of other coalitions. Although the theory has been extensively de-
veloped, we are still lacking efficient and scalable computational methods. Here,
we develop reinforcement learning methods for such games in a finite space set-
ting with general dynamics and reward functions. We start by proving that MFTG
solution yields approximate Nash equilibria in finite-size coalition games. We
then propose two algorithms. The first is based on quantization of mean-field
spaces and Nash Q-learning. We provide convergence and stability analysis. We
then propose a deep reinforcement learning algorithm, which can scale to larger
spaces. Numerical experiments in 5 environments with mean-field distributions of
dimension up to 200 show the scalability and efficiency of the proposed method.

1 INTRODUCTION

Game theory has found a large number of applications, from economics and finance to biology and
epidemiology. The most common notion of solution is the concept of Nash equilibrium, in which
no agent has any incentive to deviate unilaterally (Nash, 1951). At the other end of the spectrum is
the concept of social optimum, in which the agents cooperate to maximize a total reward over the
population. These notions have been extensively studied for finite-player games, see e.g. (Fudenberg
& Tirole, 1991). Computing exactly Nash equilibria in games with a large number of players is
known to be a very challenging problem (Daskalakis et al., 2009).

To address this challenge, the concept of mean field games (MFGs) has been introduced in (Lasry
& Lions, 2007; Huang et al., 2006), relying on intuitions from statistical physics. The main idea is
to consider an infinite population of agents, replacing the finite population with a probability distri-
bution, and to study the interactions between one representative player with this distribution. Under
suitable conditions, the solution to an MFG provides an approximate Nash equilibrium for the cor-
responding finite-player game. While MFGs typically focus on the solution concept of Nash equi-
librium, mean field control (MFC) problems focus on the solution concept of social optimum (Ben-
soussan et al., 2013). The theory of these two types of problems has been extensively developed, in
particular using tools from stochastic analysis and partial differential equations, see e.g. (Bensoussan
et al., 2013; Gomes & Saúde, 2014; Carmona & Delarue, 2018) for more details.

However, many real-world situations involve agents that are not purely cooperative or purely non-
cooperative. In many scenarios, the agents form coalitions: they cooperate with agents of the same
group and compete with other agents of other groups. In the limit where the number of agents is
infinite while the number of coalitions remains finite, this leads to the concept of mean-field type
games (MFTGs) (Tembine, 2017). Various applications have been developed, such as blockchain
token economics (Barreiro-Gomez & Tembine, 2019), risk-sensitive control (Tembine, 2015) or
more broadly in engineering (Barreiro-Gomez & Tembine, 2021). Similar problems have been
studied under the terminology of mean field games among teams (Subramanian et al., 2023) and
team-against-team mean field problems (Sanjari et al., 2023; Yüksel & Başar, 2024). The case of
zero-sum MFTG has received special interest (Başar & Moon, 2021; Cosso & Pham, 2019; Guan
et al., 2024), but the framework of MFTGs also covers general sum games with more than two
(mean-field) coalitions. MFTGs are different from MFGs because the agents are cooperative within

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

coalitions, while MFGs are about purely non-cooperative agents. They are also different from MFC
problems, in which the agents are purely cooperative. As a consequence, computational methods
and learning algorithms for MFGs and MFC problems cannot be applied to compute Nash equilibria
between mean-field coalitions in MFTGs. Last, graphon games (Caines & Huang, 2019) and mixed
mean field control games (Angiuli et al., 2023a) correspond to limit scenarios with infinitely many
mean-field groups. In such games, each player has a negligible impact on the rest of the population,
which is not the case in MFTGs, see (Tembine, 2017), so new methods are required for MFTGs.

Inspired by the recent successes of RL in two-player games such as Go (Silver et al., 2016) and
poker (Brown et al., 2020), RL methods have been adapted to solve MFGs and MFC problems,
see e.g. (Subramanian & Mahajan, 2019; Guo et al., 2019; Elie et al., 2020; Cui & Koeppl, 2021)
and (Gu et al., 2021; Carmona et al., 2023; Angiuli et al., 2023b) respectively, among many other ref-
erences. We refer to (Laurière et al., 2022) and the references therein for more details. Such methods
compute the solutions to mean field problems. A related topic is mean field multi-agent reinforce-
ment learning (MFMARL) (Yang et al., 2018), which studies finite-agent systems and replaces the
interactions between agents with the mean of neighboring agents’ states and actions. Extensions
include situations with multiple types and partial observation (Ganapathi Subramanian et al., 2020;
2021). However, the MFMARL setting differs substantially from MFTGs: (1) it does not take into
account a general dependence on the mean field (i.e., the whole population distribution), (2) it aims
directly for the finite-agent problem while using a mean-field approximation in an empirical way,
and (3) it is not designed to tackle Nash equilibria between coalitions. The works most related to
ours applied RL to continuous space linear-quadratic MFTGs by exploiting the specific structure of
the equilibrium policy in these games (Carmona et al., 2020; uz Zaman et al., 2024; Zaman et al.,
2024). In these settings, policies can be represented exactly with a small number of parameters. In
contrast, we focus on finite space MFTGs with general dynamics and reward functions, for which
there has been no RL algorithm thus far to the best of our knowledge.

Main contributions. Our main contributions are as follows:
1. We prove that solving an MFTG provides an ϵ-Nash equilibrium for a game between finite-size

coalitions (Theorem 2.4), which justifies studying MFTGs for finite-player applications.
2. We propose a tabular RL method based on quantization of the mean-field spaces and Nash Q-

learning (Hu & Wellman, 2003). We prove the convergence of this algorithm, analyzing the error
due to the discretization (Theorem 3.2).

3. We propose a deep RL algorithm based on DDPG (Lillicrap et al., 2016) which does not require
quantization and hence is more scalable to problems with a large number of states.

4. We illustrate both methods in 5 environments with distribution in dimension up to 200. Since
this paper is the first to propose RL algorithms for (finite space) MFTGs with general dynamics
and rewards, there is no standard baseline to compare with. We thus carry out a comparison with
two baselines inspired by independent learning.

The rest of the paper is organized as follows. In Section 2, we define the finite-agent problem with
coalitions and then its mean-field limit, and establish their connection. We then reformulate the
MFTG problem in the language of mean field MDPs. In Section 3, we present an algorithm based
on the idea of Nash Q-learning, and we analyze it. In Section 4, we present our deep RL algorithm
for MFTG, without discretization of the mean-field spaces. Numerical experiments are provided in
Section 5. Section 6 is dedicated to a summary and a discussion. The appendices contain proofs and
additional numerical results.

2 DEFINITION OF THE MODEL

In this section, we define the finite-population m-coalition game and the limiting MFTG with m
(central) players. We will use the terminology agent for an individual in a coalition and central
player for the player who chooses the policy to be used by her coalition. We will sometimes write
player instead of central player.

2.1 FINITE-POPULATION m-COALITION GAME

We consider a game between m groups of many agents. Each group is called a coalition and behaves
cooperatively within itself. Alternatively, we can say that there are m central players, and each of
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them chooses the behaviors to be used in their respective coalition. For each i ∈ [m], let Si and Ai

be respectively the finite state space and the finite action space for the individual agents in coalition
i. Let Ni denote the number of individual agents in coalition i. Let ∆(Si) and ∆(Ai) be the sets of
probability distributions on Si and Ai, respectively. Agent j in coalition i has a state xij

t at time t.
The state of coalition i is characterized by the empirical distribution µi,N̄

t = 1
Ni

∑Ni

j=1 δxij
t
∈ ∆(Si),

and the state of the whole population is characterized by the joint empirical distribution: µN̄
t =

(µ1,N̄
t , . . . , µm,N̄

t ). The state of every agent j ∈ [Ni] in coalition i evolves according to a transition
kernel pi : Si×Ai×

∏m
i′=1 ∆(Si′)→ ∆(Si). If the agent takes action aijt and the distribution is µN̄

t ,
then: xij

t+1 ∼ pi(·|xij
t , a

ij
t , µ

N̄
t ). We assume that the states of all agents in all coalitions are sampled

independently. During this transition, the agent obtains a reward ri(xij
t , a

ij
t , µ

N̄
t ) given by a function

ri : Si × Ai ×
∏m

i′=1 ∆(Si′) → R. All the agents in coalition i independently pick their actions
according to a common policy πi : Si×∆(S1)×· · ·×∆(Sm)→ ∆(Ai), i.e., aijt for all j ∈ [Ni] are
i.i.d. with distribution πi(·|xij

t , µ
N̄
t ). Notice that the arguments include the individual state and the

distribution of each coalition. We denote by Πi the set of such policies. The average social reward
for the central player of population i is defined as: J i,N̄ (π1, . . . , πm) = 1

Ni

∑Ni

j=1 E[
∑

t≥0 γ
trijt ],

where γ ∈ [0, 1) is a discount factor and the one-step reward at time t is rijt = rit(x
ij
t , a

ij
t , µ

N̄
t ). We

focus on the solution corresponding to a Nash equilibrium between the central players.

Definition 2.1 (Nash equilibrium for finite-population m-coalition type game) A policy profile
(π1

∗, . . . , π
m
∗ ) ∈ Π1 × · · · × Πm is a Nash equilibrium for the above finite-population game if:

for all i ∈ [m], for all πi ∈ Πi, J i,N̄ (πi;π−i
∗ ) ≤ J i,N̄ (πi

∗;π
−i
∗ ), where π−i

∗ denotes the vector of
policies for central players in other coalitions except i.

In a Nash equilibrium, there is no incentive for unilateral deviations at the coalition level. When
each Ni goes to infinity, we obtain a game between m central players in which each player controls
a population distribution. Such games are referred to as mean-field type games (MFTG for short).

2.2 MEAN-FIELD TYPE GAME

Informally, as Ni → +∞, the state µi,N̄
t of coalition i has a limiting distribution µi

t ∈ ∆(Si)

for each i ∈ [m], and the state µN̄
t of the whole population converges to µt = (µ1

t , . . . , µ
m
t ) ∈

∆(S1) × · · · × ∆(Sm). We will refer to the limiting distributions as the mean-field distributions.
Based on propagation-of-chaos type results, we expect all the agents’ states to evolve independently,
interacting only through the mean-field distributions. It is thus sufficient to understand the behavior
of one representative agent per coalition. A representative agent in mean-field coalition i has a state
xi
t ∈ Si which evolves according to: xi

t+1 ∼ pi(·|xi
t, a

i
t, µt), ait ∼ πi(·|xi

t, µt), where πi ∈ Πi is
the policy for coalition i. We consider that this policy is chosen by a central player and then applied
by all the infinitesimal agents in coalition i. The total reward for coalition i is: J i(π1, . . . , πm) =

E
[∑

t≥0 γ
tri(xi

t, a
i
t, µt)

]
, where, intuitively, the expectation takes into account the average over all

the agents of coalition i. Then, the goal is to find a Nash equilibrium between the m central players.

Definition 2.2 (Nash equilibrium for m-player MFTG) A policy profile (π1
∗, . . . , π

m
∗ ) ∈ Π1 ×

· · · × Πm is a Nash equilibrium for the above MFTG if: for all i ∈ [m], for all πi ∈ Πi,
J i(πi;π−i

∗ ) ≤ J i(πi
∗;π

−i
∗ ), where π−i

∗ denotes the vector of policies for players in other coali-
tions except i.

In other words, in a Nash equilibrium, the central players have no incentive to deviate unilaterally.
This can also be expressed through the notion of exploitability, which quantifies to what extent a
policy profile is far from being a Nash equilibrium, see (Heinrich et al., 2015; Perrin et al., 2020).

Definition 2.3 (Exploitability) The exploitability of a policy profile (π1, . . . , πm) ∈ Π1 × · · · ×
Πm is E(π1, . . . , πm) =

∑m
i=1 E i(π1, . . . , πm), where the i-th central player’s exploitability is:

E i(π1, . . . , πm) = maxπ̃i∈Πi J i(π̃i;π−i)− J i(πi;π−i).

Notice that E i(π1, . . . , πm) quantifies how much player i can be better off by playing an optimal
policy against π−i instead of πi. In particular E(π1, . . . , πm) = 0 if and only if (π1, . . . , πm) is a
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Nash equilibrium for the MFTG. More generally, we will use the exploitability to quantify how far
(π1, . . . , πm) is from being a Nash equilibrium.

The main motivation behind the MFTG is that its Nash equilibrium provides an approximate Nash
equilibrium in the finite-population m-coalition game, and the quality of the approximation increases
with the number of agents. In particular, we can show that solving an MFTG provides an ϵ-Nash
equilibrium for a game between finite-size coalitions. The following assumptions are classical in the
literature on MFC and MFTGs, see e.g. (Cui et al., 2024; Guan et al., 2024).

Assumption 1 (a) For each i ∈ [m], the reward function ri(x, a, µ) is bounded by a constant
Cr > 0 and Lipschitz w.r.t. µ with constant Lr.
(b) The transition probability p(x′|x, a, µ) satisfies the following Lipschitz bound: ∥p(·|x, a, µ) −
p(·|x, a, µ̃)∥1 ≤ Lpd(µ, µ̃) for every x ∈ Si, a ∈ Ai, and µ, µ̃ ∈ ∆(Si).
(c) The policies π(a|x, µ) satisfy the following Lipschitz bound: ∥π(·|x, µ) − π(·|x, µ̃)∥1 ≤
Lπd(µ, µ̃) for every x ∈ Si, and µ, µ̃ ∈ ∆(Si).

