
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

REINFORCEMENT LEARNING FOR FINITE SPACE
MEAN-FIELD TYPE GAMES

Anonymous authors
Paper under double-blind review

ABSTRACT

Mean field type games (MFTGs) describe Nash equilibria between large coali-
tions: each coalition consists of a continuum of cooperative agents who maximize
the average reward of their coalition while interacting non-cooperatively with a
finite number of other coalitions. Although the theory has been extensively de-
veloped, we are still lacking efficient and scalable computational methods. Here,
we develop reinforcement learning methods for such games in a finite space set-
ting with general dynamics and reward functions. We start by proving that MFTG
solution yields approximate Nash equilibria in finite-size coalition games. We
then propose two algorithms. The first is based on quantization of mean-field
spaces and Nash Q-learning. We provide convergence and stability analysis. We
then propose a deep reinforcement learning algorithm, which can scale to larger
spaces. Numerical experiments in 5 environments with mean-field distributions of
dimension up to 200 show the scalability and efficiency of the proposed method.

1 INTRODUCTION

Game theory has found a large number of applications, from economics and finance to biology and
epidemiology. The most common notion of solution is the concept of Nash equilibrium, in which
no agent has any incentive to deviate unilaterally (Nash, 1951). At the other end of the spectrum is
the concept of social optimum, in which the agents cooperate to maximize a total reward over the
population. These notions have been extensively studied for finite-player games, see e.g. (Fudenberg
& Tirole, 1991). Computing exactly Nash equilibria in games with a large number of players is
known to be a very challenging problem (Daskalakis et al., 2009).

To address this challenge, the concept of mean field games (MFGs) has been introduced in (Lasry
& Lions, 2007; Huang et al., 2006), relying on intuitions from statistical physics. The main idea is
to consider an infinite population of agents, replacing the finite population with a probability distri-
bution, and to study the interactions between one representative player with this distribution. Under
suitable conditions, the solution to an MFG provides an approximate Nash equilibrium for the cor-
responding finite-player game. While MFGs typically focus on the solution concept of Nash equi-
librium, mean field control (MFC) problems focus on the solution concept of social optimum (Ben-
soussan et al., 2013). The theory of these two types of problems has been extensively developed, in
particular using tools from stochastic analysis and partial differential equations, see e.g. (Bensoussan
et al., 2013; Gomes & Saúde, 2014; Carmona & Delarue, 2018) for more details.

However, many real-world situations involve agents that are not purely cooperative or purely non-
cooperative. In many scenarios, the agents form coalitions: they cooperate with agents of the same
group and compete with other agents of other groups. In the limit where the number of agents is
infinite while the number of coalitions remains finite, this leads to the concept of mean-field type
games (MFTGs) (Tembine, 2017). Various applications have been developed, such as blockchain
token economics (Barreiro-Gomez & Tembine, 2019), risk-sensitive control (Tembine, 2015) or
more broadly in engineering (Barreiro-Gomez & Tembine, 2021). Similar problems have been
studied under the terminology of mean field games among teams (Subramanian et al., 2023) and
team-against-team mean field problems (Sanjari et al., 2023; Yüksel & Başar, 2024). The case of
zero-sum MFTG has received special interest (Başar & Moon, 2021; Cosso & Pham, 2019; Guan
et al., 2024), but the framework of MFTGs also covers general sum games with more than two
(mean-field) coalitions. MFTGs are different from MFGs because the agents are cooperative within

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

coalitions, while MFGs are about purely non-cooperative agents. They are also different from MFC
problems, in which the agents are purely cooperative. As a consequence, computational methods
and learning algorithms for MFGs and MFC problems cannot be applied to compute Nash equilibria
between mean-field coalitions in MFTGs. Last, graphon games (Caines & Huang, 2019) and mixed
mean field control games (Angiuli et al., 2023a) correspond to limit scenarios with infinitely many
mean-field groups. In such games, each player has a negligible impact on the rest of the population,
which is not the case in MFTGs, see (Tembine, 2017), so new methods are required for MFTGs.

Inspired by the recent successes of RL in two-player games such as Go (Silver et al., 2016) and
poker (Brown et al., 2020), RL methods have been adapted to solve MFGs and MFC problems,
see e.g. (Subramanian & Mahajan, 2019; Guo et al., 2019; Elie et al., 2020; Cui & Koeppl, 2021)
and (Gu et al., 2021; Carmona et al., 2023; Angiuli et al., 2023b) respectively, among many other ref-
erences. We refer to (Laurière et al., 2022) and the references therein for more details. Such methods
compute the solutions to mean field problems. A related topic is mean field multi-agent reinforce-
ment learning (MFMARL) (Yang et al., 2018), which studies finite-agent systems and replaces the
interactions between agents with the mean of neighboring agents’ states and actions. Extensions
include situations with multiple types and partial observation (Ganapathi Subramanian et al., 2020;
2021). However, the MFMARL setting differs substantially from MFTGs: (1) it does not take into
account a general dependence on the mean field (i.e., the whole population distribution), (2) it aims
directly for the finite-agent problem while using a mean-field approximation in an empirical way,
and (3) it is not designed to tackle Nash equilibria between coalitions. The works most related to
ours applied RL to continuous space linear-quadratic MFTGs by exploiting the specific structure of
the equilibrium policy in these games (Carmona et al., 2020; uz Zaman et al., 2024; Zaman et al.,
2024). In these settings, policies can be represented exactly with a small number of parameters. In
contrast, we focus on finite space MFTGs with general dynamics and reward functions, for which
there has been no RL algorithm thus far to the best of our knowledge.

Main contributions. Our main contributions are as follows:
1. We prove that solving an MFTG provides an ϵ-Nash equilibrium for a game between finite-size

coalitions (Theorem 2.4), which justifies studying MFTGs for finite-player applications.
2. We propose a tabular RL method based on quantization of the mean-field spaces and Nash Q-

learning (Hu & Wellman, 2003). We prove the convergence of this algorithm, analyzing the error
due to the discretization (Theorem 3.2).

3. We propose a deep RL algorithm based on DDPG (Lillicrap et al., 2016) which does not require
quantization and hence is more scalable to problems with a large number of states.

4. We illustrate both methods in 5 environments with distribution in dimension up to 200. Since
this paper is the first to propose RL algorithms for (finite space) MFTGs with general dynamics
and rewards, there is no standard baseline to compare with. We thus carry out a comparison with
two baselines inspired by independent learning.

The rest of the paper is organized as follows. In Section 2, we define the finite-agent problem with
coalitions and then its mean-field limit, and establish their connection. We then reformulate the
MFTG problem in the language of mean field MDPs. In Section 3, we present an algorithm based
on the idea of Nash Q-learning, and we analyze it. In Section 4, we present our deep RL algorithm
for MFTG, without discretization of the mean-field spaces. Numerical experiments are provided in
Section 5. Section 6 is dedicated to a summary and a discussion. The appendices contain proofs and
additional numerical results.

2 DEFINITION OF THE MODEL

In this section, we define the finite-population m-coalition game and the limiting MFTG with m
(central) players. We will use the terminology agent for an individual in a coalition and central
player for the player who chooses the policy to be used by her coalition. We will sometimes write
player instead of central player.

2.1 FINITE-POPULATION m-COALITION GAME

We consider a game between m groups of many agents. Each group is called a coalition and behaves
cooperatively within itself. Alternatively, we can say that there are m central players, and each of

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

them chooses the behaviors to be used in their respective coalition. For each i ∈ [m], let Si and Ai

be respectively the finite state space and the finite action space for the individual agents in coalition
i. Let Ni denote the number of individual agents in coalition i. Let ∆(Si) and ∆(Ai) be the sets of
probability distributions on Si and Ai, respectively. Agent j in coalition i has a state xij

t at time t.
The state of coalition i is characterized by the empirical distribution µi,N̄

t = 1
Ni

∑Ni

j=1 δxij
t
∈ ∆(Si),

and the state of the whole population is characterized by the joint empirical distribution: µN̄
t =

(µ1,N̄
t , . . . , µm,N̄

t). The state of every agent j ∈ [Ni] in coalition i evolves according to a transition
kernel pi : Si×Ai×

∏m
i′=1 ∆(Si′)→ ∆(Si). If the agent takes action aijt and the distribution is µN̄

t ,
then: xij

t+1 ∼ pi(·|xij
t , a

ij
t , µ

N̄
t). We assume that the states of all agents in all coalitions are sampled

independently. During this transition, the agent obtains a reward ri(xij
t , a

ij
t , µ

N̄
t) given by a function

ri : Si × Ai ×
∏m

i′=1 ∆(Si′) → R. All the agents in coalition i independently pick their actions
according to a common policy πi : Si×∆(S1)×· · ·×∆(Sm)→ ∆(Ai), i.e., aijt for all j ∈ [Ni] are
i.i.d. with distribution πi(·|xij

t , µ
N̄
t). Notice that the arguments include the individual state and the

distribution of each coalition. We denote by Πi the set of such policies. The average social reward
for the central player of population i is defined as: J i,N̄ (π1, . . . , πm) = 1

Ni

∑Ni

j=1 E[
∑

t≥0 γ
trijt],

where γ ∈ [0, 1) is a discount factor and the one-step reward at time t is rijt = rit(x
ij
t , a

ij
t , µ

N̄
t). We

focus on the solution corresponding to a Nash equilibrium between the central players.

Definition 2.1 (Nash equilibrium for finite-population m-coalition type game) A policy profile
(π1

∗, . . . , π
m
∗) ∈ Π1 × · · · × Πm is a Nash equilibrium for the above finite-population game if:

for all i ∈ [m], for all πi ∈ Πi, J i,N̄ (πi;π−i
∗) ≤ J i,N̄ (πi

∗;π
−i
∗), where π−i

∗ denotes the vector of
policies for central players in other coalitions except i.

In a Nash equilibrium, there is no incentive for unilateral deviations at the coalition level. When
each Ni goes to infinity, we obtain a game between m central players in which each player controls
a population distribution. Such games are referred to as mean-field type games (MFTG for short).

2.2 MEAN-FIELD TYPE GAME

Informally, as Ni → +∞, the state µi,N̄
t of coalition i has a limiting distribution µi

t ∈ ∆(Si)

for each i ∈ [m], and the state µN̄
t of the whole population converges to µt = (µ1

t , . . . , µ
m
t) ∈

∆(S1) × · · · × ∆(Sm). We will refer to the limiting distributions as the mean-field distributions.
Based on propagation-of-chaos type results, we expect all the agents’ states to evolve independently,
interacting only through the mean-field distributions. It is thus sufficient to understand the behavior
of one representative agent per coalition. A representative agent in mean-field coalition i has a state
xi
t ∈ Si which evolves according to: xi

t+1 ∼ pi(·|xi
t, a

i
t, µt), ait ∼ πi(·|xi

t, µt), where πi ∈ Πi is
the policy for coalition i. We consider that this policy is chosen by a central player and then applied
by all the infinitesimal agents in coalition i. The total reward for coalition i is: J i(π1, . . . , πm) =

E
[∑

t≥0 γ
tri(xi

t, a
i
t, µt)

]
, where, intuitively, the expectation takes into account the average over all

the agents of coalition i. Then, the goal is to find a Nash equilibrium between the m central players.

Definition 2.2 (Nash equilibrium for m-player MFTG) A policy profile (π1
∗, . . . , π

m
∗) ∈ Π1 ×

· · · × Πm is a Nash equilibrium for the above MFTG if: for all i ∈ [m], for all πi ∈ Πi,
J i(πi;π−i

∗) ≤ J i(πi
∗;π

−i
∗), where π−i

∗ denotes the vector of policies for players in other coali-
tions except i.

In other words, in a Nash equilibrium, the central players have no incentive to deviate unilaterally.
This can also be expressed through the notion of exploitability, which quantifies to what extent a
policy profile is far from being a Nash equilibrium, see (Heinrich et al., 2015; Perrin et al., 2020).

Definition 2.3 (Exploitability) The exploitability of a policy profile (π1, . . . , πm) ∈ Π1 × · · · ×
Πm is E(π1, . . . , πm) =

∑m
i=1 E i(π1, . . . , πm), where the i-th central player’s exploitability is:

E i(π1, . . . , πm) = maxπ̃i∈Πi J i(π̃i;π−i)− J i(πi;π−i).

Notice that E i(π1, . . . , πm) quantifies how much player i can be better off by playing an optimal
policy against π−i instead of πi. In particular E(π1, . . . , πm) = 0 if and only if (π1, . . . , πm) is a

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Nash equilibrium for the MFTG. More generally, we will use the exploitability to quantify how far
(π1, . . . , πm) is from being a Nash equilibrium.

The main motivation behind the MFTG is that its Nash equilibrium provides an approximate Nash
equilibrium in the finite-population m-coalition game, and the quality of the approximation increases
with the number of agents. In particular, we can show that solving an MFTG provides an ϵ-Nash
equilibrium for a game between finite-size coalitions. The following assumptions are classical in the
literature on MFC and MFTGs, see e.g. (Cui et al., 2024; Guan et al., 2024).

Assumption 1 (a) For each i ∈ [m], the reward function ri(x, a, µ) is bounded by a constant
Cr > 0 and Lipschitz w.r.t. µ with constant Lr.
(b) The transition probability p(x′|x, a, µ) satisfies the following Lipschitz bound: ∥p(·|x, a, µ) −
p(·|x, a, µ̃)∥1 ≤ Lpd(µ, µ̃) for every x ∈ Si, a ∈ Ai, and µ, µ̃ ∈ ∆(Si).
(c) The policies π(a|x, µ) satisfy the following Lipschitz bound: ∥π(·|x, µ) − π(·|x, µ̃)∥1 ≤
Lπd(µ, µ̃) for every x ∈ Si, and µ, µ̃ ∈ ∆(Si).

Theorem 2.4 (Approximate Nash equilibrium) Suppose that Assm. 1 holds. Let (π1
∗, . . . , π

m
∗) ∈

Π1 × · · · × Πm be a Nash equilibrium for the MFTG. When the discount factor γ satisfies γ(1 +

Lπ + Lp) < 1, then max
π̃i

J i,N̄ (π̃i;π−i
∗) ≤ J i,N̄ (πi

∗;π
−i
∗) + ε(N), for all i ∈ [m], with ε(N) =

Cmaxi∈[m]

{
|Si|
√
|Ai|/

√
Ni

}
, where C is a constant.

In other words, if all the agents use the policy coming from the MFTG corresponding to their coali-
tion, then each coalition can increase its total reward only marginally (at least when the number of
agents is large enough). The proof is deferred to Appx. A. In contrast with e.g. (Saldi et al., 2018,
Theorem 4.1), our result provides not only asymptotic convergence but also a rate of convergence.

2.3 REFORMULATION WITH MEAN-FIELD MDPS

Our next step towards RL methods is to rephrase the MFTG in the framework of Markov decision
processes (MDPs). Since the game involves the population’s states represented by probability dis-
tributions, the MDPs will be of mean-field type. We will thus rely on the framework of mean-field
Markov decision processes (MFMDP) (Motte & Pham, 2022; Carmona et al., 2023). But in con-
trast with these prior works, we consider a game between MFMDPs, which is more challenging
than a single MFMDP. The key remark is that, since xi

t has distribution µi
t and ait has distribution

πi(·|xi
t, µt), the expected one-step reward can be expressed as a function r̄i of the i-th policy and

the distributions:
r̄i(µt, π̄

i
t) =

∑
x∈Si

µi
t(x)

∑
a∈Ai

π̄i
t(a|x)ri(x, a, µt),

where π̄i
t = πi

t(·|·, µt). This will help us to rewrite the problem posed to central player i, as an
MDP. Before doing so, we introduce the following notations: S̄ =×m

i=1
S̄i is the (mean-field) state

space, where S̄i = ∆(Si) is the (mean-field) state space of population i. The (mean-field) state is
s̄t = µt ∈ S̄; Āi = ∆(Ai)|S

i| is the (mean-field) action space; r̄i : S̄ × Āi → R is as defined
above; p̄ : S̄ × Ā1 × · · · × Ām → S̄ is defined such that: p̄(s̄t, ā

1
t , . . . , ā

m
t) = s̄t+1 where, if

s̄t = (µ1
t , . . . , µ

m
t) and āit = πi(·|·, µi

t), then s̄t+1 = (µ1
t+1, . . . , µ

m
t+1), where we recall that µi

t+1

is the distribution of xi
t+1. In other words, p̄ encodes the transitions of the mean-field state, which

depends on all the central players’ (mean-field) actions. To stress the fact that the transitions are
deterministic, we will sometimes use the notation F̄ = p̄ to stress that this is a transition function
(at the mean-field level). A (mean-field) policy is now a function π̄i : S̄ → Āi. In other words,
the central player first chooses a function π̄i of the mean field. When applied on µt, π̄i(µt) returns
a policy for the individual agent, i.e., π̄i(µt) : Si ∋ xi

t 7→ π̄i(µt, x
i
t) = πi(·|xi

t, µt) ∈ ∆(Ai).
Although this approach may seem quite abstract, it allows us to view the problem posed to the
i-th central player as a “classical” MDP (modulo the fact that the state is a vector of probability
distributions). We can then borrow tools from reinforcement learning to solve this MDP.

Remark 2.5 Notice that an action for central player i, i.e., an element āi of Āi. From the point of
view of an agent in coalition i, it is a decentralized policy. Then π̄i is a mean-field policy for the
central player, whose input is a mean field. This generalizes the approach proposed in (Carmona

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

et al., 2023) to the case of multiple controllers. It is different from e.g. (Yang et al., 2018), in which
there is no central player and no mean-field policies. This allows to represent coalitions’ behaviors
that react to other coalitions’ mean fields.

2.4 STAGE GAME EQUILIBRIA

We now rephrase the notion of MFTG equilibrium using the notion of value function, which will
lead to a connection with the concept of stage-game. To make the model more general, we also
assume that the reward of coalition i could function depend on the actions of all central players.

