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ABSTRACT

The “Heatmap + Monte Carlo Tree Search (MCTS)” paradigm has recently
emerged as a prominent framework for solving the Traveling Salesman Prob-
lem (TSP). While considerable effort has been devoted to enhancing heatmap
sophistication through advanced learning models, this paper rigorously examines
whether this emphasis is justified, assessing the relative impact of heatmap com-
plexity versus MCTS configuration. Our extensive empirical analysis across diverse
TSP scales, distributions, and benchmarks reveals two pivotal insights: 1) The
configuration of MCTS strategies strongly influences solution quality, underscor-
ing the importance of systematic tuning to achieve optimal results and enabling
valid comparisons among different heatmap methodologies. 2) A rudimentary,
parameter-free heatmap based on the intrinsic k-nearest neighbor structure of TSP
instances, when coupled with an optimally tuned MCTS, can match or surpass
the performance of more sophisticated, learned heatmaps, demonstrating robust
generalizability on problem scale and distribution shifts. To facilitate rigorous
and fair evaluations in future research, we introduce a streamlined pipeline for
standardized MCTS hyperparameter tuning. Collectively, these findings challenge
the prevalent assumption that heatmap complexity is the primary determinant of
performance, advocating instead for a balanced integration and comprehensive
evaluation of both learning and search components within this paradigm.

1 INTRODUCTION

The Traveling Salesman Problem (TSP) remains a fundamental challenge in combinatorial opti-
mization, drawing considerable interest from theoretical and applied research communities. As an
NP-hard problem, the TSP serves as a crucial benchmark for evaluating novel algorithmic strategies
for finding optimal or near-optimal solutions efficiently (Applegate et al., 2009). Its practical sig-
nificance spans logistics, transportation, manufacturing, and telecommunications, where efficient
routing is paramount for cost minimization and operational improvement (Helsgaun, 2017; Nagata
and Kobayashi, 2013). Recent machine learning advancements have spurred new methodologies for
tackling TSP, notably the “Heatmap + Monte Carlo Tree Search (MCTS)” paradigm (Fu et al., 2021).
Leveraging learned heatmaps to guide MCTS in refining solutions, this approach has demonstrated
success on large-scale instances and inspired a proliferation of methods (Qiu et al., 2022; Sun and
Yang, 2023; Min et al., 2024). This rapid development signals a maturing field where systematic
evaluation, comparison, and validation of emerging techniques are increasingly essential.

Within this “Heatmap + MCTS” framework, a primary research thrust has centered on enhancing
heatmap generation, often through increasingly sophisticated learning models, from supervised
learning (Fu et al., 2021) to diffusion models (Sun and Yang, 2023). The underlying assumption is
often that heatmap sophistication directly translates to superior solution quality. But is this pursuit
of complexity the only, or even optimal, path to performance gains? Has the impact of MCTS
configurations—the search component responsible for translating heatmap guidance into concrete
solutions—been fully acknowledged and systematically investigated? Although numerous solvers
have emerged claiming performance improvements, there remains a lack of evaluation-centered
scrutiny regarding the actual influence of the MCTS component and the true necessity of intricate
heatmap designs. Our work aims to address this gap, challenging the potential cognitive bias that
“more complex heatmaps consistently lead to better performance” and providing clarity for researchers
and practitioners.

1
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This work presents a rigorous, evaluation-centered analysis of the “Heatmap + MCTS” paradigm for
TSP. Our primary objective is to examine the deep impact of MCTS configurations and re-evaluate
the necessity of heatmap complexity. The central argument of our evaluation is twofold: first, that
strategic MCTS calibration substantially influences solution quality, demanding meticulous attention;
and second, that our proposed GT-Prior—a simple, parameter-free k-nearest neighbor heatmap—can
rival or even surpass complex learned heatmaps while also demonstrating strong generalization ability.
Our evaluation spans various heatmap generation methods, from sophisticated learning-based models
to this GT-Prior, and scrutinizes diverse MCTS hyperparameter settings. The empirical validation
is performed on TSP instances of varying scales (TSP-500, TSP-1000, and TSP-10000), covering
diverse problem structures through various synthetic distributions (including uniform, clustered,
explosion, and implosion) and established real-world TSPLIB benchmarks.

The novelty of this paper lies not in proposing a new state-of-the-art solver, but in the rigor of its
evaluation process and the critical insights derived. Our contributions are primarily evaluative:

• We empirically quantify and thereby reveal the often-underestimated significance of MCTS
configurations in optimizing TSP solutions. Fine-tuning MCTS parameters such as explo-
ration constant and node expansion criteria demonstrably impacts solution quality, urging a
re-prioritization in algorithm design.

• We challenge the prevailing emphasis on heatmap complexity by demonstrating that a simple,
parameter-free heatmap grounded in the k-nearest neighbor nature of TSP (termed GT-Prior
in this work) exhibits strong performance and generalizability across diverse problem scales
when combined with an optimized MCTS. This baseline serves to assess the added value of
more intricate heatmap models.

• We introduce a streamlined MCTS hyperparameter tuning pipeline, offering a practical tool to
facilitate fairer and more robust comparisons in future research on heatmap designs.

These findings collectively advocate for a more holistic understanding and balanced integration of
learning and search components within the “Heatmap + MCTS” paradigm. Our work seeks to guide
future research towards frameworks that synergistically harness both components, leading to more
efficient, robust, and practically deployable TSP solvers, all while aligning with the foundational
motivation of this research line: to better solve large-scale TSP by any means.

2 HEATMAP + MCTS: BACKGROUND AND CURRENT PERSPECTIVES

This section outlines the foundations of the “Heatmap + Monte Carlo Tree Search” paradigm for
solving the Traveling Salesman Problem. We formalize the TSP and its heatmap representation,
describe the adapted MCTS framework, review key methodological developments, and examine the
current perspectives that motivate our evaluation.

2.1 TRAVELING SALESMAN PROBLEM DEFINITION

The Traveling Salesman Problem (TSP) is a classic combinatorial optimization problem defined over
a set of N points I = {(xi, yi)}Ni=1 in the Euclidean plane, where each point denotes a city located at
coordinates (xi, yi) ∈ [0, 1]2. The Euclidean distance between any two cities i and j is calculated by
dij =

√
(xi − xj)2 + (yi − yj)2. The objective is to find the shortest closed tour that visits each city

exactly once. This optimal tour is represented as a permutation π∗ = (π∗
1 , π

∗
2 , . . . , π

∗
N ), minimizing

the total length:

L(π∗) =

N−1∑
i=1

dπ∗
i π∗

i+1
+ dπ∗

N
π∗
1
. (1)

The performance of a feasible solution π is measured using the optimality gap:

Gap =

(
L(π)

L(π∗)
− 1

)
× 100%. (2)

In the “Heatmap + MCTS” paradigm, the solution process is guided by a heatmap PN ∈ [0, 1]N×N ,
where each entry PN

ij represents the estimated probability that edge (i, j) appears in the optimal tour.
This heatmap serves as a probabilistic prior that informs the subsequent search process.

2
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2.2 THE MONTE CARLO TREE SEARCH FRAMEWORK FOR TSP

Originally introduced by Fu et al. (2021) to integrate learned heatmap priors with Monte Carlo search,
this MCTS framework has become the de facto search backbone for heatmap-guided TSP solvers.
MCTS formulates the TSP as a Markov Decision Process (MDP), where each state represents a valid
tour and actions correspond to k-opt moves modifying the current solution. While many follow-up
studies have reused its core procedure with only superficial adjustments, few have explored deeper
search-centric refinements.

In this framework, the search begins by constructing an initial tour: edges are sampled with probability
proportional to eP

N
ij , where PN is the heatmap prior. The edge weight matrix W is initialized as

Wij = 100 · PN
ij , the access frequency matrix Q is set to zero, and the overall move counter M starts

at zero. Each node in the TSP graph maintains a candidate set to constrain future edge selections.
During each simulation, a set of k-opt moves is generated and evaluated using the potential function
in Equation (3), guiding the search toward higher-quality tours through repeated updates and restarts.

Zij =
Wij

Ωi
+ α

√
ln(M + 1)

Qij + 1
, (3)

where Ωi =
∑

j ̸=i Wij normalizes the edge weights from node i, and α is an exploration coefficient.
Edges with higher potential are more likely to be selected.

If a generated move yields a shorter tour (∆L < 0), it is accepted and applied. Otherwise, the search
restarts from a newly sampled initial tour. After each move, MCTS updates the edge weights to
reflect the observed improvement:

Wij ←Wij + β

(
exp

(
L(π)− L(π′)

L(π)

)
− 1

)
, (4)

where β is the learning rate. The access matrix Q is incremented for all modified edges. The process
iterates until a fixed time limit is reached, at which point the best tour encountered is returned.

2.3 EVOLUTION AND PREVAILING RESEARCH IN HEATMAP-GUIDED MCTS

The “Heatmap + MCTS” framework, introduced by Fu et al. (2021), marked a significant shift in TSP
research by pairing neural heatmap predictions with Monte Carlo Tree Search. Their method used
attention-based GCNs to estimate edge probabilities, which then guided a stochastic search to build
high-quality tours. This design has inspired numerous variants focused on refining heatmap quality.

Subsequent efforts introduced more sophisticated models to enhance generalization and structure
awareness. DIMES employed meta-learned GNNs (Qiu et al., 2022); DIFUSCO leveraged diffusion-
based generative models (Sun and Yang, 2023); and UTSP proposed an unsupervised learning
strategy (Min et al., 2024). More recently, SoftDist (Xia et al., 2024) explored a simpler, distance-
based heatmap, reflecting growing skepticism toward model complexity.

However, while heatmap design has seen continuous innovation, the search component—MCTS—has
received comparatively less attention. Most prior works adopt default configurations with minimal
tuning, and few report the impact of auxiliary steps such as sparsification or additional supervision.
As a result, the actual contribution of MCTS to overall performance remains under-investigated.

2.4 CURRENT PERSPECTIVES AND POTENTIAL OVERSIGHTS

This disparity in research focus reflects several implicit views that have shaped the paradigm: 1) that
heatmap complexity is the primary driver of performance, justifying the emphasis on model sophisti-
cation; 2) that default or minimally tuned MCTS configurations are sufficient for fair comparison,
suggesting the search process is either secondary or robust by design; 3) that MCTS itself is well
understood, with its impact assumed to be stable across different problem scales and heatmap types.

We challenge these views through systematic evaluation. Our results show that MCTS tuning plays
a pivotal role—often matching or exceeding the effect of heatmap refinement—and that a simple,
parameter-free prior can outperform complex models when coupled with optimized search. These
findings argue for a more balanced and transparent evaluation framework in future work.

3
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3 EVALUATION METHODOLOGY

This section outlines our experimental framework for a rigorous evaluation of the “Heatmap + MCTS”
paradigm in solving the TSP. We aim to assess the distinct contributions of heatmap quality and
MCTS configuration to solver performance, ensuring fair and robust comparisons.

3.1 EVALUATION OBJECTIVES

Our evaluation is structured to answer three central questions:

Q1: To what extent does the configuration of the MCTS component influence solution quality when
applied to diverse heatmap generation techniques?

Q2: Can a simple, parameter-free heatmap with an optimally tuned MCTS match or surpass complex
learned heatmaps using default MCTS settings?

Q3: Which MCTS hyperparameters are most influential, and how does their impact vary with
heatmap type and problem scale?

Addressing these questions requires a methodology that isolates MCTS effects for accurate perfor-
mance attribution.

3.2 ENSURING FAIR COMPARISONS

Comparing “Heatmap + MCTS” TSP solvers is challenging as MCTS performance can be a con-
founding factor. Fixed MCTS settings in prior work may obscure true heatmap efficacy, as MCTS
parameters significantly impact solution quality. A sophisticated heatmap might underperform with
poorly tuned MCTS, while a simpler one could excel with optimized search.

To ensure fairness, our methodology mandates dedicated MCTS hyperparameter tuning for each
evaluated heatmap. This optimizes the search strategy for each heatmap’s characteristics, enabling a
more accurate assessment of its intrinsic value.