Theorem 2.4 (Approximate Nash equilibrium) Suppose that Assm. 1 holds. Let (π1
∗, . . . , π

m
∗ ) ∈

Π1 × · · · × Πm be a Nash equilibrium for the MFTG. When the discount factor γ satisfies γ(1 +

Lπ + Lp) < 1, then max
π̃i

J i,N̄ (π̃i;π−i
∗ ) ≤ J i,N̄ (πi

∗;π
−i
∗ ) + ε(N), for all i ∈ [m], with ε(N) =

Cmaxi∈[m]

{
|Si|
√
|Ai|/

√
Ni

}
, where C is a constant.

In other words, if all the agents use the policy coming from the MFTG corresponding to their coali-
tion, then each coalition can increase its total reward only marginally (at least when the number of
agents is large enough). The proof is deferred to Appx. A. In contrast with e.g. (Saldi et al., 2018,
Theorem 4.1), our result provides not only asymptotic convergence but also a rate of convergence.

2.3 REFORMULATION WITH MEAN-FIELD MDPS

Our next step towards RL methods is to rephrase the MFTG in the framework of Markov decision
processes (MDPs). Since the game involves the population’s states represented by probability dis-
tributions, the MDPs will be of mean-field type. We will thus rely on the framework of mean-field
Markov decision processes (MFMDP) (Motte & Pham, 2022; Carmona et al., 2023). But in con-
trast with these prior works, we consider a game between MFMDPs, which is more challenging
than a single MFMDP. The key remark is that, since xi

t has distribution µi
t and ait has distribution

πi(·|xi
t, µt), the expected one-step reward can be expressed as a function r̄i of the i-th policy and

the distributions:
r̄i(µt, π̄

i
t) =

∑
x∈Si

µi
t(x)

∑
a∈Ai

π̄i
t(a|x)ri(x, a, µt),

where π̄i
t = πi

t(·|·, µt). This will help us to rewrite the problem posed to central player i, as an
MDP. Before doing so, we introduce the following notations: S̄ =×m

i=1
S̄i is the (mean-field) state

space, where S̄i = ∆(Si) is the (mean-field) state space of population i. The (mean-field) state is
s̄t = µt ∈ S̄; Āi = ∆(Ai)|S

i| is the (mean-field) action space; r̄i : S̄ × Āi → R is as defined
above; p̄ : S̄ × Ā1 × · · · × Ām → S̄ is defined such that: p̄(s̄t, ā

1
t , . . . , ā

m
t ) = s̄t+1 where, if

s̄t = (µ1
t , . . . , µ

m
t ) and āit = πi(·|·, µi

t), then s̄t+1 = (µ1
t+1, . . . , µ

m
t+1), where we recall that µi

t+1

is the distribution of xi
t+1. In other words, p̄ encodes the transitions of the mean-field state, which

depends on all the central players’ (mean-field) actions. To stress the fact that the transitions are
deterministic, we will sometimes use the notation F̄ = p̄ to stress that this is a transition function
(at the mean-field level). A (mean-field) policy is now a function π̄i : S̄ → Āi. In other words,
the central player first chooses a function π̄i of the mean field. When applied on µt, π̄i(µt) returns
a policy for the individual agent, i.e., π̄i(µt) : Si ∋ xi

t 7→ π̄i(µt, x
i
t) = πi(·|xi

t, µt) ∈ ∆(Ai).
Although this approach may seem quite abstract, it allows us to view the problem posed to the
i-th central player as a “classical” MDP (modulo the fact that the state is a vector of probability
distributions). We can then borrow tools from reinforcement learning to solve this MDP.

Remark 2.5 Notice that an action for central player i, i.e., an element āi of Āi. From the point of
view of an agent in coalition i, it is a decentralized policy. Then π̄i is a mean-field policy for the
central player, whose input is a mean field. This generalizes the approach proposed in (Carmona

4
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et al., 2023) to the case of multiple controllers. It is different from e.g. (Yang et al., 2018), in which
there is no central player and no mean-field policies. This allows to represent coalitions’ behaviors
that react to other coalitions’ mean fields.

2.4 STAGE GAME EQUILIBRIA

We now rephrase the notion of MFTG equilibrium using the notion of value function, which will
lead to a connection with the concept of stage-game. To make the model more general, we also
assume that the reward of coalition i could function depend on the actions of all central players.

The central player of coalition i aims to choose a policy π̄i to maximize the discounted sum of
rewards: v̄iπ̄(s̄) = v̄i(s̄, π̄) := Eπ̄

[∑∞
t=0 γ

tr̄i(s̄t, ā
i
t)
]
, where π̄ = (π̄1, . . . , π̄m) is the policy

profile and s̄0 = s̄, s̄t+1 ∼ p̄(·|s̄t, ā1t , . . . , āmt ), ājt ∼ π̄i(·|s̄t), j = 1, . . . ,m, t ≥ 0.

We can now rephrase the notion of Nash equilibrium for the MFTG (Def. 2.2) in this framework.

Definition 2.6 (Nash equilibrium for MFTG rephrased) An MFTG Nash equilibrium π̄∗ =
(π̄1

∗, . . . , π̄
m
∗ ) is such that for all i = 1, . . . ,m: v̄i(s̄, π̄∗) ≥ v̄i(s̄, (π̄i, π̄−i

∗ )), ∀s̄ ∈ S̄,∀π̄i ∈ Π̄i.

To simplify the notation, we let ā = (ā1, . . . , ām), π̄−i(dā−i|s̄) =
∏

j ̸=i π̄
j(dāj |s̄), ā−i ∈ Ā−i =∏

j ̸=i Ā
j . The Q-function for central player i is defined as: Q̄i

π̄(s̄, ā) = Eπ̄

[∑∞
t=0γ

tr̄i(s̄t, ā
i)|s̄0 =

s̄, ā0 = ā
]
.. We now introduce an (MF)MDP for central player i when the other players’ policies

are fixed. We define the following MDP, denoted by MDP(π̄−i).

Definition 2.7 (MDP(π̄−i)) An MDP for a central player i against fixed poli-
cies of other players is a tuple (S̄, Āi, p̄π̄−i , r̄π̄−i , γ) where p̄π̄−i(s̄′|s̄, āi) =∫
Ā−i

p̄(s̄′|s̄, ā)π̄−i(dā−i|s̄), r̄π̄−i(s̄, āi) = r̄i(s̄, āi).

Next, we define the notion of stage game, which is a Nash equilibrium for a one-step problem. This
serves as an intermediate goal in Nash Q-learning, to learn a global-in-time Nash equilibrium.

Definition 2.8 (Stage game and stage Nash equilibrium) Given a (mean-field) state s̄ ∈ S̄ and a
policy profile π̄ = (π̄1, . . . , π̄m), the (mean-field) stage game induced by s̄ and π̄ is a static game
in which player i takes an action āi ∈ Āi, i = 1, . . . ,m and gets the reward Q̄i

π̄(s̄, ā
1, . . . , ām).

Player i is allowed to use a mixed strategy σi ∈ ∆(Āi). A Nash equilibrium for this stage game is
a strategy profile σ∗ = (σ1

∗, . . . , σ
m
∗ ) such that, for all σi ∈ ∆(Āi),

σ1
∗ · · ·σm

∗ Q̄i
π̄(s̄) ≥ σ1

∗ · · ·σi−1
∗ σiσi+1

∗ · · ·σm
∗ Q̄i

π̄(s̄)

where we define σ1 · · ·σmQ̄i
π̄(s̄) := r̄i(s̄, σi) + γ

∫
S̄

∫
Ā

v̄i(s̄′, π̄)p̄(ds̄′|s̄, ā)σ(dā|s̄), with Ā =

Ā1 × · · · × Ām, σ(dā|s̄) =
∏m

i=1 σ
i(dāi|s̄), and r̄i(s̄, σi) := Eāi∼σi r̄i(s̄, āi).

We now define a mean-field version of the NashQ function introduced by Hu & Wellman (2003).
Intuitively, it quantifies the reward that player i gets when the system starts in a given state, all the
player uses the stage-game equilibrium strategies for the first action, and then play according to a
fixed policy profile for all remaining time steps.

Definition 2.9 (NashQ function) Given a Nash equilibrium (σ1
∗, . . . , σ

m
∗ ), the NashQ function of

player i is defined as: NashQ̄i
π̄(s̄) := σ1

∗ · · ·σm
∗ Q̄i

π̄(s̄).

We conclude by showing the link between Defs. 2.2 and 2.8 (the proof is in Appx. B).

Proposition 2.10 The following statements are equivalent: (i) π̄∗ = (π̄1
∗, . . . , π̄

m
∗ ) is a Nash

equilibrium for the MFTG with equilibrium payoff (v̄1π̄∗
, . . . , v̄mπ̄∗

); (ii) For every s̄ ∈ S̄,
(π̄1

∗(s̄), . . . , π̄
m
∗ (s̄)) is a Nash equilibrium in the stage game induced by state s̄ and policy profile π̄∗

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

3 NASH Q-LEARNING AND TABULAR IMPLEMENTATION

In this section, we present an adaptation of the celebrated Nash Q-learning of Hu & Wellman (2003)
to solve MFTG. It should be noted that the original Nash Q-learning algorithm Hu & Wellman (2003)
is for finite state and action spaces and to the best of our knowledge, extensions to continuous spaces
have been proposed only in special cases, such as Vamvoudakis (2015); Casgrain et al. (2022), but
there is no extension to continuous spaces for general games that could be applied to MFTGs. The
main difficulty is the computation of the solution to the stage-game at each iteration, which relies on
the fact that the action space is finite. So this algorithm cannot be applied directly to solve MFTGs.

In order to implement this method using tabular RL, we will start by discretizing the simplexes
following the idea in Carmona et al. (2023). This allows us to analyze the algorithm fully. However,
this approach is not scalable in terms of the number of states, which is why in Section 4, we will
present a deep RL method that does not require simplex discretization.

3.1 DISCRETIZED MFTG

Since Si and Ai are finite, S̄i = ∆(Si) and ∆(Ai) are (finite-dimensional) simplexes. We endow
S̄ and ∆(Ai) with the distances dS̄(s̄, s̄′) =

∑
i∈[m] d(s̄

i, s̄′
i
) =

∑
i∈[m]

∑
x∈Si |µi(x) − µ′i(x)|,

and dAi(āi(s̄), ā′
i
(s̄)) =

∑
x,a |πi(a|x, s̄) − π′i(a|x, s̄)|, where s̄i = µi, āi(s̄) = πi(·|·, s̄). In the

action space Āi = {S̄ → ∆(Ai)}, we define the distance dĀi(āi, ā′
i
) = sups̄∈S̄ dAi(āi(s̄), ā′

i
(s̄)).

However, S̄ and Āi are not finite. To apply the tabular Q-learning algorithm, we replace S̄ and
Āi with finite sets. For i = 1, . . . ,m, let Ši ⊂ S̄i and ∆̌(Ai) ⊂ ∆(Ai) be finite approxi-
mations of S̄i and ∆(Ai). We then define the (mean-field) finite state space and action space
Š = Πm

i=1Š
i ⊂ S̄ and Ǎi = {ǎi : Š → ∆̌(Ai)}. Let ϵS = maxs̄∈S̄ minš∈Š dS̄(s̄, š) and

ϵA = maxi maxāi∈Āi minǎi∈Ǎi dĀi(āi, ǎi), which characterize the fineness of the discretiza-
tion.The policy space of each player i is Π̌i = {π̌i : Š → ∆(Ǎi)}. We will also use the projection
operator ProjŠ : S̄ → Š, which maps s̄ to the closest point in Š (ties broken arbitrarily). This will
ensure the state takes value in Š. Specifically, given a state št and a joint action (ǎ1t , . . . , ǎ

m
t ), we

generate s̄t+1 = F̄ (št, ǎ
1
t , . . . ǎ

m
t ). Then, we project s̄t+1 back to Š and denote the projected state

by št+1 = ProjŠ(s̄t+1). This finite space setting can be regarded as a special case of an m-player
stochastic game, and the Theorem 2 in (Fink, 1964) guarantees the existence of a Nash equilibrium.

3.2 NASH Q-LEARNING ALGORITHM

We briefly describe the tabular Nash Q-learning algorithm, similar to the algorithm of Hu & Wellman
(2003). The main idea is that, instead of using classical Q-learning updates, which involve only the
player’s own Q-function, the players will use the NashQ function for a stage game.

At each step t, the players use their current estimate of the Q-functions to define a stage game. They
compute the Nash equilibrium, say (σ̌1, . . . , σ̌m) ∈

∏m
i=1 Π̌

i, and deduce the associated NashQ
function, which is then used to update their estimates of the Q-functions.