The central player of coalition i aims to choose a policy π̄i to maximize the discounted sum of
rewards: v̄iπ̄(s̄) = v̄i(s̄, π̄) := Eπ̄

[∑∞
t=0 γ

tr̄i(s̄t, ā
i
t)
]
, where π̄ = (π̄1, . . . , π̄m) is the policy

profile and s̄0 = s̄, s̄t+1 ∼ p̄(·|s̄t, ā1t , . . . , āmt), ājt ∼ π̄i(·|s̄t), j = 1, . . . ,m, t ≥ 0.

We can now rephrase the notion of Nash equilibrium for the MFTG (Def. 2.2) in this framework.

Definition 2.6 (Nash equilibrium for MFTG rephrased) An MFTG Nash equilibrium π̄∗ =
(π̄1

∗, . . . , π̄
m
∗) is such that for all i = 1, . . . ,m: v̄i(s̄, π̄∗) ≥ v̄i(s̄, (π̄i, π̄−i

∗)), ∀s̄ ∈ S̄,∀π̄i ∈ Π̄i.

To simplify the notation, we let ā = (ā1, . . . , ām), π̄−i(dā−i|s̄) =
∏

j ̸=i π̄
j(dāj |s̄), ā−i ∈ Ā−i =∏

j ̸=i Ā
j . The Q-function for central player i is defined as: Q̄i

π̄(s̄, ā) = Eπ̄

[∑∞
t=0γ

tr̄i(s̄t, ā
i)|s̄0 =

s̄, ā0 = ā
]
.. We now introduce an (MF)MDP for central player i when the other players’ policies

are fixed. We define the following MDP, denoted by MDP(π̄−i).

Definition 2.7 (MDP(π̄−i)) An MDP for a central player i against fixed poli-
cies of other players is a tuple (S̄, Āi, p̄π̄−i , r̄π̄−i , γ) where p̄π̄−i(s̄′|s̄, āi) =∫
Ā−i

p̄(s̄′|s̄, ā)π̄−i(dā−i|s̄), r̄π̄−i(s̄, āi) = r̄i(s̄, āi).

Next, we define the notion of stage game, which is a Nash equilibrium for a one-step problem. This
serves as an intermediate goal in Nash Q-learning, to learn a global-in-time Nash equilibrium.

Definition 2.8 (Stage game and stage Nash equilibrium) Given a (mean-field) state s̄ ∈ S̄ and a
policy profile π̄ = (π̄1, . . . , π̄m), the (mean-field) stage game induced by s̄ and π̄ is a static game
in which player i takes an action āi ∈ Āi, i = 1, . . . ,m and gets the reward Q̄i

π̄(s̄, ā
1, . . . , ām).

Player i is allowed to use a mixed strategy σi ∈ ∆(Āi). A Nash equilibrium for this stage game is
a strategy profile σ∗ = (σ1

∗, . . . , σ
m
∗) such that, for all σi ∈ ∆(Āi),

σ1
∗ · · ·σm

∗ Q̄i
π̄(s̄) ≥ σ1

∗ · · ·σi−1
∗ σiσi+1

∗ · · ·σm
∗ Q̄i

π̄(s̄)

where we define σ1 · · ·σmQ̄i
π̄(s̄) := r̄i(s̄, σi) + γ

∫
S̄

∫
Ā

v̄i(s̄′, π̄)p̄(ds̄′|s̄, ā)σ(dā|s̄), with Ā =

Ā1 × · · · × Ām, σ(dā|s̄) =
∏m

i=1 σ
i(dāi|s̄), and r̄i(s̄, σi) := Eāi∼σi r̄i(s̄, āi).

We now define a mean-field version of the NashQ function introduced by Hu & Wellman (2003).
Intuitively, it quantifies the reward that player i gets when the system starts in a given state, all the
player uses the stage-game equilibrium strategies for the first action, and then play according to a
fixed policy profile for all remaining time steps.

Definition 2.9 (NashQ function) Given a Nash equilibrium (σ1
∗, . . . , σ

m
∗), the NashQ function of

player i is defined as: NashQ̄i
π̄(s̄) := σ1

∗ · · ·σm
∗ Q̄i

π̄(s̄).

We conclude by showing the link between Defs. 2.2 and 2.8 (the proof is in Appx. B).

Proposition 2.10 The following statements are equivalent: (i) π̄∗ = (π̄1
∗, . . . , π̄

m
∗) is a Nash

equilibrium for the MFTG with equilibrium payoff (v̄1π̄∗
, . . . , v̄mπ̄∗

); (ii) For every s̄ ∈ S̄,
(π̄1

∗(s̄), . . . , π̄
m
∗ (s̄)) is a Nash equilibrium in the stage game induced by state s̄ and policy profile π̄∗

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

3 NASH Q-LEARNING AND TABULAR IMPLEMENTATION

In this section, we present an adaptation of the celebrated Nash Q-learning of Hu & Wellman (2003)
to solve MFTG. It should be noted that the original Nash Q-learning algorithm Hu & Wellman (2003)
is for finite state and action spaces and to the best of our knowledge, extensions to continuous spaces
have been proposed only in special cases, such as Vamvoudakis (2015); Casgrain et al. (2022), but
there is no extension to continuous spaces for general games that could be applied to MFTGs. The
main difficulty is the computation of the solution to the stage-game at each iteration, which relies on
the fact that the action space is finite. So this algorithm cannot be applied directly to solve MFTGs.

In order to implement this method using tabular RL, we will start by discretizing the simplexes
following the idea in Carmona et al. (2023). This allows us to analyze the algorithm fully. However,
this approach is not scalable in terms of the number of states, which is why in Section 4, we will
present a deep RL method that does not require simplex discretization.

3.1 DISCRETIZED MFTG

Since Si and Ai are finite, S̄i = ∆(Si) and ∆(Ai) are (finite-dimensional) simplexes. We endow
S̄ and ∆(Ai) with the distances dS̄(s̄, s̄′) =

∑
i∈[m] d(s̄

i, s̄′
i
) =

∑
i∈[m]

∑
x∈Si |µi(x) − µ′i(x)|,

and dAi(āi(s̄), ā′
i
(s̄)) =

∑
x,a |πi(a|x, s̄) − π′i(a|x, s̄)|, where s̄i = µi, āi(s̄) = πi(·|·, s̄). In the

action space Āi = {S̄ → ∆(Ai)}, we define the distance dĀi(āi, ā′
i
) = sups̄∈S̄ dAi(āi(s̄), ā′

i
(s̄)).

However, S̄ and Āi are not finite. To apply the tabular Q-learning algorithm, we replace S̄ and
Āi with finite sets. For i = 1, . . . ,m, let Ši ⊂ S̄i and ∆̌(Ai) ⊂ ∆(Ai) be finite approxi-
mations of S̄i and ∆(Ai). We then define the (mean-field) finite state space and action space
Š = Πm

i=1Š
i ⊂ S̄ and Ǎi = {ǎi : Š → ∆̌(Ai)}. Let ϵS = maxs̄∈S̄ minš∈Š dS̄(s̄, š) and

ϵA = maxi maxāi∈Āi minǎi∈Ǎi dĀi(āi, ǎi), which characterize the fineness of the discretiza-
tion.The policy space of each player i is Π̌i = {π̌i : Š → ∆(Ǎi)}. We will also use the projection
operator ProjŠ : S̄ → Š, which maps s̄ to the closest point in Š (ties broken arbitrarily). This will
ensure the state takes value in Š. Specifically, given a state št and a joint action (ǎ1t , . . . , ǎ

m
t), we

generate s̄t+1 = F̄ (št, ǎ
1
t , . . . ǎ

m
t). Then, we project s̄t+1 back to Š and denote the projected state

by št+1 = ProjŠ(s̄t+1). This finite space setting can be regarded as a special case of an m-player
stochastic game, and the Theorem 2 in (Fink, 1964) guarantees the existence of a Nash equilibrium.

3.2 NASH Q-LEARNING ALGORITHM

We briefly describe the tabular Nash Q-learning algorithm, similar to the algorithm of Hu & Wellman
(2003). The main idea is that, instead of using classical Q-learning updates, which involve only the
player’s own Q-function, the players will use the NashQ function for a stage game.

At each step t, the players use their current estimate of the Q-functions to define a stage game. They
compute the Nash equilibrium, say (σ̌1, . . . , σ̌m) ∈

∏m
i=1 Π̌

i, and deduce the associated NashQ
function, which is then used to update their estimates of the Q-functions.

At each step t, player i observes š and takes an action according to a behavior policy chosen to
ensure exploration. Then, she observes the reward, actions of each player, and the next state š′. She
then solves the stage game with rewards (Q̌1

t (š
′), . . . , Q̌m

t (š′)), where Q̌i
t(š

′) : (ā1, . . . , ām) 7→
Q̌i

t(š
′, ā1, . . . , ām). Let (π̌i,1

∗ (š′), . . . , π̌i,m
∗ (š′)) be the Nash equilibrium obtained on player i’s

belief. The NashQ function of player i is defined as: NashQ̌i
t(š

′) = π̌i,1
∗ · · · π̌i,m

∗ Q̌i
t(š

′). From here,
she updates the Q-values according to the following rule, where αt is a learning rate:

Q̌i
t+1(š, ǎ

1, . . . , ǎm) = (1− αt)Q̌
i
t(š, ǎ

1, . . . , ǎm) + αt(r̄
i
t + βNashQ̌i

t(š
′)). (1)

It is noted that in each iteration, the Q-values of each player are updated asynchronously based on
the observation. The detailed algorithm is described in Algo. 1 in Appx. D due to space constraints.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

3.3 NASH Q-LEARNING ANALYSIS

We will see that Q̌i
t from Algo. 1 converges to Q̌i

π̌∗
under the following assumption, which is

classical in the literature on NashQ-learning, see e.g. Hu & Wellman (2003); Yang et al. (2018).
We use it for the proof although it seems that in practice the algorithm works well even when this
assumption does not hold.

Assumption 2 (a) Every state š ∈ Š and action ǎi ∈ Ǎi, i = 1, . . . ,m, are visited infinitely often.
(b) αt satisfies the following two conditions for all t, š, ǎ1, . . . , ǎm: 1. 0 ≤ αt(š, ǎ

1, . . . , ǎm) < 1,∑∞
t=0 αt(š, ǎ

1, . . . , ǎm) = ∞,
∑∞

t=0 α
2
t (š, ǎ

1, . . . , ǎm) < ∞, the latter two hold uniformly and
with probability 1. 2. αt(š, ǎ

1, . . . , ǎm) = 0, if (š, ǎ1, . . . , ǎm) ̸= (št, ǎ
1
t , . . . , ǎ

m
t).

(c) One of the following two conditions holds: 1. Every stage game (Q̌1
t (š

′), . . . , Q̌m
t (š′)) for all t

and š, has a global optimal point, and players’ payoff in this equilibrium are used to update their
Q-functions. 2. Every stage game (Q̌1

t (š
′), . . . , Q̌m

t (š′)) for all t and š, has a saddle point, and
players’ payoff in this equilibrium are used to update their Q-functions.

Here, a global optimal point is a joint policy of the stage game such that each player receives her
highest payoff following this policy. A saddle point is a Nash equilibrium policy of the stage game,
and each player would receive a higher payoff provided at least one of the other players takes a
policy different from the Nash equilibrium policy.

Theorem 3.1 (NashQ-learning convergence) Under Assm. 2, Q̌t = (Q̌1
t , . . . , Q̌

m
t), updated by (1)

converges to the Nash equilibrium Q-functions Q̌π̌∗ = (Q̌1
π̌∗

, . . . , Q̌m
π̌∗

).

We omit the proof of Theorem 3.1 as it is essentially the same as in (Hu & Well-
man, 2003). We then focus on the difference between the approximated Nash Q-function,
Q̌i

t(ProjŠ(s̄),ProjǍ1(ā1), . . . ,ProjǍm(ām)) and the true Nash Q-function, Q̄i
π̄∗

(s̄, ā1 . . . ām), in
the infinite space S̄ × Āi × · · · × Ām. For this proof, we use the following assumption, which is an
extension to the multi-player setting of the assumptions in (Carmona et al., 2023).

Assumption 3 (a) For each i, r̄i is bounded and Lipschitz continuous w.r.t. (s̄t, ā
i
t) with constant

Lr̄i . F̄ is Lipschitz continuous w.r.t. (s̄, ā1, . . . , ām) with constant LF̄ in expectation.
(b) v̄iπ̄ is Lipschitz continuous w.r.t. s̄ with constant Lv̄π̄ .

Assm. 3 (a) can be achieved with suitable conditions on the game. The boundedness of the reward
function, together with the discount factor 0 < γ < 1, can also lead to the boundedness of the payoff
function v̄iπ̄∗

. For classical MDPs, Lipschitz continuity of the value function can be derived from
assumptions on the model as in (Motte & Pham, 2022).

To alleviate the notation, we let: Proj(s̄, ā1 . . . ām) = (ProjŠ(s̄),ProjǍ1(ā1), . . . ,ProjǍm(ām)).

Theorem 3.2 (Discrete problem analysis) Let ϵ > 0. Suppose Assm. 3 holds and there is a unique
pure policy π̄p

∗ for the MFTG for each i and s̄ ∈ S̄, the function vi
π̄p

∗
(s̄) is a global optimal point

for the stage game Q̄i
π̄p

∗
(s̄). Then, if t is large enough, for each i, s̄ ∈ S̄, i = 1, 2, · · · , we have

|Q̌i
t(Proj(s̄, ā

1 . . . ām)) − Q̄i
π̄p

∗
(s̄, ā1 . . . ām)| ≤ ϵ′, where ϵ′ = ϵ + C1ϵA + C2ϵS , with ϵS and ϵA

defined above, respectively, C1 = 1
1−γ (Lr̄i + γLv̄i

π̄∗
LF̄m) and C2 = γ

1−γLv̄i
π̄∗

+Lr̄i + γLv̄i
π̄∗
LF̄ .

Note the first ϵ in the bound ϵ′ can be chosen arbitrarily small provided t is large enough. The
second and the third term are controlled by ϵA and ϵS and can be small if we choose a finer simplex
approximation. The proof is provided in Appx. C.

4 DEEP RL FOR MFTG

While the above extension of the NashQ learning algorithm has the advantage of being fully analyz-
able and enjoying convergence guarantees, it is not scalable to large state and action spaces. Indeed,
it requires discretizing the simplexes of distributions on states and actions. The number of points
increases exponentially in the number of states and actions, which makes the algorithm intractable

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

for very fine discretizations. Furthermore, each step relies on solving a stage game and computing a
Nash equilibrium is a difficult task for large games, even they are static.

For this reason, we now present a deep RL algorithm whose main advantages are that it does not
require discretizing the simplexes and does not require solving any stage-game. The state and ac-
tion distributions are represented as vectors (containing the probability mass functions) and passed
as inputs to neural networks for the policies and the value functions. At the level of the central
player for coalition i, one action is an element āi ∈ Āi. Although it corresponds to a mixed pol-
icy at the level of the individual agent, it represents one action for the central player. We focus on
learning deterministic central policies, meaning functions that map a mean-field state s̄ to a mean-
field action āi. To this end, we use a variant of the deep deterministic policy gradient algorithm
(DDPG) (Lillicrap et al., 2016), as shown in Algo. 2 in Appx. D. Our algorithm substantially differs
from the DDPG algorithm as the two players’ behaviors are coupled. Each player interacts with
a dynamic environment that the other player also influences. Unlike the tabular Nash Q-learning
algorithm, it is generally difficult to have a rigorous proof of convergence due to the complexity of
deep neural networks. Although the theoretical convergence of some algorithms has been studied,
such as deep Q-learning (Fan et al., 2020), deterministic policy gradient (Xiong et al., 2022), and
actor-critic algorithms with multi-layer neural networks (Tian et al., 2024), to the best of our knowl-
edge, the convergence of DDPG under assumptions that could be applied to our setting has not been
established. Also, in the case of MFTGs, we would need to analyze the convergence to a Nash
equilibrium, which is more complex than the solution to an MDP. Therefore, we leave for future
work the theoretical analysis and focus on numerical analysis: we use several numerical metrics to
measure the performance of DDPG-MFTG Algo. 2, as detailed in the next section.

5 NUMERICAL EXPERIMENTS

Metrics. To assess the convergence of our algorithms, we use several metrics. First, we check the
testing rewards of each central player (i.e., the total reward for each coalition, averaged over the
testing set of initial distributions). But this is not sufficient to show that the policies form a Nash
equilibrium of the MFTG. For this, we compute the exploitability. This requires training a best
response (BR) policy for each player independently, which is also done with deep RL, using the
DDPG method. Last, we also check the evolution of the distributions to make sure that they match
what we expect to happen in the Nash equilibrium. The pseudo-codes for evaluating a policy profile
and computing the exploitability are respectively provided in Algs. 4 and 5 in Appx. E.
Training and testing sets. The training set consists of randomly generated tuples of distributions,
and each element of the tuple represents the initial distribution of a player. The testing set consists
of a finite number of tuples of distributions that are not in the training set. Details of the training and
testing sets are described case by case.
Baseline. To the best of our knowledge, there are no RL algorithms that can be applied to the
type of MFTG problems we study here. In the absence of standard baselines, we will use two
types of baselines, for each of our algorithms. For small-scale examples, we discretize the mean-
field state and action spaces and employ DNashQ-MFTG. Here, we use as a baseline an algorithm
where each coalition runs an independent mean field type Q-learning (after suitable discretization
of the simplexes). We call this method Independent Learning-Mean Field Type Game (IL-MFTG
for short). For larger scale examples with many states, we use the DDPG-based methods described
in the previous section. In this case, we use as a baseline an ablated DDPG method in which each
central player can only see her own (mean-field) state. For both our algorithms and the baselines,
the exploitability is computed using our original class of policies, see Algo. 5.
Games. We present here 3 examples. Two more are presented in Appx. F.4 and F.5. Table 1 in
Appx. summarizes the average improvements obtained by our method (at least 30% in each game).