3.3 MCTS HYPERPARAMETER TUNING PIPELINE

We employ a streamlined MCTS hyperparameter tuning pipeline for standardized and reproducible
evaluations across different heatmap methods and TSP scales.

Tuning Method. The pipeline uses grid search over key MCTS hyperparameters. For each heatmap
and problem scale (TSP-500, TSP-1000, TSP-10000), configurations are evaluated on a dedicated
tuning dataset of synthetic TSP instances. The configuration yielding the best average optimality gap
is selected for subsequent test evaluations. This tuning is performed independently for each heatmap.

Key MCTS Hyperparameters. Based on prior literature (Fu et al., 2021; Min et al., 2024; Xia
et al., 2024) and our own empirical sensitivity analysis, we tune the following key hyperparameters:

• Alpha: Exploration coefficient (Equation (3)).
• Beta: Edge weight update aggressiveness (Equation (4)).
• Max_Depth: Maximum k for k-opt moves.
• Max_Candidate_Num: Candidate edge set size per node.
• Param_H: MCTS simulations per move.
• Use_Heatmap: Boolean for using heatmap or not for initial candidate set construction.

The search space for these parameters is detailed in the Table 12 in Appendix I.

3.4 ANALYTICAL TOOLS FOR HYPERPARAMETER IMPORTANCE

To quantify each MCTS hyperparameter’s influence on solution quality, we use SHapley Additive
exPlanations (SHAP) (Lundberg and Lee, 2017; Lundberg et al., 2020). SHAP values, derived
from game theory, attribute performance contributions to each parameter, providing model-agnostic
insights into their importance.

4
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Figure 1: Beeswarm plots of SHAP values for three different heatmaps. MD: Max_Depth, MCN:
Max_Candidate_Num, H: Param_H, UH: Use_Heatmap. Each dot represents a feature’s
SHAP value for one instance, indicating its impact on the TSP solution length. The x-axis shows
SHAP value magnitude and direction, while the y-axis lists features. Vertical stacking indicates
similar impacts across instances. Wider spreads suggest greater influence and potential nonlinear
effects. Dot color represents the corresponding feature value.

3.5 EXPERIMENTAL SETUP

Heatmap Methods Evaluated. Our framework is applied to diverse heatmap techniques:

• Learning-based: Att-GCN (Fu et al., 2021), DIMES (Qiu et al., 2022), DIFUSCO (Sun and
Yang, 2023), UTSP (Min et al., 2024).

• Distance-based parameterized: SoftDist (Xia et al., 2024).
• Baselines: A non-informative Zero heatmap and our proposed GT-Prior (Section 5.1).

Pretrained models or generation code are sourced from original authors where possible.

Datasets. Experiments use synthetic TSP instances (sizes 500, 1000, 10000) with a distinct tuning
set for each size (128 instances for TSP-500/1000, 16 for TSP-10000; cities sampled uniformly from
[0, 1]2) and test sets sourced from Fu et al. (2021). Generalization is assessed on varied distributions
generated following Fang et al. (2024) and TSPLIB (Reinelt, 1991) benchmarks. Ground-truth
solutions were obtained from Concorde (Applegate et al., 2009) (TSP-500/1000) or LKH-3 (Helsgaun,
2017) (TSP-10000).

Evaluation Metrics. 1) Optimality Gap (Gap): Relative solution quality to best-known tours, as in
Equation (2); 2) Improvement: Gap reduction post-tuning versus default MCTS settings; 3) Time:
Heatmap generation + MCTS execution (with MCTS time controlled by Time_Limit).

Computational Environment. All experiments were run on an AMD EPYC 9754 128-Core CPU
with 256 GB of memory. MCTS runtime per instance is Time_Limit×N seconds.

This methodology underpins the analyses and conclusions presented subsequently.

4 COMPONENT IMPACT I: THE CRITICAL ROLE OF MCTS CONFIGURATION

This section presents the empirical analysis of MCTS hyperparameter impact, leveraging the eval-
uation framework and tuning pipeline detailed in Section 3.3. We first examine the sensitivity and
importance of individual MCTS hyperparameters and then quantify the performance gains achieved
through their systematic tuning.

4.1 MCTS HYPERPARAMETER SENSITIVITY AND IMPORTANCE

The MCTS hyperparameter tuning pipeline was executed using the search space specified in Table 12
in Appendix H. This space includes configurations inspired by prior works (Fu et al., 2021; Min
et al., 2024; Xia et al., 2024) and algorithmic analysis, with default settings highlighted in bold. The
impact of these MCTS configurations on TSP solution quality was subsequently analyzed using
SHAP values, which attribute performance changes to individual hyperparameters. Positive SHAP

5
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Figure 2: Box plots of the optimality gap (%) for various heatmap sources, scales, and MCTS settings.

values suggest an increase in solution length (worse performance), while negative values indicate a
reduction (better performance).

Figure 1 presents the SHAP value distributions for key MCTS hyperparameters across three rep-
resentative heatmap models (Att-GCN, UTSP, and SoftDist) on TSP-500 instances. Additional
plots for other models and problem sizes are provided in Appendix E. The Max_Candidate_Num
parameter consistently demonstrates a strong, often positive, impact across these models, suggesting
that reducing the candidate set size from very large defaults can improve both computational speed
and solution quality. Max_Depth generally exhibits positive SHAP values, indicating that exces-
sively deep k-opt explorations within MCTS can sometimes be detrimental to finding good solutions
quickly. The parameters Alpha (exploration coefficient) and Use_Heatmap (determining initial
candidate set construction) show mixed effects, revealing non-linear interactions where their optimal
values and impact depend on the specific heatmap being used. For instance, Beta (edge weight
update aggressiveness) shows a notable positive influence in the SoftDist model, implying that its
default update strategy might be suboptimal. Conversely, Param_H (MCTS simulations per move)
generally demonstrates minimal overall influence across the examined heatmaps within the tested
ranges. These findings directly address Q3, pinpointing influential MCTS hyperparameters and the
context-dependent nature of their effects.

4.2 QUANTIFYING PERFORMANCE GAINS FROM MCTS TUNING

To quantify the impact of MCTS configuration, we tuned hyperparameter sets within the given search
space and report their performance spectrum. The Time_Limit for MCTS was set to 0.1 for
TSP-500 and TSP-1000, and 0.01 for TSP-10000. Performance is reported as the Optimality Gap
(Gap). UTSP is not evaluated on TSP-10000 due to unavailability of corresponding heatmaps. The
Zero heatmap’s tuning involved setting Use_Heatmap to False1.

Figure 2 illustrates the critical role of MCTS hyperparameter tuning, directly answering Q1 by
demonstrating the extent to which MCTS configuration determines final solution quality across
diverse heatmap generation techniques. This impact is evident in the vast performance gap between
best-tuned (green circles) and worst-tuned (red ‘x’) configurations; for instance, DIMES on TSP-
10000 ranges from a 4.86% gap to a crippling 91.31% based on MCTS settings alone. Consequently,
default MCTS configurations (blue stars) are often far from optimal. Dedicated tuning yields
significant gains: SoftDist on TSP-500, for instance, saw its gap improve from 1.12% to 0.22%, and
the Zero heatmap on TSP-1000 from 5.49% to 1.06%. Even sophisticated heatmaps like DIFUSCO,
despite a strong default performance (0.20% gap on TSP-500), still benefit from tuning (achieving
0.09%) and can be severely degraded by poor MCTS choices (worst-tuned gap of 3.62%). These
observations highlight that careful MCTS configuration is essential to unlock the true potential of any
heatmap, elevating the performance of both complex and basic priors.

In essence, Figure 2 reveals that MCTS configuration is a dominant performance factor. Effective
tuning is not only beneficial but crucial, capable of substantially elevating solution quality for all
types of heatmaps and enabling even basic priors to achieve strong results. This underscores the
necessity of our streamlined MCTS tuning pipeline (Section 3.3) for rigorous evaluations and realizing

1For the Zero heatmap, Use_Heatmap was set to False, as it provides no instance-specific information.
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optimal solver performance. The specific MCTS configurations yielding the best-tuned results are in
Appendix H.

This one-time hyperparameter tuning (conducted via grid search) is a pre-computation step compara-
ble in effort to training many learning-based heatmap methods and does not affect the MCTS inference
time. Further tuning efficiencies can be realized through parallelization or advanced hyperparameter
optimization algorithms like SMAC3 (Lindauer et al., 2022), as discussed in Appendix I.

5 COMPONENT IMPACT II: RE-EVALUATING HEATMAP SOPHISTICATION
WITH A RIGOROUS BASELINE

While Section 4 established the critical role of MCTS configuration, this section evaluates the
prevailing view that increasingly sophisticated heatmap models are the primary drivers of performance
in the “Heatmap + MCTS” TSP paradigm. We introduce and evaluate a simple, parameter-free
baseline, GT-Prior, derived from the intrinsic k-nearest neighbor structure of TSP solutions. By
comparing GT-Prior (with optimized MCTS) against complex learned heatmaps, we assess whether
the pursuit of heatmap complexity consistently yields justifiable performance gains, especially when
the search component is already operating effectively, providing an answer to Q2. This analysis aims
to provide a clearer perspective on the added value of intricate heatmap models and advocate for the
inclusion of strong, simple baselines in future methodological comparisons.

5.1 THE k-NEAREST PRIOR IN TSP
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Figure 3: Empirical distribution of k-nearest
neighbor selection in optimal TSP tours

The k-nearest prior in TSP posits that optimal tour
edges predominantly connect a city to one of its clos-
est neighbors. This empirical observation has been
implicitly used in constructing sparse graph inputs
for learning models (Fu et al., 2021; Sun and Yang,
2023; Min et al., 2024), yet its direct use as a primary
heatmap source has been less explored.

To elucidate the k-nearest prior, we conducted a com-
prehensive analysis of (near-) optimal solutions for
TSP instances of various sizes. Given a set of TSP
instances I, for each instance I ∈ I and its optimal
solution, we calculate the rank of the nearest neigh-
bors for the next city: k ∈ {1, 2, ..., N}, and count
their occurrences nI

k, where nI
k represents the num-

ber of selecting the k-nearest cities in an instance’s
optimal solution. We then calculate the distribution:

PI
N (k) =

nI
k

N
, k ∈ {1, 2, ..., N} (5)

and average these distributions across all instances to derive the empirical distribution:

P̂N (k) =
1

|I|
∑
I∈I

PI
N (k), k ∈ {1, 2, ..., N}. (6)

To quantify this prior empirically, we analyzed (near-)optimal solutions for uniform TSP instances of
varying sizes (TSP-500, TSP-1000 using Concorde; TSP-10000 using LKH-3). For each instance I
from a set I , and its (near-)optimal tour, we computed the frequency nI

k with which an edge connects

to the k-th nearest neighbor. The averaged empirical distribution P̂N (k) = 1
|I|

∑
I∈I

nI
k

N is shown in
Figure 3. The results reveal a strong locality: the probability of selecting one of the top 5 nearest
neighbors exceeds 94%, rising above 99% for the top 10. This distribution is highly consistent
across TSP scales, a finding that also holds for instances from different underlying distributions (see
Appendix J for similar results).

Leveraging insights from the optimal solution, we construct the heatmap by assigning probabilities
to edges based on the empirical distribution of the k-nearest prior P̂N (·). For each city i in a TSP
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Table 1: Results on large-scale TSP problems. Abbreviations: RL (Reinforcement learning), SL
(Supervised learning), UL (Unsupervised learning), AS (Active search), G (Greedy decoding), S
(Sampling decoding), BS (Beam-search). * indicates baseline for performance gap. † indicates
methods using heatmaps of test set from Xia et al. (2024) with our MCTS setup. Some methods
show two Time terms (heatmap generation and MCTS runtimes). MCTS times denote the equivalent
sequential runtime per instance. Concorde and Gurobi results are sourced from Fu et al. (2021); Qiu
et al. (2022).

