
Under review as a conference paper at ICLR 2023

MEGAN: MULTI-EXPLANATION GRAPH ATTENTION
NETWORK

Anonymous authors
Paper under double-blind review

ABSTRACT

Explainable artificial intelligence (XAI) methods are expected to improve trust
during human-AI interactions, provide tools for model analysis and extend human
understanding of complex problems. Explanation-supervised training allows to
improve explanation quality by training self-explaining XAI models on ground
truth or human-generated explanations. However, existing explanation methods
have limited expressiveness and interoperability due to the fact that only single
explanations in form of node and edge importance are generated. To that end
we propose the novel multi-explanation graph attention network (MEGAN). Our
fully differentiable, attention-based model features multiple explanation channels,
which can be chosen independently of the task specifications. We first validate
our model on a synthetic graph regression dataset. We show that for the spe-
cial single explanation case, our model significantly outperforms existing post-
hoc and explanation-supervised baseline methods. Furthermore, we demonstrate
significant advantages when using two explanations, both in quantitative expla-
nation measures as well as in human interpretability. Finally, we demonstrate
our model’s capabilities on multiple real-world datasets. We find that our model
produces sparse high-fidelity explanations consistent with human intuition about
those tasks and at the same time matches state-of-the-art graph neural networks in
predictive performance, indicating that explanations and accuracy are not neces-
sarily a trade-off.

1 INTRODUCTION

Explainable AI (XAI) methods aim to provide explanations complementing a model’s predictions
to make it’s complex inner workings more transparent to humans with the intention to improve trust
and reliability, provide tools for model analysis, and comply with anti-discrimination laws (Doshi-
Velez & Kim, 2017). Many explainability methods have already been proposed for graph neural
networks (GNNs), as Yuan et al. (2022) demonstrate in their literature survey. However, the ma-
jority of work is focused on post-hoc XAI methods that aim to provide explanations for already
existing models through external analysis procedures. In contrast to that, we demonstrate signifi-
cant advantages of methods which Jiménez-Luna et al. (2020) call self-explaining methods. This
class of models directly generates explanations alongside each prediction. One inherent advantage
of many self-explaining models is their capability for explanation-supervised training. In explana-
tion supervision the explanations are trained alongside the main prediction task to match known
explanation ground truth or human-generated explanations, improving explanation quality in the
process. Recently, impressive successes of explanation-supervision have been reported in the do-
mains of image processing (Linsley et al., 2019; Qiao et al., 2018; Boyd et al., 2022) and natural
language processing (Fernandes et al., 2022; Pruthi et al., 2020; Stacey et al., 2022). In the graph
domain, explanation supervision is very sparsely explored yet (Gao et al., 2021; Magister et al.,
2022). Inspired by the explanation-supervision successes demonstrated in other domains, especially
by attention-based models, we propose our novel, self-explaining multi-explanation graph atten-
tion network (MEGAN) to enable effective explanation-supervised training for graph regression and
classification problems.

We specifically want to emphasize our focus on graph regression tasks, which have been ignored by
previous work on explanation supervision. However, we argue that graph regression problems are
becoming an especially important topic due to their high relevance in chemistry and material sci-
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ence applications. Typical graph XAI methods and existing work on explanation supervision provide
single-channel attributional explanations, which means that each input element (nodes and edges)
are associated with a single [0, 1] value to denote their importance. We argue that explanations
merely indicating importance are hardly interpretable for regression tasks, as it remains unknown
for what such explanations provide evidence: The exact predicted value, a certain value range or an
especially high/low value? Due to this fact, we design our model to support an arbitrary number of
explanation channels, independent of task specifications. For regression tasks, we choose 2 chan-
nels: One positive channel which indicates evidence of high target values, and one negative channel
which contains evidence of low target values. We introduce a special explanation co-training routine
to promote channels to behave according to those interpretations. Using synthetic and real-world
datasets, we illustrate how multi-channel explanations help to improve interpretability, especially
for graph regression problems.

We first validate our model on a synthetic graph regression dataset. We show that even in the
single-channel case, our model outperforms existing post-hoc and explanation supervision baseline
methods significantly, not only in accuracy of explanations but also in terms of prediction perfor-
mance. In general, we find that our proposed model shows surprisingly good prediction performance
independent from the aspect of explainability. In Appendix D we provide a benchmark comparison
with numerous recent GNN architectures which shows that our model achieves state-of-the-art per-
formance for graph regression tasks.
Moving to multi-channel explanations we show that our model creates explanations that are accu-
rate, sparse, and faithful to predicted values. On the three real-world datasets about movie review
sentiment analysis and the prediction of solubility and photophysical properties of molecular graphs,
we show that our model creates explanations consistent with human intuition and knowledge. Fur-
thermore, we show that our model reproduces known structure-property relationships for the non-
trivial singlet-triplet task, supports previously hypothesized explanations, and even produces new
hypotheses for explanatory motifs.

2 RELATED WORK

Graph explanations. Yuan et al. (2022) provides an overview of XAI methods that were ei-
ther adopted or specifically designed for graph neural networks (GNNs). Notable ones include
GradCAM (Pope et al., 2019), GraphLIME (Huang et al., 2022) and GNNExplainer (Ying et al.,
2019). Jiménez-Luna et al. (2020) presents another overview of XAI methods used for the appli-
cation domain of drug discovery. Sanchez-Lengeling et al. (2020) evaluate many common graph
XAI methods for tasks of chemical property prediction. Henderson et al. (2021) for example in-
troduce regularization terms to improve GradCAM-generated explanations for chemical property
prediction. Most of the approaches presented here are classified as post-hoc methods, which aim to
explain the decision of existing models in hindsight. Few prior works explore the class of GNNs
which Jiménez-Luna et al. (2020) describe as self-explaining. Notably, Magister et al. (2022) intro-
duce a self-explaining graph-concept network and Zhang et al. (2022) outline a prototype-learning
approach for graphs where internal prototypes act as natural explanations.

Explanation supervision. During explanation-supervised training, the explanations generated by
the model are trained to match a given dataset of usually human-generated explanations alongside
the main prediction task. Linsley et al. (2019), Qiao et al. (2018) and Boyd et al. (2022) for example
have demonstrated promising results for explanation supervision in the image processing domain.
Likewise, Fernandes et al. (2022), Pruthi et al. (2022) and Stacey et al. (2022) for example demon-
strate this for the language processing domain. Recently, Gao et al. (2021) introduce GNES, a
method to perform GNN explanation supervision using GradCAM-generated explanations. In our
work, we show that MEGAN is able to significantly improve explanation-supervision capabilities
when compared to GNES. Additionally, Magister et al. (2022) emphasize that their method supports
explanation supervision with human-generated explanations, however, the concept-based explana-
tions generated by their approach are not empirically comparable to the attributional explanations
produced by our model.
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3 MULTI-EXPLANATION GRAPH ATTENTION NETWORK

3.1 TASK DESCRIPTION

We assume a directed graph G = (V, E) is represented by a set of node indices V ⊂ NV and a set
of edges E ⊆ V × V ⊂ RE , where a tuple (i, j) ∈ E denotes an edge from node i to node j. Every
node i is associated with a vector of initial node features h(0)

i ∈ RN0 , combining into the initial node
feature tensor H(0) ∈ RV×N0 . Each edge is associated with a feature vector ui ∈ RM , combining
into the edge feature tensor U ∈ RE×M .
We consider the problems of graph classification and graph regression, i.e. output vectors
yclass ∈ {0, 1}C (with |yclass| = 1, such that the highest value of that vector identifies the class
ĉ = argmaxc y

class
c ) or single real output values yreg ∈ R, respectively.