At each step t, player i observes š and takes an action according to a behavior policy chosen to
ensure exploration. Then, she observes the reward, actions of each player, and the next state š′. She
then solves the stage game with rewards (Q̌1

t (š
′), . . . , Q̌m

t (š′)), where Q̌i
t(š

′) : (ā1, . . . , ām) 7→
Q̌i

t(š
′, ā1, . . . , ām). Let (π̌i,1

∗ (š′), . . . , π̌i,m
∗ (š′)) be the Nash equilibrium obtained on player i’s

belief. The NashQ function of player i is defined as: NashQ̌i
t(š

′) = π̌i,1
∗ · · · π̌i,m

∗ Q̌i
t(š

′). From here,
she updates the Q-values according to the following rule, where αt is a learning rate:

Q̌i
t+1(š, ǎ

1, . . . , ǎm) = (1− αt)Q̌
i
t(š, ǎ

1, . . . , ǎm) + αt(r̄
i
t + βNashQ̌i

t(š
′)). (1)

It is noted that in each iteration, the Q-values of each player are updated asynchronously based on
the observation. The detailed algorithm is described in Algo. 1 in Appx. D due to space constraints.
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3.3 NASH Q-LEARNING ANALYSIS

We will see that Q̌i
t from Algo. 1 converges to Q̌i

π̌∗
under the following assumption, which is

classical in the literature on NashQ-learning, see e.g. Hu & Wellman (2003); Yang et al. (2018).
We use it for the proof although it seems that in practice the algorithm works well even when this
assumption does not hold.

Assumption 2 (a) Every state š ∈ Š and action ǎi ∈ Ǎi, i = 1, . . . ,m, are visited infinitely often.
(b) αt satisfies the following two conditions for all t, š, ǎ1, . . . , ǎm: 1. 0 ≤ αt(š, ǎ

1, . . . , ǎm) < 1,∑∞
t=0 αt(š, ǎ

1, . . . , ǎm) = ∞,
∑∞

t=0 α
2
t (š, ǎ

1, . . . , ǎm) < ∞, the latter two hold uniformly and
with probability 1. 2. αt(š, ǎ

1, . . . , ǎm) = 0, if (š, ǎ1, . . . , ǎm) ̸= (št, ǎ
1
t , . . . , ǎ

m
t ).

(c) One of the following two conditions holds: 1. Every stage game (Q̌1
t (š

′), . . . , Q̌m
t (š′)) for all t

and š, has a global optimal point, and players’ payoff in this equilibrium are used to update their
Q-functions. 2. Every stage game (Q̌1

t (š
′), . . . , Q̌m

t (š′)) for all t and š, has a saddle point, and
players’ payoff in this equilibrium are used to update their Q-functions.

Here, a global optimal point is a joint policy of the stage game such that each player receives her
highest payoff following this policy. A saddle point is a Nash equilibrium policy of the stage game,
and each player would receive a higher payoff provided at least one of the other players takes a
policy different from the Nash equilibrium policy.

Theorem 3.1 (NashQ-learning convergence) Under Assm. 2, Q̌t = (Q̌1
t , . . . , Q̌

m
t ), updated by (1)

converges to the Nash equilibrium Q-functions Q̌π̌∗ = (Q̌1
π̌∗

, . . . , Q̌m
π̌∗

).

We omit the proof of Theorem 3.1 as it is essentially the same as in (Hu & Well-
man, 2003). We then focus on the difference between the approximated Nash Q-function,
Q̌i

t(ProjŠ(s̄),ProjǍ1(ā1), . . . ,ProjǍm(ām)) and the true Nash Q-function, Q̄i
π̄∗

(s̄, ā1 . . . ām), in
the infinite space S̄ × Āi × · · · × Ām. For this proof, we use the following assumption, which is an
extension to the multi-player setting of the assumptions in (Carmona et al., 2023).

Assumption 3 (a) For each i, r̄i is bounded and Lipschitz continuous w.r.t. (s̄t, ā
i
t) with constant

Lr̄i . F̄ is Lipschitz continuous w.r.t. (s̄, ā1, . . . , ām) with constant LF̄ in expectation.
(b) v̄iπ̄ is Lipschitz continuous w.r.t. s̄ with constant Lv̄π̄ .

Assm. 3 (a) can be achieved with suitable conditions on the game. The boundedness of the reward
function, together with the discount factor 0 < γ < 1, can also lead to the boundedness of the payoff
function v̄iπ̄∗

. For classical MDPs, Lipschitz continuity of the value function can be derived from
assumptions on the model as in (Motte & Pham, 2022).

To alleviate the notation, we let: Proj(s̄, ā1 . . . ām) = (ProjŠ(s̄),ProjǍ1(ā1), . . . ,ProjǍm(ām)).

Theorem 3.2 (Discrete problem analysis) Let ϵ > 0. Suppose Assm. 3 holds and there is a unique
pure policy π̄p

∗ for the MFTG for each i and s̄ ∈ S̄, the function vi
π̄p

∗
(s̄) is a global optimal point

for the stage game Q̄i
π̄p

∗
(s̄). Then, if t is large enough, for each i, s̄ ∈ S̄, i = 1, 2, · · · , we have

|Q̌i
t(Proj(s̄, ā

1 . . . ām)) − Q̄i
π̄p

∗
(s̄, ā1 . . . ām)| ≤ ϵ′, where ϵ′ = ϵ + C1ϵA + C2ϵS , with ϵS and ϵA

defined above, respectively, C1 = 1
1−γ (Lr̄i + γLv̄i

π̄∗
LF̄m) and C2 = γ

1−γLv̄i
π̄∗

+Lr̄i + γLv̄i
π̄∗
LF̄ .

Note the first ϵ in the bound ϵ′ can be chosen arbitrarily small provided t is large enough. The
second and the third term are controlled by ϵA and ϵS and can be small if we choose a finer simplex
approximation. The proof is provided in Appx. C.

4 DEEP RL FOR MFTG

While the above extension of the NashQ learning algorithm has the advantage of being fully analyz-
able and enjoying convergence guarantees, it is not scalable to large state and action spaces. Indeed,
it requires discretizing the simplexes of distributions on states and actions. The number of points
increases exponentially in the number of states and actions, which makes the algorithm intractable
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for very fine discretizations. Furthermore, each step relies on solving a stage game and computing a
Nash equilibrium is a difficult task for large games, even they are static.

For this reason, we now present a deep RL algorithm whose main advantages are that it does not
require discretizing the simplexes and does not require solving any stage-game. The state and ac-
tion distributions are represented as vectors (containing the probability mass functions) and passed
as inputs to neural networks for the policies and the value functions. At the level of the central
player for coalition i, one action is an element āi ∈ Āi. Although it corresponds to a mixed pol-
icy at the level of the individual agent, it represents one action for the central player. We focus on
learning deterministic central policies, meaning functions that map a mean-field state s̄ to a mean-
field action āi. To this end, we use a variant of the deep deterministic policy gradient algorithm
(DDPG) (Lillicrap et al., 2016), as shown in Algo. 2 in Appx. D. Our algorithm substantially differs
from the DDPG algorithm as the two players’ behaviors are coupled. Each player interacts with
a dynamic environment that the other player also influences. Unlike the tabular Nash Q-learning
algorithm, it is generally difficult to have a rigorous proof of convergence due to the complexity of
deep neural networks. Although the theoretical convergence of some algorithms has been studied,
such as deep Q-learning (Fan et al., 2020), deterministic policy gradient (Xiong et al., 2022), and
actor-critic algorithms with multi-layer neural networks (Tian et al., 2024), to the best of our knowl-
edge, the convergence of DDPG under assumptions that could be applied to our setting has not been
established. Also, in the case of MFTGs, we would need to analyze the convergence to a Nash
equilibrium, which is more complex than the solution to an MDP. Therefore, we leave for future
work the theoretical analysis and focus on numerical analysis: we use several numerical metrics to
measure the performance of DDPG-MFTG Algo. 2, as detailed in the next section.

5 NUMERICAL EXPERIMENTS

Metrics. To assess the convergence of our algorithms, we use several metrics. First, we check the
testing rewards of each central player (i.e., the total reward for each coalition, averaged over the
testing set of initial distributions). But this is not sufficient to show that the policies form a Nash
equilibrium of the MFTG. For this, we compute the exploitability. This requires training a best
response (BR) policy for each player independently, which is also done with deep RL, using the
DDPG method. Last, we also check the evolution of the distributions to make sure that they match
what we expect to happen in the Nash equilibrium. The pseudo-codes for evaluating a policy profile
and computing the exploitability are respectively provided in Algs. 4 and 5 in Appx. E.
Training and testing sets. The training set consists of randomly generated tuples of distributions,
and each element of the tuple represents the initial distribution of a player. The testing set consists
of a finite number of tuples of distributions that are not in the training set. Details of the training and
testing sets are described case by case.
Baseline. To the best of our knowledge, there are no RL algorithms that can be applied to the
type of MFTG problems we study here. In the absence of standard baselines, we will use two
types of baselines, for each of our algorithms. For small-scale examples, we discretize the mean-
field state and action spaces and employ DNashQ-MFTG. Here, we use as a baseline an algorithm
where each coalition runs an independent mean field type Q-learning (after suitable discretization
of the simplexes). We call this method Independent Learning-Mean Field Type Game (IL-MFTG
for short). For larger scale examples with many states, we use the DDPG-based methods described
in the previous section. In this case, we use as a baseline an ablated DDPG method in which each
central player can only see her own (mean-field) state. For both our algorithms and the baselines,
the exploitability is computed using our original class of policies, see Algo. 5.
Games. We present here 3 examples. Two more are presented in Appx. F.4 and F.5. Table 1 in
Appx. summarizes the average improvements obtained by our method (at least 30% in each game).

Example 1: 1D Population Matching Grid Game There are m = 2 populations. The agent’s
state space is a 3-state 1D grid world. The possible actions are moving left, staying, and moving
right, with individual noise perturbing the movements. The rewards encourage Coalition 1 to stay
where it is initialized but also to consider avoiding Coalition 2, and encourage Coalition 2 to match
Coalition 1. For the model details and the training and testing distributions, see Appx. F.1. We
implement DNashQ-MFTG to solve this game. The numerical results are presented in Fig. 1. We
make the following observations. Testing reward curves: Fig 1 (left) shows the testing rewards.
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In this game setting, the Nash equilibrium is that Coalition 1 stays where it is but considers the
impact of Coalition 2 at the same time, while Coalition 2 matches with Coalition 1 perfectly. The
testing reward for Coalition 1 increases during the first two thousand episodes. The testing reward
for Coalition 2 increases at the first three thousand episodes and fluctuates below 0 due to the noise
in the dynamics. Exploitability curves: Fig. 1 (middle) shows the averaged exploitabilities over
the testing sets and players. The game reaches Nash equilibrium around 4000 episodes, with slight
fluctuations after that. However, the independent learner remains high exploitability. Distribution
plots: Fig. 1 (right) illustrates the distribution evolution during the game. After training, Coalition 1
mainly stays where it is while Coalition 2 tries to match with Coalition 1. See Appx. F.1 for details.

0 2000 4000 6000 8000 10000
Episode

10000
8000
6000
4000
2000

0

Te
st

in
g 

Re
wa

rd

reward player 1
reward player 2

0 2000 4000 6000 8000 10000
Episode

0

2000

4000

6000

8000

10000

Ex
pl

oi
ta

bi
lit

y DNashQ-MFTG
IL-MFTG

1 2 3
State

0.0

0.2

0.4

0.6

0.8

1.0

De
ns

ity

t=0

Population 1
Population 2

1 2 3
State

0.0

0.2

0.4

0.6

0.8

1.0

De
ns

ity

t=4

Population 1
Population 2

Figure 1: Ex. 1: Left and middle: averaged testing rewards and exploitabilities resp. (mean ±
stddev). Right: one realization of population evolution at t = 0 and 4 for one testing distribution.