METHOD TYPE
TSP-500 TSP-1000 TSP-10000

LENGTH ↓ GAP ↓ TIME ↓ LENGTH ↓ GAP ↓ TIME ↓ LENGTH ↓ GAP ↓ TIME ↓
CONCORDE OR(EXACT) 16.55∗ — 17.65S 23.12∗ — 3.12M N/A N/A N/A
GUROBI OR(EXACT) 16.55 0.00% 21.39M N/A N/A N/A N/A N/A N/A
LKH-3 (DEFAULT) OR(HEURISTIC) 16.55 0.00% 14.84S 23.12 0.00% 1.02M 71.77∗ — 28.73M

ZERO MCTS 16.66 0.66% 0.00M+
50.06S

23.39 1.16% 0.00M+
1.67M

74.50 3.80% 0.00M+
16.65M

ATT-GCN† SL+MCTS 16.66 0.69% 0.52M+
50.06S

23.37 1.09% 0.73M+
1.67M

73.95 3.03% 4.16M+
16.65M

DIMES† RL+MCTS 16.66 0.43% 0.97M+
50.06S

23.37 1.11% 2.08M+
1.67M

73.97 3.06% 4.65M+
16.65M

UTSP† UL+MCTS 16.69 0.90% 1.37M+
50.06S

23.47 1.53% 3.35M+
1.67M

— — —

SOFTDIST† SOFTDIST+MCTS 16.62 0.43% 0.00M+
50.06S

23.30 0.80% 0.00M+
1.67M

73.89 2.95% 0.00M+
16.65M

DIFUSCO† SL+MCTS 16.60 0.33% 3.61M+
50.06S

23.24 0.53% 11.86M+
1.67M

73.47 2.37% 28.51M+
16.65M

FAST-T2T SL+MCTS 16.57 0.12% 0.50M+
50.06S

23.27 0.65% 1.78M+
1.67M

74.80 4.22% 7.73M+
16.65M

GT-PRIOR PRIOR+MCTS 16.63 0.50% 0.00M+
50.06S

23.31 0.85% 0.00M+
1.67M

73.31 2.14% 0.00M+
16.65M

instance of size N , we assign probabilities to edges (i, j) as follows:

PN
ij = P̂N (kij), kij ∈ {1, 2, ..., N} (7)

where kij is the rank of city j among i’s neighbors in terms of proximity (see the detailed statistical
results in Appendix L). Importantly, this heatmap is parameter-free and scale-independent, thus
requiring no tuning or learning phase.

5.2 PERFORMANCE DEMONSTRATION: CHALLENGING COMPLEXITY

We evaluated GT-Prior against various heatmap methods, all coupled with MCTS configurations
tuned according to our pipeline (Section 3.3). This ensures that comparisons reflect the heatmap’s
intrinsic quality when its search partner is optimized, rather than differences in MCTS efficacy.

As shown in Table 1, GT-Prior, a simple parameter-free heatmap, when combined with an optimally
tuned MCTS, achieves performance highly competitive with, and in some cases (TSP-10000) superior
to, far more complex learning-based heatmap generators like DIFUSCO. For TSP-500, TSP-1000,
and TSP-10000, GT-Prior yields optimality gaps of 0.50%, 0.85%, and 2.13%, respectively. This
performance is achieved with no heatmap generation time at inference, similar to SoftDist and Zero.

Critically, the Zero heatmap, providing no edge guidance, still achieves respectable gaps (e.g., 0.66%
for TSP-500) solely through tuned MCTS (where Use_Heatmap is optimally set to False, relying
on distance for candidate selection). This underscores the substantial impact of the search component
itself. The strong showing of GT-Prior and even the tuned Zero heatmap challenges the narrative
that gains in TSP solutions primarily hinge on increasing heatmap model sophistication. It suggests
that much of the solution quality can be attributed to a well-calibrated search process acting on
fundamental problem characteristics, a point potentially understated in evaluations that do not tune
MCTS for simpler baselines.

5.3 GENERALIZATION ABILITY: ROBUSTNESS OF SIMPLICITY

We further assessed the generalization of GT-Prior by applying the prior derived from TSP-500 data to
larger TSP instances (TSP-1000, TSP-10000), as well as different distributions (derived from uniform
and tested on other distributions), comparing against learned models under the same cross-scale
evaluation.
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Table 2: Generalization performance of different methods trained on TSP-500 across varying TSP
sizes (TSP-500, TSP-1000, TSP-10000). “Res Type” refers to the result type: “Ori.” indicates
the performance on the same scales during the test phase, while “Gen.” represents the model’s
generalized performance on different scales.

METHOD RES TYPE
TSP-500 TSP-1000 TSP-10000

GAP ↓ DEGENERATION ↓ GAP ↓ DEGENERATION ↓ GAP ↓ DEGENERATION ↓
DIMES ORI./GEN. 0.43%/0.43% 0.00% 1.11%/1.19% 0.08% 3.05%/4.29% 1.24%
UTSP ORI./GEN. 0.90%/0.90% 0.00% 1.53%/1.44% -0.09% — —
DIFUSCO ORI./GEN. 0.33%/0.33% 0.00% 0.53%/0.86% 0.33% 2.36%/5.27% 2.91%
SOFTDIST ORI./GEN. 0.43%/0.43% 0.00% 0.80%/0.97% 0.17% 2.94%/3.90% 0.96%
GT-PRIOR ORI./GEN. 0.50%/0.50% 0.00% 0.85%/0.88% 0.03% 2.13%/2.13% -0.01%

Table 3: Optimality gap (%, ↓) across distributions and sizes. Lighter color indicates lower gap.

METHOD TSP-500 TSP-1000 TSP-10000

CLUSTER EXPLOSION IMPLOSION CLUSTER EXPLOSION IMPLOSION CLUSTER EXPLOSION IMPLOSION

ZERO 0.79 0.58 0.67 1.22 1.14 1.23 1.81 2.53 2.57
ATT-GCN 0.74 0.58 0.65 1.10 0.96 1.00 1.12 1.57 1.59
DIMES 0.90 0.62 0.72 1.28 1.06 1.16 2.23 2.90 2.91
UTSP 0.97 0.72 0.83 1.38 1.25 1.36 —
DIFUSCO 0.88 0.65 0.74 0.53 0.42 0.32 1.96 2.50 2.42
SOFTDIST 0.98 0.56 0.49 1.55 1.03 0.75 1.45 1.72 0.33
GT-PRIOR 0.51 0.38 0.49 0.70 0.63 0.74 0.35 0.93 0.58

Table 2 reveals GT-Prior’s robust generalization across scales. When the prior derived from uniform
TSP-500 is applied to TSP-10000, GT-Prior’s performance degradation is minimal (merely a -0.01%
change in gap, effectively maintaining its 2.13% gap), substantially outperforming complex learned
models like DIFUSCO, which sees its gap increase from 2.36% to 5.27% (a 2.91% degeneration).
This suggests that simpler priors based on inherent problem structure (like k-nearest neighbors) may
offer greater robustness and scalability than intricate learned patterns, which might overfit to training
distributions or scales.

This robustness extends to generalization across qualitatively different problem structures. As
evidenced in Table 3, when MCTS settings (tuned on uniform data, and the heatmap also derived
from uniform data) are applied to instances from clustered, explosion, and implosion distributions,
GT-Prior consistently maintains strong performance. For example, on TSP-10000, GT-Prior achieves
impressive optimality gaps of 0.35% (clustered), 0.93% (explosion), and 0.58% (implosion). These
results frequently surpass those of more complex models like DIFUSCO (1.96%, 2.50%, 2.42%
respectively) under these challenging cross-distribution test conditions. This highlights that GT-Prior’s
fundamental k-nearest neighbor prior is less susceptible to distributional shifts than learned patterns,
which might inadvertently specialize to the characteristics of (typically uniform) training data. While
sophisticated learning-based models can achieve excellent results in certain cases, demonstrating the
generalization ability of their learned features (e.g., DIFUSCO’s strong performance on TSP-1000
across distributions), GT-Prior’s consistent efficacy underscores the value of simple, structurally-
grounded priors for achieving reliable generalization—a key quality for practical and versatile TSP
solvers. This resilience is a crucial evaluative aspect, particularly for solvers intended for diverse,
large-scale applications.

More generalization results of models trained on TSP-1000 and TSP-10000 are left in Appendix F,
and additional results on TSPLIB instances are listed in Appendix G.

6 CONCLUSIONS

This study underscores the necessity of a more balanced and rigorous approach to the “Heatmap
+ MCTS” paradigm for the TSP. By empirically demonstrating the distinct impact of MCTS con-
figurations and the competitive strength of a simple, parameter-free k-nearest prior when coupled
with optimized search, our work challenges the prevailing emphasis on heatmap sophistication. The
introduced streamlined MCTS hyperparameter tuning pipeline offers a concrete pathway toward
fairer and more insightful comparisons of future heatmap designs. Looking ahead, these evaluative
insights encourage a research trajectory that moves beyond isolated component optimization. By
fostering a synergistic, holistically understood, and optimized integration of learning and search, the
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field can develop TSP solvers that are not only high-performing but also more robust, efficient, and
genuinely impactful.
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ETHICS STATEMENT

The research presented in this paper, aimed at improving solutions for the Traveling Salesman
Problem (TSP), has several potential societal impacts. On the positive side, advancements in TSP
solvers can directly enhance efficiency in sectors like logistics and manufacturing, leading to reduced
fuel consumption, lower operational costs, and decreased environmental emissions. Our findings that
simpler, well-tuned methods can be highly effective may also help democratize access to advanced
optimization tools, allowing smaller entities to benefit without requiring massive computational
resources.

Conversely, we acknowledge potential negative impacts. As with many advancements in AI and
automation, the increased efficiency from improved TSP solvers could contribute to job displacement
in manual planning and routing roles. There is also a risk of unintended consequences or exacerbating
existing inequities if these tools are deployed without careful consideration of all relevant factors.
Therefore, this work encourages a methodical approach to building AI systems, emphasizing the
importance of understanding and tuning all components. By demonstrating the power of simpler
priors combined with careful search configuration, we advocate for solutions that are more transparent
and robust, aligning with principles of responsible AI development. Continuous attention to fairness,
robustness, and human oversight will be crucial as such technologies are deployed.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our research, we provide a comprehensive suite of resources. The
complete source code, including scripts for hyperparameter tuning and result evaluation, is included
in the supplementary materials. A detailed README file offers step-by-step instructions for setting
up the computational environment and executing the experiments described in this paper. Our full
evaluation methodology, experimental setup, datasets, and computational environment are described
in Section 3.5. The specific MCTS hyperparameter search space and the best-tuned configurations
used to produce our final results are detailed in the Appendix H,I. The procedure for generating our
proposed GT-Prior is explained in Section 5.1. The datasets used in our experiments were sourced
from established benchmarks as cited in Section 3.5, and the generation code for synthetic instances
is also provided.

REFERENCES

David L Applegate, Robert E Bixby, Vašek Chvátal, William Cook, Daniel G Espinoza, Marcos Goy-
coolea, and Keld Helsgaun. Certification of an optimal tsp tour through 85,900 cities. Operations
Research Letters, 37(1):11–15, 2009.

Irwan Bello, Hieu Pham, Quoc V Le, Mohammad Norouzi, and Samy Bengio. Neural combinatorial
optimization with reinforcement learning. arXiv preprint arXiv:1611.09940, 2016.

Jieyi Bi, Yining Ma, Jiahai Wang, Zhiguang Cao, Jinbiao Chen, Yuan Sun, and Yeow Meng Chee.
Learning generalizable models for vehicle routing problems via knowledge distillation. Advances
in Neural Information Processing Systems, 35:31226–31238, 2022.

Xinyun Chen and Yuandong Tian. Learning to perform local rewriting for combinatorial optimization.
Advances in neural information processing systems, 32, 2019.

Jinho Choo, Yeong-Dae Kwon, Jihoon Kim, Jeongwoo Jae, André Hottung, Kevin Tierney, and
Youngjune Gwon. Simulation-guided beam search for neural combinatorial optimization. Advances
in Neural Information Processing Systems, 35:8760–8772, 2022.