In addition, MEGAN outputs node and edge attributional explanations alongside each prediction.
We define explanations as priority masks by assigning [0, 1] values to each node and each edge,
representing the importance of the corresponding element towards the outcome of the prediction.
We generally assume that any prediction may be explained by K individual importance channels,
where K is a hyperparameter of the model. The node explanations are given as the node impor-
tance tensor Vim ∈ [0, 1]V×K and the edge explanations are given as the edge importance tensor
Eim ∈ [0, 1]E×K .

3.2 ARCHITECTURE OVERVIEW

To solve the previously defined task we propose the following multi-explanation graph attention
network (MEGAN) architecture. Figure 1 provides a visual overview of this architecture. The net-
work consists of L attention layers, where the number of layers L and the hidden units of each layer
are hyperparameters. Each of these layers consists of K individual, yet structurally identical GATv2
(Brody et al., 2022) attention heads, one for each of the K expected explanation channels. Assum-
ing the attention heads in the l-th layer have Nl hidden units, then each attention head produces its
own node embeddings H(l,k), where k ∈ {1, . . . ,K} is the head index. The final node embeddings
H(l) ∈ RV×Nl·K of layer l are then produced by concatenating all these individual matrices along
the feature dimension:

H(l) = H(l,1) ||H(l,2) || . . . ||H(l,K) (1)

Figure 1: Multi-explanation graph attention network (MEGAN) architecture overview. Rectangle
boxes represent layers; arrows indicate layer interconnections. Rounded boxes represent tensors.
Intermediate tensors are also named annotated arrows. Tuples beneath variable names indicate the
tensor shape, with batch dimension omitted, but implicitly assumed as the first dimension for all.
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This node embedding tensor will then be used as the input to each of the K attention heads of layer
l + 1. Aside from the node embeddings, each attention head also produces a vector A(l,k) ∈ RE of
attention logits which are used to calculate the attention weights

ααα(l,k) = softmax(A(l,k)) (2)

of the k-the attention head in the l-th layer. The edge importance tensor Eim ∈ [0, 1]E×K is calcu-
lated from the concatenation of these attention logit tensors in the feature dimension and summed
up over the number of layers:

Eim = σ

(
L∑

l=1

(
A(l,1) || A(l,2) || . . . || A(l,K)

))
(3)

Based on this, a local pooling operation is used to derive the pooled edge importance tensor Ep ∈
[0, 1]V×K for the nodes of the graph.
The final node embeddings H(L) are then used as the input to a dense network, whose final layer
is set to have K hidden units, producing the node importance embeddings Ṽim ∈ [0, 1]V×K . The
node importance tensor is then calculated as the product of those node importance embeddings
Ṽim ∈ [0, 1]V×K and the pooled edge importance tensor Ep ∈ [0, 1]V×K :

Vim = Ṽim ·Ep ·M. (4)

The mask M introduced in Fig. 1 is only optionally used to compute the fidelity metric, which is
introduced in Section 4.2.

At this point, the edge and node importance matrices, which represent the explanations generated
by the network, are already accounted for, which leaves only the primary prediction to be explained.
The first remaining step is a global sum pooling operation which turns the node embedding tensor
H(L) into a vector of global graph embeddings. For this, K separate weighted global sum pooling
operations are performed, one for each explanation channel. Each of these pooling operations uses
the same node embeddings H(L) as input, but a different slice V im

:,k of the node importance matrix as
weights. In that way, K separate graph embedding vectors

h(k) =

V∑
i=0

(
H(L) ·Vim

:,k

)
i,:

(5)

are created, which are then concatenated into a single graph embedding vector

h = h(1) || h(2) || . . . || h(K) (6)

where h ∈ RNL·K2

. This graph embedding vector is then passed through a generic MLP whose final
layer either has linear activation for graph regression or softmax activation for graph classification
to create an appropriate output

y = MLP(h) (7)

3.3 EXPLANATION CO-TRAINING

With the architecture as explained up to this point, there is no mechanism yet to ensure that individual
explanation channels learn the appropriate explanations according to their intended interpretation
(for example positive/negative evidence). We use a special explanation co-training procedure to
guide explanations to develop according to pre-determined interpretations. This is illustrated in
Figure 2. For this purpose, the loss function consists of two parts: The prediction and the explanation
part. The explanation part is based only on the node importances produced by the network. A global
sum pooling operation is used to turn the importance values of each separate channel into a single
alternate output tensor Ŷ ∈ RB×K , where B is the training batch size. This alternate output tensor
is then used to solve an approximation of the original prediction problem: This can be seen as a
reduction of the problem into a set of K separate subgraph counting problems, where each of those
only uses the subset of training batch samples that aligns with the respective channel’s intended
interpretation.
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Regression For regression, we assume K = 2, where the first channel represents the negative and
the second channel the positive influences relative to the reference value yc, which is a hyperparam-
eter of the model and usually set as the arithmetic mean of the target value distribution in the train
set. We select all samples of the current training batch lesser and greater than the reference value
and use these to calculate a mean squared error (MSE) loss:

Lexp =
1

2 ·B

B∑
b=1

{
(Ŷb,0 − yc −Ytrue

b )2 if Ytrue
b < yc

(Ŷb,1 − yc −Ytrue
b )2 if Ytrue

b > yc
(8)

Classification We assume the number of channels K = C is equal to the number of possible
output classes C. We use the alternate output channel to compute an individual binary cross entropy
(BCE) loss for each channel:

Lexp = LBCE(Y
class, σ(Ŷ)) (9)

For regression as well as classification, the total loss during model training consists of these task-
specific terms and an additional term for explanation sparsity:

Ltotal = Lpred + γLexp + βLsparsity (10)

where γ and β are hyperparameters of the training process. Explanation sparsity Lsparsity is calculated
as L1 regularization over the node importance tensor. Based on this loss the gradients are calculated
and the model weights are updated.

4 COMPUTATIONAL EXPERIMENTS

In this section, we only give a brief overview of the used datasets and experiments. Details about
the datasets can be found in Appendix A. Details on hyperparameters and empirical results for
experiments are listed in Appendix B

4.1 DATASETS

RbMotifs. We create a synthetic graph regression dataset consisting of 5000 randomly generated
graphs, where each node has three node features representing an RGB color value. Edges are undi-
rected and unweighted. Some of these randomly generated colored graphs are additionally seeded
with specific subgraph motifs, which consist of pre-defined color combinations and are associated
with a constant value. When a motif appears in a graph, the associated value is added to that graph’s
overall value.

Solubility. Approx. 8000 molecular graphs of the AqSolDB dataset (Sorkun et al., 2019). The
target value for each graph is the value of the measured log representing the water solubility of the
corresponding chemical compound. Node and edge features are generated by RDKit (Landrum,
2010).

Figure 2: Illustration of the split training procedure for the regression case. The explanation-only
train step attempts to find an approximate solution to the main prediction task, by using only a
globally pooled node importance tensor. After the weight update for the explanation step was applied
to the model, the prediction step performs another weight update based on the actual output of the
model and the ground truth labels.
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Figure 3: Examples for explanations generated for one element of the RbMotifs dataset using se-
lected methods. We point out that in this instance GNNExplainer fails to discover the second rel-
evant explanatory motif. Even though GNES and single-channel MEGAN correctly highlight both
motifs, the single-channel explanations fail to capture the fact that both motifs represent opposing
evidence. Only the multi-channel methods correctly capture the polarity of influence for both motifs,
increasing the interpretability of the explanations.