Example 2: Four-room with crowd aversion There are m = 2 populations. The agent’s state
space is a 2D grid world composed of 4 rooms of size 5 × 5 connected by 4 doors, as shown in
Fig. 2 (right). The policies’ inputs are thus of dimension 2× 4× 5× 5 = 200. The reward function
encourages the two populations to spread as much as possible (to maximize the entropy of the
distribution) while avoiding each other; furthermore, Coalition 2 has a penalty for going to rooms
other than the one she started in. See Appx. F.2 for details of the reward and the training and testing
distributions. We implement DDPG-MFTG to solve this game. The numerical results are presented
in Fig. 2. We make the following observations. Testing reward curves: Fig. 2 (left, top) shows
the testing rewards. Exploitability curves: Fig. 2 (left, bottom) shows the average exploitabilities
over the testing set and players. The DDPG-MFTG algorithm performs better. Distribution plots:
Figs. 2 (right) illustrates the distribution evolution during the game for a (pair of) initial distributions
and for the policy obtained by DDPG-MFTG algorithm and the baseline. We see that the populations
spread well in any case, but with DDPG-MFTG, Coalition 1 can see where Coalition 2 is and then
decides to avoid that room. This explains the better performance of the DDPG-MFTG algorithm.
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Figure 2: Ex. 2: Left, top and bottom: averaged testing rewards and exploitabilities resp. (mean ±
stddev). Right, two top rows: distribution evolution of the two populations with our method. Right
two bottom rows: distribution evolution with the baseline. Colorbars indicate density values.
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Example 3: Predator-prey 2D with 4 groups We now present an example with more coalitions.
There are m = 4 populations. The player’s state space is a 5× 5-state 2D grid world with walls on
the boundaries (no periodicity). The reward functions represent the idea that Coalition 1 is a preda-
tor of Coalition 2. Coalition 2 avoids Coalition 1 and chases Coalition 3, which avoids Coalition 2
while chasing Coalition 4. Coalition 4 tries to avoid Coalition 3. There is also a cost for moving.
See Appx. F.3 for details of the reward and the training and testing distributions. We implement
DDPG-MFTG to solve this game. The numerical results are presented in Fig. 3. We make the
following observations. The testing reward curves (Fig. 8 in Appx.) do not show a clear increase
for the same reason as the previous example. Exploitability curves: Fig. 3 (left) shows the aver-
aged exploitabilities over the testing set and players. Initially, the baseline and DDPG-MFTG have
similar exploitability for the first several thousand episodes. However, after that period, the baseline
maintains higher exploitability than DDPG-MFTG. The exploitability of DDPG-MFTG is close to 0
but still fluctuates between 0 and 100. This instability is because Deep RL can only approximate the
best response and cannot achieve it with absolute accuracy. Distribution plots: Fig. 3 (right) shows
the distribution evolution during testing. Coalition 1 chases Coalition 2. Coalition 2 tries to catch
Coalition 3 while avoiding Coalition 1. Coalition 3 tries to catch Coalition 4 while escaping from
Coalition 2. Coalition 4 simply escapes from Coalition 3. Testing rewards are shown in Appx. F.3.
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Figure 3: Ex. 3: Left: averaged exploitabilities (mean ± stddev). Right: populations evolution, one
coalition per row and one time per column: t = 0, 5, 10, 15, 20. Colorbars indicate density values.

6 CONCLUSION

Summary. In this work, we made both theoretical and numerical contributions. First, we proved
that the Nash equilibrium for a mean-field type game provides an approximate Nash equilibrium
for a game between coalitions of finitely many agents, and we obtained a rate of convergence. We
then proposed the first (to our knowledge) value-based RL methods for MFTGs: a tabular RL and a
deep RL algorithm. We applied them to several MFTGs. Our proposed methods provide a way to
approximately compute the Nash equilibrium of finite number players, which is known to be hard
to solve numerically. We proved the convergence of the tabular algorithm, and through extensive
experiments, we illustrated the scalability of the deep RL method.

Related works. Carmona et al. (2020); uz Zaman et al. (2024); Zaman et al. (2024) studied RL for
MFTGs of LQ form only, with specific methods when the policy is deterministic and linear, while
our algorithms are for generic MFTGs with discrete spaces. (Motte & Pham, 2022; Carmona et al.,
2023) focused on single MFMDPs while we consider a game between MFMDPs. Subramanian &
Mahajan (2019); Guo et al. (2019); Elie et al. (2020); Cui & Koeppl (2021) propose RL for MFGs
but are limited to population-independent policies. Perrin et al. (2022) studied population-dependent
policies, but only for MFGs, in which players are infinitesimal; their method cannot solve MFTG
because each player has a macroscopic impact on the other groups.

Limitations and future directions. We did not provide proof of convergence for the deep RL algo-
rithm due to the difficulties related to analyzing deep neural networks and because we aim for Nash
equilibria and not just MDPs. Furthermore, we would like to apply our algorithms to more realistic
examples and investigate further the difference with the baseline. We are also interested in applying
other deep RL algorithms and seeing their performance in MFTGs of increasing complexities.
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Reproducibility statement. We have included all the relevant details to ensure reproducibility.
Appx. D and E give pseudo-codes for all the algorithms, including how we evaluate the perfor-
mance of our method using the exploitability metric. Appx. F gives all the detailed definition of the
environments, provides extra numerical results and also gives all the details about the implemen-
tation such as neural network architectures and hyperparameter choices for training. and Appx. G
shows sweeps over hyperparameters to illustrate the sensitivity of our algorithms.

REFERENCES

Andrea Angiuli, Nils Detering, Jean-Pierre Fouque, Jimin Lin, et al. Reinforcement learning algo-
rithm for mixed mean field control games. Journal of Machine Learning, 2(2), 2023a.

Andrea Angiuli, Jean-Pierre Fouque, Ruimeng Hu, and Alan Raydan. Deep reinforcement learning
for infinite horizon mean field problems in continuous spaces. arXiv e-prints, pp. arXiv–2309,
2023b.

Julian Barreiro-Gomez and Hamidou Tembine. Blockchain token economics: A mean-field-type
game perspective. IEEE Access, 7:64603–64613, 2019.

Julian Barreiro-Gomez and Hamidou Tembine. Mean-field-type Games for Engineers. CRC Press,
2021.
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for cooperative-competitive agents: A mean-field perspective. arXiv preprint arXiv:2403.11345,
2024.

Kyriakos G Vamvoudakis. Non-zero sum nash Q-learning for unknown deterministic continuous-
time linear systems. Automatica, 61:274–281, 2015.

Huaqing Xiong, Tengyu Xu, Lin Zhao, Yingbin Liang, and Wei Zhang. Deterministic policy gra-
dient: Convergence analysis. In Uncertainty in Artificial Intelligence, pp. 2159–2169. PMLR,
2022.

Yaodong Yang, Rui Luo, Minne Li, Ming Zhou, Weinan Zhang, and Jun Wang. Mean field multi-
agent reinforcement learning. In Proceedings of ICML, 2018.
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A PROOF OF APPROXIMATE NASH PROPERTY

We prove Theorem 2.4.

Proof: For each i ∈ [m], we first define the distance between two distributions µi
t, µ̃

i
t ∈ ∆(Si) to

be
d(µi

t, µ̃
i
t) = ||µi

t − µ̃i
t||1 =

∑
x∈Si

|µi
t(x)− µ̃i

t(x)|

For µt, µ̃t ∈ ∆(S1)× · · · ×∆(Sm), we also define

d(µt, µ̃t) = max
i

d(µi
t, µ̃

i
t)

We first derive a bound for E||µi,N̄
0 − µi

0||1. The idea is inspired by the Lemma 7 in (Guan et al.,
2024). Since xij

0 are i.i.d. from µi
0, for all x ∈ Si,

E||µi,N̄
0 − µi

0||22 = E

∑
x∈Si

 1

Ni

Ni∑
j=1

δxij
0
(x)− µi

0(x)

2


= E

∑
x∈Si

1

N2
i

 Ni∑
j=1

(
δxij

0
(x)− µi

0(x)
)2


=
∑
x∈Si

1

N2
i

E


 Ni∑

j=1

(
δxij

0
(x)− µi

0(x)
)2


=
∑
x∈Si

1

N2
i

Var

 Ni∑
j=1

δxij
0
(x)


=

1

N2
i

∑
x∈Si

Ni∑
j=1

Var
(
δxij

0
(x)
)

as xij
0 are i.i.d.

=
1

N2
i

Ni∑
j=1

∑
x∈Si

(
E
[
δ2
xij
0

(x)
]
−
(
µi
0(x)

)2)

=
1

N2
i

Ni∑
j=1

∑
x∈Si

(
µi
0(x)−

(
µi
0(x)

)2)
as E

[
δ2
xij
0

(x)
]
= µi

0(x)

≤ 1

N2
i

Ni∑
j=1

∑
x∈Si

µi
0(x) =

1

Ni
(2)

So we have:

E||µi,N̄
0 − µi

0||1 ≤
√
|Si|E||µi,N̄

0 − µi
0||2 ≤

√
|Si|
Ni

the second inequality above is due to the Jensen’s inequality. Thus, for each i ∈ [m], as Ni → +∞,
we have

Ed(µN̄
0 , µ0)→ 0 a.e.

Next, we consider the distance between the joint state-action distribution of population i at time t
and its empirical distribution. We denote the joint state-action distribution of population i at time t
to be

νit(x, a) = µi
t(x)π

i
t(a|x, µt)

and the empirical state-action distribution of population i at time t to be

νi,N̄t =
1

Ni

Ni∑
j=1

δxij
t ,aij

t
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then, we have

E
∑
x,a

|νit(x, a)− νi,N̄t (x, a)|

= E
∑
x,a

|µi
t(x)π

i
t(a|x, µt)− µi,N̄

t (x)πi
t(a|x, µt)

+ µi,N̄
t (x)πi

t(a|x, µt)− µi,N̄
t (x)πi

t(a|x, µN̄
t )

+ µi,N̄
t (x)πi

t(a|x, µN̄
t )− νi,N̄t (x, a)|

≤ E
∑
x,a

|πi
t(a|x, µt)(µ

i
t(x)− µi,N̄

t (x))|

+ E
∑
x,a

|µi,N̄
t (x)(πi

t(a|x, µt)− πi
t(a|x, µN̄

t ))|

+ E
∑
x,a

∣∣∣∣∣∣ 1Ni

Ni∑
j=1

δxij
t
(x)

(
πi
t(a|x, µN̄

t )−
1
Ni

∑Ni

j=1 δxij
t ,aij

t
(x, a)

1
Ni

∑Ni

j=1 δxij
t
(x)

)∣∣∣∣∣∣
≤ E

∑
x,a

|πi
t(a|x, µt)||(µi

t(x)− µi,N̄
t (x))|

+ E
∑
x,a

|µi,N̄
t (x)||(πi

t(a|x, µt)− πi
t(a|x, µN̄

t ))|

+ E
∑
x,a

∣∣∣∣∣∣ 1Ni

Ni∑
j=1

δxij
t
(x)

(
πi
t(a|x, µN̄

t )−
1
Ni

∑Ni

j=1 δxij
t ,aij

t
(x, a)

1
Ni

∑Ni

j=1 δxij
t
(x)

)∣∣∣∣∣∣
≤ E

∑
x

|µi
t(x)− µi,N̄

t (x)|

+ E
∑
x

|µi,N̄
t (x)|Lπd(µt, µ

N̄
t )

+
∑
x,a

E

∣∣∣∣∣∣ 1Ni

Ni∑
j=1

δxij
t
(x)

(
πi
t(a|x, µN̄

t )−
1
Ni

∑Ni

j=1 δxij
t ,aij

t
(x, a)

1
Ni

∑Ni

j=1 δxij
t
(x)

)∣∣∣∣∣∣
≤ (1 + Lπ)Ed(µt, µ

N̄
t )

+
∑
x,a

E

∣∣∣∣∣∣ 1Ni

Ni∑
j=1

δxij
t
(x)

(
πi
t(a|x, µN̄

t )−
1
Ni

∑Ni

j=1 δxij
t ,aij

t
(x, a)

1
Ni

∑Ni

j=1 δxij
t
(x)

)∣∣∣∣∣∣
Given {xij

t }
Ni
j=1, let N t

i (x) =
∑Ni

j=1 δxij
t
(x) = Niµ

i,N̄
t (x). We can decompose Si into Si =

Si
+ ∪ Si

0, where Si
+ = {x ∈ Si : N t

i (x) > 0} and Si
0 = {x ∈ Si : N t

i (x) = 0}. For x ∈ Si
0, we

have µi,N̄
t (x) = 0 and νi,N̄t (x, a) = 0, so

E
∣∣∣µi,N̄

t (x)πi
t(a|x, µN̄

t )− νi,N̄t (x, a)
∣∣∣ = 0

For a fixed x ∈ Si
+, since aijt are i.i.d. with distribution πi(·|x, µN̄

t ), we have

Eaij
t

[∑Ni

j=1 δxij
t ,aij

t
(x, a)∑Ni

j=1 δxij
t
(x)

]
= πi

t(a|x, µN̄
t ).
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Thus, similarly to (2), for x ∈ Si
+ we have

Eaij
t

∣∣∣∣∣
∣∣∣∣∣πi

t(·|x, µN̄
t )−

1
Ni

∑Ni

j=1 δxij
t ,aij

t
(x, ·)

1
Ni

∑Ni

j=1 δxij
t
(x)

∣∣∣∣∣
∣∣∣∣∣
2

2

= Eaij
t

∑
a∈Ai

πi
t(a|x, µN̄

t )− 1

Ni(x)

Ni∑
j=1

δxij
t ,aij

t
(x, a)

2


≤
[

1

N t
i (x)

]
,

and

Eaij
t

∣∣∣∣∣
∣∣∣∣∣πi

t(·|x, µN̄
t )−

1
Ni

∑Ni

j=1 δxij
t ,aij

t
(x, ·)

1
Ni

∑Ni

j=1 δxij
t
(x)

∣∣∣∣∣
∣∣∣∣∣
1

≤
√
|Ai|√
N t

i (x)

Thus,

∑
x,a

E

∣∣∣∣∣∣ 1Ni

Ni∑
j=1

δxij
t
(x)

(
πi
t(a|x, µN̄

t )−
1
Ni

∑Ni

j=1 δxij
t ,aij

t
(x, a)