Example 1: 1D Population Matching Grid Game There are m = 2 populations. The agent’s
state space is a 3-state 1D grid world. The possible actions are moving left, staying, and moving
right, with individual noise perturbing the movements. The rewards encourage Coalition 1 to stay
where it is initialized but also to consider avoiding Coalition 2, and encourage Coalition 2 to match
Coalition 1. For the model details and the training and testing distributions, see Appx. F.1. We
implement DNashQ-MFTG to solve this game. The numerical results are presented in Fig. 1. We
make the following observations. Testing reward curves: Fig 1 (left) shows the testing rewards.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

In this game setting, the Nash equilibrium is that Coalition 1 stays where it is but considers the
impact of Coalition 2 at the same time, while Coalition 2 matches with Coalition 1 perfectly. The
testing reward for Coalition 1 increases during the first two thousand episodes. The testing reward
for Coalition 2 increases at the first three thousand episodes and fluctuates below 0 due to the noise
in the dynamics. Exploitability curves: Fig. 1 (middle) shows the averaged exploitabilities over
the testing sets and players. The game reaches Nash equilibrium around 4000 episodes, with slight
fluctuations after that. However, the independent learner remains high exploitability. Distribution
plots: Fig. 1 (right) illustrates the distribution evolution during the game. After training, Coalition 1
mainly stays where it is while Coalition 2 tries to match with Coalition 1. See Appx. F.1 for details.

0 2000 4000 6000 8000 10000
Episode

10000
8000
6000
4000
2000

0

Te
st

in
g

Re
wa

rd

reward player 1
reward player 2

0 2000 4000 6000 8000 10000
Episode

0

2000

4000

6000

8000

10000

Ex
pl

oi
ta

bi
lit

y DNashQ-MFTG
IL-MFTG

1 2 3
State

0.0

0.2

0.4

0.6

0.8

1.0

De
ns

ity

t=0

Population 1
Population 2

1 2 3
State

0.0

0.2

0.4

0.6

0.8

1.0

De
ns

ity

t=4

Population 1
Population 2

Figure 1: Ex. 1: Left and middle: averaged testing rewards and exploitabilities resp. (mean ±
stddev). Right: one realization of population evolution at t = 0 and 4 for one testing distribution.

Example 2: Four-room with crowd aversion There are m = 2 populations. The agent’s state
space is a 2D grid world composed of 4 rooms of size 5 × 5 connected by 4 doors, as shown in
Fig. 2 (right). The policies’ inputs are thus of dimension 2× 4× 5× 5 = 200. The reward function
encourages the two populations to spread as much as possible (to maximize the entropy of the
distribution) while avoiding each other; furthermore, Coalition 2 has a penalty for going to rooms
other than the one she started in. See Appx. F.2 for details of the reward and the training and testing
distributions. We implement DDPG-MFTG to solve this game. The numerical results are presented
in Fig. 2. We make the following observations. Testing reward curves: Fig. 2 (left, top) shows
the testing rewards. Exploitability curves: Fig. 2 (left, bottom) shows the average exploitabilities
over the testing set and players. The DDPG-MFTG algorithm performs better. Distribution plots:
Figs. 2 (right) illustrates the distribution evolution during the game for a (pair of) initial distributions
and for the policy obtained by DDPG-MFTG algorithm and the baseline. We see that the populations
spread well in any case, but with DDPG-MFTG, Coalition 1 can see where Coalition 2 is and then
decides to avoid that room. This explains the better performance of the DDPG-MFTG algorithm.

100 30000 50000
Episode

0

20

40

60

80

Te
st

in
g

re
wa

rd

DDPG-MFTG
Baseline

1000 30000 50000
Episode

0

10

20

30

40

Ex
pl

oi
ta

bi
lit

y

DDPG-MFTG
Baseline

0 5 10

0

5

10

t=0 0 5 10

0

5

10

t=10 0 5 10

0

5

10

t=50 0 5 10

0

5

10

t=80 0 5 10

0

5

10

t=100

0 5 10

0

5

10

t=0 0 5 10

0

5

10

t=10 0 5 10

0

5

10

t=50 0 5 10

0

5

10

t=80 0 5 10

0

5

10

t=100

0.00

0.25

0.50

0.00

0.05

0.01
0.02
0.03

0.01

0.02

0.01

0.02

0.00

0.25

0.50

0.00

0.05

0.00

0.05

0.10

0.00

0.05

0.10

0.00

0.05

0.10

0 5 10

0

5

10

t=0 0 5 10

0

5

10

t=10 0 5 10

0

5

10

t=50 0 5 10

0

5

10

t=80 0 5 10

0

5

10

t=100

0 5 10

0

5

10

t=0 0 5 10

0

5

10

t=10 0 5 10

0

5

10

t=50 0 5 10

0

5

10

t=80 0 5 10

0

5

10

t=100

0.00

0.25

0.50

0.000

0.025 0.025

0.050

0.025
0.050
0.075

0.025
0.050
0.075

0.00

0.25

0.50

0.0

0.2

0.0
0.1
0.2
0.3

0.0
0.1
0.2

0.0
0.1
0.2

Figure 2: Ex. 2: Left, top and bottom: averaged testing rewards and exploitabilities resp. (mean ±
stddev). Right, two top rows: distribution evolution of the two populations with our method. Right
two bottom rows: distribution evolution with the baseline. Colorbars indicate density values.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Example 3: Predator-prey 2D with 4 groups We now present an example with more coalitions.
There are m = 4 populations. The player’s state space is a 5× 5-state 2D grid world with walls on
the boundaries (no periodicity). The reward functions represent the idea that Coalition 1 is a preda-
tor of Coalition 2. Coalition 2 avoids Coalition 1 and chases Coalition 3, which avoids Coalition 2
while chasing Coalition 4. Coalition 4 tries to avoid Coalition 3. There is also a cost for moving.
See Appx. F.3 for details of the reward and the training and testing distributions. We implement
DDPG-MFTG to solve this game. The numerical results are presented in Fig. 3. We make the
following observations. The testing reward curves (Fig. 8 in Appx.) do not show a clear increase
for the same reason as the previous example. Exploitability curves: Fig. 3 (left) shows the aver-
aged exploitabilities over the testing set and players. Initially, the baseline and DDPG-MFTG have
similar exploitability for the first several thousand episodes. However, after that period, the baseline
maintains higher exploitability than DDPG-MFTG. The exploitability of DDPG-MFTG is close to 0
but still fluctuates between 0 and 100. This instability is because Deep RL can only approximate the
best response and cannot achieve it with absolute accuracy. Distribution plots: Fig. 3 (right) shows
the distribution evolution during testing. Coalition 1 chases Coalition 2. Coalition 2 tries to catch
Coalition 3 while avoiding Coalition 1. Coalition 3 tries to catch Coalition 4 while escaping from
Coalition 2. Coalition 4 simply escapes from Coalition 3. Testing rewards are shown in Appx. F.3.

0 20000 40000 60000 80000Episode
0

100

200

300

400

500

600

Ex
pl

oi
ta

bi
lit

y

DDPG-MFTG
Baseline

Figure 3: Ex. 3: Left: averaged exploitabilities (mean ± stddev). Right: populations evolution, one
coalition per row and one time per column: t = 0, 5, 10, 15, 20. Colorbars indicate density values.

6 CONCLUSION

Summary. In this work, we made both theoretical and numerical contributions. First, we proved
that the Nash equilibrium for a mean-field type game provides an approximate Nash equilibrium
for a game between coalitions of finitely many agents, and we obtained a rate of convergence. We
then proposed the first (to our knowledge) value-based RL methods for MFTGs: a tabular RL and a
deep RL algorithm. We applied them to several MFTGs. Our proposed methods provide a way to
approximately compute the Nash equilibrium of finite number players, which is known to be hard
to solve numerically. We proved the convergence of the tabular algorithm, and through extensive
experiments, we illustrated the scalability of the deep RL method.

Related works. Carmona et al. (2020); uz Zaman et al. (2024); Zaman et al. (2024) studied RL for
MFTGs of LQ form only, with specific methods when the policy is deterministic and linear, while
our algorithms are for generic MFTGs with discrete spaces. (Motte & Pham, 2022; Carmona et al.,
2023) focused on single MFMDPs while we consider a game between MFMDPs. Subramanian &
Mahajan (2019); Guo et al. (2019); Elie et al. (2020); Cui & Koeppl (2021) propose RL for MFGs
but are limited to population-independent policies. Perrin et al. (2022) studied population-dependent
policies, but only for MFGs, in which players are infinitesimal; their method cannot solve MFTG
because each player has a macroscopic impact on the other groups.

Limitations and future directions. We did not provide proof of convergence for the deep RL algo-
rithm due to the difficulties related to analyzing deep neural networks and because we aim for Nash
equilibria and not just MDPs. Furthermore, we would like to apply our algorithms to more realistic
examples and investigate further the difference with the baseline. We are also interested in applying
other deep RL algorithms and seeing their performance in MFTGs of increasing complexities.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Reproducibility statement. We have included all the relevant details to ensure reproducibility.
Appx. D and E give pseudo-codes for all the algorithms, including how we evaluate the perfor-
mance of our method using the exploitability metric. Appx. F gives all the detailed definition of the
environments, provides extra numerical results and also gives all the details about the implemen-
tation such as neural network architectures and hyperparameter choices for training. and Appx. G
shows sweeps over hyperparameters to illustrate the sensitivity of our algorithms.

REFERENCES

Andrea Angiuli, Nils Detering, Jean-Pierre Fouque, Jimin Lin, et al. Reinforcement learning algo-
rithm for mixed mean field control games. Journal of Machine Learning, 2(2), 2023a.

Andrea Angiuli, Jean-Pierre Fouque, Ruimeng Hu, and Alan Raydan. Deep reinforcement learning
for infinite horizon mean field problems in continuous spaces. arXiv e-prints, pp. arXiv–2309,
2023b.

Julian Barreiro-Gomez and Hamidou Tembine. Blockchain token economics: A mean-field-type
game perspective. IEEE Access, 7:64603–64613, 2019.

Julian Barreiro-Gomez and Hamidou Tembine. Mean-field-type Games for Engineers. CRC Press,
2021.

Tamer Başar and Jun Moon. Zero-sum differential games on the Wasserstein space. Communica-
tions in Information and Systems, 21(2):219–251, 2021.

Alain Bensoussan, Jens Frehse, and Phillip Yam. Mean field games and mean field type control
theory, volume 101. Springer, 2013.

Noam Brown, Anton Bakhtin, Adam Lerer, and Qucheng Gong. Combining deep reinforcement
learning and search for imperfect-information games. Advances in Neural Information Processing
Systems, 33:17057–17069, 2020.

Peter E Caines and Minyi Huang. Graphon mean field games and the GMFG equations: ε-Nash
equilibria. In 2019 IEEE 58th conference on decision and control (CDC), pp. 286–292. IEEE,
2019.

René Carmona and François Delarue. Probabilistic Theory of Mean Field Games with Applications
I-II. Springer, 2018.

René Carmona, Kenza Hamidouche, Mathieu Laurière, and Zongjun Tan. Policy optimization for
linear-quadratic zero-sum mean-field type games. In 2020 59th IEEE Conference on Decision
and Control (CDC), pp. 1038–1043. IEEE, 2020.

René Carmona, Mathieu Laurière, and Zongjun Tan. Model-free mean-field reinforcement learning:
mean-field MDP and mean-field Q-learning. The Annals of Applied Probability, 33(6B):5334–
5381, 2023.

Philippe Casgrain, Brian Ning, and Sebastian Jaimungal. Deep Q-learning for Nash equilibria:
Nash-DQN. Applied Mathematical Finance, 29(1):62–78, 2022.

Andrea Cosso and Huyên Pham. Zero-sum stochastic differential games of generalized McKean–
Vlasov type. Journal de Mathématiques Pures et Appliquées, 129:180–212, 2019.

Kai Cui and Heinz Koeppl. Approximately solving mean field games via entropy-regularized deep
reinforcement learning. In International Conference on Artificial Intelligence and Statistics, pp.
1909–1917. PMLR, 2021.

Kai Cui, Sascha H Hauck, Christian Fabian, and Heinz Koeppl. Learning decentralized partially
observable mean field control for artificial collective behavior. In The Twelfth International Con-
ference on Learning Representations, 2024.

Constantinos Daskalakis, Paul W Goldberg, and Christos H Papadimitriou. The complexity of
computing a Nash equilibrium. Communications of the ACM, 52(2):89–97, 2009.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Romuald Elie, Julien Perolat, Mathieu Laurière, Matthieu Geist, and Olivier Pietquin. On the con-
vergence of model free learning in mean field games. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 34, pp. 7143–7150, 2020.

Jianqing Fan, Zhaoran Wang, Yuchen Xie, and Zhuoran Yang. A theoretical analysis of deep Q-
learning. In Learning for dynamics and control, pp. 486–489. PMLR, 2020.

Arlington M Fink. Equilibrium in a stochastic n-person game. Journal of science of the Hiroshima
university, series ai (mathematics), 28(1):89–93, 1964.

Drew Fudenberg and Jean Tirole. Game theory. The MIT Press, 1991.

Sriram Ganapathi Subramanian, Pascal Poupart, Matthew E Taylor, and Nidhi Hegde. Multi type
mean field reinforcement learning. In Proceedings of the 19th International Conference on Au-
tonomous Agents and MultiAgent Systems, pp. 411–419, 2020.

Sriram Ganapathi Subramanian, Matthew E Taylor, Mark Crowley, and Pascal Poupart. Partially ob-
servable mean field reinforcement learning. In Proceedings of the 20th International Conference
on Autonomous Agents and MultiAgent Systems, pp. 537–545, 2021.

Diogo A Gomes and João Saúde. Mean field games models—a brief survey. Dynamic Games and
Applications, 4:110–154, 2014.

Haotian Gu, Xin Guo, Xiaoli Wei, and Renyuan Xu. Mean-field controls with Q-learning for co-
operative MARL: convergence and complexity analysis. SIAM Journal on Mathematics of Data
Science, 3(4):1168–1196, 2021.

Yue Guan, Mohammad Afshari, and Panagiotis Tsiotras. Zero-sum games between mean-field
teams: Reachability-based analysis under mean-field sharing. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 38, pp. 9731–9739, 2024.

Xin Guo, Anran Hu, Renyuan Xu, and Junzi Zhang. Learning mean-field games. In Advances in
Neural Information Processing Systems, pp. 4966–4976, 2019.

Johannes Heinrich, Marc Lanctot, and David Silver. Fictitious self-play in extensive-form games.
In International conference on machine learning, pp. 805–813. PMLR, 2015.

Junling Hu and Michael P Wellman. Nash Q-learning for general-sum stochastic games. Journal of
machine learning research, 4(Nov):1039–1069, 2003.

Minyi Huang, Roland P. Malhamé, and Peter E. Caines. Large population stochastic dynamic games:
closed-loop McKean-Vlasov systems and the Nash certainty equivalence principle. Commun. Inf.
Syst., 6(3):221–251, 2006. ISSN 1526-7555.

Vassili N Kolokoltsov and Alain Bensoussan. Mean-field-game model for botnet defense in cyber-
security. Applied Mathematics & Optimization, 74:669–692, 2016.

Jean-Michel Lasry and Pierre-Louis Lions. Mean field games. Jpn. J. Math., 2(1):229–260, 2007.
ISSN 0289-2316. doi: 10.1007/s11537-007-0657-8.

Mathieu Laurière, Sarah Perrin, Julien Perolat, Sertan Girgin, Paul Muller, Romuald Elie,
Matthieu Geist, and Olivier Pietquin. Learning mean field games: A survey. arXiv preprint
arXiv:2205.12944, 2022.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. In ICLR
(Poster), 2016.

Médéric Motte and Huyên Pham. Mean-field markov decision processes with common noise and
open-loop controls. The Annals of Applied Probability, 32(2):1421–1458, 2022.

John Nash. Non-cooperative games. Annals of mathematics, pp. 286–295, 1951.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Sarah Perrin, Julien Pérolat, Mathieu Laurière, Matthieu Geist, Romuald Elie, and Olivier Pietquin.
Fictitious play for mean field games: Continuous time analysis and applications. Advances in
Neural Information Processing Systems, 2020.

Sarah Perrin, Mathieu Laurière, Julien Pérolat, Romuald Élie, Matthieu Geist, and Olivier Pietquin.
Generalization in mean field games by learning master policies. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 36, pp. 9413–9421, 2022.

Naci Saldi, Tamer Basar, and Maxim Raginsky. Markov–Nash equilibria in mean-field games with
discounted cost. SIAM Journal on Control and Optimization, 56(6):4256–4287, 2018.

Sina Sanjari, Naci Saldi, and Serdar Yüksel. Nash equilibria for exchangeable team against team
games and their mean field limit. In 2023 American Control Conference (ACC), pp. 1104–1109.
IEEE, 2023.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of Go with deep neural networks and tree search. Nature, 529(7587), 2016.

Jayakumar Subramanian and Aditya Mahajan. Reinforcement learning in stationary mean-field
games. In Proceedings. 18th International Conference on Autonomous Agents and Multiagent
Systems, 2019.

Jayakumar Subramanian, Akshat Kumar, and Aditya Mahajan. Mean-field games among teams.
arXiv preprint arXiv:2310.12282, 2023.

Hamidou Tembine. Risk-sensitive mean-field-type games with Lp-norm drifts. Automatica, 59:
224–237, 2015.

Hamidou Tembine. Mean-field-type games. AIMS Math, 2(4):706–735, 2017.