MovieReviews. A dataset of 2000 movie reviews, classified by sentiments ”positive” and ”neg-
ative”. Originally a text-based dataset from the ERASER benchmark (DeYoung et al., 2020), we
pre-processed it into a graph dataset by representing each word as a node and connecting adjacent
nodes by undirected and unweighted edges using a sliding window of size 2.

TADF Singlet-Triplet Energy Splittings. Approx. 500000 molecular graphs of the TADF dataset
Gómez-Bombarelli et al. (2016). We use the singlet-triplet energy splittings ∆EST as the target
value, which is one of two primary parameters to assess thermally activated delayed fluorescence
(TADF) properties of molecules. Molecules with such TADF character are promising candidates for
novel, low-cost OLED materials (Endo et al., 2011; Zhang et al., 2012).

4.2 METRICS

We measure similarity to the ground truth explanations using AUROC, as it is done by McCloskey
et al. (2019). We measure sparsity on binarized explanations, which are generated by thresholding
the model’s continuous attributions. We also measure explanation fidelity as described in Yuan et al.
(2022) and additionally provide the fidelity of random explanations for comparison. More details
can be found in Appendix B.2.

For the multi-explanation models, we define the Fidelity∗ metric: Considering regression as an
example, we argue that the positive explanation channel is faithful to the predicted output, exactly if
the model output becomes significantly more negative when the positive channel is withheld from
the model, as it is then missing all supposedly positive information about the graph. The same
applies to the negative channel, which when withheld, should produce a more positive output. In
this sense, we calculate a deviation ∆yk for each channel by supplying a corresponding binary
importance mask Mk (see Figure 1) which completely blocks channel k. A channel’s deviation then
contributes positively to the overall value if that deviation is along the expected direction as defined
before:

Fidelity* =
1

K

K∑
k=1

{
+∆yk if direction of deviation as expected for channel k
−∆yk if direction of deviation not as expected for channel k

(11)

Consequently, positive values of Fidelity* show good alignment of explanations with their respective
channel’s intended interpretation, while low and negative values indicate misalignment.
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Table 1: Results for computational experiments with synthetic graph regression dataset. We report
the mean value for 50 independent experiment repetitions in black, as well as standard deviation
in gray. We the best result for each column in bold face and underline the second best result. The
first section of the table shows results for the single-explanation experiments and the second section
shows the results for the dual-explanation experiments.

(S) Model trained explanation-supervised with ground truth explanations.
(*) Multi-explanation case measures Fidelity∗ metric introduced in Section 4.2.

Model MSE↓ r2 ↑ Node AUC ↑ Edge AUC ↑ Sparsity ↓ Fidelity ↑ Fidelityrand

Grad × Input 1.08±0.54 0.66±0.17 0.75±0.08 0.73±0.08 0.17±0.12 1.14±0.87 0.66±0.65

GradCAM 1.08±0.54 0.66±0.17 0.66±0.05 0.50±0.00 0.14±0.11 0.50±0.55 0.36±0.42

GnnExplainer 1.08±0.54 0.66±0.17 0.73±0.05 0.76±0.08 0.18±0.19 1.34±0.94 0.82±0.92

GNES(S)
original 0.91±0.04 0.71±0.01 0.59±0.01 0.58±0.02 0.12±0.07 1.11±0.66 0.51±0.48

GNES(S)
fixed 0.92±0.04 0.71±0.01 0.85±0.02 0.78±0.02 0.19±0.11 1.22±0.76 0.69±0.59

MEGAN1
0.0 0.47±0.18 0.85±0.06 0.74±0.12 0.70±0.08 0.14±0.08 3.11±3.03 1.96±2.38

MEGAN1,(S)
0.0 0.44±0.05 0.86±0.02 0.97±0.00 0.98±0.00 0.17±0.11 1.44±1.06 1.19±1.09

MEGAN2
1.0 0.27±0.04 0.91±0.01 0.94±0.02 0.90±0.06 0.10±0.06 2.00(*)±0.96 -

MEGAN2,(S)
0.0 0.24±0.03 0.93±0.01 0.99±0.01 0.99±0.01 0.09±0.06 1.91(*)±1.15 -

4.3 SYNTHETIC DATASET - SINGLE EXPLANATIONS

We demonstrate the capabilities of our model first for the basic single-channel explanation (K = 1)
case. The experiment is conducted on the synthetic RbMotifs dataset. We primarily compare re-
gression performance (MSE, r2) and similarity to know ground truth explanations (Node AUC,
Edge AUC). We compare with established post-hoc baselines Grad, GradCAM (Pope et al., 2019)
and GNNExplainer (Ying et al., 2019). Additionally, we compare with the explanation supervision
method GNES (Gao et al., 2021), which we had to modify to facilitate proper applicability to re-
gression problems (for details refer to Appendix C). We report our results in Table 1 and illustrate
examples in Figure 5.

Our results show that the explanation-supervised single-channel version MEGAN1,(S)
0.0 of our network

outperforms the runner-up modified GNES model by a significant margin, achieving almost perfect
node and edge explanation accuracy. Additionally, our model also significantly outperforms the
GCN models used as the basis for the other methods in terms of target value prediction.

4.4 SYNTHETIC DATASET - MULTI EXPLANATIONS

In the second experiment, we demonstrate our model’s capability when moving to multi-channel
explanations (K = 2). In this case, the existing ground truth explanations were also split into two
channels, where the first channel contains all those explanatory motifs that contribute negatively
to a graph’s label and the second channel contains all those motifs that contribute positively. Our
results firstly show that the regression performance of our model is further increased when employ-
ing an additional channel. Additionally, the explanation supervised version MEGAN2,(S)

0.00 is able to
correctly learn explanations, even as they are split into different channels, as indicated by the near
perfect explanation accuracy. More importantly, MEGAN2

1.00 which is not explanation-supervised
but uses the explanation co-procedure achieves similarly good results.

We illustrate the added value of multi-channel explanations in the example in Figure 5. We argue
that the multi-channel explanations add a highly valuable dimension to the interpretability of expla-
nations: While some of the single-channel are able to identify the explanatory motifs accurately, the
singular explanations fail to capture that in reality both of the motifs represent semantically oppos-
ing evidence. The multi-channel MEGAN model however is able to correctly decipher this property
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Figure 4: Selected examples for the prediction of singlet-triplet splitting energy for molecular
graphs. Darker highlights for nodes and edges indicate higher predicted importance values. (a)
Explanations consistent with chemical knowledge. (b) Explanations in support of hypotheses pub-
lished by Friederich et al. (2021). (c) New hypotheses generated by MEGAN.

of the motifs, even without external intervention in the form of explanation supervision. Moreover,
during our experiments, we notice that single-channel methods often fail to identify two motifs of
opposing evidence in the same graph and we assume that this fact is a major reason for the bad
performance of the baseline methods for datasets of this type.

4.5 REAL-WORLD DATASETS

Besides the synthetic dataset, we also apply our model on several real-world datasets. We report
hyperparameters for these experiments and the detailed results in Appendix B.

The MovieReviews dataset requires the binary classification of movie review sentiment into the two
classes ”negative” and ”positive”. In terms of classification, our model performs comparably to base-
line GNN approaches from literature, yet significantly worse than state-of-the-art NLP approaches
(Table 6). However, we find that our model still produces explanations consistent with human intu-
ition, as it appropriately declares negative adjectives like ”bad”, ”unfunny” and ”disappointing” as
explanations for the negative class and likewise positive adjectives like ”good”, ”remarkable” and
”clever” as explanations for the positive class. We illustrate one example movie review along with
our model’s explanations in Table 2 and more in Appendix E.3.

Table 2: Example for movie review sentiment classification dataset. Punctuation and capitalization
were removed in pre-processing. Higher node importance values are indicated by more intense color
highlights.

Negative Positive

overall avengers endgame was a remarkable movie and

a worthy culmination of the mcu up to this point there

were some genuinely heartbreaking moments and

breathtaking action sequences but to be honest some of

the movies i had to sit through to get here were not

worth it some of the early mcu movies and series

leading up to this finale i found rather bland unfunny

and sometimes just downright bad but this movie was

one of the best movies i have seen in a while

overall avengers endgame was a remarkable movie and

a worthy culmination of the mcu up to this point there

were some genuinely heartbreaking moments and

breathtaking action sequences but to be honest some of

the movies i had to sit through to get here were not

worth it some of the early mcu movies and series

leading up to this finale i found rather bland unfunny

and sometimes just downright bad but this movie was

one of the best movies i have seen in a while

8



Under review as a conference paper at ICLR 2023

The Solubility dataset requires the prediction of the logS value for water solubility of various chem-
ical compounds. For this task, our model is able to achieve state-of-the-art regression performance
(r2 = 0.91, see Table 5) similar to results from the literature. We find that explanations of our model
accurately reproduce chemical intuition about this task. Large non-polar carbon structures are pro-
vided as explanations for negative influence, while polar oxygen and nitrogen functional groups are
highlighted as evidence indicative of positive influence on the target value prediction.

We also apply our model to the prediction of the singlet-triplet energy gap from the TADF dataset.
Our model achieves a high predictivity of r2 = 0.9 on the regression task. Additionally, the explana-
tions of our model are able to reproduce non-trivial structure-property relationships from chemical
knowledge. As shown in Figure 4(a) for example, triphenylamine bridges are known to be associated
with low energy gaps, as they cause the necessary twist angles between the fragments, decoupling
electron donating and electron accepting parts of a molecule to reduce the exchange interaction be-
tween the frontier orbitals which would otherwise lower the triplet state compared to the singlet state,
thus preventing undesired singlet-triplet splittings. We are also able to support hypotheses published
in previous work by Friederich et al. (2021), who use an interpretable decision tree method to gener-
ate explanatory hypotheses for the same task. Our model for example also finds conjugated bridges
as positive evidence and carbonyl groups as negative evidence as shown in Figure 4(b). Furthermore,
we are able to propose novel hypotheses for explanatory motifs: As shown in Figure 4(c), we for
example observe silane groups and phosphine oxides to be consistently highlighted as evidence for
high target values. In total, we propose 5 new motifs as shown in Appendix E.2.

5 LIMITATIONS

Despite the encouraging experimental results, there are limitations to the proposed MEGAN archi-
tecture: Firstly, there is no hard guarantee that each channel’s explanations align correctly according
to their predetermined interpretations. This alignment is mainly promoted through the explanation
co-training, whose influence on the network is dependent on the hyperparameter γ. We observed
”explanation leakage” and ”explanation flipping” on rare occasions even with reasonable values of
γ. In those rare cases, explanations of one channel may faintly appear in the opposite channel or
a particularly disadvantageous initialization of the network causes explanations to develop in the
exact opposite channel relative to their assigned interpretation. The second limitation is in the de-
sign of the explanation co-training itself, which essentially amounts to reducing the problem to a
subgraph detection/counting task. While there are many important real-world applications that can
be approximated as such, it still presents an important limit to the expressiveness of our model’s
explanations.

6 CONCLUSION

In this paper, we present MEGAN, the multi-explanation graph attention network architecture. Our
model uses attention mechanisms to produce node and edge attributional explanations along multiple
channels for graph classification and regression tasks. Our fully differentiable and self-explaining
model is specifically designed to facilitate explanation supervision. On a synthetic graph regres-
sion dataset, we demonstrate that our explanation-supervised model significantly outperforms ex-
isting baseline approaches in terms of prediction performance and explanation accuracy, achieving
a near-perfect similarity to ground truth explanations. Furthermore, we emphasize the importance
of moving away from single-channel and towards multi-channel explanations for regression tasks.
We argue that single-channel explanations for regression tasks fail to capture the reality of oppos-
ing evidence. An additional channel however allows to separate explanations that provide evidence
for high target values and the opposing evidence for low target values. Using a special explana-
tion co-training routine we promote the explanation channels of our model to behave according to
these pre-determined interpretations. We show that this co-training is effective in producing accu-
rate explanations, which are faithful to the model prediction and outperform the single-channel case
across all metrics. At last, we apply our model to several real-world datasets and demonstrate that
the produced explanations are consistent with human intuition in sentiment analysis and chemical
property prediction. We can furthermore show that our model’s explanations reproduce non-trivial
structure-property relationships from chemical knowledge, supports previously published explana-
tion hypotheses, and propose novel hypotheses for explanatory motifs.

9



Under review as a conference paper at ICLR 2023

7 REPRODUCIBILITY STATEMENT

Our model is implemented using KGCNN framework (Reiser et al., 2021) which implements graph
neural networks in TensorFlow and Keras. The full source code is publicly available and can
be found at https://github.com/awa59kst120df/graph_attention_student. In
the source repository, we have aimed to provide some simple example scripts that illustrate a basic
use case of our model. Additionally, we have packaged each of our experiments as separate code
modules that contain the full information about the model hyperparameters and processing steps of
the results. We also provide a list of the essential hyperparameters in Appendix B.

We provide additional information on the used datasets in Appendix A. For the Solubility and
MovieReviews datasets, we provide references to where they are publicly available. Our own syn-
thetic datasets and the TADF dataset are packaged publicly available at https://github.com/
awa59kst120df/visual_graph_datasets Furthermore, we desecribe the most important
pre-processing steps for the dataset, while the exact details can be found in our source code.
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A DATASET DETAILS

A.1 RBMOTIFS

RbMotifs (red & blue motifs) is a synthetic graph regression dataset. It consists of 5000 randomly
generated graphs with node counts between 10 and 40. Each node is associated with three node
feature values in the range [0, 1], which represent RGB color values. Node colors are randomly
sampled from a predefined set of 7 colors. Edges are undirected and unweighted. Additionally to
the random nodes, graphs may be seeded with one of four subgraph motifs, each associated with a
constant value. The target value for each graph is then calculated as the sum of all the motif-specific
values of all motifs which are contained in the graph and a random component δ ∼ U(−0.5, 0.5):

ytrue =
∑
m

ym + δ (12)

where ym is the constant value associated with the m-th motif contained in the graph. The four
subgraph motifs consist of specific combinations of colored nodes, where two motifs form a similar
pair, whose nodes are either dominated by red or blue nodes. This means there are two possible red
motifs and two blue motifs. The red motifs are associated with a positive constant value, while the
blue motifs are associated with negative values. Figure 5 illustrates this and shows some examples
of graphs from the dataset. Figure 6 shows the distribution of color values as well as the distribution
of how many motifs are contained within the graphs.

Figure 5: (a) The subgraph motifs used in the RbMotifs dataset and their associated values. (b)
Example graphs from the dataset annotated with their target value
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Figure 6: (a) Distribution of target values for the RbMotifs dataset. The limits −3 and +3 were
imposed as hard limits during the generation process. (b) The distribution of the number of motifs
contained within graphs. For 2 motifs, any combination exists.
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A.2 AQSOLDB - SOLUBILITY

We use the AqSolDB dataset introduced by Sorkun et al. (2019), which consists of 9982 chemi-
cal compounds, annotated with measurements of water solubility (logS) at room temperature. The
dataset was created by merging multiple existing datasets. We follow the instructions in (Sorkun
et al., 2021) and and use all of the 1290 compounds originally contained within the so-called Hu-
uskonen dataset (Huuskonen, 2000) as the test set for all experiments. For the remaining elements
we apply the same pre-processing steps:

• Remove all compounds which do not contain a carbon atom

• Remove adjoined mixtures

• Remove compounds that contain charged atoms

After the application of these pre-processing steps, that leaves approx. 7000 molecules in the training
dataset. We process all of the SMILES strings into molecular graphs using RDKit (Landrum, 2010).

A.3 MOVIEREVIEWS

MovieReviews is a real-world text classification dataset consisting of 2000 movie reviews from
IMDB. Each movie review is to be classified into one of the two sentiment classes ”positive” and
”negative”. Within the dataset, both classes are represented equally. We take this dataset from the
ERASER benchmark (DeYoung et al., 2020) and process it in a similar way as it was done in Rathee
et al. (2022) as well.

First, the strings are converted into token lists, where tokens are individual words and other sen-
tence elements such as punctuation. In this step, we remove punctuation and capitalization. The
string tokens are then converted into a 50-dimensional numeric feature vector by using a pre-trained
GLOVE (Pennington et al., 2014) model. We convert the token lists into graphs by interpreting
every token as a graph node and connecting each node with its neighboring nodes (according to the
order of the token list/sentence order) using a sliding window of size 2. This means that every word
is connected to the 2 neighboring words in both directions. Edges are undirected and unweighted.
For all experiments, we use the canonical train-test split as defined by DeYoung et al. (2020).

A.4 TADF - SINGLET TRIPLET ENERGY GAP

The dataset consists of approx. 500000 molecular graphs. Annotations were created during a
high-throughput virtual screening experiment conducted by Gómez-Bombarelli et al. (2016) with
the objective to discover novel materials for an application in OLED technology. Specifically,
the authors aimed to discover materials that show a specific characteristic of thermally activated
delayed fluorescence (TADF). This class of materials is a promising approach to avoid the high cost
of typically used phosphorescent OLED materials (Endo et al., 2011; Zhang et al., 2012).
In their work, the authors use a virtual screening approach to identify particularly promising
candidates. From an initial library of almost 2 million compounds, they use a neural network to
predict an estimate for the delayed fluorescent rate constant (kTADF). Candidates with especially
promising values were subjected to quantum chemical simulations to obtain more accurate values.
Through this process approx. 500000 compounds were annotated with the results from quantum
chemical simulations. In the end, the top results were presented to human experts which selected 4
molecules that were experimentally assessed.
Along the delayed fluorescent rate constant property kTADF, the dataset also contains annotations
for the singlet-triplet gap ∆Est and the oscillator strength f , which are the main properties from
which kTADF is calculated.

In our work, we train our network to predict the singlet-triplet energy gap ∆Est because there al-
ready exists some chemical knowledge about some structure-property relationships regarding it.
Moreover, previous work by Friederich et al. (2021) already investigate possible explanatory motifs
for this property using an interpretable decision tree approach.
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B EXPERIMENT DETAILS

B.1 EXPLANATION PRE-PROCESSING

We pre-process all explanations of MEGAN and GNNExplainer by normalizing the attribution val-
ues to a [0, 1] value range. This is done w.r.t to all explanation channels, which means that the
relative differences between the explanation channels remain the same.

B.2 EVALUATION METRICS

Explanation Accuracy. For cases where definite ground truth explanations are available, we
measure the accuracy of the generated explanations by computing the area under the ROC curve
(AUROC), as it is done in McCloskey et al. (2019), for the entire validation set. The AUROC value
is in the range [0, 1], where 1.0 indicates a perfect classifier and 0.5 indicates a random classifier.

Sparsity. We calculate the sparsity as the percentage of nodes/edges contained in the binary ver-
sion of the predicted node/edge importance vector. The binary version of these vectors is calculated
with a threshold of 0.5.

Fidelity. For single-explanation cases, we calculate Fidelity as described in Yuan et al. (2022):
The Fidelity value is the deviation of the predicted output when the given binary explanation is
removed from the input of a particular sample. In this case, removal means setting all the feature
values of the corresponding input elements to zero. The binary version of the explanation vectors is
calculated with a simple threshold at 0.5.

Since changes in a regressed value are harder to put into context than for a normalized classifica-
tion output, which is always in the [0, 1] value range, we also provide Fidelityrand as a reference.
This is the Fidelity value that results from a randomly generated explanation mask, which has the
same sparsity value as the original explanation mask. Consequently, regression explanations can be
considered faithful if their Fidelity values are significantly higher than the Fidelityrand baseline.

B.3 SYNTHETIC DATASET EXPERIMENTS

The first experiment on the RbMotifs dataset compares GNNExplainer with MEGAN models, which
only use a single explanation channel (K = 1). In this experiment, the ground truth explanations
are considered to consist of the union of all subgraph motifs that appear in the respective graph. The
individual model and training parameters are reported in Table 3.
The GNNExplainer explanations are based on a standard multi-layer GCN (Kipf & Welling, 2017)
network. The GCN network is trained on the same train set as the MEGAN models. Afterward, a
GNNExplainer optimization is performed for each element of the test set to obtain the explanations.
We note that we use a slightly modified implementation of GNNExplainer contained in the KGCNN
library Reiser et al. (2021).
The MEGAN models used in this first experiment use only one explanation channel. Since the
K = 1 case is not covered in Section 3.3, these models do not use any additional explanation step
at all (γ = 0).

The second experiment compares different MEGAN configurations for the dual-explanation case
K = 2. In this case, ground truth explanations are split into two channels. The first channel
contains all blue (negative) motifs that appear in the graph and the second channel contains all red
(positive) motifs. The individual model and training parameters are reported in Table 3.

The results of 50 independent repetitions of these experiments can be found in Table 1.

B.4 REAL-WORLD DATASET EXPERIMENTS

Additional to the experiments for the synthetic dataset we also perform experiments with two real-
world datasets: The prediction of water solubility for chemical compounds and the sentiment clas-
sification of movie reviews. For both experiments, we only report one configuration of the MEGAN
architecture. The model and training parameters can be found in Table 4. For each experiment,
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Table 3: Model and Training parameters used for the experiments with the synthetic dataset Rb-
Motifs. The columns from left to right are: The model name, the learning rate, the batch size,
the number of training epochs, the number of convolutional layers used for the network, the hidden
units used for each of the convolutional layers, the hidden units used for the MLP layers, the sparsity
coefficient and the total number of parameters of the model.

Model LR BS Epochs Depth Conv. Units MLP Units β # Param.

GCN - Baselines 0.001 64 100 3 (5, 5, 5) (1) - 86

GCN - GNES 0.001 64 100 3 (5, 5, 5) (1) - 86

MEGAN1 0.001 64 100 3 (5, 5, 5) (1) 1.0 267

MEGAN2 0.01 64 100 3 (5, 5, 5) (1) 1.0 853

Table 4: Model and Training parameters used for the experiments with the real-world datasets. The
columns from left to right are: The model name, the learning rate, the batch size, the number of
training epochs, the number of convolutional layers used for the network, the hidden units used for
each of the convolutional layers, the hidden units used for the MLP layers, the sparsity coefficient
and the total number of parameters of the model. The specified dropout percentages indicate the
dropout which is applied after each layer.

Dataset LR BS Epochs Depth Conv. Units MLP Units β # Param.

Solubility 0.001 512 250 5 (50, 50, 50, 50, 50)
30% Dropout

(50, 20, 1)
0% Dropout

1.0 150593

MovieR. 0.001 50 50 5 (50, 50, 50, 50)
30% Dropout

(50, 20, 2)
0% Dropout

1.0 117914

TADF 0.001 1024 25 5 (50, 50, 50, 50, 50)
0% Dropout

(50, 20, 1)
0% Dropout

1.0 150593

we briefly optimize the hyperparameters manually. Most importantly, we find that dropout regular-
ization proves increasingly useful for increasing numbers of node features and layers. The given
dropout percentages are applied after each layer.

The results of 50 independent repetitions of the solubility experiment can be found in Table 5. We
also report the results of Sorkun et al. (2021) for the same test set.
Overall repetitions, our model performs consistently well in terms of predictivity (R2 = 0.91),
although the results are slightly worse than those achieved by the consensus model employed by
Sorkun et al. (2021). However, we especially point out the high Fidelity∗ value for our model.
On the one hand, this indicates that the explanation co-training effectively promotes the learned
explanations to remain truthful to the intended interpretations of the respective channels. On the
other hand, this also indicates that the explanations which are found by the model can indeed be
interpreted as positive and negative influences on the concept of solubility in general.

Table 5: Results for computational experiments with solubility dataset. For our own experiments,
we report the mean value for 50 independent experiment repetitions in black, as well as the standard
deviation of the distribution in gray.

Source Model RMSE R2 Node Sparsity Edge Sparsity Fidelity∗

Sorkun et al. (2021) Consensus 0.54 0.93 - - -

ours MEGAN2
1.0 0.60±0.02 0.91±0.01 0.29±0.14 0.29±0.13 1.20±0.34
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The results of 50 independent repetitions of the MovieReviews experiment can be found in Table 6.
We also report the results of DeYoung et al. (2020), who use a BERT encoder and LSTM network,
and Rathee et al. (2022), who use the same pre-processing steps to provide a baseline for a simple
GCN network.
Overall, DeYoung et al. (2020) clearly show the best classification performance. We believe this
is due to their usage of a state-of-the-art BERT language model, which has recently proven very
powerful for multiple language processing tasks. To our surprise, however, our results are marginally
worse than those of a GCN baseline model reported by Rathee et al. (2022). We hypothesize that this
is due to our usage of a 50-dimensional GLOVE model instead of the full 300-dimensional version
used by Rathee et al. (2022). In the future, we want to investigate different language encoder models
in junction with our model.

Table 6: Results for computational experiments with solubility dataset. We report the median value
for 50 independent experiment repetitions in black, as well as the 75th percentile (upper) and 25th
percentile (lower) of the distribution in gray.

Source Model F1 Node Sparsity Edge Sparsity Fidelity∗

DeYoung et al. (2020) BERT+LSTM 0.97 - - -

Rathee et al. (2022) GLOVE+GCN 0.85 - - -

ours MEGAN2
1.0 0.84±0.03 0.02±0.01 0.02±0.01 0.76±0.17

The results of 3 independent repetitions of the TADF experiment can be found in Table 7. For this
experiment, we conducted only 3 independent repetitions due to the drastically increased computa-
tion time for the larger dataset. We are not able to provide a direct comparison from the literature
because the original authors Gómez-Bombarelli et al. (2016) only publish their results for the pre-
diction of the kTADF property. Using a neural network they achieve R2 = 0.92 for the prediction of
kTADF.

In regards to our own results, we can summarize that we are able to achieve overall good predic-
tivity for the main prediction task as well. The network generates explanations that are sparse and
faithful to the respective channel’s intended interpretation, as it can be seen by the positive value of
Fidelity∗. One thing of note is that the Fidelity∗ value is much lower when compared to the solu-
bility experiment (see Table 5). This is most likely due to the overall different value ranges of the
two tasks. While the effective target value range of the solubility dataset is [−16, 2] the value range
for the singlet-triplet energy gap is much smaller with [0, 3]. Thus, deviations caused by masking
individual importance channels are generally expected to have smaller absolute values.

Table 7: Results for computational experiments with TADF dataset. We report the mean value for 3
independent experiment repetitions in black, as well as standard deviation of the distribution in gray.

Source Model RMSE R2 Node Sparsity Edge Sparsity Fidelity∗

ours MEGAN2
1.0 0.13±0.00 0.90±0.01 0.09±0.05 0.09±0.05 0.68±0.38

C GNES IMPLEMENTATION

In Table 1 we compare the results of our own model with various baseline methods from the lit-
erature, including the GNES framework as it was proposed by Gao et al. (2021). In the GNES
framework, the authors propose to use existing differentiable post-hoc explanation methods to fa-
cilitate explanation supervision. For that purpose the authors propose a generalized formulation of
the explanation supervision loss, which consists of one term for node-level loss and one term for
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edge-level loss:
LAtt(⟨M,M ′⟩, ⟨E,E′⟩) = αndist(M,M ′) + αedist(E,E′) (13)

where M and E are the node and edge-level explanations generated by the model and M ′ and E′

are the corresponding ground truth explanations.
The authors additionally introduce generalized formulations for node and edge-level explanations
which can be derived from a model. They define the attributional explanation for node n at layer l
w.r.t. to the predicted output for class c as

M (l)
n = || ReLU(g(

∂yc

∂F
(l)
n

) · h(F (l)
n )) || (14)

where F
(l)
n denotes the node’s activation at layer l. g(·) and h(·) are generic functions that can be

defined for specific implementations of explanation methods.
Similarly, the attributional explanation for an edge between nodes n and m at layer l is defined as:

E(l)
n,m = || ReLU(g(

∂yc
∂F (l)

· ∂F (l)

∂An,m
) · h(F (l)

n , F (l)
m )) || (15)

where the term ∂yc

∂F (l) · ∂F (l)

∂An,m
represents the gradient of the edge. g(·) and h(·) are again generic

functions that can be defined for specific implementations of explanation methods.
The authors show that by choosing the functions g(·) and h(·) appropriately, this formulation can
be used to replicate several existing post-hoc explanation methods such as simple gradient-based
saliency maps (GRAD), GradCAM and Excitation Backpropagation (EB).

For our experiments, we were not able to use the code provided at https://github.com/
YuyangGao/GNES, as their implementation exclusively supports binary classification problems
and is limited to a batch size of 1. Consequently, we re-implement GNES based on the KGCNN
(Reiser et al., 2021) library to support graph regression tasks and arbitrary batch sizes. Table 1 we
list two variations of GNES, which we call GNESoriginal and GNESfixed. For GNESoriginal we have
adapted the original formulation as previously described. We have found that this variant performs
very poorly in terms of similarity to the explanation ground truth, even below the other baseline
methods. For GNESfixed we modify the basic formulation by replacing the ReLU(·) operation with
the absolute value operation || · || and find that this variant performs significantly better, outperform-
ing the other baseline approaches.

Our experiments with Grad and GradCAM explanations on regression datasets show that in the pres-
ence of opposing evidence within the graphs, the gradients of the network w.r.t. to the regression
output also tend to be positive and negative. We believe that this is the main reason for the bad per-
formance of the GNESoriginal variant. The ReLU operation essentially discards half of all evidence,
thus leading to a particularly bad performance on the RbMotifs dataset, which was specifically en-
gineered to contain opposing explanatory motifs.

D GNN BENCHMARK

As already pointed out in Section 4, the results in Table 1 indicate that our proposed MEGAN
architecture significantly outperforms baseline methods in terms of similarity to explanation ground
truth as well as prediction accuracy. All baseline explanation methods used in our experiments are
based on a simple 3-layer GCN (Kipf & Welling, 2017) architecture (see Table 3). On the RbMotifs
dataset, this simple architecture achieves a mean predictivity of up to r2 = 0.71. In contrast to that,
a 3-layer dual-channel MEGAN model achieves a mean predictivity of up to r2 = 0.90 on the same
dataset.

Based on these results we compare our MEGAN architecture with several state-of-the-art GNN ar-
chitectures and find that our model is able to achieve state-of-the-art performance on many graph
regression and classification tasks. For comparison, we use the standard implementation of several
recently proposed model architectures from the KGCNN library (Reiser et al., 2021). Continu-
ously updated benchmarking results and hyperparameter configurations can be found at https:
//github.com/aimat-lab/gcnn_keras/tree/master/training/results.

We report some benchmarking results in Table 8 and Table 9. In both cases, our model ranks second
best when compared to some of the current state-of-the-art GNNs.
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Table 8: Benchmarking results for the ESOL dataset (Delaney, 2004), which consists of 1128 chem-
ical compounds and their corresponding water solubility. We report mean absolute error (MAE) and
root mean squared error (RMSE). Each cell shows the mean value of random 5-fold cross-validation
in black and the standard deviation in gray. Results are sorted by performance. Additionally, we
highlight the best results in bold and underline the second-best results.

Model Epochs MAE ↓ RMSE ↓
GCN 800 0.59±0.03 0.81±0.05

Megnet 800 0.54±0.01 0.77±0.04

HamNet 400 0.55±0.02 0.76±0.02

GraphSAGE 500 0.50±0.04 0.72±0.08

MAT 400 0.53±0.03 0.72±0.04

NMPN 800 0.50±0.02 0.71±0.05

GAT 500 0.49±0.02 0.70±0.04

GIN 300 0.50±0.02 0.70±0.03

CMPNN 600 0.48±0.03 0.68±0.02

INorp 500 0.49±0.01 0.68±0.03

GATv2 500 0.47±0.03 0.67±0.03

Schnet 800 0.46±0.03 0.65±0.04

DimeNetPP 872 0.46±0.04 0.65±0.07

DMPNN 300 0.45±0.02 0.63±0.02

AttentiveFP 200 0.46±0.01 0.63±0.03

MEGAN 400 0.44±0.03 0.60±0.05

PAiNN 250 0.43±0.02 0.60±0.02

Table 9: Benchmarking results for the Lipop dataset (Wu et al., 2018), consists of 4200 chemical
compounds compounds. Graph labels for regression are octanol/water distribution coefficient (logP
at pH 7.4). We report mean absolute error (MAE) and root mean squared error (RMSE). Each cell
shows the mean value of random 5-fold cross-validation in black and the standard deviation in gray.
Results are sorted by performance. Additionally, we highlight the best results in bold and underline
the second-best results.

Model Epochs MAE ↓ RMSE ↓
GAT 500 0.50±0.02 0.70±0.04

INorp 500 0.46±0.01 0.65±0.01

Schnet 800 0.48±0.00 0.65±0.00

GIN 300 0.45±0.01 0.64±0.03

HamNet 400 0.45±0.00 0.63±0.01

AttentiveFP 200 0.45±0.01 0.62±0.01

GATv2 500 0.41±0.01 0.59±0.01

PAiNN 250 0.40±0.01 0.58±0.03

CMPNN 600 0.41±0.01 0.58±0.01

MEGAN 400 0.40±0.01 0.56±0.01

DMPNN 300 0.38±0.01 0.55±0.03
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E ADDITIONAL EXAMPLES

E.1 SOLUBILITY

Figure 7: Examples that show that the model learns to associate carbon groups with a negative
influence on the solubility value and oxygen functional groups (especially OH groups) with positive
influences on the solubility value.

Figure 8: Examples which show that in the absence of any large carbon structures, the positive
channel is usually not activated at all, further supporting the assumption that the model learns to
associate carbon structures with low solubility. We point out that although the model provides a
heuristical explanation consistent with chemistry knowledge here, this still shows a limitation of
simple attributional explanations: Despite being explained in a similar fashion, the samples shown
here still vary considerably in their actual solubility value. We argue that in such cases two simple
attributional explanations as used here are not sufficient to accurately communicate the underlying
reason for those differences in value.
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Figure 9: Examples which show that the model learns to associate nitrogen functional groups with
positive influences on the solubility value as well.

Figure 10: Examples that show that the quality of the explanations can be inconsistent within as well
as in between independent repetitions of model training. The first sample is taken from the 30th
repetition of the solubility experiment, from which all the good examples of the previous figures
have been drawn as well. It incorrectly shows a strong activation of the negative channel and a weak
activation of the positive channel, even though there are many characteristic oxygen and nitrogen
functional groups present. In this case, the faulty explanation is actually reflected in the relatively
large error in the model’s prediction as well. The other three samples were drawn from the 10th
repetition, which shows worse explanations overall. Despite the relatively accurate predictions, all
three samples show very indiscriminate explanations, that feature a lot of similar activations in both
channels.
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E.2 SINGLET TRIPLET ENERGY SPLITTING

Figure 11: Selected examples, which illustrate the structure-property explanations generated by our
model. We find that triarylamine bridges are consistently highlighted in the negative explanation
channel as evidence for lower target values. We find these explanations consistent with chemical
knowledge: ”Low singlet-triplet splittings in TADF molecules are typically achieved by decoupling
electron donating and accepting parts of a molecule to reduce the exchange interaction between
the frontier orbitals which would otherwise lower the triplet state compared to the singlet state
and open an undesired singlet-triplet splitting. The decoupling of the fragments can be achieved
by introducing twist angles close to 90° between the fragments. One way to accomplish this are
trialyamine bridges between the fragments” to quote Friederich et al. (2021)

Figure 12: Selected examples, which illustrate the structure-property explanations generated by our
model. We find that carbonyl groups are consistently highlighted in the negative explanation channel
as evidence for lower target values. These explanations of our model directly support the hypothesis
previously published by Friederich et al. (2021), who used an interpretable decision tree approach
to generate their hypotheses.
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Figure 13: Selected examples, which illustrate the structure-property explanations generated by our
model. We find that conjugated bridges are consistently highlighted in the positive explanation
channel as evidence for higher target values. These explanations of our model directly support the
hypothesis previously published by Friederich et al. (2021), who used an interpretable decision tree
approach to generate their hypotheses.