1
Ni

∑Ni

j=1 δxij
t
(x)

)∣∣∣∣∣∣
≤
∑
x

E

[
µi,N1...Nm

t (x)

√
|Ai|√
N t

i (x)

]

=
∑
x

E

√
µi,N1...Nm

t (x)|Ai|
Ni

≤
|Si|
√
|Ai|√

Ni

Therefore, we have

E
∑
x,a

|νit(x, a)− νi,N̄t (x, a)| ≤ (1 + Lπ)Ed(µt, µ
N̄
t ) +

|Si|
√
|Ai|√

Ni

On the other hand, for any t ≥ 1, we have

µi
t+1(x

′) =
∑
x,a

p(x′|x, a, µt)ν
i
t(x, a)

and

µi,N̄
t+1(x

′) =
∑
x,a

p(x′|x, a, µN̄
t )νi,N̄t (x, a).
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Moreover,

E∥µi
t+1 − µi,N̄

t+1∥1
= E

∑
x′

|µi
t+1(x

′)− µi,N̄
t+1(x

′)|

= E
∑
x′

|
∑
x,a

p(x′|x, a, µt)ν
i
t(x, a)−

∑
x,a

p(x′|x, a, µN̄
t )νi,N̄t (x, a)|

≤ E
∑
x′

|
∑
x,a

p(x′|x, a, µt)ν
i
t(x, a)−

∑
x,a

p(x′|x, a, µt)ν
i,N̄
t (x, a)|

+ E
∑
x′

|
∑
x,a

p(x′|x, a, µt)ν
i,N̄
t (x, a)−

∑
x,a

p(x′|x, a, µN̄
t )νi,N̄t (x, a)|

≤
∑
x,a

E|νit(s, a)− νi,N̄t (s, a)|

+ E
∑
x′

∑
x,a

|(p(x′|x, a, µt)− p(x′|x, a, µN̄
t ))νi,N̄t (x, a)|

≤
∑
x,a

E|νit(s, a)− νi,N̄t (s, a)|+ E
∑
x,a

Lpd(µ
i
t, µ

i,N̄
t )νi,N̄t (x, a)

≤ (1 + Lπ + Lp)Ed(µt, µ
N̄
t ) + |Si|

√
|Ai| 1√

Ni

Thus, for t ≥ 1

Ed(µt+1, µ
N̄
t+1) ≤ (1 + Lπ + Lp)Ed(µt, µ

N̄
t ) +

|S|
√
|A|√
N

(3)

where |S|
√

|A|√
N

= maxi{
|Si|
√

|Ai|√
Ni

}mi=1. Therefore,

Ed(µt, µ
N̄
t ) ≤ (1 + Lπ + Lp)

tEd(µ0, µ
N̄
0 ) +M(t)

|S|
√
|A|√
N

where M(t) =
(1+Lπ+Lp)

t−1
Lπ+Lp

.

We can also rewrite the reward functions using νit and νi,N̄t as:

J i(π1, . . . , πm) = E

∑
t≥0

γtri(xi
t, a

i
t, µt)


=
∑
t≥0

γt
∑
x

µi
t(x)

∑
a

πi
t(a|x, µt)r

i(x, a, µt)

=
∑
t≥0

γt
∑
x,a

νit(x, a)r
i(x, a, µt)

and

J i,N̄ (π1, . . . , πm) = E
[ 1

Ni

Ni∑
j=1

∑
t≥0

γtri(xij
t , a

ij
t , µ

N̄
t )
]

=
∑
t≥0

γt
∑
x,a

E
[
νi,N̄t (x, a)ri(x, a, µN̄

t )
]
.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Given a joint policy (π1, . . . , πm) ∈ Π1 × · · · ×Πm, we have

|J i,N̄ (π1, . . . , πm)− J i(π1, . . . , πm)|

= |
∑
t≥0

γt
∑
x,a

E
[
νi,N̄t (x, a)ri(x, a, µN̄

t )
]
−
∑
t≥0

γt
∑
x,a

νit(x, a)r
i(x, a, µt)|

≤ |
∑
t≥0

γt
∑
x,a

E
[
νi,N̄t (x, a)ri(x, a, µN̄

t )
]
−
∑
t≥0

γt
∑
x,a

E
[
νi,N̄t (x, a)ri(x, a, µt)

]
|

+ |
∑
t≥0

γt
∑
x,a

E
[
νi,N̄t (x, a)ri(x, a, µt)

]
−
∑
t≥0

γt
∑
x,a

νit(x, a)r
i(x, a, µt)|

≤
∣∣∣∑
t≥0

γtE
∑
x,a

[
νi,N̄t (x, a)

(
ri(x, a, µN̄

t )− ri(x, a, µt)
)]∣∣∣

+
∑
t≥0

γt
∑
x,a

CrE
∣∣∣νi,N̄t (x, a)− νit(x, a)

∣∣∣
≤
∑
t≥0

γtLrEd(µN̄
t , µt) +

∑
t≥0

γtCr(1 + Lπ)Ed(µN̄
t , µt) +

∑
t≥0

γtCr|Si|
√
|Ai| 1√

Ni

≤
∑
t≥0

γt(Lr + Cr(1 + Lπ))Ed(µN̄
t , µt) +

∑
t≥0

γtCr|Si|
√
|Ai| 1√

Ni

≤
∑
t≥0

(Lr + Cr(1 + Lπ))γ
t (1 + Lπ + Lp)

t Ed(µN̄
0 , µ0)

+
∑
t≥0

(Lr + Cr(1 + Lπ))γ
tM(t)

|S|
√
|A|√

N
+
∑
t≥0

γtCr
|S|
√
|A|√
N

When the discount factor γ satisfies

γ(1 + Lπ + Lp) < 1 (4)

we have ∑
t≥0

|(Lr + Cr(1 + Lπ))γ
t (1 + Lπ + Lp)

t
<∞

∑
t≥0

(Lr + Cr(1 + Lπ))γ
tM(t) <∞,

∑
t≥0

γtCr <∞

Thus,

|J i,N̄ (π1, . . . , πm)− J i(π1, . . . , πm)| ≤M
|S|
√
|A|√
N

(5)

where

M =
∑
t≥0

(Lr + Cr(1 + Lπ))γ
t (1 + Lπ + Lp)

t

+
∑
t≥0

(Lr + Cr(1 + Lπ))γ
tM(t) +

∑
t≥0

γtCr

is finite.

Let (π1
∗, . . . , π

m
∗ ) ∈ Π1 × · · · × Πm be a Nash equilibrium for the mean-field type game and π̃i be

the policy for an agent in coalition i of the finite-population m-coalition game such that

J i,N̄ (π̃i;π−i
∗ ) = max

πi∈Πi
J i,N̄ (πi;π−i

∗ ),
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we have

J i,N̄ (π̃i;π−i
∗ )− J i,N̄ (πi

∗;π
−i
∗ ) = J i,N̄ (π̃i;π−i

∗ )− J i(π̃i;π−i
∗ )

+ J i(π̃i;π−i
∗ )− J i(πi

∗;π
−i
∗ )

+ J i(πi
∗;π

−i
∗ )− J i,N̄ (πi

∗;π
−i
∗ )

≤ |J i,N̄ (π̃i;π−i
∗ )− J i(π̃i;π−i

∗ )|

+ |J i(πi
∗;π

−i
∗ )− J i,N̄ (πi

∗;π
−i
∗ )|

≤
2M |S|

√
|A|√

N

The last two inequalities are due to the definition of πi
∗ and (5). □

B CONNECTION BETWEEN MFTG AND STAGE-GAME NASH EQUILIBRIA

We prove Proposition 2.10.

Proof: Proof of ⇐: If (ii) is true, without loss of generality, we consider player i. we have for
s̄ ∈ S̄,

v̄iπ̄∗
(s̄) ≥ π̄1

∗(s̄) · · · π̄i−1
∗ (s̄)π̄i(s̄)π̄i+1

∗ (s̄) · · · π̄m
∗ (s̄)Q̄i

π̄(s̄)

= r̄i(s̄, π̄i(s̄)) + γ

∫
S̄

∫
Ā

p̄(ds̄′|s̄, ā1, . . . , ām)π̄1
∗(dā

1|s̄) · · · π̄i(dāi|s̄) · · · π̄m
∗ (dām|s̄)v̄π̄i

∗
(s̄′)

By iteration and substituting v̄π̄i
∗
(s̄′) with the above inequality, we have

v̄iπ̄∗
(s̄) ≥ v̄iπ̄′(s̄)

for all π̄i ∈ Π̄i, where π̄′ = (π̄1
∗, . . . , π̄

i, . . . π̄m
∗ ). Since i is arbitrary, by the definition of Nash

equilibrium, we have (π̄1
∗, . . . , π̄

m
∗ ) is a Nash equilibrium for the MFTG.

Proof of⇒: If (i) is true, then π̄i
∗ is also the optimal policy for the MDP(π̄−i

∗ ). For each s̄, π̄i
∗(s̄)

maximizes
r̄π̄−i(s̄, āi) + γ

∫
S̄

p̄π̄−i(ds̄′|s̄, āi)v̄π̄i
∗
(s̄′) (6)

So π̄i
∗(s̄) is the best response of player i in stage game (Q̄1

π̄∗
(s̄), . . . , Q̄m

π̄∗
(s̄)). The result

also applies to other players, so (π̄1
∗(s̄), . . . , π̄

m
∗ (s̄)) is a Nash equilibrium in the stage game

(Q̄1
π̄∗

(s̄), . . . , Q̄m
π̄∗

(s̄)). □

C ANALYSIS OF DISCRETIZED NASHQ LEARNING

We now prove Theorem 3.2.

Proof: Let π̌p
∗ be a unique pure policy for the discretized MFTG such that for each i and š ∈ Š, the

payoff function vi
π̌p

∗
(š) is a global optimal point for the stage game Q̌i

π̌p
∗
(š).

|Q̌i
t(ProjŠ(s̄),ProjǍ1(ā1), . . . ,ProjǍm(ām))− Q̄i

π̄p
∗
(s̄, ā1 . . . ām)|

≤ |Q̌i
t(ProjŠ(s̄),ProjǍ1(ā1), . . . ,ProjǍm(ām))− Q̌i

π̌p
∗
(ProjŠ(s̄),ProjǍ1(ā1), . . . ,ProjǍm(ām))|

+ |Q̌i
π̌p

∗
(ProjŠ(s̄),ProjǍ1(ā1), . . . ,ProjǍm(ām))− Q̄i

π̄p
∗
(ProjŠ(s̄),ProjǍ1(ā1), . . . ,ProjǍm(ām))|

+ |Q̄i
π̄p

∗
(ProjŠ(s̄),ProjǍ1(ā1), . . . ,ProjǍm(ām))− Q̄i

π̄p
∗
(s̄, ā1 . . . ām)|

(7)
From Theorem 3.1, when t is large enough, we have

|Q̌i
t(ProjŠ(s̄),ProjǍ1(ā1), . . . ,ProjǍm(ām))−Q̌i

π̌p
∗
(ProjŠ(s̄),ProjǍ1(ā1), . . . ,ProjǍm(ām))| < ϵ.