Haoxing Tian, Alex Olshevsky, and Yannis Paschalidis. Convergence of actor-critic with multi-layer
neural networks. Advances in neural information processing systems, 36, 2024.

Muhammad Aneeq uz Zaman, Alec Koppel, Mathieu Laurière, and Tamer Başar. Independent RL
for cooperative-competitive agents: A mean-field perspective. arXiv preprint arXiv:2403.11345,
2024.

Kyriakos G Vamvoudakis. Non-zero sum nash Q-learning for unknown deterministic continuous-
time linear systems. Automatica, 61:274–281, 2015.

Huaqing Xiong, Tengyu Xu, Lin Zhao, Yingbin Liang, and Wei Zhang. Deterministic policy gra-
dient: Convergence analysis. In Uncertainty in Artificial Intelligence, pp. 2159–2169. PMLR,
2022.

Yaodong Yang, Rui Luo, Minne Li, Ming Zhou, Weinan Zhang, and Jun Wang. Mean field multi-
agent reinforcement learning. In Proceedings of ICML, 2018.

Serdar Yüksel and Tamer Başar. Information dependent properties of equilibria: Existence, compar-
ison, continuity and team-against-team games. In Stochastic Teams, Games, and Control under
Information Constraints, pp. 395–436. Springer, 2024.

Muhammad Aneeq Uz Zaman, Mathieu Laurière, Alec Koppel, and Tamer Başar. Robust coop-
erative multi-agent reinforcement learning: A mean-field type game perspective. In 6th Annual
Learning for Dynamics & Control Conference, pp. 770–783. PMLR, 2024.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A PROOF OF APPROXIMATE NASH PROPERTY

We prove Theorem 2.4.

Proof: For each i ∈ [m], we first define the distance between two distributions µi
t, µ̃

i
t ∈ ∆(Si) to

be
d(µi

t, µ̃
i
t) = ||µi

t − µ̃i
t||1 =

∑
x∈Si

|µi
t(x)− µ̃i

t(x)|

For µt, µ̃t ∈ ∆(S1)× · · · ×∆(Sm), we also define

d(µt, µ̃t) = max
i

d(µi
t, µ̃

i
t)

We first derive a bound for E||µi,N̄
0 − µi

0||1. The idea is inspired by the Lemma 7 in (Guan et al.,
2024). Since xij

0 are i.i.d. from µi
0, for all x ∈ Si,

E||µi,N̄
0 − µi

0||22 = E

∑
x∈Si

 1

Ni

Ni∑
j=1

δxij
0
(x)− µi

0(x)

2


= E

∑
x∈Si

1

N2
i

 Ni∑
j=1

(
δxij

0
(x)− µi

0(x)
)2


=
∑
x∈Si

1

N2
i

E


 Ni∑

j=1

(
δxij

0
(x)− µi

0(x)
)2


=
∑
x∈Si

1

N2
i

Var

 Ni∑
j=1

δxij
0
(x)


=

1

N2
i

∑
x∈Si

Ni∑
j=1

Var
(
δxij

0
(x)
)

as xij
0 are i.i.d.

=
1

N2
i

Ni∑
j=1

∑
x∈Si

(
E
[
δ2
xij
0

(x)
]
−
(
µi
0(x)

)2)

=
1

N2
i

Ni∑
j=1

∑
x∈Si

(
µi
0(x)−

(
µi
0(x)

)2)
as E

[
δ2
xij
0

(x)
]
= µi

0(x)

≤ 1

N2
i

Ni∑
j=1

∑
x∈Si

µi
0(x) =

1

Ni
(2)

So we have:

E||µi,N̄
0 − µi

0||1 ≤
√
|Si|E||µi,N̄

0 − µi
0||2 ≤

√
|Si|
Ni

the second inequality above is due to the Jensen’s inequality. Thus, for each i ∈ [m], as Ni → +∞,
we have

Ed(µN̄
0 , µ0)→ 0 a.e.

Next, we consider the distance between the joint state-action distribution of population i at time t
and its empirical distribution. We denote the joint state-action distribution of population i at time t
to be

νit(x, a) = µi
t(x)π

i
t(a|x, µt)

and the empirical state-action distribution of population i at time t to be

νi,N̄t =
1

Ni

Ni∑
j=1

δxij
t ,aij

t

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

then, we have

E
∑
x,a

|νit(x, a)− νi,N̄t (x, a)|

= E
∑
x,a

|µi
t(x)π

i
t(a|x, µt)− µi,N̄

t (x)πi
t(a|x, µt)

+ µi,N̄
t (x)πi

t(a|x, µt)− µi,N̄
t (x)πi

t(a|x, µN̄
t)

+ µi,N̄
t (x)πi

t(a|x, µN̄
t)− νi,N̄t (x, a)|

≤ E
∑
x,a

|πi
t(a|x, µt)(µ

i
t(x)− µi,N̄

t (x))|

+ E
∑
x,a

|µi,N̄
t (x)(πi

t(a|x, µt)− πi
t(a|x, µN̄

t))|

+ E
∑
x,a

∣∣∣∣∣∣ 1Ni

Ni∑
j=1

δxij
t
(x)

(
πi
t(a|x, µN̄

t)−
1
Ni

∑Ni

j=1 δxij
t ,aij

t
(x, a)

1
Ni

∑Ni

j=1 δxij
t
(x)

)∣∣∣∣∣∣
≤ E

∑
x,a

|πi
t(a|x, µt)||(µi

t(x)− µi,N̄
t (x))|

+ E
∑
x,a

|µi,N̄
t (x)||(πi

t(a|x, µt)− πi
t(a|x, µN̄

t))|

+ E
∑
x,a

∣∣∣∣∣∣ 1Ni

Ni∑
j=1

δxij
t
(x)

(
πi
t(a|x, µN̄

t)−
1
Ni

∑Ni

j=1 δxij
t ,aij

t
(x, a)

1
Ni

∑Ni

j=1 δxij
t
(x)

)∣∣∣∣∣∣
≤ E

∑
x

|µi
t(x)− µi,N̄

t (x)|

+ E
∑
x

|µi,N̄
t (x)|Lπd(µt, µ

N̄
t)

+
∑
x,a

E

∣∣∣∣∣∣ 1Ni

Ni∑
j=1

δxij
t
(x)

(
πi
t(a|x, µN̄

t)−
1
Ni

∑Ni

j=1 δxij
t ,aij

t
(x, a)

1
Ni

∑Ni

j=1 δxij
t
(x)

)∣∣∣∣∣∣
≤ (1 + Lπ)Ed(µt, µ

N̄
t)

+
∑
x,a

E

∣∣∣∣∣∣ 1Ni

Ni∑
j=1

δxij
t
(x)

(
πi
t(a|x, µN̄

t)−
1
Ni

∑Ni

j=1 δxij
t ,aij

t
(x, a)

1
Ni

∑Ni

j=1 δxij
t
(x)

)∣∣∣∣∣∣
Given {xij

t }
Ni
j=1, let N t

i (x) =
∑Ni

j=1 δxij
t
(x) = Niµ

i,N̄
t (x). We can decompose Si into Si =

Si
+ ∪ Si

0, where Si
+ = {x ∈ Si : N t

i (x) > 0} and Si
0 = {x ∈ Si : N t

i (x) = 0}. For x ∈ Si
0, we

have µi,N̄
t (x) = 0 and νi,N̄t (x, a) = 0, so

E
∣∣∣µi,N̄

t (x)πi
t(a|x, µN̄

t)− νi,N̄t (x, a)
∣∣∣ = 0

For a fixed x ∈ Si
+, since aijt are i.i.d. with distribution πi(·|x, µN̄

t), we have

Eaij
t

[∑Ni

j=1 δxij
t ,aij

t
(x, a)∑Ni

j=1 δxij
t
(x)

]
= πi

t(a|x, µN̄
t).

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Thus, similarly to (2), for x ∈ Si
+ we have

Eaij
t

∣∣∣∣∣
∣∣∣∣∣πi

t(·|x, µN̄
t)−

1
Ni

∑Ni

j=1 δxij
t ,aij

t
(x, ·)

1
Ni

∑Ni

j=1 δxij
t
(x)

∣∣∣∣∣
∣∣∣∣∣
2

2

= Eaij
t

∑
a∈Ai

πi
t(a|x, µN̄

t)− 1

Ni(x)

Ni∑
j=1

δxij
t ,aij

t
(x, a)

2


≤
[

1

N t
i (x)

]
,

and

Eaij
t

∣∣∣∣∣
∣∣∣∣∣πi

t(·|x, µN̄
t)−

1
Ni

∑Ni

j=1 δxij
t ,aij

t
(x, ·)

1
Ni

∑Ni

j=1 δxij
t
(x)

∣∣∣∣∣
∣∣∣∣∣
1

≤
√
|Ai|√
N t

i (x)

Thus,

∑
x,a

E

∣∣∣∣∣∣ 1Ni

Ni∑
j=1

δxij
t
(x)

(
πi
t(a|x, µN̄

t)−
1
Ni

∑Ni

j=1 δxij
t ,aij

t
(x, a)

1
Ni

∑Ni

j=1 δxij
t
(x)

)∣∣∣∣∣∣
≤
∑
x

E

[
µi,N1...Nm

t (x)

√
|Ai|√
N t

i (x)

]

=
∑
x

E

√
µi,N1...Nm

t (x)|Ai|
Ni

≤
|Si|
√
|Ai|√

Ni

Therefore, we have

E
∑
x,a

|νit(x, a)− νi,N̄t (x, a)| ≤ (1 + Lπ)Ed(µt, µ
N̄
t) +

|Si|
√
|Ai|√

Ni

On the other hand, for any t ≥ 1, we have

µi
t+1(x

′) =
∑
x,a

p(x′|x, a, µt)ν
i
t(x, a)

and

µi,N̄
t+1(x

′) =
∑
x,a

p(x′|x, a, µN̄
t)νi,N̄t (x, a).

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Moreover,

E∥µi
t+1 − µi,N̄

t+1∥1
= E

∑
x′

|µi
t+1(x

′)− µi,N̄
t+1(x

′)|

= E
∑
x′

|
∑
x,a

p(x′|x, a, µt)ν
i
t(x, a)−

∑
x,a

p(x′|x, a, µN̄
t)νi,N̄t (x, a)|

≤ E
∑
x′

|
∑
x,a

p(x′|x, a, µt)ν
i
t(x, a)−

∑
x,a

p(x′|x, a, µt)ν
i,N̄
t (x, a)|

+ E
∑
x′

|
∑
x,a

p(x′|x, a, µt)ν
i,N̄
t (x, a)−

∑
x,a

p(x′|x, a, µN̄
t)νi,N̄t (x, a)|

≤
∑
x,a

E|νit(s, a)− νi,N̄t (s, a)|

+ E
∑
x′

∑
x,a

|(p(x′|x, a, µt)− p(x′|x, a, µN̄
t))νi,N̄t (x, a)|

≤
∑
x,a

E|νit(s, a)− νi,N̄t (s, a)|+ E
∑
x,a

Lpd(µ
i
t, µ

i,N̄
t)νi,N̄t (x, a)

≤ (1 + Lπ + Lp)Ed(µt, µ
N̄
t) + |Si|

√
|Ai| 1√

Ni

Thus, for t ≥ 1

Ed(µt+1, µ
N̄
t+1) ≤ (1 + Lπ + Lp)Ed(µt, µ

N̄
t) +

|S|
√
|A|√
N

(3)

where |S|
√

|A|√
N

= maxi{
|Si|
√

|Ai|√
Ni

}mi=1. Therefore,

Ed(µt, µ
N̄
t) ≤ (1 + Lπ + Lp)

tEd(µ0, µ
N̄
0) +M(t)

|S|
√
|A|√
N

where M(t) =
(1+Lπ+Lp)

t−1
Lπ+Lp

.

We can also rewrite the reward functions using νit and νi,N̄t as:

J i(π1, . . . , πm) = E

∑
t≥0

γtri(xi
t, a

i
t, µt)


=
∑
t≥0

γt
∑
x

µi
t(x)

∑
a

πi
t(a|x, µt)r

i(x, a, µt)

=
∑
t≥0

γt
∑
x,a

νit(x, a)r
i(x, a, µt)

and

J i,N̄ (π1, . . . , πm) = E
[1

Ni

Ni∑
j=1

∑
t≥0

γtri(xij
t , a

ij
t , µ

N̄
t)
]

=
∑
t≥0

γt
∑
x,a

E
[
νi,N̄t (x, a)ri(x, a, µN̄

t)
]
.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Given a joint policy (π1, . . . , πm) ∈ Π1 × · · · ×Πm, we have

|J i,N̄ (π1, . . . , πm)− J i(π1, . . . , πm)|

= |
∑
t≥0

γt
∑
x,a

E
[
νi,N̄t (x, a)ri(x, a, µN̄

t)
]
−
∑
t≥0

γt
∑
x,a

νit(x, a)r
i(x, a, µt)|

≤ |
∑
t≥0

γt
∑
x,a

E
[
νi,N̄t (x, a)ri(x, a, µN̄

t)
]
−
∑
t≥0

γt
∑
x,a

E
[
νi,N̄t (x, a)ri(x, a, µt)

]
|

+ |
∑
t≥0

γt
∑
x,a

E
[
νi,N̄t (x, a)ri(x, a, µt)

]
−
∑
t≥0

γt
∑
x,a

νit(x, a)r
i(x, a, µt)|

≤
∣∣∣∑
t≥0

γtE
∑
x,a

[
νi,N̄t (x, a)

(
ri(x, a, µN̄

t)− ri(x, a, µt)
)]∣∣∣

+
∑
t≥0

γt
∑
x,a

CrE
∣∣∣νi,N̄t (x, a)− νit(x, a)

∣∣∣
≤
∑
t≥0

γtLrEd(µN̄
t , µt) +

∑
t≥0

γtCr(1 + Lπ)Ed(µN̄
t , µt) +

∑
t≥0

γtCr|Si|
√
|Ai| 1√

Ni

≤
∑
t≥0

γt(Lr + Cr(1 + Lπ))Ed(µN̄
t , µt) +

∑
t≥0

γtCr|Si|
√
|Ai| 1√

Ni

≤
∑
t≥0

(Lr + Cr(1 + Lπ))γ
t (1 + Lπ + Lp)

t Ed(µN̄
0 , µ0)

+
∑
t≥0

(Lr + Cr(1 + Lπ))γ
tM(t)

|S|
√
|A|√

N
+
∑
t≥0

γtCr
|S|
√
|A|√
N

When the discount factor γ satisfies

γ(1 + Lπ + Lp) < 1 (4)

we have ∑
t≥0

|(Lr + Cr(1 + Lπ))γ
t (1 + Lπ + Lp)

t
<∞

∑
t≥0

(Lr + Cr(1 + Lπ))γ
tM(t) <∞,

∑
t≥0

γtCr <∞

Thus,

|J i,N̄ (π1, . . . , πm)− J i(π1, . . . , πm)| ≤M
|S|
√
|A|√
N

(5)

where

M =
∑
t≥0

(Lr + Cr(1 + Lπ))γ
t (1 + Lπ + Lp)

t

+
∑
t≥0

(Lr + Cr(1 + Lπ))γ
tM(t) +

∑
t≥0

γtCr

is finite.

Let (π1
∗, . . . , π

m
∗) ∈ Π1 × · · · × Πm be a Nash equilibrium for the mean-field type game and π̃i be

the policy for an agent in coalition i of the finite-population m-coalition game such that

J i,N̄ (π̃i;π−i
∗) = max

πi∈Πi
J i,N̄ (πi;π−i

∗),

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

we have

J i,N̄ (π̃i;π−i
∗)− J i,N̄ (πi

∗;π
−i
∗) = J i,N̄ (π̃i;π−i

∗)− J i(π̃i;π−i
∗)

+ J i(π̃i;π−i
∗)− J i(πi

∗;π
−i
∗)

+ J i(πi
∗;π

−i
∗)− J i,N̄ (πi

∗;π
−i
∗)

≤ |J i,N̄ (π̃i;π−i
∗)− J i(π̃i;π−i

∗)|

+ |J i(πi
∗;π

−i
∗)− J i,N̄ (πi

∗;π
−i
∗)|

≤
2M |S|

√
|A|√

N

The last two inequalities are due to the definition of πi
∗ and (5). □

B CONNECTION BETWEEN MFTG AND STAGE-GAME NASH EQUILIBRIA

We prove Proposition 2.10.

Proof: Proof of ⇐: If (ii) is true, without loss of generality, we consider player i. we have for
s̄ ∈ S̄,

v̄iπ̄∗
(s̄) ≥ π̄1

∗(s̄) · · · π̄i−1
∗ (s̄)π̄i(s̄)π̄i+1

∗ (s̄) · · · π̄m
∗ (s̄)Q̄i

π̄(s̄)

= r̄i(s̄, π̄i(s̄)) + γ

∫
S̄

∫
Ā

p̄(ds̄′|s̄, ā1, . . . , ām)π̄1
∗(dā

1|s̄) · · · π̄i(dāi|s̄) · · · π̄m
∗ (dām|s̄)v̄π̄i

∗
(s̄′)

By iteration and substituting v̄π̄i
∗
(s̄′) with the above inequality, we have

v̄iπ̄∗
(s̄) ≥ v̄iπ̄′(s̄)

for all π̄i ∈ Π̄i, where π̄′ = (π̄1
∗, . . . , π̄

i, . . . π̄m
∗). Since i is arbitrary, by the definition of Nash

equilibrium, we have (π̄1
∗, . . . , π̄

m
∗) is a Nash equilibrium for the MFTG.

Proof of⇒: If (i) is true, then π̄i
∗ is also the optimal policy for the MDP(π̄−i

∗). For each s̄, π̄i
∗(s̄)

maximizes
r̄π̄−i(s̄, āi) + γ

∫
S̄

p̄π̄−i(ds̄′|s̄, āi)v̄π̄i
∗
(s̄′) (6)

So π̄i
∗(s̄) is the best response of player i in stage game (Q̄1

π̄∗
(s̄), . . . , Q̄m

π̄∗
(s̄)). The result

also applies to other players, so (π̄1
∗(s̄), . . . , π̄

m
∗ (s̄)) is a Nash equilibrium in the stage game

(Q̄1
π̄∗

(s̄), . . . , Q̄m
π̄∗

(s̄)). □

C ANALYSIS OF DISCRETIZED NASHQ LEARNING

We now prove Theorem 3.2.

Proof: Let π̌p
∗ be a unique pure policy for the discretized MFTG such that for each i and š ∈ Š, the

payoff function vi
π̌p

∗
(š) is a global optimal point for the stage game Q̌i

π̌p
∗
(š).

|Q̌i
t(ProjŠ(s̄),ProjǍ1(ā1), . . . ,ProjǍm(ām))− Q̄i

π̄p
∗
(s̄, ā1 . . . ām)|

≤ |Q̌i
t(ProjŠ(s̄),ProjǍ1(ā1), . . . ,ProjǍm(ām))− Q̌i

π̌p
∗
(ProjŠ(s̄),ProjǍ1(ā1), . . . ,ProjǍm(ām))|

+ |Q̌i
π̌p

∗
(ProjŠ(s̄),ProjǍ1(ā1), . . . ,ProjǍm(ām))− Q̄i

π̄p
∗
(ProjŠ(s̄),ProjǍ1(ā1), . . . ,ProjǍm(ām))|

+ |Q̄i
π̄p

∗
(ProjŠ(s̄),ProjǍ1(ā1), . . . ,ProjǍm(ām))− Q̄i

π̄p
∗
(s̄, ā1 . . . ām)|

(7)
From Theorem 3.1, when t is large enough, we have

|Q̌i
t(ProjŠ(s̄),ProjǍ1(ā1), . . . ,ProjǍm(ām))−Q̌i

π̌p
∗
(ProjŠ(s̄),ProjǍ1(ā1), . . . ,ProjǍm(ām))| < ϵ.

(8)
We now consider the second term on the RHS of (7). Using the notation

(ProjŠ(s̄),ProjǍ1(ā1), . . . ,ProjǍm(ām)) = (š, ǎ1, . . . , ǎm).

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

and
F̌ (š, ǎ1, . . . , ǎm) = Proj(F̄ (š, ǎ1, . . . , ǎm))

then we have

|Q̌i
π̌p

∗
(š, ǎ1, . . . , ǎm)− Q̄i

π̄p
∗
(š, ǎ1, . . . , ǎm)|

≤ γE[viπ̌p
∗
(F̌ (š, ǎ1, . . . , ǎm))− viπ̄p

∗
(F̄ (š, ǎ1, . . . , ǎm))]

≤ γE[viπ̌p
∗
(F̌ (š, ǎ1, . . . , ǎm))− viπ̄p

∗
(F̌ (š, ǎ1, . . . , ǎm)]

+ γE[viπ̄p
∗
(F̌ (š, ǎ1, . . . , ǎm))− viπ̄p

∗
(F̄ (š, ǎ1, . . . , ǎm)]

≤ γE[viπ̌p
∗
(F̌ (š, ǎ1, . . . , ǎm))− viπ̄p

∗
(F̌ (š, ǎ1, . . . , ǎm)] + γLv̄π̄∗

ϵS

≤ γE[|NashQ̌i
π̌p

∗
(F̌ (š, ǎ1, . . . , ǎm))−NashQ̄i

π̄p
∗
(F̌ (š, ǎ1, . . . , ǎm))|] + γLv̄π̄∗

ϵS

(9)

where we used the assumption that v̄iπ̄∗
is Lipschitz continuous w.r.t. s̄ with constant Lv̄π̄∗

. Namely,

|v̄iπ̄∗
(s̄)− v̄iπ̄∗

(s̄′)| ≤ Lv̄∗dS̄(s̄, s̄
′)

Let F̌ (š, ǎ1, . . . , ǎm) = š′, and (ā1∗, . . . , ā
m
∗), (ǎ1∗, . . . , ǎ

m
∗) such that

NashQ̌i
π̌p

∗
(F̌ (š, ǎ1, . . . , ǎm)) = Q̌i

π̌p
∗
(š′, ǎ1∗, . . . , ǎ

m
∗)

NashQ̄i
π̄p

∗
(F̌ (š, ǎ1, . . . , ǎm)) = Q̄i

π̄p
∗
(š′, ā1∗, . . . , ā

m
∗)

consider the term

Q̌i
π̌p

∗
(š′, ǎ1∗, . . . , ǎ

m
∗)− Q̄i

π̄p
∗
(š′, ā1∗, . . . , ā

m
∗)

= Q̌i
π̌p

∗
(š′, ǎ1∗, . . . , ǎ

m
∗)− Q̌i

π̌p
∗
(š′,ProjǍ1(ā1∗), . . . ,ProjǍm(ām∗))

+ Q̌i
π̌p

∗
(š′,ProjǍ1(ā1∗), . . . ,ProjǍm(ām∗))− Q̄i

π̄p
∗
(š′,ProjǍ1(ā1∗), . . . ,ProjǍm(ām∗))

+ Q̄i
π̄p

∗
(š′,ProjǍ1(ā1∗), . . . ,ProjǍm(ām∗))− Q̄i

π̄p
∗
(š′, ā1∗, . . . , ā

m
∗)

≥ −||Q̌i
π̌p

∗
− Q̄i

π̄p
∗
||∞ + r̄i(š′,ProjǍi(āi∗))− r̄i(š′, āi∗)

+ γEviπ̄p
∗
(F̄ (š′,ProjǍ1(ā1∗), . . . ,ProjǍm(ām∗)))− γEviπ̄p

∗
(F̄ (š′, ā1∗, . . . , ā

m
∗))

≥ −||Q̌i
π̌p

∗
− Q̄i

π̄p
∗
||∞ − Lr̄id(ā

i
∗,ProjǍi(āi∗))− γLv̄i

π̄∗
LF̄

m∑
i=1

d(āi∗,ProjǍi(āi∗))

(10)

the last inequality is due to the Lipschitz continuous assumptions on r̄i and F̄ . Namely,

|r̄i(s̄, āi)− r̄i(s̄′, ā′
i
)| ≤ Lr̄i

(
dS̄(s̄, s̄

′) + dĀi(ā
i, ā′

i
)
)

and
E|F̄ (s̄, ā1, . . . , ām)− F̄ (s̄′, ā′

1
, . . . , ā′

m
)| ≤ LF̄

(
dS̄(s̄, s̄

′) +
∑
i∈[m]

dĀi(ā
i, ā′

i
)
)

On the other hand,

Q̌i
π̌p

∗
(š′, ǎ1∗, . . . , ǎ

m
∗)− Q̄i

π̄p
∗
(š′, ā1∗, . . . , ā

m
∗)

= Q̌i
π̌p

∗
(š′, ǎ1∗, . . . , ǎ

m
∗)− Q̄i

π̄p
∗
(š′, ǎ1∗, . . . , ǎ

m
∗) + Q̄i

π̄p
∗
(š′, ǎ1∗, . . . , ǎ

m
∗)− Q̄i

π̄p
∗
(š′, ā1∗, . . . , ā

m
∗)

≤ ||Q̌i
π̌p

∗
− Q̄i

π̄p
∗
||∞

(11)
Thus, we have

|Q̌i
π̌p

∗
(š′, ǎ1∗, . . . , ǎ

m
∗)− Q̄i

π̄p
∗
(š′, ā1∗, . . . , ā

m
∗)|

≤ γ(||Q̌i
π̌p

∗
− Q̄i

π̄p
∗
||∞ + Lr̄iϵA + γLv̄i

π̄∗
LF̄mϵA) + γLv̄π̄∗

ϵS
(12)

Therefore, we have

||Q̌i
π̌p

∗
− Q̄i

π̄p
∗
||∞ ≤

γ

1− γ

(
Lr̄iϵA + γLv̄i

π̄∗
LF̄mϵA + Lv̄π̄∗

ϵS

)
(13)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

For the last term on the RHS of (7), we have

|Q̄i
π̄p

∗
(ProjŠ(s̄),ProjǍ1(ā1), . . . ,ProjǍm(ām))− Q̄i

π̄p
∗
(s̄, ā1 . . . ām)|

≤ |r̄i(ProjŠ(s̄),ProjǍi(āi))− r̄i(s̄, āi)|
+ γE[v̄iπ̄p

∗
(F̄ (ProjŠ(s̄),ProjǍ1(ā1), . . . ,ProjǍm(ām)))− v̄iπ̄p

∗
(F̄ (s̄, ā1 . . . ām))]

≤ Lr̄i(dS̄(ProjŠ(s̄), s̄) + dĀi(ProjǍi(āi), āi))

+ γLv̄i
π̄∗
E(F̄ (ProjŠ(s̄),ProjǍ1(ā1), . . . ,ProjǍm(ām))− F̄ (s̄, ā1 . . . ām))

≤ Lr̄i(ϵS + ϵA) + γLv̄i
π̄∗
LF̄ (ϵS +mϵA)

(14)

Finally, we get the result by combining inequalities (8), (13), and (14) together. □

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

D PSEUDO-CODES FOR THE MAIN ALGORITHMS

Algorithm 1 shows the DNashQ-MFTG algorithm. Algorithm 2 shows the DDPG-MFTG algorithm.

Algorithm 1 Discretized Nash Q-learning for Mean Field Type Game (DNashQ-MFTG)

1: Inputs: A series of learning rates αt ∈ (0, 1), t ≥ 0, and exploration levels ϵt, t ≥ 0
2: Outputs: Nash Q-functions Q̌i

N for i = 1, . . . ,m

3: Initialization: Q̌i
0,0(š, ǎ

1, . . . , ǎm) = 0 for all š ∈ Š and ǎi ∈ Ǎi;
4: for k = 0, 1, . . . , N − 1 do
5: Initialize state š0
6: for t = 0, . . . , T − 1 do
7: Generate a random number ζt ∼ U [0, 1]
8: if ζt ≥ ϵt then
9: Solve the stage game Q̌i

k,t(št) and get strategy profile (π̌i,1
∗ , . . . , π̌i,m

∗) for i = 1, . . . ,m

10: Sample ǎit ∼ π̌i,i
∗ for i = 1, . . . ,m

11: else
12: Sample action ǎit uniformly from Ǎi for i = 1, . . . ,m
13: end if
14: Observe r1t ,. . . , rmt , ǎ1t ,. . . , ǎmt , and št+1 = ProjŠ(F̄ (št, ǎ

1
t ,. . . , ǎmt))

15: Solve the stage game Q̌i
k,t(št+1) and get strategy profile (π̌

′i,1
∗ , . . . , π̌

′i,m
∗) for i =

1, . . . ,m

16: Compute NashQ̌i
k,t(št+1) = π̌

′i,1
∗ . . . π̌

′i,m
∗ Q̌i

k,t(št+1)

17: Copy Q̌i
k,t+1 = Q̌i

k,t for i = 1, . . . ,m and update Q̌i
k,t+1 by:

Q̌i
k,t+1(št, ǎ

1, . . . , ǎm) = (1−αt)Q̌
i
k,t(št, ǎ

1, . . . , ǎm)+αt(r
i
t+βNashQ̌i

k,t(št+1))
18: end for
19: Copy Q̌i

k+1,0 = Q̌i
k,T−1 for i = 1.m

20: end for

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Algorithm 2 DDPG for MFTG

1: Inputs: A number of episodes N ; a length T for each episode; a minibatch size Nbatch; a
learning rate τ .

2: Outputs: Policy functions for each central player represented by πi
ωi

.
3: Initialize parameters θi and ωi for critic networks Qi

θi
and actor networks πi

ωi
, i = 1, ...,m

4: Initialize θ′i ← θi and ω′
i ← ωi for target networks Qi′

θ′
i

and πi′
ω′

i
, i = 1, ...,m

5: Initialize replay buffer Rbuffer
6: for k = 0, 1, ..., N − 1 do
7: Initialize distribution s̄0
8: for t = 0, 1, . . . , T − 1 do
9: Select actions āit = πi

ωi
(s̄t) + ϵt, where ϵt is the exploration noise, for i = 1, ...,m

10: Execute āit, observe reward r̄i(s̄t, ā
i
t), for i = 1, ...,m

11: Observe s̄t+1

12: Store transition (s̄t, ā
1
t , ..., ā

m
t , r̄1t , ..., r̄

m
t , s̄t+1) in Rbuffer

13: Sample a random minibatch of Nbatch transitions (s̄j , ā
1
j , ..., ā

m
j , r̄1j , ..., r̄

m
j , s̄j+1) from

Rbuffer

14: Set yij = r̄ij + γQi′
θ′
i
(s̄j+1, π

i′
ω′

i
(s̄j+1)) for i = 1, ...,m, j = 1, ..., Nbatch

15: Update the critic networks by minimizing the loss: Li(θi) =
1

Nbatch

∑
j(y

i
j −Qi

θi
(s̄j , ā

i
j))

2,
for i = 1, ...,m

16: Update the actor policies using the sampled policy gradients∇ωi
vi, for i = 1, ...,m:

∇ωi
vi(ωi) ≈

1

Nbatch

∑
j

∇āiQi
θi(s̄j , π

i
ωi
(s̄j))∇ωi

πi
ωi
(s̄j)

17: Update target networks: θ′i ← τθi + (1− τ)θ′i, ω
′
i ← τωi + (1− τ)(ω′

i), for i = 1, ...,m.
18: end for
19: end for

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

E PSEUDO-CODES FOR THE EVALUATION METRICS

In this section, we present pseudo-codes used for evaluation.

• Algorithm 3 shows how to do the inference of DNash-MFTG given the Q-functions of
agents.

• Algorithm 4 explains the way to evaluate policies.

• Algorithm 5 presents the general structure of computing exploitability.

• Algorithm 6 presents a detailed version of computing the exploitability.

Algorithm 3 DNashQ-MFTG inference

1: Inputs: Nash Q-functions Q̌i
N for i = 1, . . . ,m; number of steps T

2: Outputs: υi = (ši0, ǎ
i
0, r

i
0, . . . , š

i
T−1, ǎ

i
T−1, r

i
T−1) for i = 1, . . . ,m

3: Initialize š0 and trajectory υi

4: for t = 0, . . . , T − 1 do
5: Solve the stage game Q̌i

N (št) and get strategy profile (π̌i,1
∗ , . . . , π̌i,m

∗) for i = 1, . . . ,m

6: Sample ǎit ∼ π̌i,i
∗ for i = 1, . . . ,m

7: Observe r1t ,. . . , rmt and št+1 = ProjŠ(F̄ (št, ǎ
1
t ,. . . , ǎmt))

8: Store (šit, ǎ
i
t, r

i
t) to υi

9: end for
10: return Trajectory υi

Algorithm 4 Policies evaluation

1: Inputs: Policy profile π̄ = (π̄1, . . . , π̄m), testing set of initial distributions Dtest
2: Outputs: Values J i(π̄)
3: Initialize V i = 0, i = 1, . . . ,m
4: for µ0 ∈ Dtest do
5: Run an episode starting from initial distribution µ0 and using policies π̄
6: Let V i

µ0
be the total reward, i = 1, . . . ,m

7: Let V i = V i + V i
µ0

, i = 1, . . . ,m
8: end for
9: Let J i = 1

|Dtest|V
i

10: Return J i, i = 1, . . . ,m

Algorithm 5 Exploitability computation

1: Inputs: Policy profile π̄ = (π̄1, . . . , π̄m), training set of initial distributionsDtrain, testing set of
initial distributions Dtest

2: Outputs: Exploitabilities Ei(π̄), i = 1, . . . ,m
3: for i = 1, . . . ,m do
4: Compute BR π̄i∗ = argmax˜̄πi J i(˜̄πi; π̄−i) using RL with testing set Dtest
5: Compute M i = J i(π̄i∗; π̄−i) using Algo. 4 with policy profile (π̄i∗; π̄−i) and Dtest
6: Compute V i = J i(π̄i; π̄−i) using Algo. 4 with policy profile (π̄i; π̄−i) and Dtest
7: Let Ei = M i − V i

8: end for
9: Return Ei, i = 1, . . . ,m

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Algorithm 6 Exploitability computation

1: Inputs: Policy profile π̄ = (π̄1, . . . , π̄m), testing set of initial distributions Dtest,
2: Outputs: Exploitabilities Ei(π̄), i = 1, . . . ,m
3: Initialize M i = 0, Ei = 0, i = 1, . . . ,m
4: for i = 1, . . . ,m do
5: for µ0 in Dtest do
6: Initialize replay buffer and optimizers
7: for j = 1, . . . , N do
8: Compute BR π̄i∗

j = argmax˜̄πi J i(˜̄πi; π̄−i) using RL with the initial distribution µ0

9: Compute M i
j = J i(π̄i∗

j ; π̄−i) using Algo. 4 with policy profile (π̄i∗
j ; π̄−i) and µ0

10: M i = M i +M i
j

11: end for
12: M i = M i/N
13: Compute V i = J i(π̄i; π̄−i) using Algo. 4 with policy profile (π̄i; π̄−i) and µ0

14: Ei = Ei +M i − V i

15: end for
16: Ei = 1

|Dtest|E
i

17: end for
18: Return Ei, i = 1, . . . ,m

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

F DETAILS ON NUMERICAL EXPERIMENTS

F.1 EXAMPLE 1: 1D TARGET MOVING GRID GAME

Model. The model is as follows:

• Number of populations: m = 2.

• State space: Si = S = {1, 2, 3, . . . , G} for i = 1, 2, which represents locations.

• Action space: Ai = A = {0,−1, 1} for i = 1, 2, represents the agent will stay, move left,
or move right respectively

• Individual dynamics: xi
t+1 = xi

t + ait + ξit , where (ξit)n≥1 is a sequence of i.i.d. random
variables taking values in Ai and sampled from a predefined distribution as noises. We use
periodic boundary conditions, meaning that agents who move left (resp. right) while in the
0 (resp. G) state end up on the other side, at the G (resp. 0) state.

• Mean-field transitions: we can formulate the element in k-th row, ℓ-th column in the
G×G transition matrix P̄ i(s̄it, ā

i
t) is equal to pi(s̄it+1 = k|s̄it = ℓ, āit, ξ

i
t)

• Rewards: Population 1 receives a high penalty when it moves, while Population 2 tries to
match with Population 1’s current position. We use the following rewards:

r̄1(s̄, ā1t) = −c1(∥ā1stay − ā1t∥2)− c2(s̄
1 × s̄2), r̄2(s̄) = −c1(∥s̄1 − s̄2∥2)

where c1 = 1000 and c2 = 10. As a consequence, we expect that, at Nash equilibrium,
Coalition 1 stays where it is but also tries to avoid coalition 2, while Coalition 2 matches
Coalition 1 perfectly.

Training and testing sets. In this example, we use G = 3 points in the 1D grid. (Scaling up to
larger spaces would require a huge amount of memory due to the required discretization of the state
space. This motivates the deep RL algorithm we use in the next examples.) We use the following
sets of initial distributions for training and testing.

• Training distributions: We employ a random sampling technique to generate the training
distribution at the beginning of each training episode. Specifically, we first sample each
element in the state matrix from a uniform distribution over the interval [0, 1) and then
divide each element by the total sum of the matrix to normalize it.

• Testing distributions: we use the following pairs:
Dtest = {

(
(1.0, 0.0, 0.0), (0.0, 0.0, 1.0)

)
,
(
(0.0, 0.0, 1.0), (1.0, 0.0, 0.0)

)
,(

(0.0, 1.0, 0.0), (0.0, 1.0, 0.0)
)
}

Parameters and Hyper-parameters In the tabular case, we take the following hyper-parameters
for both inner Q learning and outer Nash Q earning:

• a learning rate αt = 1
nt(s̄t,ā1,ā2) where nt(s̄t, ā

1, ā2) is the number of time that tuple
(s̄t, ā

1, ā2) visited.

• ϵt = ϵend + (ϵstart − ϵend) exp(− t
T), where T is the total training episode, ϵend = 0.01,

and ϵstart = 0.99.

• ξt ∼ {0.99, 0.005, 0.005}

Evaluation We evaluate the policy of each player by computing exploitability in Algo. 6. We
perform tabular Q learning to solve an MDP to generate the best response.

Baseline The baseline for DNashQ-MFTG is different from other examples. Each coalition learns
the game independently through Q-learning after the same discretization as our DNashQ-MFTG,
while for the exploitability computation, we still perform standard Q-learning with full observation
of mean-field states to generate the best response.

We show more examples of distribution evolution in Fig. 4.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

1 2 3
State

0.0

0.2

0.4

0.6

0.8

1.0

De
ns

ity

t=0

Population 1
Population 2

1 2 3
State

0.0

0.2

0.4

0.6

0.8

1.0

De
ns

ity

t=1

Population 1
Population 2

1 2 3
State

0.0

0.2

0.4

0.6

0.8

1.0

De
ns

ity

t=2

Population 1
Population 2

1 2 3
State

0.0

0.2

0.4

0.6

0.8

1.0

De
ns

ity

t=3

Population 1
Population 2

1 2 3
State

0.0

0.2

0.4

0.6

0.8

1.0

De
ns

ity

t=4

Population 1
Population 2

1 2 3
State

0.0

0.2

0.4

0.6

0.8

1.0

De
ns

ity

t=0

Population 1
Population 2

1 2 3
State

0.0

0.2

0.4

0.6

0.8

1.0

De
ns

ity

t=1

Population 1
Population 2

1 2 3
State

0.0

0.2

0.4

0.6

0.8

1.0

De
ns

ity

t=2

Population 1
Population 2

1 2 3
State

0.0

0.2

0.4

0.6

0.8

1.0

De
ns

ity

t=3

Population 1
Population 2

1 2 3
State

0.0

0.2

0.4

0.6

0.8

1.0

De
ns

ity

t=4

Population 1
Population 2

1 2 3
State

0.0

0.2

0.4

0.6

0.8

1.0

De
ns

ity

t=0

Population 1
Population 2

1 2 3
State

0.0

0.2

0.4

0.6

0.8

1.0

De
ns

ity

t=1

Population 1
Population 2

1 2 3
State

0.0

0.2

0.4

0.6

0.8

1.0

De
ns

ity

t=2

Population 1
Population 2

1 2 3
State

0.0

0.2

0.4

0.6

0.8

1.0

De
ns

ity

t=3

Population 1
Population 2

1 2 3
State

0.0

0.2

0.4

0.6

0.8

1.0

De
ns

ity

t=4

Population 1
Population 2

Figure 4: 1D Target Moving Grid Game: Population evolution of testing distribution at t =
0, 1, 2, 3, 4. From up to bottom are the evolution of testing distribution 1,2,3.

F.2 EXAMPLE 2: FOUR-ROOM WITH CROWD AVERSION

Model. We consider a 2-dimensional grid world with four rooms and obstacles. Each room has
only one door that connects to the next room and has 5× 5 states.

• Number of populations: m = 2.

• State space: S = {0, . . . , N1
x} × {0, . . . , N2

x}, where we set N1
x = N2

x = 10.

• Action space: A = {(−1, 0), (1, 0), (0, 0), (0, 1), (0,−1)}, which represents move left,
move, right, stay, move up, and move down, respectively.

• Transitions: At time n, the agent at position sn = (x, y) chooses an action an, the next
state is computed according to

sn+1 =

{
sn + an + ϵn+1, if sn + an + ϵn+1 is not in a forbidden state
sn, otherwise

(15)

where {ϵn}n is a sequence of i.i.d. random variables taking values in A, representing the
random disturbance.
The mean-field distribution s̄it(x, y) is computed according to

s̄it+1(x, y) = s̄it(x, y)ā
i((0, 0)|(x, y)) + s̄it(x, y − 1)āi((0, 1)|(x, y − 1))

+ s̄it(x, y + 1)āi((0,−1)|(x, y + 1)) + s̄it(x+ 1, y)āi((−1, 0)|(x+ 1, y))

+ s̄it(x− 1, y)āi((1, 0)|(x− 1, y))

where s̄it(a, b) is the density of Coalition i at the location (a, b) at time step t.

• One-step reward function:

r̄1(s̄1t , s̄
2
t) = −s̄1t · log(s̄1t + s̄2t)/ log(100)

r̄2(s̄1t , s̄
2
t) = −s̄2t · log(s̄1t + s̄2t)/ log(100)−30×

(
s̄2t (2, 5)+ s̄2t (8, 5)+ s̄2t (5, 2)+ s̄2t (5, 8)

)
where · is the inner product.

• Time horizon: NT = 40.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Training and testing sets For the training set, each player chooses locations among the four rooms
with the sum of probability density equal to 1 as the initial distribution. We used three pairs of
distributions as the testing set. Each of them is a uniform distribution among selected locations. The
testing distributions are illustrated in Fig. 5.

0 5 10

0

5

10
0 5 10

0

5

100.0

0.1

0.2

0.3

0.4

0.5

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0 5 10

0

5

10
0 5 10

0

5

100.0

0.1

0.2

0.3

0.4

0.5

0.0

0.1

0.2

0.3

0.4

0.5

0 5 10

0

5

10
0 5 10

0

5

100.0

0.1

0.2

0.3

0.4

0.5

0.0

0.1

0.2

0.3

0.4

0.5

Figure 5: 3 pairs of testing distributions. For each pair, the left one is the initial distribution of Player
1, and the right one is the initial distribution of Player 2.

Neural network architecture and hyper-parameters In the actor network, each state vector is
initially flattened and fed into a fully connected network with a Tanh activation function, resulting
in a 200-dimensional output for each. These outputs are then concatenated and processed through
a two-layer fully connected network, each with 200 hidden neurons, utilizing ReLU and Tanh ac-
tivation functions. The final output dimension is |S| × |A|. The output is then normalized using
the softmax function. The critic network follows a similar architecture. During the training, we use
the Adam optimizer with the actor network learning rate equal to 5 × 10−5 and the critic network
learning rate equal to 0.0001. The standard deviation used in the Ornstein–Uhlenbeck process is
0.08. We also use target networks to stabilize the training and the update rate is 0.005. The replay
buffer is of size 100000, and the batch size is 32. The model is trained using one GPU with 256GB
memory, and it takes at most seven days to finish 50000 episodes.

F.3 EXAMPLE 3: PREDATOR-PREY 2D WITH 4 GROUPS

Model. In this 5× 5 dimensional grid world, The transition dynamics and the action space are the
same as in Example 2. In this game, we have one coalition acting as predator and another coalition
as prey. Their reward function can be formulated as follows:

r̄1(s̄t, ā
1) = c1rmove(s̄

1, ā1) + c2s̄
1 · s̄2

r̄4(s̄t, ā
4) = c1rmove(s̄

4
t , ā

4)− c2s̄
3 · s̄4

The remaining two coalitions act as predator and prey at the same time, with rewards:

r̄2(s̄t, ā
3) = c1rmove(s̄

2, ā2) + c2(s̄
2 · s̄3 − s̄1 · s̄2)

r̄3(s̄t, ā
3) = c1rmove(s̄

3, ā3) + c2(s̄
3 · s̄4 − s̄2 · s̄3),

where c1 = c2 = 100. Each episode has a time horizon T = 21 and γ = 0.99.

Training and testing set For the training set, we sample each element in the grid world from a
uniform distribution over the interval [0, 1) and then divide each element by the total sum of the
matrix to normalize it. Testing set can be found in Fig. 7.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

0 5 10

0

5

10

t=0 0 5 10

0

5

10

t=10 0 5 10

0

5

10

t=50 0 5 10

0

5

10

t=80 0 5 10

0

5

10

t=100

0 5 10

0

5

10

t=0 0 5 10

0

5

10

t=10 0 5 10

0

5

10

t=50 0 5 10

0

5

10

t=80 0 5 10

0

5

10

t=100

0.00

0.25

0.50

0.00

0.05

0.01
0.02
0.03

0.01
0.02
0.03

0.01
0.02
0.03

0.00

0.25

0.50

0.0

0.1

0.0

0.1

0.2

0.0

0.1

0.2

0.0
0.1
0.2

0 5 10

0

5

10

t=0 0 5 10

0

5

10

t=10 0 5 10

0

5

10

t=50 0 5 10

0

5

10

t=80 0 5 10

0

5

10

t=100

0 5 10

0

5

10

t=0 0 5 10

0

5

10

t=10 0 5 10

0

5

10

t=50 0 5 10

0

5

10

t=80 0 5 10

0

5

10

t=100

0.00

0.25

0.50

0.000

0.025
0.01

0.02

0.01

0.02

0.01

0.02

0.00

0.25

0.50

0.0

0.2

0.00

0.25

0.50

0.00

0.25

0.50

0.00

0.25

0.50

Figure 6: Ex. 2: populations evolution 2. The top two rows show the distribution evolution of the
two players. The bottom two rows show the corresponding distribution evolution of the baseline
model.

01234

01234
01234

01234
01234

01234
01234

01234

01234

01234
01234

01234
01234

01234
01234

01234

01234

01234
01234

01234
01234

01234
01234

01234

01234

01234
01234

01234
01234

01234
01234

01234

01234

01234
01234

01234
01234

01234
01234

01234

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0.0

0.5

0.0

0.5

0.0

0.5

0.0

0.5

0.0

0.5

0.0

0.5

0.0

0.5

0.0

0.5

Figure 7: 5 sets of testing distributions for predator-prey 2D with 4 groups. Each row shows one set
of testing distribution for 4 coalitions. For each row, from the left to the right are the coalition 1 to
coalition 4.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Neural network architecture and hyper-parameters The architectures of the actor and critic
networks are the same as those used in the discrete planning 2D (Appx. F.4). We use the Adam
optimizer, with learning rates set to 0.0005 for the actor network and 0.001 for the critic network.
The Ornstein-Uhlenbeck noise standard deviation is set to 0.8. Target networks are updated at a rate
of 0.0025. The replay buffer has a capacity of 50,000 and a batch size of 64. This experiment was
run on a GPU with 64GB of memory, taking two days to complete 80,000 episodes of training.

Numerical results. We conducted this experiment over 5 runs, with each run corresponding to a
specific testing distribution from the testing set. For each run, we averaged the exploitability of all
players to determine the run’s exploitability. We then calculated the mean and standard deviation
of exploitability across the 5 runs. Additionally, for the testing reward, we calculated the mean and
standard deviation for each player over the 5 runs. Fig. 8 shows the testing rewards.

0 10000 20000 30000 40000 50000 60000 70000 80000
Episode

1000

500

0

500

1000
Te

st
in

g
re

wa
rd

reward player 1
reward player 2
reward player 3
reward player 4

Figure 8: Ex. 3: testing rewards.

F.4 EXAMPLE 4: DISTRIBUTION PLANNING IN 2D

There are m = 2 populations. The agent’s state space is a 5× 5 state 2D grid world, with the center
as a forbidden state. The possible actions are: move up/down/left/right or stay, and there is no in-
dividual noise perturbing the movements. The rewards encourage each population to match a target
distribution (hence the name “planning”): Population 1 and 2 move respectively towards the top left
and bottom right corners, with a uniform distribution over fixed locations (see Fig. 11). We describe
the model details and the training and testing distributions below. We implement DDPG-MFTG to
solve this game. The numerical results are presented in Figs. 9 and 10. We make the following ob-
servations. Testing reward curves: Fig. 9 (left) shows the testing rewards. In this game setting, the
Nash equilibrium for each coalition is to move to its target position without interacting with the other
coalition. We observe that the testing rewards increase and then stabilize with minimal oscillation.
The reward curve of the baseline stays below the one using DDPG-MTFG. Exploitability curves:
Fig. 11 (right) shows the averaged exploitabilities over the testing set and players. We observe that
the game reaches Nash equilibrium around 15000 episodes. The baseline shows higher exploitability
than the DDPG-MFTG algorithm. Distribution plots: Fig. 10 illustrates the distribution evolution
during the game. With the policy learned using DDPG-MFTG, each player deterministically moves
to the target position in several steps and avoids overlapping with the other player during movement.

Model.

• Number of populations: m = 2.
• State space: S = {0, . . . , N1

x} × {0, . . . , N2
x}, where we set N1

x = N2
x = 4.

• Action space: A = {(−1, 0), (1, 0), (0, 0), (0, 1), (0,−1)}, which represents move left,
move, right, stay, move up, and move down, respectively.

• Transitions: At time n, the agent at position sn = (x, y) chooses an action an, the next
state is computed according to

sn+1 =

{
sn + an, if sn + an is not in a forbidden state
sn, otherwise

(16)

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

0 5000 10000 15000 20000
Episode

50

45

40

35

30

25

20

15

10

Te
st

in
g

re
wa

rd

DDPG-MFTG
Baseline

0 10000 20000
Episode

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

Ex
pl

oi
ta

bi
lit

y

DDPG-MFTG
Baseline

Figure 9: Left: Testing rewards. Right: exploitabilities.

0 2 4

0

2

4

t=0 0 2 4

0

2

4

t=1 0 2 4

0

2

4

t=3 0 2 4

0

2

4

t=5 0 2 4

0

2

4

t=10

0 2 4

0

2

4

t=0 0 2 4

0

2

4

t=1 0 2 4

0

2

4

t=3 0 2 4

0

2

4

t=5 0 2 4

0

2

4

t=10

0.0

0.2

0.00

0.25

0.00

0.25

0.00

0.25
0.25
0.50
0.75

0.0

0.2

0.0

0.2

0.0

0.2

0.0

0.2

0.1
0.2
0.3

Figure 10: Distribution planning in 2D: The top row and the bottom respectively show the distribu-
tion evolution of player 1 and 2 using the policy learned by DDPG-MFTG.

The mean-field distribution s̄it(x, y) is computed according to

s̄it+1(x, y) = s̄it(x, y)ā
i((0, 0)|(x, y)) + s̄it(x, y − 1)āi((0, 1)|(x, y − 1))

+ s̄it(x, y + 1)āi((0,−1)|(x, y + 1)) + s̄it(x+ 1, y)āi((−1, 0)|(x+ 1, y))

+ s̄it(x− 1, y)āi((1, 0)|(x− 1, y))

where s̄it(a, b) is the density of Population i at the location (a, b) at time step t.

• One-step reward function: Each central player i aims to make the population match a
target distribution mi while maximizes the reward. For each player i, the reward of each
step is

r̄i(s̄1t , s̄
2
t , ā

i) = c1rmove(s̄
i, āi) + c2r(s̄

i,mi) + c3r(s̄
1, s̄2),

where rmove(s̄
i, āi) = −s̄i · ||āi|| is the cost for moving, r(s̄i,mi) = −dist(s̄i,mi) is

the distance to a target distribution, r(s̄1, s̄2) = −s̄1 · s̄2 is the inner product of the two
population distributions. ci is the coefficient, for i = 1, 2, 3. Here, c1 = 1, c2 = 2, and
c3 = 5.

• Time horizon: NT = 10.

Training and testing sets. The training set consists of a randomly sampled location with a prob-
ability density 1 representing the initial state. See Fig. 12 for testing distribution.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

0 1 2 3 4

0

1

2

3

4

0 1 2 3 4

0

1

2

3

4
0.00

0.05

0.10

0.15

0.20

0.25

0.00

0.05

0.10

0.15

0.20

0.25

Figure 11: Target distributions for player 1 (left) and player 2 (right).

0 1 2 3 4

0

1

2

3

4

0 1 2 3 4

0

1

2

3

4
0.00

0.05

0.10

0.15

0.20

0.25

0.00

0.05

0.10

0.15

0.20

0.25

0 1 2 3 4

0

1

2

3

4

0 1 2 3 4

0

1

2

3

4
0.00

0.05

0.10

0.15

0.20

0.25

0.00

0.05

0.10

0.15

0.20

0.25

0 1 2 3 4

0

1

2

3

4

0 1 2 3 4

0

1

2

3

4
0.00

0.05

0.10

0.15

0.20

0.25

0.00

0.05

0.10

0.15

0.20

0.25

0 1 2 3 4

0

1

2

3

4

0 1 2 3 4

0

1

2

3

4
0.00

0.05

0.10

0.15

0.20

0.25

0.00

0.05

0.10

0.15

0.20

0.25

Figure 12: 4 pairs of testing distributions. For each pair, the left one is the initial distribution of
player 1, and the right one is the initial distribution of player 2.

Neural network architecture and hyper-parameters In the actor network, each state vector is
initially flattened and fed into a fully connected network with a ReLU activation function, resulting
in a 200-dimensional output for each. These outputs are then concatenated and processed through
a two-layer fully connected network with 200 hidden neurons, utilizing ReLU and Tanh activation
functions. The final output dimension is |S| × |A|. The output is then normalized using the softmax
function. The critic network follows a similar architecture, where we use ReLU in the last layer.
During the training, we use the Adam optimizer with the actor-network learning rate equal to 5 ×
10−5 and the critic-network learning rate equal to 0.0001. Both learning rates are reduced by half
after around 6000 and 12000 episodes. The standard deviation used in the Ornstein–Uhlenbeck
process is 0.08 and is also reduced by half after around 6000 and 12000 episodes. We also use target
networks to stabilize the training and the update rate is 0.005. The replay buffer is of size 50000,
and the batch size is 128. The model is trained using one GPU with 256GB memory, and it takes at
most two days to finish 20000 episodes.

F.5 EXAMPLE 5: CYBER SECURITY

We now present another example in a cyber security setting inspired by Kolokoltsov & Bensoussan
(2016) in the context of MFGs and Carmona et al. (2023) in the context of discrete-time MFC. The
original formulation has only one type of player, namely computers defending themselves against
a virus. Here, we add another group, corresponding to attackers, and we study the MFTG. The
defenders cooperate with each other, and likewise for the attackers. Each of the two populations
competes with the other to maximize its reward.

Model. The model is as follows:

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

• Number of populations: m = 2, defenders and attackers.
• State spaces: For defenders, Sdef = {DI,DS,UI, US}, standing respectively for de-

fended and infected, defended and susceptible of infection, undefended and infected, un-
defended and susceptible of infection. For attackers, Satt = {active, inactive}. When an
attacker is active, it is able to infect the defenders. As we will see below, the defenders’
transitions from susceptible to infected are affected by the proportion of active attackers.

• Action space: The central player of each population can influence the state in the follow-
ing way. The defenders’ central player can influence the transition probability between
defended and undefended. The attackers’ central player can influence the transition prob-
ability between active/inactive. The action space is A = {0, 1} for both populations. The
central player of a population chooses 0 if they are satisfied with the current level, and 1 if
they want to switch to the other level.

• Dynamics: We describe the model in continuous time and then its discrete-time version.
When the central player chooses to change the current state for the agents in a specific
state, the update occurs at an update probability λ for both two populations. If the agents
use pure policies, then at each of the states, the central player for defenders (resp. attackers)
only chooses one action per state and applies it to all the agents among the defenders (resp.
attackers) at that state. If the agents use mixed control, then for each state, the central player
for defenders (resp. attackers) chooses a distribution over actions and each agent among
the defenders (resp. attackers) in this state picks independently an action according to the
chosen distribution. When infected, each defender agent may recover at a rate qDrec or qUrec
depending on whether it is defended or not. Also, a defender agent may be infected either
directly by an attacker agent at rate vHqDinf or vHqUinf depending on whether it is defended
or not. A defender can also get infected by undefended infected (UI) defenders, at rate
βUUµ(UI) or βUDµ(UI) depending on whether it is undefended or not; it can also get
infected by defended infected (DI) defenders, at rate βDUµ(DI) or βDDµ(DI), depending
on whether it is undefended or not. Here vH stands for the proportion of attackers who are
active. In short, the transition rate matrix is given by:

P def
µ,a =

· · · Pµ,a
DS→DI λa 0

qDrec · · · 0 λa
λa 0 · · · qUrec
0 λa Pµ,a

US→UI · · ·


where

Pµ,a
DS→DI = vHqDinf + βDDµt(DI) + βUDµt(UI)

Pµ,a
US→UI = vHqUinf + βUUµt(UI) + βDUµt(DI)

The attackers’ transition matrix is:

P att
µ,a =

(
· · · λa
λa · · ·

)
.

In these matrices, a represents the action for the corresponding distribution. The summation
of every row of these transition rate matrices is 0. From this continuous-time model, we
derive a discrete-time version, which will fit in the MDP framework. We consider a time
step size ∆t. We formulate the transition probability matrices as follows:

µdef
t+1 = µdef⊤

t (I + P def
µ,a ∆t)

µatt
t+1 = µatt⊤

t (I + P att
µ,a∆t),

where I denotes the identity matrix, and I+P def
µ,a ∆t and I+P att

µ,a∆t represent the transition
probability matrices for defenders and attackers respectively. For transition probability
matrices, the summation of each row equals 1.

• Reward functions: We use:

Rdef
t = −20µt(DI)− 10µt(DS)− 10µt(UI)

Ratt
t = 10µt(DI) + 10µt(UI)− 10µt(active)

For this game, we consider a terminal horizon T and we accumulate the rewards every time
step until T . The steps are of length ∆t.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

• Parameter values: We use βUU = 0.3, βUD = 0.4, βDU = 0.3, βDD = 0.4, λ = 0.8,
qDrec = 0.5, qUrec = 0.4, qDinf = 0.4, qUinf = 0.3. In the experiments, we take T = 10 and
∆t = 0.1.

Training and Testing Data Sets. We used different initialization methods for training in the inner
loop and outer loop. For the outer loop, we used a uniform random sampler which samples a random
number in the interval [0, 1) according to uniform distribution in each entry in the initial state. Then
we normalized the initial state to make the sum of the distribution of each population equals to 1.
For exploitability computation, we run the inner loop for a fixed initial distribution so we set the
training initial distribution the same as the testing initial distribution. For the experiments using
our algorithm, DDPG-MFTG, and the baseline, there are eight different fixed initial distributions,
and we run each of them three times with different random seeds. So the exploitability curve for
each population is plotted based on the average of numerical results from 24 experiments. The eight
initial testing distributions are:

Dtest =
{(

(0.8, 0.05, 0.05, 0.1), (0.3, 0.7)
)
,
(
(0.5, 0.2, 0.2, 0.1), (0.3, 0.7)

)
,(

(0.1, 0.1, 0.7, 0.1), (0.7, 0.3)
)
,
(
(0.5, 0.0, 0.5, 0.0), (0.55, 0.45)

)
,(

(0.25, 0.15, 0.35, 0.25), (0.55, 0.45)
)
,
(
(0.35, 0.35, 0.15, 0.15), (0.3, 0.7)

)
,(

(0.45, 0.35, 0.15, 0.05), (0.2, 0.8)
)
,
(
(0.15, 0.25, 0.25, 0.35), (0.7, 0.3)

)}

Neural Network Architecture and Hyper-Parameters. We implement the same neural network
structure for both populations. For the actor network, the input is the concatenated vector of states for
the two populations, and there are two hidden layers with 100 neurons in each layer. All activation
functions in both hidden layers and the output layer are set to be sigmoid. The output dimension
of the actor network is the same as the dimension for the action vector for the defenders/attackers,
depending on which population the network is used for. For the critic network, the input is the
concatenated vector of the states for the two populations, and together with the action vector for the
defenders/attackers, depending on which population the critic network is used for. The architecture
of hidden layers and corresponding activation functions is same as the actor network. For the output
layer of the critic network, the activation function is an identity function, and the output is a single
value. For both the inner loop and outer loop, the learning rates are set as follows: for the defenders,
the learning rates for actor and critic are respectively 0.0006 and 0.0009; for the attackers, the
learning rates for actor and critic are respectively 6 × 10−5 and 9 × 10−5. The replay buffer is of
size 5000 and the batch size is 64. The model is trained using one CPU with 256GB memory, and
it takes around 24 hours to finish 100 episodes. The exploitability is calculated every 4 episodes
within the first 20 episodes, and then every 10 episodes from 20 to 100 episodes. The length of an
inner loop to learn the best response is 400 episodes.

Numerical results. We implement DDPG-MFTG to solve this game. The numerical results are
presented in Figs. 13 and 14. We make the following observations based on the provided plots.
Exploitability curves: Fig. 13 shows that for the defenders’ exploitability curve, both the baseline
and the DDPG-MFTG algorithm converge to 0, which indicates the algorithms are learning a Nash
equilibrium. For the attackers’ exploitability curve, we can see a clear gap between the exploitability
curve of our DDPG-MFTG algorithm and the baseline, which shows the improvement made by our
algorithm. Also, both two curves tend to reach towards 0, which shows that the algorithms are
converging to a Nash equilibrium. Population Distribution curves: Fig. 14 provides two examples
of population distributions used for testing.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

0 4 8 121620 30 40 50 60 70 80 90 100
Episode

10

5

0

5

10

15

20

25

30

Ex
pl

oi
ta

bi
lit

y

Exploitability for attackers

DDPG-MFTG
Baseline

0 4 8 121620 30 40 50 60 70 80 90 100
Episode

2.5

0.0

2.5

5.0

7.5

10.0

12.5

15.0

Ex
pl

oi
ta

bi
lit

y

Exploitability for defenders

DDPG-MFTG
Baseline

Figure 13: Testing ex-
ploitability for two popula-
tions

0 2 4 6 8 10
t

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

di
st

rib
ut

io
n

active
inactive

0 2 4 6 8 10
t

0.0

0.1

0.2

0.3

0.4

0.5

0.6

di
st

rib
ut

io
n

DI
DS
UI
US

0 2 4 6 8 10
t

0.0

0.2

0.4

0.6

0.8

1.0

di
st

rib
ut

io
n

active
inactive

0 2 4 6 8 10
t

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

di
st

rib
ut

io
n

DI
DS
UI
US

Figure 14: Two examples of population distribution evo-
lution. The first row is for the initial distribution(
(0.35, 0.35, 0.15, 0.15), (0.3, 0.7)

)
, the second row is for(

(0.5, 0.2, 0.2, 0.1), (0.3, 0.7)
)
. The left column is for the

distribution of attackers, and the right column for the distri-
bution of defenders.

F.6 SUMMARY OF IMPROVEMENTS

In Table 1, we summarize the improvement brought by our method compared with the corresponding
baseline, in each example. The quantities are:

• Baseline Exploitability: The baseline’s mean value (as described in the paper).
• Our Exploitability: Our method’s mean value (as described in the paper).
• Improvement: The percentage improvement is calculated as:

Improvement (percentage) =
Baseline− Ours

Baseline
× 100.

Example 1 Example 2 Example 3 Example 4 Example 5
Baseline Exploitability 2355.35 3.13 131.43 2.69 6.93

Our Exploitability 471.40 2.16 38.75 1.39 3.14
Improvement 79.98% 31.0% 70.52% 48.3% 54.69%

Table 1: Comparison of baseline and our exploitability metrics across the 5 examples described in
the text, along with percentage improvement.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

G HYPERPARAMETERS SWEEP

We explore various batch sizes, actor learning rates, and standard deviations of Ornstein-Uhlenbeck
noise (OU noise) across all numerical experiments. Heuristically, we set αcritic = 2×αactor and τ =
5 × αactor. Each hyperparameter group is evaluated during one player’s exploitability computation
stage, and the results are presented as follows:

G.1 PREDATOR-PREY 2D WITH 4 GROUPS

0 100 200 300 400 500
episode

300

400

500

600

700

800

900

1000

tra
in

in
g

re
wa

rd

OU noise with 0.8 standard deviation
OU noise with 0.08 standard deviation
OU noise with 0.008 standard deviation

0 100 200 300 400 500
episode

300

400

500

600

700

800

900

tra
in

in
g

re
wa

rd

OU noise with 0.8 standard deviation
OU noise with 0.08 standard deviation
OU noise with 0.008 standard deviation

0 100 200 300 400 500
episode

400

500

600

700

800

900

tra
in

in
g

re
wa

rd

OU noise with 0.8 standard deviation
OU noise with 0.08 standard deviation
OU noise with 0.008 standard deviation

0 100 200 300 400 500
episode

400

500

600

700

800

tra
in

in
g

re
wa

rd

OU noise with 0.8 standard deviation
OU noise with 0.08 standard deviation
OU noise with 0.008 standard deviation

Figure 15: Exploitability computation training reward with αactor = 5× 10−5. Batch size from left
to right: 16, 32, 64, 128

0 100 200 300 400 500
episode

400

500

600

700

800

900

tra
in

in
g

re
wa

rd

OU noise with 0.8 standard deviation
OU noise with 0.08 standard deviation
OU noise with 0.008 standard deviation

0 100 200 300 400 500
episode

400

500

600

700

800

900

1000

tra
in

in
g

re
wa

rd

OU noise with 0.8 standard deviation
OU noise with 0.08 standard deviation
OU noise with 0.008 standard deviation

0 100 200 300 400 500
episode

400

500

600

700

800

900

1000

tra
in

in
g

re
wa

rd

OU noise with 0.8 standard deviation
OU noise with 0.08 standard deviation
OU noise with 0.008 standard deviation

0 100 200 300 400 500
episode

400

500

600

700

800

900

1000

tra
in

in
g

re
wa

rd

OU noise with 0.8 standard deviation
OU noise with 0.08 standard deviation
OU noise with 0.008 standard deviation

Figure 16: Exploitability computation training reward with αactor = 0.0005. Batch size from left to
right: 16, 32, 64, 128

0 100 200 300 400 500
episode

360

380

400

420

440

460

480

tra
in

in
g

re
wa

rd

OU noise with 0.8 standard deviation
OU noise with 0.08 standard deviation
OU noise with 0.008 standard deviation

0 100 200 300 400 500
episode

380

400

420

440

460

480

500

520

tra
in

in
g

re
wa

rd

OU noise with 0.8 standard deviation
OU noise with 0.08 standard deviation
OU noise with 0.008 standard deviation

0 100 200 300 400 500
episode

340

360

380

400

420

tra
in

in
g

re
wa

rd

OU noise with 0.8 standard deviation
OU noise with 0.08 standard deviation
OU noise with 0.008 standard deviation

0 100 200 300 400 500
episode

340

360

380

400

420

440

460

480

tra
in

in
g

re
wa

rd

OU noise with 0.8 standard deviation
OU noise with 0.08 standard deviation
OU noise with 0.008 standard deviation

Figure 17: Exploitability computation training reward with αactor = 0.005. Batch size from left to
right: 16, 32, 64, 128

0 100 200 300 400 500
episode

420

440

460

480

tra
in

in
g

re
wa

rd

OU noise with 0.8 standard deviation
OU noise with 0.08 standard deviation
OU noise with 0.008 standard deviation

0 100 200 300 400 500
episode

400

420

440

460

480

500

tra
in

in
g

re
wa

rd

OU noise with 0.8 standard deviation
OU noise with 0.08 standard deviation
OU noise with 0.008 standard deviation

0 100 200 300 400 500
episode

340

360

380

400

420

440

tra
in

in
g

re
wa

rd

OU noise with 0.8 standard deviation
OU noise with 0.08 standard deviation
OU noise with 0.008 standard deviation

0 100 200 300 400 500
episode

400

420

440

460

tra
in

in
g

re
wa

rd

OU noise with 0.8 standard deviation
OU noise with 0.08 standard deviation
OU noise with 0.008 standard deviation

Figure 18: Exploitability computation training reward with αactor = 0.05. Batch size from left to
right: 16, 32, 64, 128

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

G.2 DISTRIBUTION PLANNING IN 2D

0 200 400 600 800 1000
episode

200

190

180

170

160

150

140
tra

in
in

g
re

wa
rd

OU noise with 0.08 standard deviation
OU noise with 0.008 standard deviation
OU noise with 0.0008 standard deviation

0 200 400 600 800 1000
episode

200

190

180

170

160

150

140

tra
in

in
g

re
wa

rd

OU noise with 0.08 standard deviation
OU noise with 0.008 standard deviation
OU noise with 0.0008 standard deviation

0 200 400 600 800 1000
episode

200

190

180

170

160

150

140

tra
in

in
g

re
wa

rd

OU noise with 0.08 standard deviation
OU noise with 0.008 standard deviation
OU noise with 0.0008 standard deviation

0 200 400 600 800 1000
episode

200

190

180

170

160

150

140

tra
in

in
g

re
wa

rd

OU noise with 0.08 standard deviation
OU noise with 0.008 standard deviation
OU noise with 0.0008 standard deviation

Figure 19: Exploitability computation training reward with αactor = 0.0005. Batch size from left to
right: 16, 32, 64, 128

0 200 400 600 800 1000
episode

200

190

180

170

160

150

140

tra
in

in
g

re
wa

rd

OU noise with 0.08 standard deviation
OU noise with 0.008 standard deviation
OU noise with 0.0008 standard deviation

0 200 400 600 800 1000
episode

200

190

180

170

160

150

140

130

tra
in

in
g

re
wa

rd

OU noise with 0.08 standard deviation
OU noise with 0.008 standard deviation
OU noise with 0.0008 standard deviation

0 200 400 600 800 1000
episode

200

190

180

170

160

150

140

130

tra
in

in
g

re
wa

rd

OU noise with 0.08 standard deviation
OU noise with 0.008 standard deviation
OU noise with 0.0008 standard deviation

0 200 400 600 800 1000
episode

210

200

190

180

170

160

150

140

130

tra
in

in
g

re
wa

rd

OU noise with 0.08 standard deviation
OU noise with 0.008 standard deviation
OU noise with 0.0008 standard deviation

Figure 20: Exploitability computation training reward with αactor = 5× 10−5. Batch size from left
to right: 16, 32, 64, 128

0 200 400 600 800 1000
episode

200

190

180

170

160

150

140

tra
in

in
g

re
wa

rd

OU noise with 0.08 standard deviation
OU noise with 0.008 standard deviation
OU noise with 0.0008 standard deviation

0 200 400 600 800 1000
episode

200

190

180

170

160

150

140

tra
in

in
g

re
wa

rd

OU noise with 0.08 standard deviation
OU noise with 0.008 standard deviation
OU noise with 0.0008 standard deviation

0 200 400 600 800 1000
episode

200

190

180

170

160

150

140

tra
in

in
g

re
wa

rd

OU noise with 0.08 standard deviation
OU noise with 0.008 standard deviation
OU noise with 0.0008 standard deviation

0 200 400 600 800 1000
episode

200

190

180

170

160

150

140

tra
in

in
g

re
wa

rd

OU noise with 0.08 standard deviation
OU noise with 0.008 standard deviation
OU noise with 0.0008 standard deviation

Figure 21: Exploitability computation training reward with αactor = 5× 10−6. Batch size from left
to right: 16, 32, 64, 128

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

G.3 FOUR-ROOM WITH CROWD AVERSION

0 200 400 600 800 1000 1200 1400
episode

70

71

72

73

74

75

76

tra
in

in
g

re
wa

rd

OU noise with 0.08 standard deviation
OU noise with 0.008 standard deviation
OU noise with 0.0008 standard deviation

0 200 400 600 800 1000 1200 1400
episode

71.5

72.0

72.5

73.0

73.5

74.0

74.5

75.0

75.5

tra
in

in
g

re
wa

rd

OU noise with 0.08 standard deviation
OU noise with 0.008 standard deviation
OU noise with 0.0008 standard deviation

0 200 400 600 800 1000 1200 1400
episode

74.2

74.4

74.6

74.8

75.0

75.2

75.4

tra
in

in
g

re
wa

rd

OU noise with 0.08 standard deviation
OU noise with 0.008 standard deviation
OU noise with 0.0008 standard deviation

0 200 400 600 800 1000 1200 1400
episode

72

73

74

75

76

tra
in

in
g

re
wa

rd

OU noise with 0.08 standard deviation
OU noise with 0.008 standard deviation
OU noise with 0.0008 standard deviation

Figure 22: Exploitability computation training reward with αactor = 0.005. Batch size from left to
right: 16, 32, 64, 128

0 200 400 600 800 1000 1200 1400
episode

74

76

78

80

82

tra
in

in
g

re
wa

rd

OU noise with 0.08 standard deviation
OU noise with 0.008 standard deviation
OU noise with 0.0008 standard deviation

0 200 400 600 800 1000 1200 1400
episode

74

76

78

80

82

84

tra
in

in
g

re
wa

rd

OU noise with 0.08 standard deviation
OU noise with 0.008 standard deviation
OU noise with 0.0008 standard deviation

0 200 400 600 800 1000 1200 1400
episode

72

74

76

78

80

82

84

tra
in

in
g

re
wa

rd

OU noise with 0.08 standard deviation
OU noise with 0.008 standard deviation
OU noise with 0.0008 standard deviation

0 200 400 600 800 1000 1200 1400
episode

72

74

76

78

80

82

84

tra
in

in
g

re
wa

rd

OU noise with 0.08 standard deviation
OU noise with 0.008 standard deviation
OU noise with 0.0008 standard deviation

Figure 23: Exploitability computation training reward with αactor = 0.0005. Batch size from left to
right: 16, 32, 64, 128

0 200 400 600 800 1000 1200 1400
episode

74

76

78

80

82

84

tra
in

in
g

re
wa

rd

OU noise with 0.08 standard deviation
OU noise with 0.008 standard deviation
OU noise with 0.0008 standard deviation

0 200 400 600 800 1000 1200 1400
episode

74

76

78

80

82

84

tra
in

in
g

re
wa

rd

OU noise with 0.08 standard deviation
OU noise with 0.008 standard deviation
OU noise with 0.0008 standard deviation

0 200 400 600 800 1000 1200 1400
episode

72

74

76

78

80

82

84

tra
in

in
g

re
wa

rd

OU noise with 0.08 standard deviation
OU noise with 0.008 standard deviation
OU noise with 0.0008 standard deviation

0 200 400 600 800 1000 1200 1400
episode

72

74

76

78

80

82

84

tra
in

in
g

re
wa

rd

OU noise with 0.08 standard deviation
OU noise with 0.008 standard deviation
OU noise with 0.0008 standard deviation

Figure 24: Exploitability computation training reward with αactor = 5× 10−5. Batch size from left
to right: 16, 32, 64, 128

0 200 400 600 800 1000 1200 1400
episode

74

75

76

77

78

79

tra
in

in
g

re
wa

rd

OU noise with 0.08 standard deviation
OU noise with 0.008 standard deviation
OU noise with 0.0008 standard deviation

0 200 400 600 800 1000 1200 1400
episode

73

74

75

76

77

78

tra
in

in
g

re
wa

rd

OU noise with 0.08 standard deviation
OU noise with 0.008 standard deviation
OU noise with 0.0008 standard deviation

0 200 400 600 800 1000 1200 1400
episode

73

74

75

76

77

78

79

tra
in

in
g

re
wa

rd

OU noise with 0.08 standard deviation
OU noise with 0.008 standard deviation
OU noise with 0.0008 standard deviation

0 200 400 600 800 1000 1200 1400
episode

74

75

76

77

78

79

tra
in

in
g

re
wa

rd

OU noise with 0.08 standard deviation
OU noise with 0.008 standard deviation
OU noise with 0.0008 standard deviation

Figure 25: Exploitability computation training reward with αactor = 5× 10−6. Batch size from left
to right: 16, 32, 64, 128

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

G.4 CYBER SECURITY

0 25 50 75 100 125 150 175 200
episode

38

36

34

32

30

28

26

24

tr
ai

ni
ng

 r
ew

ar
d

OU noise with 0.8 standard deviation
OU noise with 0.08 standard deviation
OU noise with 0.008 standard deviation
OU noise with 0.0008 standard deviation

0 25 50 75 100 125 150 175 200
episode

44

42

40

38

36

34

32

30

tr
ai

ni
ng

 r
ew

ar
d

OU noise with 0.8 standard deviation
OU noise with 0.08 standard deviation
OU noise with 0.008 standard deviation
OU noise with 0.0008 standard deviation

0 25 50 75 100 125 150 175 200
episode

40

38

36

34

32

30

28

26

24

tr
ai

ni
ng

 r
ew

ar
d

OU noise with 0.8 standard deviation
OU noise with 0.08 standard deviation
OU noise with 0.008 standard deviation
OU noise with 0.0008 standard deviation

0 25 50 75 100 125 150 175 200
episode

38

36

34

32

30

28

26

24

tr
ai

ni
ng

 r
ew

ar
d

OU noise with 0.8 standard deviation
OU noise with 0.08 standard deviation
OU noise with 0.008 standard deviation
OU noise with 0.0008 standard deviation

Figure 26: Exploitability computation training reward for defenders with αactor = 0.06. Batch size
from left to right: 16, 32, 64, 128

0 25 50 75 100 125 150 175 200
episode

38

36

34

32

30

28

26

24

tr
ai

ni
ng

 r
ew

ar
d

OU noise with 0.8 standard deviation
OU noise with 0.08 standard deviation
OU noise with 0.008 standard deviation
OU noise with 0.0008 standard deviation

0 25 50 75 100 125 150 175 200
episode

45

40

35

30

25

tr
ai

ni
ng

 r
ew

ar
d

OU noise with 0.8 standard deviation
OU noise with 0.08 standard deviation
OU noise with 0.008 standard deviation
OU noise with 0.0008 standard deviation

0 25 50 75 100 125 150 175 200
episode

40.0

37.5

35.0

32.5

30.0

27.5

25.0

22.5

tr
ai

ni
ng

 r
ew

ar
d

OU noise with 0.8 standard deviation
OU noise with 0.08 standard deviation
OU noise with 0.008 standard deviation
OU noise with 0.0008 standard deviation

0 25 50 75 100 125 150 175 200
episode

38

36

34

32

30

28

26

24

tr
ai

ni
ng

 r
ew

ar
d

OU noise with 0.8 standard deviation
OU noise with 0.08 standard deviation
OU noise with 0.008 standard deviation
OU noise with 0.0008 standard deviation

Figure 27: Exploitability computation training reward for defenders with αactor = 0.006. Batch size
from left to right: 16, 32, 64, 128

0 25 50 75 100 125 150 175 200
episode

45

40

35

30

25

tra
in

in
g

re
wa

rd

OU noise with 0.8 standard deviation
OU noise with 0.08 standard deviation
OU noise with 0.008 standard deviation
OU noise with 0.0008 standard deviation

0 25 50 75 100 125 150 175 200
episode

45

40

35

30

25

tr
ai

ni
ng

 r
ew

ar
d

OU noise with 0.8 standard deviation
OU noise with 0.08 standard deviation
OU noise with 0.008 standard deviation
OU noise with 0.0008 standard deviation

0 25 50 75 100 125 150 175 200
episode

42.5

40.0

37.5

35.0

32.5

30.0

27.5

25.0

22.5

tr
ai

ni
ng

 r
ew

ar
d

OU noise with 0.8 standard deviation
OU noise with 0.08 standard deviation
OU noise with 0.008 standard deviation
OU noise with 0.0008 standard deviation

0 25 50 75 100 125 150 175 200
episode

45

40

35

30

25

tr
ai

ni
ng

 r
ew

ar
d

OU noise with 0.8 standard deviation
OU noise with 0.08 standard deviation
OU noise with 0.008 standard deviation
OU noise with 0.0008 standard deviation

Figure 28: Exploitability computation training reward for defenders with αactor = 0.0006. Batch
size from left to right: 16, 32, 64, 128

0 25 50 75 100 125 150 175 200
episode

40

35

30

25

tra
in

in
g

re
wa

rd

OU noise with 0.8 standard deviation
OU noise with 0.08 standard deviation
OU noise with 0.008 standard deviation
OU noise with 0.0008 standard deviation

0 25 50 75 100 125 150 175 200
episode

42.5

40.0

37.5

35.0

32.5

30.0

27.5

25.0

22.5

tr
ai

ni
ng

 r
ew

ar
d

OU noise with 0.8 standard deviation
OU noise with 0.08 standard deviation
OU noise with 0.008 standard deviation
OU noise with 0.0008 standard deviation

0 25 50 75 100 125 150 175 200
episode

40.0

37.5

35.0

32.5

30.0

27.5

25.0

22.5

tr
ai

ni
ng

 r
ew

ar
d

OU noise with 0.8 standard deviation
OU noise with 0.08 standard deviation
OU noise with 0.008 standard deviation
OU noise with 0.0008 standard deviation

0 25 50 75 100 125 150 175 200
episode

40

35

30

25

tr
ai

ni
ng

 r
ew

ar
d

OU noise with 0.8 standard deviation
OU noise with 0.08 standard deviation
OU noise with 0.008 standard deviation
OU noise with 0.0008 standard deviation

Figure 29: Exploitability computation training reward for defenders with αactor = 6× 10−5. Batch
size from left to right: 16, 32, 64, 128

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

0 25 50 75 100 125 150 175 200
episode

20

10

0

10

20

tra
in

in
g

re
wa

rd

OU noise with 0.8 standard deviation
OU noise with 0.08 standard deviation
OU noise with 0.008 standard deviation
OU noise with 0.0008 standard deviation

0 25 50 75 100 125 150 175 200
episode

40

30

20

10

0

10

20

tra
in

in
g

re
wa

rd

OU noise with 0.8 standard deviation
OU noise with 0.08 standard deviation
OU noise with 0.008 standard deviation
OU noise with 0.0008 standard deviation

0 25 50 75 100 125 150 175 200
episode

30

20

10

0

10

20

tra
in

in
g

re
wa

rd

OU noise with 0.8 standard deviation
OU noise with 0.08 standard deviation
OU noise with 0.008 standard deviation
OU noise with 0.0008 standard deviation

0 25 50 75 100 125 150 175 200
episode

30

20

10

0

10

20

tra
in

in
g

re
wa

rd

OU noise with 0.8 standard deviation
OU noise with 0.08 standard deviation
OU noise with 0.008 standard deviation
OU noise with 0.0008 standard deviation

Figure 30: Exploitability computation training reward for attackers with αactor = 0.006. Batch size
from left to right: 16, 32, 64, 128

0 25 50 75 100 125 150 175 200
episode

10

5

0

5

10

15

20

tra
in

in
g

re
wa

rd

OU noise with 0.8 standard deviation
OU noise with 0.08 standard deviation
OU noise with 0.008 standard deviation
OU noise with 0.0008 standard deviation

0 25 50 75 100 125 150 175 200
episode

40

30

20

10

0

10

20

tra
in

in
g

re
wa

rd

OU noise with 0.8 standard deviation
OU noise with 0.08 standard deviation
OU noise with 0.008 standard deviation
OU noise with 0.0008 standard deviation

0 25 50 75 100 125 150 175 200
episode

40

30

20

10

0

10

20

tra
in

in
g

re
wa

rd

OU noise with 0.8 standard deviation
OU noise with 0.08 standard deviation
OU noise with 0.008 standard deviation
OU noise with 0.0008 standard deviation

0 25 50 75 100 125 150 175 200
episode

15

10

5

0

5

10

15

20

tra
in

in
g

re
wa

rd

OU noise with 0.8 standard deviation
OU noise with 0.08 standard deviation
OU noise with 0.008 standard deviation
OU noise with 0.0008 standard deviation

Figure 31: Exploitability computation training reward for attackers with αactor = 0.0006. Batch size
from left to right: 16, 32, 64, 128

0 25 50 75 100 125 150 175 200
episode

15

10

5

0

5

10

15

20

tra
in

in
g

re
wa

rd

OU noise with 0.8 standard deviation
OU noise with 0.08 standard deviation
OU noise with 0.008 standard deviation
OU noise with 0.0008 standard deviation

0 25 50 75 100 125 150 175 200
episode

20

10

0

10

20

tra
in

in
g

re
wa

rd

OU noise with 0.8 standard deviation
OU noise with 0.08 standard deviation
OU noise with 0.008 standard deviation
OU noise with 0.0008 standard deviation

0 25 50 75 100 125 150 175 200
episode

20

10

0

10

20

tra
in

in
g

re
wa

rd

OU noise with 0.8 standard deviation
OU noise with 0.08 standard deviation
OU noise with 0.008 standard deviation
OU noise with 0.0008 standard deviation

0 25 50 75 100 125 150 175 200
episode

30

20

10

0

10

20

tra
in

in
g

re
wa

rd

OU noise with 0.8 standard deviation
OU noise with 0.08 standard deviation
OU noise with 0.008 standard deviation
OU noise with 0.0008 standard deviation

Figure 32: Exploitability computation training reward for attackers with αactor = 6 × 10−5. Batch
size from left to right: 16, 32, 64, 128

0 25 50 75 100 125 150 175 200
episode

20

10

0

10

20

tra
in

in
g

re
wa

rd

OU noise with 0.8 standard deviation
OU noise with 0.08 standard deviation
OU noise with 0.008 standard deviation
OU noise with 0.0008 standard deviation

0 25 50 75 100 125 150 175 200
episode

30

20

10

0

10

20

tra
in

in
g

re
wa

rd

OU noise with 0.8 standard deviation
OU noise with 0.08 standard deviation
OU noise with 0.008 standard deviation
OU noise with 0.0008 standard deviation

0 25 50 75 100 125 150 175 200
episode

30

20

10

0

10

20

tra
in

in
g

re
wa

rd

OU noise with 0.8 standard deviation
OU noise with 0.08 standard deviation
OU noise with 0.008 standard deviation
OU noise with 0.0008 standard deviation

0 25 50 75 100 125 150 175 200
episode

30

20

10

0

10

20

tra
in

in
g

re
wa

rd

OU noise with 0.8 standard deviation
OU noise with 0.08 standard deviation
OU noise with 0.008 standard deviation
OU noise with 0.0008 standard deviation

Figure 33: Exploitability computation training reward for attackers with αactor = 6 × 10−6. Batch
size from left to right: 16, 32, 64, 128

40

	Introduction
	Definition of the model
	Finite-population m-coalition game
	Mean-field type game
	Reformulation with Mean-Field MDPs
	Stage game equilibria

	Nash Q-learning and Tabular Implementation
	Discretized MFTG
	Nash Q-learning algorithm
	Nash Q-learning analysis

	Deep RL for MFTG
	Numerical experiments
	Conclusion
	Proof of Approximate Nash Property
	Connection between MFTG and stage-game Nash equilibria
	Analysis of Discretized NashQ Learning
	Pseudo-codes for the main algorithms
	Pseudo-codes for the evaluation metrics
	Details on numerical experiments
	Example 1: 1D Target Moving Grid Game
	Example 2: Four-room with crowd aversion
	Example 3: Predator-prey 2D with 4 groups
	Example 4: Distribution planning in 2D
	Example 5: Cyber Security
	Summary of improvements

	Hyperparameters sweep
	Predator-prey 2D with 4 groups
	Distribution planning in 2D
	Four-room with crowd aversion
	Cyber security