Figure 14: Selected examples, which illustrate the structure-property explanations generated by
our model. We find that thiophene and thiazole rings are consistently highlighted in the positive
explanation channel as evidence for higher target values. These explanations of our model directly
support the hypothesis previously published by Friederich et al. (2021), who used an interpretable
decision tree approach to generate their hypotheses.
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Figure 15: Selected examples, which illustrate the structure-property explanations generated by our
model. We find that silane groups are consistently highlighted in the positive explanation channel
as evidence for higher target values. We propose this as a new hypothesis for a possible structure-
property relationship.

Figure 16: Selected examples, which illustrate the structure-property explanations generated by
our model. We find that phosphine oxides are consistently highlighted in the positive explanation
channel as evidence for higher target values. We propose this as a new hypothesis for a possible
structure-property relationship.

25



Under review as a conference paper at ICLR 2023

Figure 17: Selected examples, which illustrate the structure-property explanations generated by our
model. We find that cyano groups are consistently highlighted in the negative explanation channel
as evidence for lower target values. We propose this as a new hypothesis for a possible structure-
property relationship.

Figure 18: Selected examples, which illustrate the structure-property explanations generated by our
model. We find that benzotriazole derivatives are consistently highlighted in the positive explanation
channel as evidence for higher target values. We propose this as a new hypothesis for a possible
structure-property relationship.
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Figure 19: Selected examples, which illustrate the structure-property explanations generated by our
model. We find that triazole bridges are consistently highlighted in the positive explanation channel
as evidence for higher target values. We propose this as a new hypothesis for a possible structure-
property relationship.
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E.3 MOVIE REVIEWS

Table 10: Example for movie review which contains positive and negative sentences, which are
correctly sorted into the respective channels. However, this example also shows some sort of a
bias by including the first sentence as a negative explanation. Objectively the first sentence does
not contain any sentiment. The false explanation of the model is supposedly caused by the word
”criminals” which is presumably often used in junction with negative adjectives.

Negative Positive

a couple of criminals mario van peebles and loretta

devine move into a rich family house in hopes of

conning them out of their jewels however someone else

steals the jewels before they are able to get to them

writer mario van peebles delivers a clever script with

several unexpected plot twists but director mario van

peebles undermines his own high points with haphazard

camera work editing and pacing it felt as though the

film should have been wrapping up at the hour mark

but alas there was still 35 more minutes to go daniel

baldwin i ca n’t believe i ’m about to type this gives

the best performance in the film outshining the other

talented members of the cast

a couple of criminals mario van peebles and loretta

devine move into a rich family house in hopes of

conning them out of their jewels however someone else

steals the jewels before they are able to get to them

writer mario van peebles delivers a clever script with

several unexpected plot twists but director mario van

peebles undermines his own high points with haphazard

camera work editing and pacing it felt as though the

film should have been wrapping up at the hour mark

but alas there was still 35 more minutes to go daniel

baldwin i ca n’t believe i ’m about to type this gives

the best performance in the film outshining the other

talented members of the cast

Table 11: Example for an exclusively positive review. Due to the overall lack of negative adjectives,
the negative channel isn’t activated at all.

Negative Positive

this three hour movie opens up with a view of singer

guitar player musician composer frank zappa rehearsing

with his fellow band members all the rest displays a

compilation of footage mostly from the concert at the

palladium in new york city halloween 1979 other

footage shows backstage foolishness and amazing clay

animation by bruce bickford the performance of titties

and beer played in this movie is very entertaining with

drummer terry bozzio supplying the voice of the devil

frank guitar solos outdo any van halen or hendrix i ’ve

ever heard bruce bickford outlandish clay animation is

that beyond belief with zooms morphings etc and

actually it does n’t even look like clay it looks like

meat

this three hour movie opens up with a view of singer

guitar player musician composer frank zappa rehearsing

with his fellow band members all the rest displays a

compilation of footage mostly from the concert at the

palladium in new york city halloween 1979 other

footage shows backstage foolishness and amazing clay

animation by bruce bickford the performance of titties

and beer played in this movie is very entertaining with

drummer terry bozzio supplying the voice of the devil

frank guitar solos outdo any van halen or hendrix i ’ve

ever heard bruce bickford outlandish clay animation is

that beyond belief with zooms morphings etc and

actually it does n’t even look like clay it looks like

meat
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Table 12: Example which shows that the model currently doesn’t understand negations and sarcasm.
We point out that the partial sentence ”never a bad thing” in the middle of the review is sorted into the
negative channel. Another example is the first sentence: The praise it features is meant sarcastically,
but it is still sorted into the positive channel.

Negative Positive

burnt money is the perfect festival film it will show

once or twice and then no one thankfully will ever

have to hear from it again this film from the seattle

international film festival 2001 emerging masters series

is easily one of the year worst billed as a gay ‘ bonnie

and clyde this gritty film from director marcelo pi eyro

has its only highlight in a well designed title sequence

two gay lovers get involved in a bank robbery that

makes a gang leader whose plan they screwed up angry

this causes the gang leader to send his boys out to get

the gay guys one of whom may not actually be gay

hiding out in a prostitute apartment the two men must

fight off police and gang members in a very long

showdown for the movie conclusion if caught they risk

losing all the money and their love as an added

emotional bonus one of the gay men is dying or

something like that everything that happens is so quick

and confusing i was completely lost clarity is n’t

exactly this movie striving virtue so it was a little hard

to pick up not much could have really happened though

the main events in this long two hour film are explicit

homosexual and heterosexual sex graphic drug use

extreme violence and strong language lots of explicit

material is never a bad thing when there a reason but

there no purpose to anything in this film most of the

sex and violence scenes come off as silly while the

heavy drug use comes off as ridiculous and depressing

it appears pi eyro who co wrote with marcelo figueras

from a novel by ricardo piglia purposefully adds more

blood and lovemaking for his own amusement he makes

the actors as sweaty and dirty as possible makes them

snort cocaine gives them guns and condoms and lets

them go burnt money is pointless the performances are

bad it tries to thrill and shock but only causes boredom

god forbid it will ever get a distributor another

disappointing film from this year so called emerging

masters series pass on by

burnt money is the perfect festival film it will show

once or twice and then no one thankfully will ever

have to hear from it again this film from the seattle

international film festival 2001 emerging masters series

is easily one of the year worst billed as a gay ‘ bonnie

and clyde this gritty film from director marcelo pi eyro

has its only highlight in a well designed title sequence

two gay lovers get involved in a bank robbery that

makes a gang leader whose plan they screwed up angry

this causes the gang leader to send his boys out to get

the gay guys one of whom may not actually be gay

hiding out in a prostitute apartment the two men must

fight off police and gang members in a very long

showdown for the movie conclusion if caught they risk

losing all the money and their love as an added

emotional bonus one of the gay men is dying or

something like that everything that happens is so quick

and confusing i was completely lost clarity is n’t

exactly this movie striving virtue so it was a little hard

to pick up not much could have really happened though

the main events in this long two hour film are explicit

homosexual and heterosexual sex graphic drug use

extreme violence and strong language lots of explicit

material is never a bad thing when there a reason but

there no purpose to anything in this film most of the

sex and violence scenes come off as silly while the

heavy drug use comes off as ridiculous and depressing

it appears pi eyro who co wrote with marcelo figueras

from a novel by ricardo piglia purposefully adds more

blood and lovemaking for his own amusement he makes

the actors as sweaty and dirty as possible makes them

snort cocaine gives them guns and condoms and lets

them go burnt money is pointless the performances are

bad it tries to thrill and shock but only causes boredom

god forbid it will ever get a distributor another

disappointing film from this year so called emerging

masters series pass on by
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