(8)
We now consider the second term on the RHS of (7). Using the notation

(ProjŠ(s̄),ProjǍ1(ā1), . . . ,ProjǍm(ām)) = (š, ǎ1, . . . , ǎm).
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and
F̌ (š, ǎ1, . . . , ǎm) = Proj(F̄ (š, ǎ1, . . . , ǎm))

then we have

|Q̌i
π̌p

∗
(š, ǎ1, . . . , ǎm)− Q̄i

π̄p
∗
(š, ǎ1, . . . , ǎm)|

≤ γE[viπ̌p
∗
(F̌ (š, ǎ1, . . . , ǎm))− viπ̄p

∗
(F̄ (š, ǎ1, . . . , ǎm))]

≤ γE[viπ̌p
∗
(F̌ (š, ǎ1, . . . , ǎm))− viπ̄p

∗
(F̌ (š, ǎ1, . . . , ǎm)]

+ γE[viπ̄p
∗
(F̌ (š, ǎ1, . . . , ǎm))− viπ̄p

∗
(F̄ (š, ǎ1, . . . , ǎm)]

≤ γE[viπ̌p
∗
(F̌ (š, ǎ1, . . . , ǎm))− viπ̄p

∗
(F̌ (š, ǎ1, . . . , ǎm)] + γLv̄π̄∗

ϵS

≤ γE[|NashQ̌i
π̌p

∗
(F̌ (š, ǎ1, . . . , ǎm))−NashQ̄i

π̄p
∗
(F̌ (š, ǎ1, . . . , ǎm))|] + γLv̄π̄∗

ϵS

(9)

where we used the assumption that v̄iπ̄∗
is Lipschitz continuous w.r.t. s̄ with constant Lv̄π̄∗

. Namely,

|v̄iπ̄∗
(s̄)− v̄iπ̄∗

(s̄′)| ≤ Lv̄∗dS̄(s̄, s̄
′)

Let F̌ (š, ǎ1, . . . , ǎm) = š′, and (ā1∗, . . . , ā
m
∗ ), (ǎ1∗, . . . , ǎ

m
∗ ) such that

NashQ̌i
π̌p

∗
(F̌ (š, ǎ1, . . . , ǎm)) = Q̌i

π̌p
∗
(š′, ǎ1∗, . . . , ǎ

m
∗ )

NashQ̄i
π̄p

∗
(F̌ (š, ǎ1, . . . , ǎm)) = Q̄i

π̄p
∗
(š′, ā1∗, . . . , ā

m
∗ )

consider the term

Q̌i
π̌p

∗
(š′, ǎ1∗, . . . , ǎ

m
∗ )− Q̄i

π̄p
∗
(š′, ā1∗, . . . , ā

m
∗ )

= Q̌i
π̌p

∗
(š′, ǎ1∗, . . . , ǎ

m
∗ )− Q̌i

π̌p
∗
(š′,ProjǍ1(ā1∗), . . . ,ProjǍm(ām∗ ))

+ Q̌i
π̌p

∗
(š′,ProjǍ1(ā1∗), . . . ,ProjǍm(ām∗ ))− Q̄i

π̄p
∗
(š′,ProjǍ1(ā1∗), . . . ,ProjǍm(ām∗ ))

+ Q̄i
π̄p

∗
(š′,ProjǍ1(ā1∗), . . . ,ProjǍm(ām∗ ))− Q̄i

π̄p
∗
(š′, ā1∗, . . . , ā

m
∗ )

≥ −||Q̌i
π̌p

∗
− Q̄i

π̄p
∗
||∞ + r̄i(š′,ProjǍi(āi∗))− r̄i(š′, āi∗)

+ γEviπ̄p
∗
(F̄ (š′,ProjǍ1(ā1∗), . . . ,ProjǍm(ām∗ )))− γEviπ̄p

∗
(F̄ (š′, ā1∗, . . . , ā

m
∗ ))

≥ −||Q̌i
π̌p

∗
− Q̄i

π̄p
∗
||∞ − Lr̄id(ā

i
∗,ProjǍi(āi∗))− γLv̄i

π̄∗
LF̄

m∑
i=1

d(āi∗,ProjǍi(āi∗))

(10)

the last inequality is due to the Lipschitz continuous assumptions on r̄i and F̄ . Namely,

|r̄i(s̄, āi)− r̄i(s̄′, ā′
i
)| ≤ Lr̄i

(
dS̄(s̄, s̄

′) + dĀi(ā
i, ā′

i
)
)

and
E|F̄ (s̄, ā1, . . . , ām)− F̄ (s̄′, ā′

1
, . . . , ā′

m
)| ≤ LF̄

(
dS̄(s̄, s̄

′) +
∑
i∈[m]

dĀi(ā
i, ā′

i
)
)

On the other hand,

Q̌i
π̌p

∗
(š′, ǎ1∗, . . . , ǎ

m
∗ )− Q̄i

π̄p
∗
(š′, ā1∗, . . . , ā

m
∗ )

= Q̌i
π̌p

∗
(š′, ǎ1∗, . . . , ǎ

m
∗ )− Q̄i

π̄p
∗
(š′, ǎ1∗, . . . , ǎ

m
∗ ) + Q̄i

π̄p
∗
(š′, ǎ1∗, . . . , ǎ

m
∗ )− Q̄i

π̄p
∗
(š′, ā1∗, . . . , ā

m
∗ )

≤ ||Q̌i
π̌p

∗
− Q̄i

π̄p
∗
||∞

(11)
Thus, we have

|Q̌i
π̌p

∗
(š′, ǎ1∗, . . . , ǎ

m
∗ )− Q̄i

π̄p
∗
(š′, ā1∗, . . . , ā

m
∗ )|

≤ γ(||Q̌i
π̌p

∗
− Q̄i

π̄p
∗
||∞ + Lr̄iϵA + γLv̄i

π̄∗
LF̄mϵA) + γLv̄π̄∗

ϵS
(12)

Therefore, we have

||Q̌i
π̌p

∗
− Q̄i

π̄p
∗
||∞ ≤

γ

1− γ

(
Lr̄iϵA + γLv̄i

π̄∗
LF̄mϵA + Lv̄π̄∗

ϵS

)
(13)
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For the last term on the RHS of (7), we have

|Q̄i
π̄p

∗
(ProjŠ(s̄),ProjǍ1(ā1), . . . ,ProjǍm(ām))− Q̄i

π̄p
∗
(s̄, ā1 . . . ām)|

≤ |r̄i(ProjŠ(s̄),ProjǍi(āi))− r̄i(s̄, āi)|
+ γE[v̄iπ̄p

∗
(F̄ (ProjŠ(s̄),ProjǍ1(ā1), . . . ,ProjǍm(ām)))− v̄iπ̄p

∗
(F̄ (s̄, ā1 . . . ām))]

≤ Lr̄i(dS̄(ProjŠ(s̄), s̄) + dĀi(ProjǍi(āi), āi))

+ γLv̄i
π̄∗
E(F̄ (ProjŠ(s̄),ProjǍ1(ā1), . . . ,ProjǍm(ām))− F̄ (s̄, ā1 . . . ām))

≤ Lr̄i(ϵS + ϵA) + γLv̄i
π̄∗
LF̄ (ϵS +mϵA)

(14)

Finally, we get the result by combining inequalities (8), (13), and (14) together. □
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D PSEUDO-CODES FOR THE MAIN ALGORITHMS

Algorithm 1 shows the DNashQ-MFTG algorithm. Algorithm 2 shows the DDPG-MFTG algorithm.

Algorithm 1 Discretized Nash Q-learning for Mean Field Type Game (DNashQ-MFTG)

1: Inputs: A series of learning rates αt ∈ (0, 1), t ≥ 0, and exploration levels ϵt, t ≥ 0
2: Outputs: Nash Q-functions Q̌i

N for i = 1, . . . ,m

3: Initialization: Q̌i
0,0(š, ǎ

1, . . . , ǎm) = 0 for all š ∈ Š and ǎi ∈ Ǎi;
4: for k = 0, 1, . . . , N − 1 do
5: Initialize state š0
6: for t = 0, . . . , T − 1 do
7: Generate a random number ζt ∼ U [0, 1]
8: if ζt ≥ ϵt then
9: Solve the stage game Q̌i

k,t(št) and get strategy profile (π̌i,1
∗ , . . . , π̌i,m

∗ ) for i = 1, . . . ,m

10: Sample ǎit ∼ π̌i,i
∗ for i = 1, . . . ,m

11: else
12: Sample action ǎit uniformly from Ǎi for i = 1, . . . ,m
13: end if
14: Observe r1t ,. . . , rmt , ǎ1t ,. . . , ǎmt , and št+1 = ProjŠ(F̄ (št, ǎ

1
t ,. . . , ǎmt ))

15: Solve the stage game Q̌i
k,t(št+1) and get strategy profile (π̌

′i,1
∗ , . . . , π̌

′i,m
∗ ) for i =

1, . . . ,m

16: Compute NashQ̌i
k,t(št+1) = π̌

′i,1
∗ . . . π̌

′i,m
∗ Q̌i

k,t(št+1)

17: Copy Q̌i
k,t+1 = Q̌i

k,t for i = 1, . . . ,m and update Q̌i
k,t+1 by:

Q̌i
k,t+1(št, ǎ

1, . . . , ǎm) = (1−αt)Q̌
i
k,t(št, ǎ

1, . . . , ǎm)+αt(r
i
t+βNashQ̌i

k,t(št+1))
18: end for
19: Copy Q̌i

k+1,0 = Q̌i
k,T−1 for i = 1. . . . .m

20: end for
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Algorithm 2 DDPG for MFTG

1: Inputs: A number of episodes N ; a length T for each episode; a minibatch size Nbatch; a
learning rate τ .

2: Outputs: Policy functions for each central player represented by πi
ωi

.
3: Initialize parameters θi and ωi for critic networks Qi

θi
and actor networks πi

ωi
, i = 1, ...,m

4: Initialize θ′i ← θi and ω′
i ← ωi for target networks Qi′

θ′
i

and πi′
ω′

i
, i = 1, ...,m

5: Initialize replay buffer Rbuffer
6: for k = 0, 1, ..., N − 1 do
7: Initialize distribution s̄0
8: for t = 0, 1, . . . , T − 1 do
9: Select actions āit = πi

ωi
(s̄t) + ϵt, where ϵt is the exploration noise, for i = 1, ...,m

10: Execute āit, observe reward r̄i(s̄t, ā
i
t), for i = 1, ...,m

11: Observe s̄t+1

12: Store transition (s̄t, ā
1
t , ..., ā

m
t , r̄1t , ..., r̄

m
t , s̄t+1) in Rbuffer

13: Sample a random minibatch of Nbatch transitions (s̄j , ā
1
j , ..., ā

m
j , r̄1j , ..., r̄

m
j , s̄j+1) from

Rbuffer

14: Set yij = r̄ij + γQi′
θ′
i
(s̄j+1, π

i′
ω′

i
(s̄j+1)) for i = 1, ...,m, j = 1, ..., Nbatch

15: Update the critic networks by minimizing the loss: Li(θi) =
1

Nbatch

∑
j(y

i
j −Qi

θi
(s̄j , ā

i
j))

2,
for i = 1, ...,m

16: Update the actor policies using the sampled policy gradients∇ωi
vi, for i = 1, ...,m:

∇ωi
vi(ωi) ≈

1

Nbatch

∑
j

∇āiQi
θi(s̄j , π

i
ωi
(s̄j))∇ωi

πi
ωi
(s̄j)

17: Update target networks: θ′i ← τθi + (1− τ)θ′i, ω
′
i ← τωi + (1− τ)(ω′

i), for i = 1, ...,m.
18: end for
19: end for
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E PSEUDO-CODES FOR THE EVALUATION METRICS

In this section, we present pseudo-codes used for evaluation.

• Algorithm 3 shows how to do the inference of DNash-MFTG given the Q-functions of
agents.

• Algorithm 4 explains the way to evaluate policies.

• Algorithm 5 presents the general structure of computing exploitability.

• Algorithm 6 presents a detailed version of computing the exploitability.

Algorithm 3 DNashQ-MFTG inference

1: Inputs: Nash Q-functions Q̌i
N for i = 1, . . . ,m; number of steps T

2: Outputs: υi = (ši0, ǎ
i
0, r

i
0, . . . , š

i
T−1, ǎ

i
T−1, r

i
T−1) for i = 1, . . . ,m

3: Initialize š0 and trajectory υi

4: for t = 0, . . . , T − 1 do
5: Solve the stage game Q̌i

N (št) and get strategy profile (π̌i,1
∗ , . . . , π̌i,m

∗ ) for i = 1, . . . ,m

6: Sample ǎit ∼ π̌i,i
∗ for i = 1, . . . ,m

7: Observe r1t ,. . . , rmt and št+1 = ProjŠ(F̄ (št, ǎ
1
t ,. . . , ǎmt ))

8: Store (šit, ǎ
i
t, r

i
t) to υi

9: end for
10: return Trajectory υi

Algorithm 4 Policies evaluation

1: Inputs: Policy profile π̄ = (π̄1, . . . , π̄m), testing set of initial distributions Dtest
2: Outputs: Values J i(π̄)
3: Initialize V i = 0, i = 1, . . . ,m
4: for µ0 ∈ Dtest do
5: Run an episode starting from initial distribution µ0 and using policies π̄
6: Let V i

µ0
be the total reward, i = 1, . . . ,m

7: Let V i = V i + V i
µ0

, i = 1, . . . ,m
8: end for
9: Let J i = 1

|Dtest|V
i

10: Return J i, i = 1, . . . ,m

Algorithm 5 Exploitability computation

1: Inputs: Policy profile π̄ = (π̄1, . . . , π̄m), training set of initial distributionsDtrain, testing set of
initial distributions Dtest

2: Outputs: Exploitabilities Ei(π̄), i = 1, . . . ,m
3: for i = 1, . . . ,m do
4: Compute BR π̄i∗ = argmax˜̄πi J i(˜̄πi; π̄−i) using RL with testing set Dtest
5: Compute M i = J i(π̄i∗; π̄−i) using Algo. 4 with policy profile (π̄i∗; π̄−i) and Dtest
6: Compute V i = J i(π̄i; π̄−i) using Algo. 4 with policy profile (π̄i; π̄−i) and Dtest
7: Let Ei = M i − V i

8: end for
9: Return Ei, i = 1, . . . ,m
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Algorithm 6 Exploitability computation

1: Inputs: Policy profile π̄ = (π̄1, . . . , π̄m), testing set of initial distributions Dtest,
2: Outputs: Exploitabilities Ei(π̄), i = 1, . . . ,m
3: Initialize M i = 0, Ei = 0, i = 1, . . . ,m
4: for i = 1, . . . ,m do
5: for µ0 in Dtest do
6: Initialize replay buffer and optimizers
7: for j = 1, . . . , N do
8: Compute BR π̄i∗

j = argmax˜̄πi J i(˜̄πi; π̄−i) using RL with the initial distribution µ0

9: Compute M i
j = J i(π̄i∗

j ; π̄−i) using Algo. 4 with policy profile (π̄i∗
j ; π̄−i) and µ0

10: M i = M i +M i
j

11: end for
12: M i = M i/N
13: Compute V i = J i(π̄i; π̄−i) using Algo. 4 with policy profile (π̄i; π̄−i) and µ0

14: Ei = Ei +M i − V i

15: end for
16: Ei = 1

|Dtest|E
i

17: end for
18: Return Ei, i = 1, . . . ,m
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F DETAILS ON NUMERICAL EXPERIMENTS

F.1 EXAMPLE 1: 1D TARGET MOVING GRID GAME

Model. The model is as follows:

• Number of populations: m = 2.

• State space: Si = S = {1, 2, 3, . . . , G} for i = 1, 2, which represents locations.

• Action space: Ai = A = {0,−1, 1} for i = 1, 2, represents the agent will stay, move left,
or move right respectively

• Individual dynamics: xi
t+1 = xi

t + ait + ξit , where (ξit)n≥1 is a sequence of i.i.d. random
variables taking values in Ai and sampled from a predefined distribution as noises. We use
periodic boundary conditions, meaning that agents who move left (resp. right) while in the
0 (resp. G) state end up on the other side, at the G (resp. 0) state.

• Mean-field transitions: we can formulate the element in k-th row, ℓ-th column in the
G×G transition matrix P̄ i(s̄it, ā

i
t) is equal to pi(s̄it+1 = k|s̄it = ℓ, āit, ξ

i
t)

• Rewards: Population 1 receives a high penalty when it moves, while Population 2 tries to
match with Population 1’s current position. We use the following rewards:

r̄1(s̄, ā1t ) = −c1(∥ā1stay − ā1t∥2)− c2(s̄
1 × s̄2), r̄2(s̄) = −c1(∥s̄1 − s̄2∥2)

where c1 = 1000 and c2 = 10. As a consequence, we expect that, at Nash equilibrium,
Coalition 1 stays where it is but also tries to avoid coalition 2, while Coalition 2 matches
Coalition 1 perfectly.

Training and testing sets. In this example, we use G = 3 points in the 1D grid. (Scaling up to
larger spaces would require a huge amount of memory due to the required discretization of the state
space. This motivates the deep RL algorithm we use in the next examples.) We use the following
sets of initial distributions for training and testing.

• Training distributions: We employ a random sampling technique to generate the training
distribution at the beginning of each training episode. Specifically, we first sample each
element in the state matrix from a uniform distribution over the interval [0, 1) and then
divide each element by the total sum of the matrix to normalize it.

• Testing distributions: we use the following pairs:
Dtest = {

(
(1.0, 0.0, 0.0), (0.0, 0.0, 1.0)

)
,
(
(0.0, 0.0, 1.0), (1.0, 0.0, 0.0)

)
,(

(0.0, 1.0, 0.0), (0.0, 1.0, 0.0)
)
}

Parameters and Hyper-parameters In the tabular case, we take the following hyper-parameters
for both inner Q learning and outer Nash Q earning:

• a learning rate αt = 1
nt(s̄t,ā1,ā2) where nt(s̄t, ā

1, ā2) is the number of time that tuple
(s̄t, ā

1, ā2) visited.

• ϵt = ϵend + (ϵstart − ϵend) exp(− t
T ), where T is the total training episode, ϵend = 0.01,

and ϵstart = 0.99.

• ξt ∼ {0.99, 0.005, 0.005}

Evaluation We evaluate the policy of each player by computing exploitability in Algo. 6. We
perform tabular Q learning to solve an MDP to generate the best response.

Baseline The baseline for DNashQ-MFTG is different from other examples. Each coalition learns
the game independently through Q-learning after the same discretization as our DNashQ-MFTG,
while for the exploitability computation, we still perform standard Q-learning with full observation
of mean-field states to generate the best response.

We show more examples of distribution evolution in Fig. 4.
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Figure 4: 1D Target Moving Grid Game: Population evolution of testing distribution at t =
0, 1, 2, 3, 4. From up to bottom are the evolution of testing distribution 1,2,3.

F.2 EXAMPLE 2: FOUR-ROOM WITH CROWD AVERSION

Model. We consider a 2-dimensional grid world with four rooms and obstacles. Each room has
only one door that connects to the next room and has 5× 5 states.

• Number of populations: m = 2.

• State space: S = {0, . . . , N1
x} × {0, . . . , N2

x}, where we set N1
x = N2

x = 10.

• Action space: A = {(−1, 0), (1, 0), (0, 0), (0, 1), (0,−1)}, which represents move left,
move, right, stay, move up, and move down, respectively.

• Transitions: At time n, the agent at position sn = (x, y) chooses an action an, the next
state is computed according to

sn+1 =

{
sn + an + ϵn+1, if sn + an + ϵn+1 is not in a forbidden state
sn, otherwise

(15)

where {ϵn}n is a sequence of i.i.d. random variables taking values in A, representing the
random disturbance.
The mean-field distribution s̄it(x, y) is computed according to

s̄it+1(x, y) = s̄it(x, y)ā
i((0, 0)|(x, y)) + s̄it(x, y − 1)āi((0, 1)|(x, y − 1))

+ s̄it(x, y + 1)āi((0,−1)|(x, y + 1)) + s̄it(x+ 1, y)āi((−1, 0)|(x+ 1, y))

+ s̄it(x− 1, y)āi((1, 0)|(x− 1, y))

where s̄it(a, b) is the density of Coalition i at the location (a, b) at time step t.

• One-step reward function:

r̄1(s̄1t , s̄
2
t ) = −s̄1t · log(s̄1t + s̄2t )/ log(100)

r̄2(s̄1t , s̄
2
t ) = −s̄2t · log(s̄1t + s̄2t )/ log(100)−30×

(
s̄2t (2, 5)+ s̄2t (8, 5)+ s̄2t (5, 2)+ s̄2t (5, 8)

)
where · is the inner product.

• Time horizon: NT = 40.
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Training and testing sets For the training set, each player chooses locations among the four rooms
with the sum of probability density equal to 1 as the initial distribution. We used three pairs of
distributions as the testing set. Each of them is a uniform distribution among selected locations. The
testing distributions are illustrated in Fig. 5.
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Figure 5: 3 pairs of testing distributions. For each pair, the left one is the initial distribution of Player
1, and the right one is the initial distribution of Player 2.

Neural network architecture and hyper-parameters In the actor network, each state vector is
initially flattened and fed into a fully connected network with a Tanh activation function, resulting
in a 200-dimensional output for each. These outputs are then concatenated and processed through
a two-layer fully connected network, each with 200 hidden neurons, utilizing ReLU and Tanh ac-
tivation functions. The final output dimension is |S| × |A|. The output is then normalized using
the softmax function. The critic network follows a similar architecture. During the training, we use
the Adam optimizer with the actor network learning rate equal to 5 × 10−5 and the critic network
learning rate equal to 0.0001. The standard deviation used in the Ornstein–Uhlenbeck process is
0.08. We also use target networks to stabilize the training and the update rate is 0.005. The replay
buffer is of size 100000, and the batch size is 32. The model is trained using one GPU with 256GB
memory, and it takes at most seven days to finish 50000 episodes.

F.3 EXAMPLE 3: PREDATOR-PREY 2D WITH 4 GROUPS

Model. In this 5× 5 dimensional grid world, The transition dynamics and the action space are the
same as in Example 2. In this game, we have one coalition acting as predator and another coalition
as prey. Their reward function can be formulated as follows:

r̄1(s̄t, ā
1) = c1rmove(s̄

1, ā1) + c2s̄
1 · s̄2

r̄4(s̄t, ā
4) = c1rmove(s̄

4
t , ā

4)− c2s̄
3 · s̄4

The remaining two coalitions act as predator and prey at the same time, with rewards:

r̄2(s̄t, ā
3) = c1rmove(s̄

2, ā2) + c2(s̄
2 · s̄3 − s̄1 · s̄2)

r̄3(s̄t, ā
3) = c1rmove(s̄

3, ā3) + c2(s̄
3 · s̄4 − s̄2 · s̄3),

where c1 = c2 = 100. Each episode has a time horizon T = 21 and γ = 0.99.

Training and testing set For the training set, we sample each element in the grid world from a
uniform distribution over the interval [0, 1) and then divide each element by the total sum of the
matrix to normalize it. Testing set can be found in Fig. 7.
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Figure 6: Ex. 2: populations evolution 2. The top two rows show the distribution evolution of the
two players. The bottom two rows show the corresponding distribution evolution of the baseline
model.
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Figure 7: 5 sets of testing distributions for predator-prey 2D with 4 groups. Each row shows one set
of testing distribution for 4 coalitions. For each row, from the left to the right are the coalition 1 to
coalition 4.
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Neural network architecture and hyper-parameters The architectures of the actor and critic
networks are the same as those used in the discrete planning 2D (Appx. F.4). We use the Adam
optimizer, with learning rates set to 0.0005 for the actor network and 0.001 for the critic network.
The Ornstein-Uhlenbeck noise standard deviation is set to 0.8. Target networks are updated at a rate
of 0.0025. The replay buffer has a capacity of 50,000 and a batch size of 64. This experiment was
run on a GPU with 64GB of memory, taking two days to complete 80,000 episodes of training.

Numerical results. We conducted this experiment over 5 runs, with each run corresponding to a
specific testing distribution from the testing set. For each run, we averaged the exploitability of all
players to determine the run’s exploitability. We then calculated the mean and standard deviation
of exploitability across the 5 runs. Additionally, for the testing reward, we calculated the mean and
standard deviation for each player over the 5 runs. Fig. 8 shows the testing rewards.
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Figure 8: Ex. 3: testing rewards.

F.4 EXAMPLE 4: DISTRIBUTION PLANNING IN 2D

There are m = 2 populations. The agent’s state space is a 5× 5 state 2D grid world, with the center
as a forbidden state. The possible actions are: move up/down/left/right or stay, and there is no in-
dividual noise perturbing the movements. The rewards encourage each population to match a target
distribution (hence the name “planning”): Population 1 and 2 move respectively towards the top left
and bottom right corners, with a uniform distribution over fixed locations (see Fig. 11). We describe
the model details and the training and testing distributions below. We implement DDPG-MFTG to
solve this game. The numerical results are presented in Figs. 9 and 10. We make the following ob-
servations. Testing reward curves: Fig. 9 (left) shows the testing rewards. In this game setting, the
Nash equilibrium for each coalition is to move to its target position without interacting with the other
coalition. We observe that the testing rewards increase and then stabilize with minimal oscillation.
The reward curve of the baseline stays below the one using DDPG-MTFG. Exploitability curves:
Fig. 11 (right) shows the averaged exploitabilities over the testing set and players. We observe that
the game reaches Nash equilibrium around 15000 episodes. The baseline shows higher exploitability
than the DDPG-MFTG algorithm. Distribution plots: Fig. 10 illustrates the distribution evolution
during the game. With the policy learned using DDPG-MFTG, each player deterministically moves
to the target position in several steps and avoids overlapping with the other player during movement.

Model.

• Number of populations: m = 2.
• State space: S = {0, . . . , N1

x} × {0, . . . , N2
x}, where we set N1

x = N2
x = 4.

• Action space: A = {(−1, 0), (1, 0), (0, 0), (0, 1), (0,−1)}, which represents move left,
move, right, stay, move up, and move down, respectively.

• Transitions: At time n, the agent at position sn = (x, y) chooses an action an, the next
state is computed according to

sn+1 =

{
sn + an, if sn + an is not in a forbidden state
sn, otherwise

(16)
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Figure 9: Left: Testing rewards. Right: exploitabilities.
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Figure 10: Distribution planning in 2D: The top row and the bottom respectively show the distribu-
tion evolution of player 1 and 2 using the policy learned by DDPG-MFTG.

The mean-field distribution s̄it(x, y) is computed according to

s̄it+1(x, y) = s̄it(x, y)ā
i((0, 0)|(x, y)) + s̄it(x, y − 1)āi((0, 1)|(x, y − 1))

+ s̄it(x, y + 1)āi((0,−1)|(x, y + 1)) + s̄it(x+ 1, y)āi((−1, 0)|(x+ 1, y))

+ s̄it(x− 1, y)āi((1, 0)|(x− 1, y))

where s̄it(a, b) is the density of Population i at the location (a, b) at time step t.

• One-step reward function: Each central player i aims to make the population match a
target distribution mi while maximizes the reward. For each player i, the reward of each
step is

r̄i(s̄1t , s̄
2
t , ā

i) = c1rmove(s̄
i, āi) + c2r(s̄

i,mi) + c3r(s̄
1, s̄2),

where rmove(s̄
i, āi) = −s̄i · ||āi|| is the cost for moving, r(s̄i,mi) = −dist(s̄i,mi) is

the distance to a target distribution, r(s̄1, s̄2) = −s̄1 · s̄2 is the inner product of the two
population distributions. ci is the coefficient, for i = 1, 2, 3. Here, c1 = 1, c2 = 2, and
c3 = 5.

• Time horizon: NT = 10.

Training and testing sets. The training set consists of a randomly sampled location with a prob-
ability density 1 representing the initial state. See Fig. 12 for testing distribution.
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Figure 11: Target distributions for player 1 (left) and player 2 (right).
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Figure 12: 4 pairs of testing distributions. For each pair, the left one is the initial distribution of
player 1, and the right one is the initial distribution of player 2.

Neural network architecture and hyper-parameters In the actor network, each state vector is
initially flattened and fed into a fully connected network with a ReLU activation function, resulting
in a 200-dimensional output for each. These outputs are then concatenated and processed through
a two-layer fully connected network with 200 hidden neurons, utilizing ReLU and Tanh activation
functions. The final output dimension is |S| × |A|. The output is then normalized using the softmax
function. The critic network follows a similar architecture, where we use ReLU in the last layer.
During the training, we use the Adam optimizer with the actor-network learning rate equal to 5 ×
10−5 and the critic-network learning rate equal to 0.0001. Both learning rates are reduced by half
after around 6000 and 12000 episodes. The standard deviation used in the Ornstein–Uhlenbeck
process is 0.08 and is also reduced by half after around 6000 and 12000 episodes. We also use target
networks to stabilize the training and the update rate is 0.005. The replay buffer is of size 50000,
and the batch size is 128. The model is trained using one GPU with 256GB memory, and it takes at
most two days to finish 20000 episodes.

F.5 EXAMPLE 5: CYBER SECURITY

We now present another example in a cyber security setting inspired by Kolokoltsov & Bensoussan
(2016) in the context of MFGs and Carmona et al. (2023) in the context of discrete-time MFC. The
original formulation has only one type of player, namely computers defending themselves against
a virus. Here, we add another group, corresponding to attackers, and we study the MFTG. The
defenders cooperate with each other, and likewise for the attackers. Each of the two populations
competes with the other to maximize its reward.

Model. The model is as follows:
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• Number of populations: m = 2, defenders and attackers.
• State spaces: For defenders, Sdef = {DI,DS,UI, US}, standing respectively for de-

fended and infected, defended and susceptible of infection, undefended and infected, un-
defended and susceptible of infection. For attackers, Satt = {active, inactive}. When an
attacker is active, it is able to infect the defenders. As we will see below, the defenders’
transitions from susceptible to infected are affected by the proportion of active attackers.

• Action space: The central player of each population can influence the state in the follow-
ing way. The defenders’ central player can influence the transition probability between
defended and undefended. The attackers’ central player can influence the transition prob-
ability between active/inactive. The action space is A = {0, 1} for both populations. The
central player of a population chooses 0 if they are satisfied with the current level, and 1 if
they want to switch to the other level.

• Dynamics: We describe the model in continuous time and then its discrete-time version.
When the central player chooses to change the current state for the agents in a specific
state, the update occurs at an update probability λ for both two populations. If the agents
use pure policies, then at each of the states, the central player for defenders (resp. attackers)
only chooses one action per state and applies it to all the agents among the defenders (resp.
attackers) at that state. If the agents use mixed control, then for each state, the central player
for defenders (resp. attackers) chooses a distribution over actions and each agent among
the defenders (resp. attackers) in this state picks independently an action according to the
chosen distribution. When infected, each defender agent may recover at a rate qDrec or qUrec
depending on whether it is defended or not. Also, a defender agent may be infected either
directly by an attacker agent at rate vHqDinf or vHqUinf depending on whether it is defended
or not. A defender can also get infected by undefended infected (UI) defenders, at rate
βUUµ(UI) or βUDµ(UI) depending on whether it is undefended or not; it can also get
infected by defended infected (DI) defenders, at rate βDUµ(DI) or βDDµ(DI), depending
on whether it is undefended or not. Here vH stands for the proportion of attackers who are
active. In short, the transition rate matrix is given by:

P def
µ,a =

· · · Pµ,a
DS→DI λa 0

qDrec · · · 0 λa
λa 0 · · · qUrec
0 λa Pµ,a

US→UI · · ·


where

Pµ,a
DS→DI = vHqDinf + βDDµt(DI) + βUDµt(UI)

Pµ,a
US→UI = vHqUinf + βUUµt(UI) + βDUµt(DI)

The attackers’ transition matrix is:

P att
µ,a =

(
· · · λa
λa · · ·

)
.

In these matrices, a represents the action for the corresponding distribution. The summation
of every row of these transition rate matrices is 0. From this continuous-time model, we
derive a discrete-time version, which will fit in the MDP framework. We consider a time
step size ∆t. We formulate the transition probability matrices as follows:

µdef
t+1 = µdef⊤

t (I + P def
µ,a ∆t)

µatt
t+1 = µatt⊤

t (I + P att
µ,a∆t),

where I denotes the identity matrix, and I+P def
µ,a ∆t and I+P att

µ,a∆t represent the transition
probability matrices for defenders and attackers respectively. For transition probability
matrices, the summation of each row equals 1.

• Reward functions: We use:

Rdef
t = −20µt(DI)− 10µt(DS)− 10µt(UI)

Ratt
t = 10µt(DI) + 10µt(UI)− 10µt(active)

For this game, we consider a terminal horizon T and we accumulate the rewards every time
step until T . The steps are of length ∆t.
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• Parameter values: We use βUU = 0.3, βUD = 0.4, βDU = 0.3, βDD = 0.4, λ = 0.8,
qDrec = 0.5, qUrec = 0.4, qDinf = 0.4, qUinf = 0.3. In the experiments, we take T = 10 and
∆t = 0.1.

Training and Testing Data Sets. We used different initialization methods for training in the inner
loop and outer loop. For the outer loop, we used a uniform random sampler which samples a random
number in the interval [0, 1) according to uniform distribution in each entry in the initial state. Then
we normalized the initial state to make the sum of the distribution of each population equals to 1.
For exploitability computation, we run the inner loop for a fixed initial distribution so we set the
training initial distribution the same as the testing initial distribution. For the experiments using
our algorithm, DDPG-MFTG, and the baseline, there are eight different fixed initial distributions,
and we run each of them three times with different random seeds. So the exploitability curve for
each population is plotted based on the average of numerical results from 24 experiments. The eight
initial testing distributions are:

Dtest =
{(

(0.8, 0.05, 0.05, 0.1), (0.3, 0.7)
)
,
(
(0.5, 0.2, 0.2, 0.1), (0.3, 0.7)

)
,(

(0.1, 0.1, 0.7, 0.1), (0.7, 0.3)
)
,
(
(0.5, 0.0, 0.5, 0.0), (0.55, 0.45)

)
,(

(0.25, 0.15, 0.35, 0.25), (0.55, 0.45)
)
,
(
(0.35, 0.35, 0.15, 0.15), (0.3, 0.7)

)
,(

(0.45, 0.35, 0.15, 0.05), (0.2, 0.8)
)
,
(
(0.15, 0.25, 0.25, 0.35), (0.7, 0.3)

)}

Neural Network Architecture and Hyper-Parameters. We implement the same neural network
structure for both populations. For the actor network, the input is the concatenated vector of states for
the two populations, and there are two hidden layers with 100 neurons in each layer. All activation
functions in both hidden layers and the output layer are set to be sigmoid. The output dimension
of the actor network is the same as the dimension for the action vector for the defenders/attackers,
depending on which population the network is used for. For the critic network, the input is the
concatenated vector of the states for the two populations, and together with the action vector for the
defenders/attackers, depending on which population the critic network is used for. The architecture
of hidden layers and corresponding activation functions is same as the actor network. For the output
layer of the critic network, the activation function is an identity function, and the output is a single
value. For both the inner loop and outer loop, the learning rates are set as follows: for the defenders,
the learning rates for actor and critic are respectively 0.0006 and 0.0009; for the attackers, the
learning rates for actor and critic are respectively 6 × 10−5 and 9 × 10−5. The replay buffer is of
size 5000 and the batch size is 64. The model is trained using one CPU with 256GB memory, and
it takes around 24 hours to finish 100 episodes. The exploitability is calculated every 4 episodes
within the first 20 episodes, and then every 10 episodes from 20 to 100 episodes. The length of an
inner loop to learn the best response is 400 episodes.

Numerical results. We implement DDPG-MFTG to solve this game. The numerical results are
presented in Figs. 13 and 14. We make the following observations based on the provided plots.
Exploitability curves: Fig. 13 shows that for the defenders’ exploitability curve, both the baseline
and the DDPG-MFTG algorithm converge to 0, which indicates the algorithms are learning a Nash
equilibrium. For the attackers’ exploitability curve, we can see a clear gap between the exploitability
curve of our DDPG-MFTG algorithm and the baseline, which shows the improvement made by our
algorithm. Also, both two curves tend to reach towards 0, which shows that the algorithms are
converging to a Nash equilibrium. Population Distribution curves: Fig. 14 provides two examples
of population distributions used for testing.
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Figure 13: Testing ex-
ploitability for two popula-
tions
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Figure 14: Two examples of population distribution evo-
lution. The first row is for the initial distribution(
(0.35, 0.35, 0.15, 0.15), (0.3, 0.7)

)
, the second row is for(

(0.5, 0.2, 0.2, 0.1), (0.3, 0.7)
)
. The left column is for the

distribution of attackers, and the right column for the distri-
bution of defenders.

F.6 SUMMARY OF IMPROVEMENTS

In Table 1, we summarize the improvement brought by our method compared with the corresponding
baseline, in each example. The quantities are:

• Baseline Exploitability: The baseline’s mean value (as described in the paper).
• Our Exploitability: Our method’s mean value (as described in the paper).
• Improvement: The percentage improvement is calculated as:

Improvement (percentage) =
Baseline− Ours

Baseline
× 100.

Example 1 Example 2 Example 3 Example 4 Example 5
Baseline Exploitability 2355.35 3.13 131.43 2.69 6.93

Our Exploitability 471.40 2.16 38.75 1.39 3.14
Improvement 79.98% 31.0% 70.52% 48.3% 54.69%

Table 1: Comparison of baseline and our exploitability metrics across the 5 examples described in
the text, along with percentage improvement.
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G HYPERPARAMETERS SWEEP

We explore various batch sizes, actor learning rates, and standard deviations of Ornstein-Uhlenbeck
noise (OU noise) across all numerical experiments. Heuristically, we set αcritic = 2×αactor and τ =
5 × αactor. Each hyperparameter group is evaluated during one player’s exploitability computation
stage, and the results are presented as follows:

G.1 PREDATOR-PREY 2D WITH 4 GROUPS
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Figure 15: Exploitability computation training reward with αactor = 5× 10−5. Batch size from left
to right: 16, 32, 64, 128
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Figure 16: Exploitability computation training reward with αactor = 0.0005. Batch size from left to
right: 16, 32, 64, 128
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Figure 17: Exploitability computation training reward with αactor = 0.005. Batch size from left to
right: 16, 32, 64, 128
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Figure 18: Exploitability computation training reward with αactor = 0.05. Batch size from left to
right: 16, 32, 64, 128
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G.2 DISTRIBUTION PLANNING IN 2D
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Figure 19: Exploitability computation training reward with αactor = 0.0005. Batch size from left to
right: 16, 32, 64, 128
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Figure 20: Exploitability computation training reward with αactor = 5× 10−5. Batch size from left
to right: 16, 32, 64, 128
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Figure 21: Exploitability computation training reward with αactor = 5× 10−6. Batch size from left
to right: 16, 32, 64, 128

37



1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

G.3 FOUR-ROOM WITH CROWD AVERSION
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Figure 22: Exploitability computation training reward with αactor = 0.005. Batch size from left to
right: 16, 32, 64, 128
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Figure 23: Exploitability computation training reward with αactor = 0.0005. Batch size from left to
right: 16, 32, 64, 128
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Figure 24: Exploitability computation training reward with αactor = 5× 10−5. Batch size from left
to right: 16, 32, 64, 128
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Figure 25: Exploitability computation training reward with αactor = 5× 10−6. Batch size from left
to right: 16, 32, 64, 128
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G.4 CYBER SECURITY
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Figure 26: Exploitability computation training reward for defenders with αactor = 0.06. Batch size
from left to right: 16, 32, 64, 128
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Figure 27: Exploitability computation training reward for defenders with αactor = 0.006. Batch size
from left to right: 16, 32, 64, 128
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Figure 28: Exploitability computation training reward for defenders with αactor = 0.0006. Batch
size from left to right: 16, 32, 64, 128
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Figure 29: Exploitability computation training reward for defenders with αactor = 6× 10−5. Batch
size from left to right: 16, 32, 64, 128
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Figure 30: Exploitability computation training reward for attackers with αactor = 0.006. Batch size
from left to right: 16, 32, 64, 128
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Figure 31: Exploitability computation training reward for attackers with αactor = 0.0006. Batch size
from left to right: 16, 32, 64, 128
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Figure 32: Exploitability computation training reward for attackers with αactor = 6 × 10−5. Batch
size from left to right: 16, 32, 64, 128
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Figure 33: Exploitability computation training reward for attackers with αactor = 6 × 10−6. Batch
size from left to right: 16, 32, 64, 128
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