Paulo R d O Costa, Jason Rhuggenaath, Yingqian Zhang, and Alp Akcay. Learning 2-opt heuristics
for the traveling salesman problem via deep reinforcement learning. In Asian conference on
machine learning, pages 465–480. PMLR, 2020.

Michel Deudon, Pierre Cournut, Alexandre Lacoste, Yossiri Adulyasak, and Louis-Martin Rousseau.
Learning heuristics for the tsp by policy gradient. In Integration of Constraint Programming,
Artificial Intelligence, and Operations Research: 15th International Conference, CPAIOR 2018,
Delft, The Netherlands, June 26–29, 2018, Proceedings 15, pages 170–181. Springer, 2018.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Han Fang, Zhihao Song, Paul Weng, and Yutong Ban. Invit: A generalizable routing problem solver
with invariant nested view transformer. arXiv preprint arXiv:2402.02317, 2024.

Zhang-Hua Fu, Kai-Bin Qiu, and Hongyuan Zha. Generalize a small pre-trained model to arbitrarily
large tsp instances. In Proceedings of the AAAI conference on artificial intelligence, volume 35,
pages 7474–7482, 2021.

Keld Helsgaun. An extension of the lin-kernighan-helsgaun tsp solver for constrained traveling
salesman and vehicle routing problems. Roskilde: Roskilde University, 12:966–980, 2017.

André Hottung, Yeong-Dae Kwon, and Kevin Tierney. Efficient active search for combinatorial
optimization problems. arXiv preprint arXiv:2106.05126, 2021.

Benjamin Hudson, Qingbiao Li, Matthew Malencia, and Amanda Prorok. Graph neural network
guided local search for the traveling salesperson problem. arXiv preprint arXiv:2110.05291, 2021.

Chaitanya K Joshi, Thomas Laurent, and Xavier Bresson. An efficient graph convolutional network
technique for the travelling salesman problem. arXiv preprint arXiv:1906.01227, 2019.

Elias Khalil, Hanjun Dai, Yuyu Zhang, Bistra Dilkina, and Le Song. Learning combinatorial
optimization algorithms over graphs. Advances in neural information processing systems, 30,
2017.

Minsu Kim, Jinkyoo Park, et al. Learning collaborative policies to solve np-hard routing problems.
Advances in Neural Information Processing Systems, 34:10418–10430, 2021.

Minsu Kim, Junyoung Park, and Jinkyoo Park. Sym-nco: Leveraging symmetricity for neural
combinatorial optimization. Advances in Neural Information Processing Systems, 35:1936–1949,
2022.

Wouter Kool, Herke van Hoof, and Max Welling. Attention, learn to solve routing problems! In
International Conference on Learning Representations, 2019.

Yeong-Dae Kwon, Jinho Choo, Byoungjip Kim, Iljoo Yoon, Youngjune Gwon, and Seungjai Min.
Pomo: Policy optimization with multiple optima for reinforcement learning. Advances in Neural
Information Processing Systems, 33:21188–21198, 2020.

Yeong-Dae Kwon, Jinho Choo, Iljoo Yoon, Minah Park, Duwon Park, and Youngjune Gwon. Ma-
trix encoding networks for neural combinatorial optimization. Advances in Neural Information
Processing Systems, 34:5138–5149, 2021.

Yang Li, Jinpei Guo, Runzhong Wang, Hongyuan Zha, and Junchi Yan. Fast t2t: Optimization
consistency speeds up diffusion-based training-to-testing solving for combinatorial optimization.
In The Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024.

Marius Lindauer, Katharina Eggensperger, Matthias Feurer, André Biedenkapp, Difan Deng, Carolin
Benjamins, Tim Ruhkopf, René Sass, and Frank Hutter. Smac3: A versatile bayesian optimization
package for hyperparameter optimization. Journal of Machine Learning Research, 23(54):1–9,
2022.

Fei Liu, Xi Lin, Zhenkun Wang, Qingfu Zhang, Tong Xialiang, and Mingxuan Yuan. Multi-task
learning for routing problem with cross-problem zero-shot generalization. In Proceedings of the
30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pages 1898–1908,
2024.

Scott M Lundberg and Su-In Lee. A unified approach to interpreting model predictions. In I. Guyon,
U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors,
Advances in Neural Information Processing Systems 30, pages 4765–4774. Curran Associates, Inc.,
2017.

Scott M. Lundberg, Gabriel Erion, Hugh Chen, Alex DeGrave, Jordan M. Prutkin, Bala Nair, Ronit
Katz, Jonathan Himmelfarb, Nisha Bansal, and Su-In Lee. From local explanations to global
understanding with explainable ai for trees. Nature Machine Intelligence, 2(1):2522–5839, 2020.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Qiang Ma, Suwen Ge, Danyang He, Darshan Thaker, and Iddo Drori. Combinatorial optimization by
graph pointer networks and hierarchical reinforcement learning. arXiv preprint arXiv:1911.04936,
2019.

Yimeng Min, Yiwei Bai, and Carla P Gomes. Unsupervised learning for solving the travelling
salesman problem. Advances in Neural Information Processing Systems, 36, 2024.

Yuichi Nagata and Shigenobu Kobayashi. A powerful genetic algorithm using edge assembly
crossover for the traveling salesman problem. INFORMS Journal on Computing, 25(2):346–363,
2013.

Xuanhao Pan, Yan Jin, Yuandong Ding, Mingxiao Feng, Li Zhao, Lei Song, and Jiang Bian. H-tsp:
Hierarchically solving the large-scale traveling salesman problem. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 37, pages 9345–9353, 2023.

Bo Peng, Jiahai Wang, and Zizhen Zhang. A deep reinforcement learning algorithm using dynamic
attention model for vehicle routing problems. In Artificial Intelligence Algorithms and Applications:
11th International Symposium, ISICA 2019, Guangzhou, China, November 16–17, 2019, Revised
Selected Papers 11, pages 636–650. Springer, 2020.

Ruizhong Qiu, Zhiqing Sun, and Yiming Yang. Dimes: A differentiable meta solver for combinatorial
optimization problems. Advances in Neural Information Processing Systems, 35:25531–25546,
2022.

Gerhard Reinelt. Tsplib—a traveling salesman problem library. ORSA journal on computing, 3(4):
376–384, 1991.

Zhiqing Sun and Yiming Yang. Difusco: Graph-based diffusion solvers for combinatorial optimization.
Advances in Neural Information Processing Systems, 36:3706–3731, 2023.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. Advances in neural information
processing systems, 28, 2015.

Chenguang Wang and Tianshu Yu. Efficient training of multi-task combinarotial neural solver with
multi-armed bandits. arXiv preprint arXiv:2305.06361, 2023.

Chenguang Wang, Yaodong Yang, Oliver Slumbers, Congying Han, Tiande Guo, Haifeng Zhang, and
Jun Wang. A game-theoretic approach for improving generalization ability of tsp solvers. arXiv
preprint arXiv:2110.15105, 2021.

Chenguang Wang, Zhouliang Yu, Stephen McAleer, Tianshu Yu, and Yaodong Yang. Asp: Learn a
universal neural solver! IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024.

Yaoxin Wu, Wen Song, Zhiguang Cao, Jie Zhang, and Andrew Lim. Learning improvement heuristics
for solving routing problems. IEEE transactions on neural networks and learning systems, 33(9):
5057–5069, 2021.

Yifan Xia, Xianliang Yang, Zichuan Liu, Zhihao Liu, Lei Song, and Jiang Bian. Position: Rethinking
post-hoc search-based neural approaches for solving large-scale traveling salesman problems. In
Proceedings of the 41st International Conference on Machine Learning, pages 54178–54190,
2024.

Haoran Ye, Jiarui Wang, Helan Liang, Zhiguang Cao, Yong Li, and Fanzhang Li. Glop: Learning
global partition and local construction for solving large-scale routing problems in real-time. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pages 20284–20292,
2024.

Jianan Zhou, Yaoxin Wu, Wen Song, Zhiguang Cao, and Jie Zhang. Towards omni-generalizable
neural methods for vehicle routing problems. In International Conference on Machine Learning,
pages 42769–42789. PMLR, 2023.

Jianan Zhou, Zhiguang Cao, Yaoxin Wu, Wen Song, Yining Ma, Jie Zhang, and Chi Xu. Mvmoe:
Multi-task vehicle routing solver with mixture-of-experts. arXiv preprint arXiv:2405.01029, 2024.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A ADDITIONAL RELATED WORKS

Approaches using machine learning to address the Travelling Salesman Problem (TSP) generally fall
into two distinct groups based on how they generate solutions. The first group, known as construction
methods, incrementally forms a path by sequentially adding cities to an unfinished route, following an
autoregressive process until the entire path is completed. The second group, improvement methods,
starts with a complete route and continually applies local search operations to improve the solution.

Construction Methods Since Vinyals et al. (2015); Bello et al. (2016) introduced the autoregressive
combinatorial optimization neural solver, numerous advancements have emerged in subsequent
years (Deudon et al., 2018; Kool et al., 2019; Peng et al., 2020; Kwon et al., 2021; 2020). These
include enhanced network architectures (Kool et al., 2019), more sophisticated deep reinforcement
learning techniques (Khalil et al., 2017; Ma et al., 2019; Choo et al., 2022), and improved training
methods (Kim et al., 2022; Bi et al., 2022). For large-scale TSP, Pan et al. (2023) adopts a hierarchical
divide-and-conquer approach, breaking down the complex TSP into more manageable open-loop
TSP sub-problems.

Improvement Methods In contrast to construction methods, improvement-based solvers leverage
neural networks to progressively refine an existing feasible solution, continuing the process until the
computational limit is reached. These improvement methods are often influenced by traditional local
search techniques like k-opt, and have been shown to deliver impressive results in various previous
studies (Chen and Tian, 2019; Wu et al., 2021; Kim et al., 2021; Hudson et al., 2021). Ye et al. (2024)
implements a divide-and-conquer approach, using search-based methods to enhance the solutions of
smaller subproblems generated from the larger instances.

Recent breakthroughs in solving large-scale TSP problems (Fu et al., 2021; Qiu et al., 2022; Sun and
Yang, 2023; Min et al., 2024; Xia et al., 2024), have incorporated Monte Carlo tree search (MCTS)
as an effective post-processing technique. These heatmaps serve as priors for guiding the MCTS,
resulting in impressive performance in large-scale TSP solutions, achieving state-of-the-art results.

Other Directions In addition to exploring solution methods for combinatorial optimization prob-
lems, some studies investigate intrinsic challenges encountered during the learning phase. These
include generalization issues during inference (Wang et al., 2021; Zhou et al., 2023; Wang et al.,
2024) and multi-task learning (Wang and Yu, 2023; Liu et al., 2024; Zhou et al., 2024) aimed at
developing foundational models.

B IMPACT OF HEURISTIC POSTPROCESSING

In our experimental reproduction of various learning-based heatmap generation methods for the
Travelling Salesman Problem (TSP), we identified a critical yet often overlooked factor affecting
performance: the post-processing of model-generated heatmaps. This section details the post-
processing strategies employed by different methods and evaluates their impact on performance
metrics.

B.1 POSTPROCESSING STRATEGIES

DIMES DIMES generates an initial heatmap matrix of dimension n×n from a k-nearest neighbors
(k-NN) subgraph of the original TSP instance (k = 50). The post-processing involves two steps:

1. Sparsification: Retaining only the top-5 values for each row, setting all others to a significantly
negative number.

2. Adaptive softmax: Iteratively applying a temperature-scaled softmax function with gradual
temperature reduction until the minimum non-zero probability exceeds a predefined threshold.

DIFUSCO DIFUSCO also generates a sparse heatmap based on the k-NN subgraph (k = 50 for
TSP-500, k = 100 for larger scales). The post-processing differs based on problem scale:

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table 4: Performance Degeneration for Different Methods with and without Postprocessing on
TSP-500, TSP-1000, and TSP-10000. ‘W’ indicates with postprocessing, while ‘W/O’ indicates
without postprocessing.

METHOD POSTPROCESSING
TSP-500 TSP-1000 TSP-10000

GAP ↓ DEGENERATIONS ↓ GAP ↓ DEGENERATIONS ↓ GAP ↓ DEGENERATIONS ↓

DIMES W/O
W

2.50%
1.57% 0.93% 9.07%

2.30% 6.77% 15.87%
3.05% 12.81%

UTSP W/O
W

4.50%
3.14% 1.36% 6.30%

4.20% 2.10% — —

DIFUSCO W/O
W

2.33%
0.45% 1.88% 0.66%

1.07% -0.40% 45.20%
2.69% 42.52%

1. For TSP-500 and TSP-1000: A single step integrating Euclidean distances, thresholding, and
symmetrization.

2. For TSP-10000: Two steps are applied sequentially: a) Additional supervision using a greedy
decoding strategy followed by 2-opt heuristics. b) The same process as used for smaller instances.

UTSP UTSP’s post-processing is straightforward, involving sparsification of the dense heatmap
matrix by preserving only the top 20 values per row.

B.2 EXPERIMENTAL RESULTS

We conducted experiments on the test set for heatmaps generated by these three methods, both with
and without post-processing, using the default MCTS setting. Results are presented in Table 4.

Our findings reveal that heatmaps generated without post-processing generally exhibit performance
degradation, particularly for TSP-10000, where the gap increases by orders of magnitude. This
underscores the importance of sparsification for large-scale instances and highlights the tendency of
existing methodologies to overstate their efficacy in training complex deep learning models.

Interestingly, DIFUSCO’s heatmap without post-processing outperforms its post-processed coun-
terpart for TSP-1000, suggesting that the DIFUSCO model, when well-trained on this scale, can
generate helpful heatmap matrices to guide MCTS without additional refinement.

These results emphasize the critical role of post-processing in enhancing the performance of learning-
based heatmap generation methods for TSP, particularly as problem scales increase. They also
highlight the need for careful evaluation of model outputs and the potential for over-reliance on
post-processing to mask limitations in model training and generalization.

The substantial performance gap between heatmaps with and without post-processing raises questions
about the extent to which the reported performance gains can be attributed solely to the learning
modules of these methods. While the learning components undoubtedly contribute to the overall
effectiveness, the significant impact of post-processing suggests that the raw output of the learning
models may not be as refined or directly applicable as previously thought.

In light of these findings, we recommend that future research on heatmap-based methods for TSP
provide a detailed description of their post-processing operations. Additionally, we suggest reporting
results both with and without post-processing to offer a more comprehensive understanding of the
method’s performance and the relative contributions of its learning and post-processing components.
This approach would foster greater transparency in the field and facilitate more accurate comparisons
between different methodologies.

C ANALYSIS OF ONE-OFF COMPUTATIONAL COSTS

To ensure a holistic comparison, we analyze the one-off setup costs: model training for learning-based
baselines versus hyperparameter tuning for MCTS.
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Training Costs. Table 5 summarizes the training times reported in original papers. Deep learning
methods typically incur heavy computational overheads, requiring significant GPU hours (e.g., ∼10
hours for DIMES on TSP-10k).

Table 5: Approximate training times for learning-based methods. Note: Times are rough references
due to hardware variances.

Method TSP-500 TSP-1000 TSP-10000

Att-GCN ∼25 h ∼25 h ∼25 h
DIMES ∼1.5 h ∼1.7 h ∼10 h
UTSP ∼0.5 h N/A N/A

Tuning vs. Training. MCTS tuning is a comparable one-off cost but is generally more resource-
efficient. Using SMAC3 (detailed in Appendix H), tuning MCTS for TSP-10000 requires only 3.47
hours on a CPU. This is notably lower than the GPU-intensive training required for baselines like
DIMES. Furthermore, the resulting configurations (Table 13) are reusable across similar distributions.|

GT-Prior Construction. The cost of constructing GT-Prior is negligible. It requires solving only
a small set of instances (e.g., 128 for TSP-500) to extract k-NN statistics, avoiding the expensive
pre-training phase entirely.

D FULL EXPERIMENTAL RESULTS

The following table presents the complete results of the large-scale TSP problems, including the
four end-to-end learning-based methods that were previously omitted in the main paper due to space
constraints. These methods include EAN (d O Costa et al., 2020), AM (Kool et al., 2019), GCN (Joshi
et al., 2019), and POMO+EAS (Hottung et al., 2021). We also included a more recent heatmap
method: Fast-T2T(Li et al., 2024). The methods listed here employ reinforcement learning (RL),
supervised learning (SL), and unsupervised learning (UL) techniques, in addition to various decoding
strategies such as greedy, sampling, and beam-search.

Complementing these, we introduce specific comparisons with greedy decoding and plain 2-opt to
isolate the impact of the search mechanism. The greedy results exhibit large optimality gaps (e.g.,
>50%), confirming that myopic decisions inevitably discard critical distributional information found
in the heatmaps. Similarly, while plain 2-opt improves solution quality, it lags significantly behind
MCTS on large-scale instances (TSP-10000). This performance gap highlights that local search alone
is insufficient to escape local optima at this scale, validating the necessity of MCTS for providing
high-level global guidance.
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Table 6: Full Results on large-scale TSP problems. Abbreviations: RL (Reinforcement learning),
SL (Supervised learning), UL (Unsupervised learning), AS (Active search), G (Greedy decoding), S
(Sampling decoding), and BS (Beam-search). ∗ indicates the baseline for performance gap calculation.
† indicates methods utilizing heatmaps provided by Xia et al. (2024), with MCTS executed on our
setup. Some methods list two terms for Time, corresponding to heatmap generation and MCTS
runtimes, respectively. Concorde and Gurobi results are sourced from Fu et al. (2021); Qiu et al.
(2022).Added Greedy and 2-opt results.

Method Type TSP-500 TSP-1000 TSP-10000
Length ↓ Gap ↓ Time ↓ Length ↓ Gap ↓ Time ↓ Length ↓ Gap ↓ Time ↓

Concorde OR(exact) 16.55∗ — 17.65s 23.12∗ — 3.12m N/A N/A N/A
Gurobi OR(exact) 16.55 0.00% 21.39m N/A N/A N/A N/A N/A N/A
LKH-3 (default) OR(heuristic) 16.55 0.00% 14.84s 23.12 0.00% 1.02m 71.77∗ — 28.73m
Nearest Insertion OR 20.62 24.59% 0.00s 28.96 25.26% 0.00s 90.51 26.12% 0.38s
Random Insertion OR 18.57 12.21% 0.00s 26.12 12.98% 0.00s 81.85 14.05% 0.25s
Farthest Insertion OR 18.30 10.57% 0.00s 25.72 11.25% 0.00s 80.59 12.30% 0.38s

EAN RL+S 28.63 73.03% 9.46s 50.30 117.59% 17.38s N/A N/A N/A
EAN RL+S+2-opt 23.75 43.57% 27.07s 47.73 106.46% 2.53m N/A N/A N/A
AM RL+S 22.64 36.84% 7.33s 42.80 85.15% 29.99s 431.58 501.31% 47.36s
AM RL+G 20.02 20.99% 0.71s 31.15 34.75% 1.49s 141.68 97.40% 22.46s
AM RL+BS 19.53 18.03% 10.31s 29.90 29.23% 46.12s 129.40 80.29% 6.79m
GCN SL+G 29.72 79.61% 3.13s 48.62 110.29% 13.37s N/A N/A N/A
GCN SL+BS 30.37 83.55% 17.82s 51.26 121.73% 24.22s N/A N/A N/A
POMO+EAS-Emb RL+AS 19.24 16.25% 6.00m N/A N/A N/A N/A N/A N/A
POMO+EAS-Lay RL+AS 19.35 16.92% 7.59m N/A N/A N/A N/A N/A N/A
POMO+EAS-Tab RL+AS 24.54 48.22% 5.44m 49.56 114.36% 29.74m N/A N/A N/A

Zero MCTS 16.66 0.66% 0.00m+
50.06s 23.39 1.16% 0.00m+

1.67m 74.50 3.80% 0.00m+
16.65m

Att-GCN†
SL+MCTS 16.66 0.69% 0.52m+

50.06s 23.37 1.09% 0.73m+
1.67m 73.95 3.03% 4.16m+

16.65m

SL+2-opt 17.42 5.27% 0.52m+
50.06s 24.77 7.16% 0.73m+

1.67m 79.48 10.73% 4.16m+
16.65m

SL+Greedy 30.71 85.63% 0.52m+
0.02s 50.65 119.11% 0.73m+

0.05s 304.88 324.76% 4.16m+
2.13s

DIMES†
RL+MCTS 16.66 0.43% 0.97m+

50.06s 23.37 1.11% 2.08m+
1.67m 73.97 3.06% 4.65m+

16.65m

RL+2-opt 17.58 6.26% 0.97m+
50.06s 25.00 8.15% 2.08m+

1.67m 93.56 30.35% 4.65m+
16.65m

RL+Greedy 51.43 210.82% 0.97m+
0.02s 95.18 311.72% 2.08m+

0.05s 771.78 975.24% 4.65m+
2.17s

UTSP†
UL+MCTS 16.69 0.90% 1.37m+

50.06s 23.47 1.53% 3.35m+
1.67m — — —

UL+2-opt 17.59 6.32% 1.37m+
50.06s 25.03 8.28% 3.35m+

1.67m — — —

UL+Greedy 25.48 54.00% 1.37m+
0.02s 39.46 70.70% 3.35m+

0.05s — — —

SoftDist†
SoftDist+MCTS 16.62 0.43% 0.00m+

50.06s 23.30 0.80% 0.00m+
1.67m 73.89 2.95% 0.00m+

16.65m

SoftDist+2-opt 17.50 5.75% 0.00m+
50.06s 24.82 7.34% 0.00m+

1.67m 79.10 10.21% 0.00m+
16.65m

SoftDist+Greedy 20.87 26.13% 0.00m+
0.02s 29.06 25.69% 0.00m+

0.05s 91.43 27.39% 0.00m+
2.26s

DIFUSCO†
SL+MCTS 16.60 0.33% 3.61m+

50.06s 23.24 0.53% 11.86m+
1.67m 73.47 2.37% 28.51m+

16.65m

SL+2-opt 16.69 0.89% 3.61m+
50.06s 24.38 5.45% 11.86m+

1.67m 78.78 9.76% 28.51m+
16.65m

SL+Greedy 18.92 14.36% 3.61m+
0.02s 36.90 59.61% 11.86m+

0.05s 120.53 67.92% 28.51m+
2.13s

Fast-T2T
SL+MCTS 16.57 0.12% 0.50m+

50.06s 23.27 0.65% 1.78m+
1.67m 74.80 4.22% 7.73m+

16.65m

SL+2-opt 16.71 0.99% 0.50m+
50.06s 23.92 3.48% 1.78m+

1.67m 112.99 57.42% 7.73m+
16.65m

SL+Greedy 18.32 10.75% 0.50m+
0.02s 25.89 11.98% 1.78m+

0.05s 101.05 40.78% 7.73m+
2.23s

GT-Prior
Prior+MCTS 16.63 0.50% 0.00m+

50.06s 23.31 0.85% 0.00m+
1.67m 73.31 2.14% 0.00m+

16.65m

Prior+2-opt 17.54 5.99% 0.00m+
50.06s 24.91 7.77% 0.00m+

1.67m 79.39 10.61% 0.00m+
16.65m

Prior+Greedy 25.69 55.27% 0.00m+
0.02s 40.45 74.99% 0.00m+

0.05s 197.77 175.53% 0.00m+
2.26s
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E ADDITIONAL HYPERPARAMETER IMPORTANCE ANALYSIS

We employed the SHAP method to analyze hyperparameter importance across all conducted grid
search experiments. Most resulting beeswarm plots for TSP-500, TSP-1000, and TSP-10000 are
in Figure 4 (including ’Zero’ heatmap where Use_Heatmap is set to False). Plots of the UTSP
heatmap are presented in Figure 5.

The patterns of TSP-1000 are similar to those of TSP-500, as discussed in Section 4.1. However, the
patterns for TSP-10000 show a major difference, where the influence of Max_Candidate_Num
and Use_Heatmap becomes dominant. Furthermore, their SHAP values are clearly clustered
rather than continuous, as observed in smaller scales. This could be explained by the candidate
set of large-scale TSP instances having a major impact on the running time of MCTS k-opt search.
Additionally, the time limit setting causes the performance of different hyperparameter settings for
Max_Candidate_Num and Use_Heatmap to become more distinct.

F ADDITIONAL GENERALIZATION ABILITY RESULTS

Tables 7 presents additional results on the generalization ability of various methods when trained on
TSP-1000 and TSP-10000, respectively.

For models trained on TSP-1000, GT-Prior continues to demonstrate superior generalization capability.
When generalizing to smaller instances (TSP-500), GT-Prior shows minimal performance degradation
(0.02%), comparable to DIMES and better than UTSP and SoftDist. For larger instances (TSP-
10000), GT-Prior maintains consistent performance with a slight improvement (-0.02% degradation),
outperforming all other methods. DIFUSCO, while showing good performance on TSP-500 and
TSP-1000, experiences significant degradation (2.91%) when scaling to TSP-10000.

The results for models trained on TSP-10000 further highlight GT-Prior’s robust generalization
ability. When applied to smaller problem sizes (TSP-500 and TSP-1000), GT-Prior exhibits minimal
performance degradation (0.01% and 0.02%, respectively). In contrast, other methods show more
substantial degradation, particularly for TSP-1000. Notably, SoftDist experiences severe perfor-
mance deterioration (73.36%) when generalizing to TSP-1000, while DIFUSCO shows significant
degradation for both TSP-500 (0.63%) and TSP-1000 (2.74%).

These results consistently demonstrate GT-Prior’s exceptional ability to generalize across various
problem scales, maintaining stable performance regardless of whether it is scaling up or down from
the training instance size. This stability is particularly evident when compared to the other methods,
which often struggle with significant performance degradation when generalizing to different problem
sizes.
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Figure 4: Beeswarm plots of SHAP values for six methods across different TSP sizes.
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Figure 5: Beeswarm plots of SHAP values for the UTSP heatmap across different TSP sizes.

Table 7: Generalization on the model trained on TSP1000 (the upper table) and TSP10000 (the lower
table).

METHOD RES TYPE
TSP-500 TSP-1000 TSP-10000

GAP ↓ DEGENERATION ↓ GAP ↓ DEGENERATION ↓ GAP ↓ DEGENERATION ↓

DIMES ORI.
GEN.

0.69%
0.71% 0.02% 1.11%

1.11% 0.00% 3.05%
4.06% 1.01%

UTSP ORI.
GEN.

0.90%
0.96% 0.06% 1.53%

1.53% 0.00% — —

DIFUSCO ORI.
GEN.

0.33%
0.26% -0.07% 0.53%

0.53% 0.00% 2.36%
5.27% 2.91%

SOFTDIST
ORI.
GEN.

0.43%
0.51% 0.08% 0.80%

0.80% 0.00% 2.94%
3.68% 0.74%

GT-PRIOR
ORI.
GEN.

0.50%
0.52% 0.02% 0.85%

0.85% 0.00% 2.13%
2.11% -0.02%

METHOD RES TYPE
TSP-500 TSP-1000 TSP-10000

GAP ↓ DEGENERATION ↓ GAP ↓ DEGENERATION ↓ GAP ↓ DEGENERATION ↓

DIMES ORI.
GEN.

0.69%
0.75% 0.06% 1.11%

1.18% 0.07% 3.05%
3.05% 0.00%

DIFUSCO ORI.
GEN.

0.33%
0.95% 0.63% 0.53%

3.34% 2.81% 2.36%
2.36% 0.00%

SOFTDIST
ORI.
GEN.

0.43%
0.65% 0.22% 0.80%

74.24% 73.44% 2.94%
2.94% 0.00%

GT-PRIOR
ORI.
GEN.

0.50%
0.51% 0.01% 0.85%

0.89% 0.04% 2.13%
2.13% 0.00%

G ADDITIONAL RESULTS ON TSPLIB

We categorize all Euclidean 2D TSP instances into three groups based on the number of nodes: Small
(0-500 nodes), Medium (500-2000 nodes), and Large (more than 2000 nodes). For each category, we
evaluate all baseline methods alongside our proposed GT-Prior.

Table 8: Generalization performance testing of different methods on TSPLIB instances. The best
results in the row are shown in bold and the second-best underlined.

Size MCTS Setting Zero Att-GCN DIMES UTSP SoftDist DIFUSCO GT-Prior

Small
Tuned on TSPLIB 0.06% 0.05% 0.08% 0.10% 0.06% 0.07% 0.05%
Tuned on Uniform 0.79% 0.67% 0.48% 0.45% 1.23% 0.58% 0.76%
Default 0.87% 0.67% 16.01% 7.16% 1.80% 1.06% 0.20%

Medium
Tuned on TSPLIB 1.18% 0.76% 0.97% 1.54% 0.74% 0.35% 0.55%
Tuned on Uniform 15.24% 11.47% 10.64% 12.03% 6.79% 2.38% 10.08%
Default 4.88% 3.73% 4.06% 13.58% 7.20% 2.87% 3.63%

Large
Tuned on TSPLIB 5.39% 3.58% 4.55% 5.75% 3.03% 3.47% 2.42%
Tuned on Uniform 5.54% 3.92% 5.48% 26.51% 4.43% 5.68% 3.52%
Default 6.51% 4.84% 391.89% 1481.66% 11.36% 12.62% 5.51%
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We conducted MCTS evaluations under three distinct parameter settings: (1) Tuned Settings, opti-
mized using uniform TSP instances as listed in Table 14, whose results are shown in Table 9, (2) the
Default Settings, as originally employed by Fu et al. (2021), whose results are shown in Table 10,
and (3) the Grid Search setting where the MCTS hyperparameters are obtained by instance-level grid
search, whose results are shown in Table 11. The results in these tables showcase the performance
of the methods in terms of solution length and optimality gap, highlighting the effectiveness of the
proposed GT-Prior approach.

The data in Table 8, particularly under the ‘Tuned on TSPLIB’ setting, further emphasizes the
critical role of hyperparameter selection tailored to the specific data distribution. Here, our proposed
GT-Prior method consistently demonstrates strong performance, achieving the leading optimality
gap for Large instances (2.42%) and tying for the best on Small instances (0.05%). Similarly,
other approaches like Att-GCN (0.05% on Small) and DIFUSCO (0.35% on Medium) also exhibit
their most competitive results when tuned directly on TSPLIB. This underscores that substantial
performance gains are unlocked when hyperparameters align with the problem’s characteristics. While
more granular instance-level hyperparameter optimization, such as the aforementioned grid search
(detailed in Table 11), can yield further benefits, its current computational demands are considerable.
Consequently, the efficacy of targeted tuning observed in Table 8 strongly motivates future research
into efficient hyperparameter optimization, including the development of recommendation systems
that could predict near-optimal settings from instance features, thereby achieving robust performance
without exhaustive search.

Several key insights emerge from detailed experimental results. First, we observe a strong interaction
between instance distribution and parameter tuning effectiveness. While methods like UTSP and
DIMES excel on small uniform instances, their performance exhibits high sensitivity to parameter
settings when faced with real-world TSPLIB instances, particularly at larger scales (e.g., UTSP
degrading from 26.51% to 1481.66% on large instances). This finding reveals a fundamental
generalization challenge shared by most learning-based methods - the optimal parameters learned
from one distribution may not transfer effectively to another, highlighting the critical importance of
robust parameter tuning strategies. To illustrate this distribution sensitivity, we visualize representative
hard and easy instances from each group in Figures 6, demonstrating that hard instances deviate
significantly from uniform distribution while easy instances closely resemble it.

pr144 fl1400 fl3795

(a) Hard instances at small, medium, and large scales.

a280

d657 u2319

(b) Easy instances at small, medium, and large scales.

Figure 6: Representative TSPLIB instances visualization.
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Table 9: Performance of different methods on TSPLIB instances of varying sizes. All hyperparameter
settings are tuned on uniform TSP instances as listed in Table 14.

(a) Small instances (0–500 nodes)

Instance Optimal Zero Att-GCN DIMES UTSP SoftDist DIFUSCO GT-Prior
Length ↓ Gap ↓ Length ↓ Gap ↓ Length ↓ Gap ↓ Length ↓ Gap ↓ Length ↓ Gap ↓ Length ↓ Gap ↓ Length ↓ Gap ↓

st70 675 676 0.15% 676 0.15% 676 0.15% 676 0.15% 724 7.26% 676 0.15% 676 0.15%
eil76 538 538 0.00% 538 0.00% 538 0.00% 538 0.00% 538 0.00% 538 0.00% 538 0.00%
kroA200 29368 29368 0.00% 29383 0.05% 29368 0.00% 29382 0.05% 29383 0.05% 29380 0.04% 29368 0.00%
eil51 426 427 0.23% 427 0.23% 427 0.23% 427 0.23% 427 0.23% 427 0.23% 427 0.23%
rat195 2323 2328 0.22% 2328 0.22% 2323 0.00% 2328 0.22% 2328 0.22% 2328 0.22% 2328 0.22%
pr144 58537 59932 2.38% 63736 8.88% 59553 1.74% 59211 1.15% 66950 14.37% 63389 8.29% 65486 11.87%
bier127 118282 118282 0.00% 118282 0.00% 118282 0.00% 118282 0.00% 118282 0.00% 118282 0.00% 118282 0.00%
lin105 14379 14379 0.00% 14379 0.00% 14379 0.00% 14379 0.00% 15081 4.88% 14379 0.00% 14379 0.00%
kroD100 21294 21294 0.00% 21294 0.00% 21294 0.00% 21294 0.00% 21294 0.00% 21294 0.00% 21294 0.00%
kroA100 21282 21282 0.00% 21282 0.00% 21282 0.00% 21282 0.00% 21282 0.00% 21282 0.00% 21282 0.00%
pr152 73682 74089 0.55% 73682 0.00% 73682 0.00% 73818 0.18% 74443 1.03% 74609 1.26% 74274 0.80%
ts225 126643 126643 0.00% 126643 0.00% 126643 0.00% 126643 0.00% 126643 0.00% 126643 0.00% 126643 0.00%
rd400 15281 15314 0.22% 15333 0.34% 15323 0.27% 15408 0.83% 15352 0.46% 15320 0.26% 15303 0.14%
kroB100 22141 22141 0.00% 22141 0.00% 22141 0.00% 22141 0.00% 22141 0.00% 22141 0.00% 22141 0.00%
d198 15780 15817 0.23% 16344 3.57% 15844 0.41% 15804 0.15% 15816 0.23% 16237 2.90% 15817 0.23%
eil101 629 629 0.00% 629 0.00% 629 0.00% 629 0.00% 629 0.00% 629 0.00% 629 0.00%
linhp318 41345 42558 2.93% 42523 2.85% 42763 3.43% 42420 2.60% 42283 2.27% 42223 2.12% 42387 2.52%
gil262 2378 2380 0.08% 2382 0.17% 2380 0.08% 2380 0.08% 2379 0.04% 2380 0.08% 2380 0.08%
rat99 1211 1211 0.00% 1211 0.00% 1211 0.00% 1211 0.00% 1211 0.00% 1211 0.00% 1211 0.00%
berlin52 7542 7542 0.00% 7542 0.00% 7542 0.00% 7542 0.00% 7542 0.00% 7542 0.00% 7542 0.00%
kroC100 20749 20749 0.00% 20749 0.00% 20749 0.00% 20749 0.00% 20749 0.00% 20749 0.00% 20749 0.00%
pr226 80369 87311 8.64% 83828 4.30% 83828 4.30% 81058 0.86% 80850 0.60% 80463 0.12% 85793 6.75%
fl417 11861 12852 8.36% 11945 0.71% 12169 2.60% 12800 7.92% 13198 11.27% 12158 2.50% 12437 4.86%
kroE100 22068 22068 0.00% 22068 0.00% 22068 0.00% 22068 0.00% 22068 0.00% 22068 0.00% 22068 0.00%
pr76 108159 108159 0.00% 108159 0.00% 108159 0.00% 108159 0.00% 109325 1.08% 108159 0.00% 108159 0.00%
ch130 6110 6111 0.02% 6111 0.02% 6111 0.02% 6111 0.02% 6242 2.16% 6111 0.02% 6111 0.02%
tsp225 3916 3932 0.41% 3916 0.00% 3919 0.08% 3923 0.18% 3916 0.00% 3916 0.00% 3923 0.18%
rd100 7910 7910 0.00% 7910 0.00% 7910 0.00% 7910 0.00% 7938 0.35% 7910 0.00% 7910 0.00%
pr264 49135 51267 4.34% 50451 2.68% 49949 1.66% 49635 1.02% 49374 0.49% 50389 2.55% 49508 0.76%
pr124 59030 59168 0.23% 59210 0.30% 59551 0.88% 59210 0.30% 59257 0.38% 59688 1.11% 59030 0.00%
kroA150 26524 26525 0.00% 26525 0.00% 26525 0.00% 26525 0.00% 26525 0.00% 26525 0.00% 26525 0.00%
kroB200 29437 29437 0.00% 29438 0.00% 29437 0.00% 29446 0.03% 29437 0.00% 29437 0.00% 29437 0.00%
kroB150 26130 26178 0.18% 26141 0.04% 26176 0.18% 26136 0.02% 26130 0.00% 26143 0.05% 26130 0.00%
pr107 44303 44303 0.00% 44387 0.19% 44303 0.00% 44303 0.00% 44303 0.00% 44303 0.00% 44303 0.00%
lin318 42029 42558 1.26% 42561 1.27% 42609 1.38% 42420 0.93% 42283 0.60% 42254 0.54% 42387 0.85%
pr136 96772 96772 0.00% 96772 0.00% 96772 0.00% 96772 0.00% 96772 0.00% 96772 0.00% 96772 0.00%
pr299 48191 48279 0.18% 48223 0.07% 48230 0.08% 48191 0.00% 48197 0.01% 48269 0.16% 48197 0.01%
u159 42080 42080 0.00% 42080 0.00% 42080 0.00% 42080 0.00% 42396 0.75% 42080 0.00% 42080 0.00%
a280 2579 2579 0.00% 2579 0.00% 2579 0.00% 2579 0.00% 2579 0.00% 2579 0.00% 2579 0.00%
pr439 107217 109241 1.89% 108944 1.61% 109594 2.22% 108476 1.17% 110701 3.25% 108485 1.18% 109624 2.24%
ch150 6528 6528 0.00% 6528 0.00% 6528 0.00% 6528 0.00% 6533 0.08% 6528 0.00% 6528 0.00%
d493 35002 35347 0.99% 35331 0.94% 35318 0.90% 35235 0.67% 35297 0.84% 35292 0.83% 35244 0.69%
pcb442 50778 50935 0.31% 50902 0.24% 50856 0.15% 51060 0.56% 50847 0.14% 50908 0.26% 50927 0.29%

Average - 35281 0.79% 35244 0.67% 35155 0.48% 35050 0.45% 35340 1.23% 35165 0.58% 35321 0.76%

(b) Medium instances (500–2000 nodes)

Instance Optimal Zero Att-GCN DIMES UTSP SoftDist DIFUSCO GT-Prior
Length ↓ Gap ↓ Length ↓ Gap ↓ Length ↓ Gap ↓ Length ↓ Gap ↓ Length ↓ Gap ↓ Length ↓ Gap ↓ Length ↓ Gap ↓

u574 36905 37211 0.83% 37226 0.87% 37399 1.34% 37211 0.83% 37142 0.64% 36989 0.23% 37146 0.65%
pcb1173 56892 57837 1.66% 57715 1.45% 57618 1.28% 57770 1.54% 57633 1.30% 57304 0.72% 57248 0.63%
rat783 8806 8903 1.10% 8887 0.92% 8892 0.98% 8919 1.28% 8884 0.89% 8842 0.41% 8851 0.51%
u1432 152970 156669 2.42% 154684 1.12% 154889 1.25% 154703 1.13% 154338 0.89% 154046 0.70% 154285 0.86%
fl1400 20127 27446 36.36% 26280 30.57% 23066 14.60% 23467 16.59% 29343 45.79% 21519 6.92% 22924 13.90%
vm1084 239297 255009 6.57% 257899 7.77% 254512 6.36% 246531 3.02% 240016 0.30% 240265 0.40% 244968 2.37%
rat575 6773 6844 1.05% 6826 0.78% 6845 1.06% 6829 0.83% 6814 0.61% 6800 0.40% 6807 0.50%
vm1748 336556 377814 12.26% 385587 14.57% 378032 12.32% 376605 11.90% 341506 1.47% 341443 1.45% 343834 2.16%
rl1889 316536 479282 51.41% 444184 40.33% 397609 25.61% 441143 39.37% 327774 3.55% 324242 2.43% 451948 42.78%
u724 41910 42288 0.90% 42105 0.47% 42330 1.00% 42317 0.97% 42161 0.60% 42003 0.22% 42086 0.42%
d1291 50801 72786 43.28% 70051 37.89% 71972 41.67% 72779 43.26% 52023 2.41% 51342 1.06% 74911 47.46%
pr1002 259045 265784 2.60% 265338 2.43% 263164 1.59% 264061 1.94% 262591 1.37% 262472 1.32% 262929 1.50%
fl1577 22249 29723 33.59% 27605 24.07% 30050 35.06% 29581 32.95% 29102 30.80% 25960 16.68% 29222 31.34%
nrw1379 56638 57171 0.94% 57070 0.76% 57326 1.21% 57172 0.94% 58266 2.87% 56961 0.57% 56974 0.59%
rl1304 252948 332691 31.53% 316879 25.27% 316925 25.29% 316283 25.04% 262598 3.82% 257797 1.92% 297448 17.59%
d657 48912 49228 0.65% 49228 0.65% 49303 0.80% 49350 0.90% 49094 0.37% 49098 0.38% 49118 0.42%
p654 34643 38112 10.01% 38864 12.18% 35210 1.64% 35884 3.58% 47033 35.76% 36765 6.13% 35569 2.67%
d1655 62128 66466 6.98% 65547 5.50% 64743 4.21% 65977 6.20% 63986 2.99% 64358 3.59% 63951 2.93%
u1817 57201 90599 58.39% 68245 19.31% 71276 24.61% 80609 40.92% 58838 2.86% 58587 2.42% 75131 31.35%
u1060 224094 233417 4.16% 232573 3.78% 242781 8.34% 236866 5.70% 227830 1.67% 225164 0.48% 229725 2.51%
rl1323 270199 306164 13.31% 297453 10.09% 305970 13.24% 307474 13.80% 274440 1.57% 274104 1.45% 293294 8.55%

Average - 142449 15.24% 138583 11.47% 136662 10.64% 138644 12.03% 125305 6.79% 123621 2.38% 135160 10.08%

(c) Large instances (2000+ nodes)

Instance Optimal Zero Att-GCN DIMES UTSP SoftDist DIFUSCO GT-Prior
Length ↓ Gap ↓ Length ↓ Gap ↓ Length ↓ Gap ↓ Length ↓ Gap ↓ Length ↓ Gap ↓ Length ↓ Gap ↓ Length ↓ Gap ↓

u2152 64253 66719 3.84% 66301 3.19% 67244 4.66% 79556 23.82% 66354 3.27% 66111 2.89% 65467 1.89%
u2319 234256 240657 2.73% 236054 0.77% 237061 1.20% 235667 0.60% 234765 0.22% 236201 0.83% 235093 0.36%
pcb3038 137694 142320 3.36% 141418 2.70% 142646 3.60% 140351 1.93% 139547 1.35% 141446 2.72% 139325 1.18%
fl3795 28772 35138 22.13% 33971 18.07% 36294 26.14% 43940 52.72% 36803 27.91% 40183 39.66% 35715 24.13%
pr2392 378032 384727 1.77% 388518 2.77% 386985 2.37% 385057 1.86% 385073 1.86% 387623 2.54% 380722 0.71%
fnl4461 182566 187380 2.64% 186985 2.42% 187913 2.93% 185869 1.81% 184057 0.82% 186521 2.17% 184776 1.21%
d2103 80450 83622 3.94% 82614 2.69% 83690 4.03% 86119 7.05% 83644 3.97% 83360 3.62% 81813 1.69%
rl5934 556045 588550 5.85% 579206 4.17% 589806 6.07% 843158 51.63% 570853 2.66% 594357 6.89% 574556 3.33%
rl5915 565530 589372 4.22% 588542 4.07% 585404 3.51% 809375 43.12% 578232 2.25% 584327 3.32% 583477 3.17%
usa13509 19982859 20947758 4.83% 20613997 3.16% 21033416 5.26% 28386893 42.06% 21193246 6.06% 20723480 3.71% 20396752 2.07%
brd14051 469385 492159 4.85% 480186 2.30% 489324 4.25% 506961 8.01% 485812 3.50% 482790 2.86% 479123 2.07%
d18512 645238 672990 4.30% 662312 2.65% 667466 3.44% 701169 8.67% 663460 2.82% 662022 2.60% 656164 1.69%
rl11849 923288 994084 7.67% 955040 3.44% 973842 5.48% 1866653 102.17% 948548 2.74% 953754 3.30% 962460 4.24%
d15112 1573084 1659366 5.48% 1613134 2.55% 1631994 3.74% 1978136 25.75% 1614098 2.61% 1612163 2.48% 1598467 1.61%

Average - 1934631 5.54% 1902019 3.92% 1936648 5.48% 2589207 26.51% 1941749 4.43% 1911024 5.68% 1883850 3.52%
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Table 10: Performance of different methods on TSPLIB instances of varying sizes. The hyperparame-
ter settings are the default settings as used by Fu et al. (2021).

(a) Small TSPLIB instances (0–500 nodes)

Instance Optimal Zero Att-GCN DIMES UTSP SoftDist DIFUSCO GT-Prior
Length ↓ Gap ↓ Length ↓ Gap ↓ Length ↓ Gap ↓ Length ↓ Gap ↓ Length ↓ Gap ↓ Length ↓ Gap ↓ Length ↓ Gap ↓

st70 675 676 0.15% 676 0.15% 1056 56.44% 676 0.15% 694 2.81% 676 0.15% 676 0.15%
kroA200 29368 29635 0.91% 29368 0.00% 29464 0.33% 29529 0.55% 29383 0.05% 29831 1.58% 29397 0.10%
eil76 538 538 0.00% 538 0.00% 803 49.26% 538 0.00% 538 0.00% 538 0.00% 538 0.00%
pr144 58537 58554 0.03% 67632 15.54% 72458 23.78% 58537 0.00% 66184 13.06% 58901 0.62% 58537 0.00%
rat195 2323 2365 1.81% 2323 0.00% 2331 0.34% 2352 1.25% 2323 0.00% 2337 0.60% 2328 0.22%
eil51 426 427 0.23% 427 0.23% 653 53.29% 427 0.23% 427 0.23% 427 0.23% 427 0.23%
bier127 118282 118580 0.25% 118282 0.00% 118715 0.37% 118282 0.00% 118423 0.12% 118657 0.32% 118282 0.00%
lin105 14379 14379 0.00% 14379 0.00% 16437 14.31% 14379 0.00% 15073 4.83% 14401 0.15% 14379 0.00%
kroD100 21294 21294 0.00% 21294 0.00% 28391 33.33% 21309 0.07% 21294 0.00% 21374 0.38% 21294 0.00%
pr152 73682 73880 0.27% 73682 0.00% 86257 17.07% 73682 0.00% 73682 0.00% 74029 0.47% 73682 0.00%
kroA100 21282 21282 0.00% 21282 0.00% 25168 18.26% 21282 0.00% 21282 0.00% 21396 0.54% 21282 0.00%
ts225 126643 127147 0.40% 126713 0.06% 143360 13.20% 126726 0.07% 126962 0.25% 126643 0.00% 126643 0.00%
rd400 15281 15819 3.52% 15413 0.86% 15829 3.59% 15580 1.96% 15418 0.90% 15350 0.45% 15454 1.13%
kroB100 22141 22193 0.23% 22141 0.00% 26014 17.49% 22141 0.00% 22141 0.00% 22601 2.08% 22141 0.00%
d198 15780 15883 0.65% 15784 0.03% 16016 1.50% 15874 0.60% 15806 0.16% 15859 0.50% 15789 0.06%
eil101 629 630 0.16% 629 0.00% 914 45.31% 629 0.00% 629 0.00% 629 0.00% 629 0.00%
linhp318 41345 43250 4.61% 42359 2.45% 43263 4.64% 42453 2.68% 43111 4.27% 42336 2.40% 42212 2.10%
gil262 2378 2433 2.31% 2383 0.21% 2482 4.37% 2394 0.67% 2392 0.59% 2380 0.08% 2389 0.46%
rat99 1211 1211 0.00% 1211 0.00% 1218 0.58% 1211 0.00% 1211 0.00% 1214 0.25% 1211 0.00%
berlin52 7542 7542 0.00% 7542 0.00% 10569 40.14% 7542 0.00% 7542 0.00% 7542 0.00% 7542 0.00%
kroC100 20749 20749 0.00% 20749 0.00% 24666 18.88% 20749 0.00% 20749 0.00% 20901 0.73% 20749 0.00%
pr226 80369 80822 0.56% 83203 3.53% 84543 5.19% 81060 0.86% 85411 6.27% 83028 3.31% 80369 0.00%
fl417 11861 11932 0.60% 12014 1.29% 14036 18.34% 45810 286.22% 14897 25.60% 13977 17.84% 11907 0.39%
kroE100 22068 22068 0.00% 22068 0.00% 26062 18.10% 22068 0.00% 22068 0.00% 22135 0.30% 22068 0.00%
pr76 108159 108159 0.00% 108159 0.00% 130741 20.88% 108159 0.00% 109325 1.08% 111683 3.26% 108159 0.00%
ch130 6110 6149 0.64% 6111 0.02% 7706 26.12% 6120 0.16% 6248 2.26% 6157 0.77% 6111 0.02%
rd100 7910 7910 0.00% 7910 0.00% 14528 83.67% 7910 0.00% 7932 0.28% 7910 0.00% 7910 0.00%
tsp225 3916 3982 1.69% 3923 0.18% 3945 0.74% 3966 1.28% 3919 0.08% 3920 0.10% 3923 0.18%
pr264 49135 49552 0.85% 49135 0.00% 49248 0.23% 49844 1.44% 49309 0.35% 49180 0.09% 49135 0.00%
pr124 59030 59030 0.00% 59030 0.00% 76615 29.79% 59030 0.00% 59524 0.84% 59385 0.60% 59030 0.00%
kroA150 26524 26726 0.76% 26525 0.00% 26719 0.74% 26528 0.02% 26525 0.00% 26556 0.12% 26525 0.00%
kroB200 29437 29619 0.62% 29455 0.06% 29511 0.25% 29552 0.39% 29438 0.00% 29659 0.75% 29475 0.13%
kroB150 26130 26143 0.05% 26132 0.01% 26335 0.78% 26176 0.18% 26130 0.00% 26149 0.07% 26130 0.00%
pr107 44303 44358 0.12% 44387 0.19% 48621 9.75% 44303 0.00% 44303 0.00% 44387 0.19% 44303 0.00%
lin318 42029 43250 2.91% 42352 0.77% 43116 2.59% 42453 1.01% 43111 2.57% 42646 1.47% 42212 0.44%
pr136 96772 97515 0.77% 96772 0.00% 119314 23.29% 96785 0.01% 96772 0.00% 96781 0.01% 96772 0.00%
pr299 48191 48979 1.64% 48280 0.18% 48257 0.14% 48594 0.84% 48241 0.10% 48306 0.24% 48303 0.23%
u159 42080 42080 0.00% 42080 0.00% 43188 2.63% 42080 0.00% 42396 0.75% 42685 1.44% 42080 0.00%
a280 2579 2633 2.09% 2579 0.00% 2581 0.08% 2589 0.39% 2581 0.08% 2579 0.00% 2585 0.23%
pr439 107217 109872 2.48% 108631 1.32% 108602 1.29% 108424 1.13% 115530 7.75% 108855 1.53% 107656 0.41%
ch150 6528 6562 0.52% 6528 0.00% 8178 25.28% 6528 0.00% 6528 0.00% 6533 0.08% 6528 0.00%
d493 35002 35874 2.49% 35373 1.06% 35522 1.49% 36384 3.95% 35480 1.37% 35537 1.53% 35487 1.39%
pcb442 50778 52292 2.98% 51098 0.63% 51147 0.73% 51775 1.96% 51177 0.79% 50976 0.39% 51095 0.62%

Average - 35208 0.87% 35268 0.67% 38711 16.01% 35870 7.16% 35630 1.80% 35280 1.06% 34961 0.20%

(b) Medium TSPLIB instances (500–2000 nodes)

Instance Optimal Zero Att-GCN DIMES UTSP SoftDist DIFUSCO GT-Prior
Length ↓ Gap ↓ Length ↓ Gap ↓ Length ↓ Gap ↓ Length ↓ Gap ↓ Length ↓ Gap ↓ Length ↓ Gap ↓ Length ↓ Gap ↓

u574 36905 38171 3.43% 37545 1.73% 37803 2.43% 38018 3.02% 37545 1.73% 37026 0.33% 37441 1.45%
pcb1173 56892 60231 5.87% 58452 2.74% 58664 3.11% 59761 5.04% 58209 2.31% 57717 1.45% 58251 2.39%
u1432 152970 162741 6.39% 157322 2.85% 157056 2.67% 159654 4.37% 155566 1.70% 154734 1.15% 156126 2.06%
rat783 8806 9230 4.81% 8995 2.15% 9088 3.20% 9124 3.61% 8936 1.48% 8863 0.65% 8986 2.04%
fl1400 20127 20917 3.93% 23347 16.00% 20932 4.00% 37919 88.40% 30111 49.61% 22608 12.33% 21272 5.69%
vm1084 239297 251602 5.14% 242848 1.48% 245994 2.80% 252204 5.39% 243541 1.77% 242375 1.29% 244267 2.08%
rat575 6773 6982 3.09% 6901 1.89% 7053 4.13% 6959 2.75% 6871 1.45% 6801 0.41% 6842 1.02%
vm1748 336556 352556 4.75% 344077 2.23% 347356 3.21% 372117 10.57% 344193 2.27% 340888 1.29% 343973 2.20%
rl1889 316536 335641 6.04% 325270 2.76% 338164 6.83% 358570 13.28% 329839 4.20% 322969 2.03% 328399 3.75%
u724 41910 43487 3.76% 42525 1.47% 42915 2.40% 43106 2.85% 42508 1.43% 42081 0.41% 42420 1.22%
d1291 50801 52757 3.85% 52063 2.48% 53833 5.97% 54231 6.75% 52230 2.81% 51937 2.24% 52553 3.45%
pr1002 259045 273143 5.44% 264647 2.16% 267949 3.44% 268931 3.82% 266468 2.87% 263242 1.62% 264704 2.18%
fl1577 22249 23351 4.95% 26082 17.23% 23954 7.66% 27592 24.01% 28630 28.68% 25493 14.58% 27531 23.74%
nrw1379 56638 58991 4.15% 57681 1.84% 57737 1.94% 65399 15.47% 58021 2.44% 57297 1.16% 57654 1.79%
rl1304 252948 270179 6.81% 259681 2.66% 270057 6.76% 268425 6.12% 264884 4.72% 255970 1.19% 263748 4.27%
d657 48912 50971 4.21% 49798 1.81% 50577 3.40% 50437 3.12% 49657 1.52% 49153 0.49% 49616 1.44%
p654 34643 35266 1.80% 36233 4.59% 35873 3.55% 49921 44.10% 44016 27.06% 37936 9.51% 35979 3.86%
d1655 62128 66819 7.55% 63970 2.96% 64668 4.09% 75875 22.13% 64467 3.76% 63575 2.33% 63610 2.39%
u1817 57201 61671 7.81% 59226 3.54% 60219 5.28% 63152 10.40% 59585 4.17% 58780 2.76% 59318 3.70%
u1060 224094 232616 3.80% 227340 1.45% 232619 3.80% 236167 5.39% 228869 2.13% 227868 1.68% 229515 2.42%
rl1323 270199 283701 5.00% 276363 2.28% 282500 4.55% 282676 4.62% 278379 3.03% 274038 1.42% 278283 2.99%

Average - 128143 4.88% 124779 3.73% 126905 4.06% 132392 13.58% 126310 7.20% 123873 2.87% 125261 3.63%

(c) Large TSPLIB instances (>2000 nodes)

Instance Optimal Zero Att-GCN DIMES UTSP SoftDist DIFUSCO GT-Prior
Length ↓ Gap ↓ Length ↓ Gap ↓ Length ↓ Gap ↓ Length ↓ Gap ↓ Length ↓ Gap ↓ Length ↓ Gap ↓ Length ↓ Gap ↓

u2152 64253 68293 6.29% 66717 3.83% 69322 7.89% 71240 10.87% 96834 50.71% 77826 21.12% 66600 3.65%
u2319 234256 243093 3.77% 237114 1.22% 251125 7.20% 244142 4.22% 235644 0.59% 237035 1.19% 236159 0.81%
pcb3038 137694 150518 9.31% 142015 3.14% 163500 18.74% 148143 7.59% 141977 3.11% 157341 14.27% 141372 2.67%
fl3795 28772 30032 4.38% 35694 24.06% 35201 22.34% 50835 76.68% 36579 27.13% 42120 46.39% 38852 35.03%
pr2392 378032 392998 3.96% 391367 3.53% 426194 12.74% 401216 6.13% 438424 15.98% 430218 13.80% 385009 1.85%
fnl4461 182566 192471 5.43% 187802 2.87% 235876 29.20% 229934 25.95% 186632 2.23% 192868 5.64% 186359 2.08%
d2103 80450 88698 10.25% 83881 4.26% 96968 20.53% 88022 9.41% 84662 5.24% 90773 12.83% 82723 2.83%
rl5934 556045 590393 6.18% 576829 3.74% 703750 26.56% 781490 40.54% 647689 16.48% 645291 16.05% 592889 6.63%
rl5915 565530 603653 6.74% 587231 3.84% 694199 22.75% 809014 43.05% 644676 14.00% 656872 16.15% 591517 4.60%
usa13509 19982859 21177174 5.98% 20733868 3.76% 442759283 2115.70% 1115269461 5481.13% 21094456 5.56% 22241850 11.30% 20742301 3.80%
brd14051 469385 496359 5.75% 484032 3.12% 3757018 700.41% 13600054 2797.42% 493461 5.13% 489311 4.25% 483657 3.04%
d18512 645238 685983 6.31% 665993 3.22% 4922388 662.88% 22893796 3448.12% 664334 2.96% 663087 2.77% 659537 2.22%
rl11849 923288 1014118 9.84% 961746 4.17% 7381138 699.44% 40891587 4328.91% 990268 7.25% 977396 5.86% 970070 5.07%
d15112 1573084 1681649 6.90% 1621028 3.05% 19507797 1140.10% 71782581 4463.18% 1615421 2.69% 1653223 5.09% 1618636 2.90%

Average - 1958245 6.51% 1912522 4.84% 34357411 391.89% 90518679 1481.66% 1955075 11.36% 2039657 12.62% 1913977 5.51%
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Table 11: Performance of different methods on TSPLIB instances of varying sizes. The hyperparame-
ter settings are obtained by grid search.

(a) Small instances (0–500 nodes)

Instance Optimal Zero Att-GCN DIMES UTSP SoftDist DIFUSCO GT-Prior

Length ↓ Gap ↓ Length ