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Abstract

Trait descriptions characterize how an organism looks, behaves or interacts. These
descriptions are typically represented as text, but may be manually mapped within
an ontology for downstream analysis. Nonetheless, the cost of this manual mapping
is not scalable. In this work we propose a method to finetune a transformer model
and embed textual trait descriptions in a latent space that captures the notion of dis-
tance within an ontology. The resulting model, which we coin Trait2Vec, can then
embed trait descriptions in a scalable and biologically meaningful computational
representation.

1 Introduction

Understanding and representing the semantic meaning of trait descriptions is a foundational challenge
in building computational systems that reason over biological data. Trait descriptions, often expressed
in natural language, characterize the phenotypic features of organisms. However, their syntactic and
semantic variability poses a challenge for a consistent computational representation, and thus they
are manually transformed into an ontological representation for further inference. Unfortunately, this
manual transformation is not scalable, as it requires the expert curation of the trait description in
terms of a meaningful ontology.

Recent advances in transformer-based language models [1, 2, 3] have been proposed to embed the
ontology into a latent space [4]. Unfortunately, this is also not scalable, as it assumes access to an
expensive and manual ontology representation of the organism. Instead, in this work, we propose
to estimate a transformer-based language model to embed raw trait descriptions of the organism
and thus bypass the need to annotate trait descriptions with a manual ontological representation. To
do so, we propose to embed trait descriptions in a way that correlates with prior manually created
ontological annotations of a set of trait descriptions.

To align these embeddings with the underlying ontological structure, we consider similarity measures
(e.g. SimGC [5]) between trait descriptors that have been annotated with ontology-based expressions.
These graph-based similarity measures inform how well the learned embeddings preserve rank. That
is, how well similarity between representations in latent space correlates with similarity measures
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of their corresponding ontology representations. We conjecture this alignment reflect the semantics
provided by the ontology. This in turn induces the corresponding biological meaning in the similarity
between embeddings. We test this conjecture using the Phenoscape knowledge base [6] to extract a
collection of trait descriptions along with the corresponding pairwise similarity metrics.

By integrating language model embeddings with ontology-aware similarity metrics, we bypass the
need to manually represent trait descriptors within an ontology before it is available for further com-
putational inference. Accordingly, we obtain a biologically meaningful and scalable computational
representation of a trait description that can be readily integrated in downstream tasks (e.g. extending
imageomics pipelines [7]). More concretely, our contributions are:

1. A novel machine learning method to estimate a latent representation of trait descriptions
from any collection of ontology annotations.

2. A dataset (Character similarity dataset [8]) of pairwise trait descriptors along with their
corresponding SimGIC, maxIC and Jaccard similarity metrics.

3. A pre-trained model (Trait2Vec [9]) to embed textual trait descriptions.
4. Empirical evidence Trait2Vec embeddings capture ontology structure.

2 Related works

Embedding ontologies is a well explored idea. The work of [4] reviews current state-of-the-art
strategies to capture the ontology structure in the embedding space. Closest to Trait2Vec are the
sequence modeling approaches: Onto2Vec [1], OPA2Vec [2], OWL2Vec [3].

Onto2Vec uses a pretrained Word2Vec model to embed ontology structure axioms and entity term
annotation axioms classes into a latent space. They then evaluate this embeddings on protein-to-
protein interaction (PPI) by training a classifier on the embeddings. As an extension of Onto2Vec,
the authors propose OPA2Vec and extend the ontology information with its corresponding meta
data. They observe the embeddings from this sources improve the performance of PPI classification.
Per OWL2Vec, Onto2Vec embed the axioms of the ontology and OPA2Vec complements this with
lexical information. OWL2Vec complements their axiom corpus with a corpus generated by walking
over RDF graphs that are transformed from the OWL ontology with its graph structure and logical
constructors considered. In addition, to fully utilize the lexical information, OWL2Vec creates
embeddings for not only the ontology entities as the current KG/ontology embedding methods but
also for the words in the lexical information. The authors test the methods for membership prediction
and subclass prediction. Nonetheless, unlike previous work, our method does not assume the future
test input will have a corresponding representation in ontology space. Instead, our method aims to
recover a serviceable embedding from a raw trait descriptor. Access to an ontology representation is
expensive, as it requires expert knowledge to produce, thus limiting its scalability.

To the best of our knowledge, this is the first proposal of a trait embedding approach guided by
aligning rank with ontology based metrics. Order preservation is important in numerous approaches
that use semantic similarity for biological discovery. Accordingly, this work brings the biology
community closer to a serviceable computational representation of trait descriptors that do not
require manual annotation. This can potentially complement recently methodological developments
that extract embeddings from images [10, 11] by directly encoding phenotypes that are more easily
described via text (e.g. "spiny-rayed dorsal fin").

3 Methodology

3.1 Ontologies

Ontological representations are structured, formalized systems for categorizing and describing entities,
their properties, and the relationships among them. In computational terms, an ontology provides
a shared vocabulary and a logical framework for consistent annotation, integration, and reasoning
across datasets. These representations typically consist of hierarchical structures (often directed
acyclic graphs or trees), where entities are defined as classes or concepts and connected through
relations such as "is-a" (subclass) or "part-of." In biology, the complexity and interdependence of
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Figure 1: Layers in
Trait2Vec model. Inside
parenthesis is the output
size of the given layer.

Figure 2: Loss computation for training Trait2Vec. Only Train2Vec
parameters are estimated. Please refer to section 3.3 for more details.

organismal systems make ontologies valuable approaches for storing complex domain usage in a
way that can be reused in a variety of applications. The hierarchical structure of ontologies enables
computational methods (e.g., logical reasoners) bring together data at varying levels of granularity,
as well as to make use of implied or indirect relationships between concepts, particularly through
transitive relations such as part-of or develops-from. A useful application of ontology-annotated data
is the ontology graph-based similarity metrics.

3.2 Ontological graph-based similarity metrics

Ontology-based similarity metrics (e.g. SimGIC, maxIC, Jaccard)[5, 12, 13] provide biologically
meaningful metrics to compare trait descriptors and derive biological insight. SimGIC, in particular,
computes similarity between two sets of ontology terms by considering the shared information
content of their common ancestors relative to the total information content of all terms in both sets.
This accounts not just for overlap but for how specific or informative the shared terms are within
the ontology. Unfortunately, creating ontology annotations for trait descriptions has thus far been
a primarily manual, expensive, task requiring expert knowledge. This cost in time and expertise
motivates the question: Can we embed raw text descriptions of traits in a way that preserves the
ontology structure induced by graph-based similarity measures?

3.3 Embedding trait descriptors

Assume access to a sample of n distinct textual trait descriptors and their corresponding ontological
representation (i.e. Dn = {(xi, g(xi))}ni=1) where g : X → O is a manual mapping of trait
descriptors to an ontology representation. We propose to optimize the following CosENT loss:

L(θ) = log(
∑

((i,j),(h,k))

{1 + exp{s(zi, zj)− s(zh, zk)}) (1)

Where s : Z ×Z → [0, 1] correspond to a similarity measure of the embeddings zi = fθ(xi) ∈ Z
and zj = fθ(xj) ∈ Z for distinct traits xi, xj (e.g. s(zi, zj) = 1

2 (⟨zi, zj⟩/ ∥zi∥ ∥zj∥ + 1) is
proportional to cosine similarity). The function fθ : X → Z corresponds to the Trait2Vec model
parametrized by θ (i.e. The parameters of the Dense and Transformer layers in figure 1). The indices
(i, j) and (h, k), index pairs of descriptors such that the following order relation is satisfied: di,j =
sO(g(xi), g(xj)) ≤ sO(g(xh), g(xk)) = dh,k. The function sO : O × O → [0, 1] corresponds to
the ontology-based distance metric (e.g., SimGIC). Intuitively, this loss penalizes embeddings whose
cosine similarity does not respect the ranking (or order) induced by the similarity of the corresponding
ontology representations. We visualize the loss computation pipeline in figure 2.

4 Experiments

Across all experiments we extract a collection of textual trait descriptors and corresponding ontology
representation from the Phenoscape knowledgebase [6]. We collect over 500K trait descriptor pairs for
training and leave out an extra 100K pairs for testing. No single trait descriptor is shared between train
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and test sets. We initialize the transformer with the "all_mpnet_model_v2" and the Dense architure
with the default initialization and hyperbolic tangent non-linearity from the sentence-transformer
library [14]. We learn the Trait2Vec parameters (θ in (1)) using the Trainer class with hyperparameters
(learning-rate, epochs, batch-size, warmup-ratio) estimated from a validation sample. We also perform
early-stopping with a patience of 5. We measure embedding similarity with cosine similarity and
measure ontology-based similarity with the SimGIC metric. All experiments are performed on an
A100 gpu. Code for reproducing our experiments is available at https://github.com/Imageomics/char-
sim.

4.1 Rank correlation

Figure 3: Performance and training time of the full
Trait2Vec architecture (mpbnet), Trait2Vec with
frozen transformer weights (mpbnet+Frozen), and
Trait2Vec with lower precision weights (B16), for
a variety of train/validation sample sizes.

The goal of this experiment is to assess how well
similarity between embeddings correlates with
Sim-GIC on the test dataset. A positive correla-
tion indicates the transformation preserves the
ontological order of the traits. We measure the
Spearman’s rank correlation where the true rank-
ing is given by the SimGIC metric. This statistic
is useful because it is invariant to the scales of
similarity metrics. Furthermore, we also mea-
sure training time in hours on a A100GPU, for
a variety of architectural choices and sample
sizes. Results in figure 3 suggest performance
increases with more data albeit with diminishing
returns. The best model is estimated with 400K
training sample pairs. As a way to mitigate the
sample size, the bronze and silver star models,
perform a resampling of the validation data dur-
ing training ten times (i.e. 10K total samples for validation). We observe it is possible to obtain similar
performance with 60K samples as opposed to 500K. Lastly, we note fixing the transformer weights
(i.e. "Frozen") diminishes performance substantially. We speculate this is because the difference
between trait descriptors depends on the ontology structure rather than linguistic patterns.

4.2 Low-dimensional clustering performance

Figure 4: 2D-PCA projection of held-out Jaw
and Fin descriptor embeddings. Transparent pro-
jections correspond to pre-training embeddings;
opaque correspond to post-training embeddings.
Some corresponding trait descriptors are indicated.

The goal of this experiment is to qualitatively
assess how well similar trait descriptions cluster
together in embedding space. We leverage the
pre-trained Trait2Vec model (i.e. fθ̂ : X → Z)
estimated in section 4.1. For this experiment,
we sample trait descriptions from 25 samples
from each of two different groups (i.e. Jaw and
Fin) which we denote as Djaw, Dfin. We em-
bed all samples and collect them into a matrix
Z ∈ Rn×d where n = |Djaw ∪ Dfin|, d corre-
sponds to the embedding size (d = 256) and
Zi: = fθ̂(xi) ∈ Rd where xi ∈ Djaw ∪Dfin. We
apply PCA to the matrix Z and plot the embed-
dings projected unto the two principal compo-
nents in figure 4. Descriptors are color coded
based on the category they belong to. Trans-
parency indicates embeddings before (transpar-
ent) and after training (opaque). We observe that
embeddings cluster into the expected groups af-
ter training. Furthermore, embedding distance
is not entirely explained by syntactic similarity between traits. Finally, we measure the euclidean
distance between trait-embeddings, before (Table 1) and after training (Table 2), and compute the 0%,
25%, 50%, 75% and 100% quantiles. In short, 0% would correspond to the closest trait descriptors
and 100% to the farthest. We observe the post training ranking captures more semantics of the
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ontology structure. For instance, quantile 0.50 of Table 1 shows two Jaw trait descriptors that should
be closer than the descriptors in the 0.25 quantile. This is not the case for post-training embeddings.

Quantile Trait 1 Trait 2

0.00 (Jaw)Form of retroarticular: retroarticular elon-
gate and cup-shaped, with its length in lateral
view more than three times its height, with in-
teropercularmandibular ligament attaching in
cup-shaped depression near anterior margin of
bone

(Jaw)Form of retroarticular: retroarticular elon-
gate and cup-shaped, with its length in lateral
view more than three times its height, with
interopercular-mandibular ligament attaching in
cup-shaped depression near anterior margin of
bone

0.25 (Fin)Paired fins, pelvic girdle and scapulocora-
coids absent in adults: Paired fins, pelvic girdle
and scapulocoracoids absent in adults

(Jaw)Jaw teeth-shape and size gradation:
strongly curved, moderate anteroposterior grada-
tion in size

0.50 (Jaw)Fleshy flap anterolaterally on the lower jaw:
absent

(Jaw)Metapterygoid: large, broad and in contact
with quadrate and symplectic through cartilage

0.75 (Fin)Fin base articulation on scapulocoracoid:
stenobasal

(Jaw)Vomer: arrow or T-shaped

1.00 (Fin)Stegural with anterodorsal membranous
growth. Absence in Argentinoidei is secondary
by parsimony optimization: Stegural with an-
terodorsal membranous growth

(Jaw)Vomer: arrow or T-shaped

Table 1: Quantiles of pairwise distances between
descriptors before training.

Quantile Trait 1 Trait 2

0.00 (Jaw)Jaw teeth-shape and size gradation:
scarcely curved, moderate anteroposterior grada-
tion in size

(Jaw)Jaw teeth-shape and size gradation:
strongly curved, moderate anteroposterior grada-
tion in size

0.25 (Fin)neural arch PU2: present (Jaw)Form of retroarticular: retroarticular
elongate and rod-shaped, with interopercular-
mandibular ligament attaching at posterior mar-
gin of bone

0.50 (Fin)(H5.) Pectoral attachment rotated; primitive
m̈etapterygial axisẗransverse or oblique to body
axis: pectoral attachment rotated

(Jaw)Fleshy flap anterolaterally on the lower jaw:
present

0.75 (Fin)Paired fins, pelvic girdle and scapulocora-
coids absent in adults: Paired fins, pelvic girdle
and scapulocoracoids absent in adults

(Jaw)Palatine: narrow comma-shaped palatine,
lacking a posterior process

1.00 (Fin)Pectoral fin: rounded, horizontally placed,
posteriormost tip reaching point midway be-
tween pectoral-fin origin and pelvic-fin origin
when adpressed

(Jaw)Palatine: narrow comma-shaped palatine,
lacking a posterior process

Table 2: Quantiles of pairwise distances between
descriptors after training.

4.3 Taxon generalization

Figure 5: Boxplot of the Spearman’s
rank correlation accross different un-
seen taxa. The dashed red line indicates
the average test performance on the ob-
served taxon.

In this experiment we quantify the ranking capabilities to
descriptors from different taxa. Generalizing to other taxa
is important to reduce the need to collect taxon-specific
ontological descriptors. We train the model on trait de-
scriptions pairs within the fish order Characiformes and
test on held-out trait description pairs of distinct fish orders
Siluriformes, Cypriniformes, and Gymnotiformes. Figure
Boxplot of the Spearman’s rank correlation of 200 de-
scriptors from Siluriformes (n=1327009), Cypriniformes
(n=556447), Gymnotiformes (n=679). We sample the 200
descriptors pairs and measure the correlation coefficient.
We repeat this experiment w/o replacement 30 times per
taxon to produce the boxplot. The embedding is done by
a model trained on the Characiformes taxon. Descriptors
from other test taxa do not contain characters from Characi-
formes. The dashed red line indicates the Spearman’s rank
correlation of a Characiformes test samples. With the
exception of "siluriformes" (i.e. catfish), the ordering in
performance matches the evolutionary relationships be-
tween the taxa. We speculate this discrepancy stems from
the specialized morphology exhibited by catfish traits.

5 Conclusion

In this work we propose a novel machine learning method to learn a latent representation of trait
descriptors where similarity metrics in latent space correlate with ontology-based similarity metrics.
We evaluate this methodology on both quantitative and qualitative tasks, suggesting a these repre-
sentations are capturing structure from the ontology. This is important to computational biologists
that seek to derive biological insight from ontology based metrics (e.g. SimGIC) but do not have
access to the ontology representation of a given collection of traits. Instead, we envision they can
embed the collection of traits and aim to derive the same insight using the latent representations
from Trait2Vec. It is important to highlight that the current model has the biases, coverage gaps, and
evolving definitions of a single similarity metric and ontology. Biological conclusions may differ
under alternative metrics (e.g., Jaccard) or other phenotype ontologies. Future work will consider
alternative metrics, as well as embedding spaces with different geometric structure (e.g. Hyperbolic
geometry). It would also be helpful to explore the complementary value Trait2Vec embeddings from
text can provide embeddings from other sources (e.g. BioCLip2 [11] embeddings from Images).
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