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ABSTRACT

Interpretable machine learning has demonstrated impressive performance while
preserving explainability. In particular, neural additive models (NAM) offer the
interpretability to the black-box deep learning and achieve state-of-the-art accuracy
among the large family of generalized additive models. In order to empower
NAM with feature selection and improve the generalization, we propose the sparse
neural additive models (SNAM) that employ the group sparsity regularization
(e.g. Group LASSO), where each feature is learned by a sub-network whose
trainable parameters are clustered as a group. We study the theoretical properties
for SNAM with novel techniques to tackle the non-parametric truth, thus extending
from classical sparse linear models such as the LASSO, which only works on the
parametric truth.
Specifically, we show that the estimation error of SNAM vanishes asymptotically
as n→∞. We also prove that SNAM, similar to LASSO, can have exact support
recovery, i.e. perfect feature selection, with appropriate regularization. Moreover,
we show that the SNAM can generalize well and preserve the ‘identifiability’,
recovering each feature’s effect. We validate our theories via extensive experiments
and further testify to the good accuracy and efficiency of SNAM.

1 INTRODUCTION

Deep learning has shown dominating performance on learning complex tasks, especially in high-stake
domains such as finance, healthcare and criminal justice. However, most neural networks are not
naturally as interpretable as decision trees or linear models. Even to answer fundamental questions
like “what is the exact effect on the output if we perturb the input?”, neural networks oftentimes rely
on complicated and ad-hoc methods to explain the model behavior, with additional training steps and
loose theoretical guarantee. As a result, the black-box nature of neural networks renders difficult and
risky for human to trust deep learning models or at least to understand them.

There is a long line of work studying the interpretable machine learning. At high level, existing
methods can be categorized into two classes: (1) model-agnostic methods, and (2) innately inter-
pretable models. On one hand, model-agnostic methods aim to explain the predictions of models that
are innately black-box, via the feature importance and local approximation, which include Shapley
values (Shapley, 2016; Strumbelj & Kononenko, 2014; Lundberg & Lee, 2017) and LIME (Ribeiro
et al., 2016) as the representatives. On the other hand, directly interpretable models such as the
decision-tree-based models and the generalized additive models (GAM), including the generalized
linear models (GLM, (Nelder & Wedderburn, 1972)) as sub-cases, are the most widely applied and
demonstrate amazing performance. Recently, the neural additive model (NAM) (Agarwal et al., 2020)
introduces a new member into the GAM family, which applies sub-networks to learn fj effectively,
making accurate predictions while preserving the explainable power.
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Figure 1: Architecture of NAM, with each sub-network (blue circle) being a group for Group LASSO
regularization in SNAM. Note that in multi-class, multi-label, and multi-task problems, the last layer
can have multiple neurons.

Yet, theoretical results about NAM on some important questions are missing: Does the convergence
of NAM behave nicely? Does NAM guarantee to learn the true additive model consistently, as sample
size increases? How to modify NAM such as to select features and whether the feature selection is
accurate? Can we expect each sub-network in NAM to recover each fj?

In this paper, we answer these questions in the affirmative. We study the sparse NAM with specific
group sparsity regularization, especially the Group LASSO (Meier et al., 2008; Friedman et al., 2001),
which reduces to NAM when the penalty is zero. We highlight that our SNAM is the first innately
interpretable model that simultaneously uses neural networks and allows feature selection.

For theoretical analysis, we focus on the setting

y =

p∑
j=1

fj (Xj) + ε (1)

where i.i.d. samples Xj ∼ Xj for j ∈ [p] where Xj is some distribution and the noise ε ∼ SG(σ2)
where SG means sub-Gaussian with variance σ2.

2 SNAM: MODEL AND LINEARIZATION REGIME

To analyze To analyze SNAM under the regularization, for the j-th sub-network, we write the
trainable parameters of as Θj (visualized in Figure 1 by the blue circle) and the output as hj . Then
we write the SNAM output as

h(X,Θ) =
∑

j
hj(Xj ,Θj) + β

With these notations in place, we can learn the model via the following SNAM optimization problem
with the Group LASSO regularization and an arbitrary loss L:

min
Θ,β
L
(
y,
∑
j

hj(Xj ,Θj) + β
)
+ λ

∑
j

‖Θj‖2. (2)

Notably, the group structure defined on sub-networks is the key to feature selection in SNAM: it
explicitly penalizes Θj so that the entries in Θj are either all non-zero or all zero. The latter case
happens when λ is large, resulting in the j-th feature to be not selected as hj = 0.

In fact, if each sub-network has only a single parameter βj and no hidden layers at all, then the Group
LASSO penalty is equivalent to the LASSO penalty: ‖βj‖2 = |βj |. Therefore, we view LASSO
as the simplest version of SNAM with Group LASSO regularization. This connection leads to the
theoretical findings in this work, since we will analyze the linearization of SNAM via the random
feature (RF):
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hRF(X,θ) =

p∑
j=1

hRF
j (Xj ,θj) =

p∑
j=1

Gjθj (3)

where θ := [θ1, · · · ,θp] is the last layer, w := [w1, · · · ,wp] are hidden layers, and the random
feature map Gj := gj(Xj ,w(0)) ∈ Rn×m is the forward propagation of the j-th sub-network until
the output layer. Therefore, the corresponding optimization for the RF network is

θ̂RF := argminθL(y,Gθ) + λ
∑
j

‖θj‖2 (4)

where G := [G1, · · · ,Gp] is the concatenation of Gj . In this regime, SNAM is linear in trainable
parameters θ (though non-linear in input X) and is indeed a kernel regression, a topic with rich
theoretical understanding.

3 NON-ASYMPTOTIC ANALYSIS OF SNAM
We study the primal problem

θ̂ := argminθ

1

2
‖y −

∑
j
Gjθj‖22 + λ

∑
j
‖θj‖2 (5)

and equivalently the dual problem

θ̂ := argminθ:∑j ‖θj‖2≤µ
1

2
‖y −

∑
j
Gjθj‖22 (6)

We point out that although the analysis of SNAM is similar to that of LASSO at high level, our
analysis is technically more involved and requires novel tools, due to the fact that the true model (1)
is non-parametric (unlike the LASSO whose true model is parametric).

3.1 SLOW RATE WITH GROUP LASSO PENALTY

Similar to the analysis of slow rate for the LASSO (Wainwright, 2009), our analysis needs SNAM to
overfit the training data under the low-dimensional G regime.
Theorem 3.1. Under Assumption A.1 and Assumption A.2, supposing |fj | is upper bounded by
constant cj and noise ε ∼ SG(σ2), then with probability at least 1− δ1 − δ2, we have for θ̂ in (6),

1

n
‖
∑
j

(fj −Gj θ̂j)‖22 ≤
2σ√
n

(∑
j

cj/
√
δ2 + µmax

j

√
Egj(Xj ,wj(0))2

√
2 log(mj/δ1)

)
where mj is the width of output layer in the j-th sub-network and µ is the penalty coefficient.

The MSE 1
n‖
∑
j(fj −Gj θ̂j)‖22 converges to zero with rate 1/

√
n as n → ∞. We note that the

convergence rate of SNAM has the same order as that of LASSO, but SNAM requires two probability
quantities δ1, δ2 due to the non-parametric true model (1), whereas the LASSO only needs δ1.

3.2 EXACT SUPPORT RECOVERY

The support recovery for parametric models like LASSO is defined on the parameters, e.g. supp(β̂) =
{j : β̂j 6= 0}, supp(β) = {j : βj 6= 0}(Bühlmann & Van De Geer, 2011; Wainwright, 2009;
Tibshirani & Wasserman, 2017). For non-parametric models like SPAM and our SNAM, the support
is instead defined on the functions S = supp(f) = {j : fj 6= 0}. We prove in Appendix B that, with
proper Group LASSO regularization, the SNAM recovers the true supp(f) exactly.
Theorem 3.2. Under a few assumptions ( Assumption A.2, Assumption A.3 and Assumption A.4 in
Appendix A), then

λ > max
j 6∈S
‖G>j ‖∞‖y‖∞/γ

guarantees that the SNAM solution θ̂ in (5) has the exact support recovery, i.e. supp(h) = supp(f).

4 ASYMPTOTIC ANALYSIS OF SNAM

In this section, we study the asymptotic consistency of SNAM and hence indicate its good gener-
alization behavior. Our results build on top of the asymptotic zero loss given by the slow rate in
Theorem 3.1. The proofs can be found in Appendix B.
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4.1 CONSISTENCY

We show in Theorem 4.1 that the SNAM hn, when trained on n samples, converges to the unknown
true model f in a probability measure.
Theorem 4.1. Under the assumptions in Theorem 3.1, we have the convergence in probability
measure:

lim
n→∞

ρ({x ∈ X : |f(x)− hn(x)| ≥ ε}) = 0

for arbitrarily small ε > 0. Here ρ is the probability measure of X , the joint distribution of data X.
In words, the prediction function hn converges to the true model f .

4.2 EFFECT IDENTIFIABILITY

Another more difficult challenge in the generalized additive models is the identifiability of individual
effects, in the sense that we want to have hj → fj for all j ∈ [p].
Theorem 4.2 (Effect Identifiability). Assuming hn → f in probability measure of X as n→∞, if
Xj is independent of X−j , then limn→∞ hn,j(x) converges to fj(x) in probability up to a constant.

5 EXPERIMENTS

We conduct multiple experiments on both synthetic and real datasets. We emphasize that here SNAM
is not RF SNAM, i.e. we train all parameters in sub-networks. We use MSE loss for regression,
cross-entropy (CE) loss for classification, and wall-clock time for all tasks. Furthermore, we compare
SNAM to other sparse interpretable methods: NAM, `1 linear support vector machine (SVM), LASSO
and SPAM (Ravikumar et al., 2009).

5.1 SYNTHETIC DATASETS

To validate our statistical analysis on SNAM, i.e. the feature selection (or support recovery), the
estimation consistency and the effect identifiability, we experiment on synthetic regression and
classification datasets. We emphasize that, it is necessary to work with synthetic data instead of
real-world ones, since we need access to the truth fj for our performance measures.

5.1.1 DATA GENERATION
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Figure 2: Individual effect learned by SNAM on
synthetic regression. Blue dots are prediction
f̂j(Xj) and orange dots are truth fj(Xj), with
j = 1, · · · , 6.

We generate a data matrix X ∈ R3000×24 and
denote the j-th column of X as Xj . y is gen-
erated by the following additive model for a
regression task:

y = f1(X1) + · · ·+ f24(X24) +N (0, 1)

where all fj are zero functions except

f1(x) = 2x2 tanhx,

f2(x) = sinx cosx+ x2,

f3(x) = 20/(1 + e−5 sin x),

f4(x) = 20 sin3 2x− 6 cosx+ x2

5.1.2 PERFORMANCE MEASURES

Denote the output of each sub-network as f̂j .
To illustrate the performance on the support re-
covery, we use precision and recall to compare
f̂j and truth fj . In particular, we use `2 norm
of a sub-network’s weights to indicate whether
f̂j = 0. We define the identification error (iden.
error),

min
cj∈R

1

n
‖f̂j(Xj)− fj(Xj)− cj‖22.
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`1 SVM LASSO SPAM SNAM
MSE loss 140.7 139.7 25.75 10.61
Precision 0.17 1.00 0.17 1.00

Recall 1.00 1.00 1.00 1.00
Iden. error 5.90 6.09 3.07 0.69
Time (sec) 0.005 0.007 152.1 48.52
#. Feature 24 4 4 4
#. Param 24 4 - 127201

Table 1: Performance of sparse interpretable methods on synthetic regression.

5.1.3 RESULTS

In Table 1, for regression task, SNAM domintes existing sparse interpretable methods in all measures.
Especially, SNAM (which includes LASSO as a sub-case) is the only method that achieves exact
support recovery, obtaining perfect precision and recall scores. When facing complicated target
functions, SNAM, as a non-linear model, significantly outperforms linear models like linear SVM and
LASSO, in terms of test loss and identification error. In contrast to SPAM, another non-linear model
that achieves low loss, SNAM outperforms in both loss and efficiency, with a 3 times speed-up. We
further visualize the effects learned by SNAM in Figure 2, demonstrating the strong approximation
offered by the neural networks.

5.2 COMPAS CLASSIFICATION

COMPAS is a widely used commercial tool to predict the recidivism risk based on defendants’
features and it is known for its racial bias against the black defendants. The ProPublica released the
recidivism dataset (Angwin et al., 2016), that includes the characteristics of defendants in Broward
County, Florida, and the predictions on reoffending by the COMPAS algorithm. This dataset has
6172 examples and 13 features 1.
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Figure 3: Variation of effects learned by
SNAM on COMPAS dataset.

A closer look at Figure 3 describes the relations be-
tween features and the variation of effect, which is
gap between the minimum recidivism risk and the
maximum one among all individual samples for a
particular feature, i.e. maxi f̂j(Xij) − mini f̂j(Xij).
If the variation of an effect is large, then SNAM
indicates the feature is significant. Indeed, the
top 5 features selected by SNAM are prior
counts, ages, two year recidivism and whether
the defendant is African American. The last
feature clearly demonstrates SNAM’s explanabil-
ity of the COMPAS algorithm’s racial bias. In
short, the features selected by SNAM are consis-
tent with NAM’s selection based on shape func-
tions.

6 DISCUSSION

For future directions, one may further extend SNAM’s theory to the fast convergence rate (Van
De Geer & Bühlmann, 2009) in sample size, or to the jointly trained SNAM in terms of time. We
believe the theoretical analysis and empirical evaluation can be explored for a whole family of
interesting SNAMs. For example, while SNAM with Group LASSO penalty contains LASSO as
sub-case, we can view SNAM with Group SLOPE (Brzyski et al., 2019) penalty as extension of
SLOPE (Bogdan et al., 2015). Other possible extensions of elastic net (Zou & Hastie, 2005), adaptive
LASSO (Zou, 2006), K-level SLOPE (Zhang & Bu, 2021; Bu et al., 2021) are also possible with
SNAM.

1The data preprocessing follows https://github.com/propublica/compas-analysis.

5

https://github.com/propublica/compas-analysis


ICLR 2022 PAIR2Struct Workshop

REFERENCES

Rishabh Agarwal, Nicholas Frosst, Xuezhou Zhang, Rich Caruana, and Geoffrey E Hinton. Neural
additive models: Interpretable machine learning with neural nets. arXiv preprint arXiv:2004.13912,
2020.

Julia Angwin, Jeff Larson, Surya Mattu, and Lauren Kirchner. Machine bias. propublica, may 23,
2016, 2016.

Małgorzata Bogdan, Ewout Van Den Berg, Chiara Sabatti, Weijie Su, and Emmanuel J Candès.
Slope—adaptive variable selection via convex optimization. The annals of applied statistics, 9(3):
1103, 2015.
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A ASSUMPTIONS OF MAIN RESULTS

Assumption A.1 (Overfitting of SNAM). Denoting the truth fj := fj(Xj), we assume there exists
µ such that

1

n
‖y −

∑
j

Gj θ̂j‖22 ≤
1

n
‖y −

∑
j

fj‖22 =
1

n
‖ε‖22.

To guarantee a unique solution of SNAM, we assume that the SNAM feature map G has full rank.
Assumption A.2 (Full rank of feature map). G ∈ Rn×M has full column rank M and thus G>G ∈
RM×M is invertible.

Here M is the sum of numbers of neurons at the last hidden layer of each sub-network2. Our first
result is the slow rate of the SNAM convergence h(X, θ̂)→ f(X) as n→∞.
Assumption A.3 (Mutual incoherence). For some γ > 0, we have∥∥∥ (G>SGS

)−1
G>SGj

∥∥∥
2
≤ 1− γ, for j /∈ S (7)

where GS is the concatenation of Gj for all j ∈ S.

Next, we assume that the regularization is not too large to omit significant features.
Assumption A.4 (Maximum regularization). The Group LASSO penalty coefficient λ in (5) is small
enough so that the following solution is dense

θ̃S := argminθS

1

2
‖y −

∑
j∈S

Gjθj‖22 + λ
∑
j∈S
‖θj‖2 (8)

B PROOFS OF MAIN RESULTS

B.1 PROOF OF THEOREM 4.3

Proof. By the Lagrange duality, for any penalty λ > 0, there exists some µ > 0 such that the
optimization problem

min
θ

1

2
‖y −

∑
j

Gjθj‖22 + λ
∑
j

‖θj‖2 ≡ min
θ

1

2
‖y −

∑
j

Gjθj‖22 s.t.
∑
j

‖θj‖2 ≤ µ

From Assumption A.1, the minimizer θ̂ satisfies that

1

n
‖ε+

∑
j

(fj −Gj θ̂j)‖22 =
1

n
‖y −

∑
j

Gj θ̂j‖22 ≤
1

n
‖y −

∑
j

fj‖22 =
1

n
‖ε‖22. (9)

Expanding the left-most term,

1

n
‖ε+

∑
j

(fj −Gj θ̂j)‖22 =
1

n
‖ε‖22 +

1

n
‖
∑
j

(fj −Gj θ̂j)‖22 +
2

n

〈
ε,
∑
j

(fj −Gj θ̂j)

〉
Substituting back to (9) and after some rearranging, we get:

1

n
‖
∑
j

(fj −Gj θ̂j)‖22 ≤
2

n

∑
j

〈
ε,Gj θ̂j − fj

〉
≤ 2

n

∑
j

(‖ε>Gj θ̂j‖2 + ‖ε>fj‖2)

≤ 2

n
(
∑
j

‖G>j ε‖∞‖θ̂j‖2 +
∑
j

‖fj‖∞‖ε‖2) ≤
2

n
(
∑
j

‖G>j ε‖∞‖θ̂j‖2 +
∑
j

cj‖ε‖2)

where the third inequality follows by the triangular inequality and the second last inequality holds
by the Holder’s inequality. Note that ‖G>j ε‖∞ = maxk=1,2,··· ,m |(G>j )kε| is a maximum of m

2When all sub-networks have the same architecture, we write M = mp where the last hidden layer width m.
More generally, suppose the j-th sub-network has last hidde layer width mj , then M =

∑
j mj .
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Gaussians. Here (G>j )k ∈ Rn is the k-th feature fed into the output layer of the j-th sub-network.
For each k, (G>j )kε has mean zero and variance

Var((G>j )kε) = σ2E((Gj)
>
k (Gj)k) = nσ2Egj(Xj ,wj(0))

2

By the maximal sub-Gaussian inequality Boucheron et al. (2013), for any δ1 > 0, with probability at
least 1− δ1:

‖G>j ε‖∞ = max
k=1,2,··· ,m

|(Gj)kε| ≤ σ
√
nEgj(Xj ,wj(0))2

√
2 log(mj/δ1).

Furthermore, by Markov’s inequality, with probability at least 1− δ2, we have ‖ε‖22 ≤ E(‖ε‖22)/δ2 =
nσ2/δ2. In summary, we obtain

1

n
‖
∑
j

(fj −Gj θ̂j)‖22 ≤
2

n
(
∑
j

‖G>j ε‖∞‖θ̂j‖2 +
∑
j

cj‖ε‖2)

≤ 2σ√
n
(µmax

j

√
Egj(Xj ,wj(0))2

√
2 log(mj/δ1) +

∑
j

cj/
√
δ2)

B.2 PROOF OF THEOREM 4.7
We assume each sub-network has the same architecture, with last layer width m.

Proof. We construct and study a specific vector θ̃ ∈ R|S|m×1 by setting θ̃S as in (8) and θ̃j = 0 for
j 6∈ S: denoting the complement set of S as SC), we have:

θ̃S = argminθS

1

2
‖y −

∑
j∈S

Gjθj‖22 + λ
∑
j∈S
‖θj‖2 and θ̃SC = 0.

From Assumption A.4 (maximum regularization), we have that θ̃S is dense, i.e. θ̃j 6= 0 for all j ∈ S.
Therefore, if the constructed θ̃ is indeed the SNAM solution θ̂ in (5), then supp(h) ⊇ supp(f).
Further, θ̃SC = 0 leads to supp(h) = S = supp(f).

Next, we check that the constructed θ̃ is indeed the solution of SNAM in (5) via the KKT condition,
which requires that for all j ∈ [p],

G>j (
∑p

l=1
Glθ̃l − y) + λsj = G>j (GS θ̃S − y) + λsj = 0 (10)

Here sj is the subgradient of ‖θ̃j‖2, which is θ̃j/‖θ̃j‖2 if θ̃j 6= 0 and otherwise within a unit sphere.
The first equality of (10) follows by the construction θ̃SC = 0. We break (10) into the support set S
and its complement SC ,

G>S

(
y −GS θ̃S

)
= λsS (11)

G>SC

(
y −GS θ̃S

)
= λsSC (12)

Notice that if both KKT conditions (11) and (12) are satisfied by θ̃, then θ̃ = θ̂. For j ∈ S, the KKT
condition in (11) is the same as that of (8) and hence satisfied by the definition of θ̃S . For j 6∈ S, our
goal is to show ‖sj‖2 < 1, which is a sufficient condition to guarantee θ̃SC = 0 and thus to satisfy
the KKT condition (12).

To show ‖sj‖2 < 1, we can solve θ̃S from (11), leveraging the full rank of G>SGS ∈ R|S|m×|S|m
from Assumption A.2, and obtain

θ̃S =
(
G>SGS

)−1 (
G>S y − λsS

)
Substituting the formula of θ̃S into (12) and denoting PS := I−GS

(
G>SGS

)−1
G>S , we get

sSC =
1

λ
G>SCPSy + G>SCGS

(
G>SGS

)−1
sS

9
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For j 6∈ S, taking the `2 norm and applying the triangular inequality give

‖sj‖2 ≤
1

λ

∥∥G>j PSy
∥∥
2
+
∥∥∥G>j GS

(
G>SGS

)−1
sS

∥∥∥
2

(13)

Applying the Holder’s inequality to the second term in (13) gives∥∥∥G>j GS

(
G>SGS

)−1
sS

∥∥∥
2
≤
∥∥∥G>j GS

(
G>SGS

)−1∥∥∥
2
‖sS‖∞ < 1− γ

where the inequality follows from Assumption A.3 (mutual incoherence).

Regarding the first term in (13), unlike in the LASSO support recovery analysis Wainwright (2009)
where the maximal inequality is directly applicable, we seek new tools since

{∥∥∥G>j PSy
∥∥∥
2

}
are

non-centered random variables. We apply the Holder’s inequality to the first term in (13),
1

λ

∥∥∥G>j PSy
∥∥∥
2
≤ 1

λ

∥∥∥G>j ∥∥∥∞∥∥∥PS

∥∥∥
2

∥∥∥y∥∥∥
∞
≤ 1

λ

∥∥∥G>j ∥∥∥∞∥∥∥y∥∥∥∞
in which the last inequality follows from the fact that PS is a projection matrix with ‖PS‖2 ≤ 1.

All in all, we have

max
j 6∈S
‖sj‖2 ≤

1

λ
max
j 6∈S

∥∥∥G>j ∥∥∥∞∥∥∥y∥∥∥∞ + 1− γ

and therefore, if λ > max
j 6∈S
‖G>j ‖∞‖y‖∞/γ, then SNAM recovers the true support exactly.

B.3 PROOFS IN SECTION 5

Proof of Theorem 5.1. From Theorem 3.1, we see that 1
n‖f(x)− hn(x)‖

2
2 = Op(1/

√
n) = op(1).

To prepare the proof of the convergence in probability measure, we consider the probaility space
consisting of (X , E, ρ), where X is the sample space, E is the event space, and ρ is the probability
measure. Defining the events Sn := {x ∈ X : |f(x)− hn(x)| ≥ ε}, we have Sn ∈ E.

We will prove the theorem by contradiction. If there exists an ε > 0 such that for any N, δ > 0, there
is some nN > N such that ρ({x ∈ X : |f(x)− hn(x)| ≥ ε}) > δ.

However, since
1

n
‖f(x)− hn(x)‖22 =

1

n

n∑
i=1

(f(xi)− hn(xi))22 ≥
1

n

∑
xi∈Sn

(f(xi)− hn(xi))22

=
1

n

n∑
i=1

I(xi ∈ Sn)(f(xi)− hn(xi))22 ≥
ε2

n

n∑
i=1

I(xi ∈ Sn)

Denote each random variable I(xi ∈ Sn) := Zn,i. Together they constitute a row-wise i.i.d. triangular
array. Since supn E(Z2

n,i) ≤ 1 <∞, by applying the weak law of large number for triangular array
(Durrett, 2019, Theorem 2.2.11), we obtain

1

n
‖f(x)− hn(x)‖22 ≥

ε2

n

n∑
i=1

I(xi ∈ Sn)
p→ ε2P(x ∈ Sn) > ε2δ

This contradicts with the asymptotic zero estimation MSE, i.e. 1
n‖f(x)− hn(x)‖

2
2
p→ 0.

Proof of Theorem 5.2 . Following the proof of Theorem 4.1, we know for any ε > 0, δ > 0, there
exists N such that for any nN > N , we have ρ({x ∈ X : |f(x) − hn(x)| ≥ ε}) < δ and denote
Sn(ε) := {x ∈ X : |f(x) − hn(x)| ≥ ε}. We further denote SCn,j := {x−j : (xj , x−j) ∈ SCn }
where SCn is the complement of Sn.

Under the condition that Xj is independent of X−j , we take the expectation with respect to X−j ,
using the marginal density as p−j :∫

SC
n,j

f(X )p−j(u)du =

∫
SC
n,j

(fn,j(Xj) + fn,−j(u))p−j(u)du = fn,j(Xj) + cj,1

Notice that this integral is also bounded between
∫
SC
n,j

(hn,j(Xj) + hn,−j(u) ± ε)p−j(u)du =

P(X−j ∈ SCn,j)(hn,j(Xj)± ε) + cj,2. The probability P(X−j ∈ SCn,j) goes to 1 as δ → 0. Further,

as ε→ 0, we have hn,j(Xj)
p→ f(Xj) + cj for some constant cj .
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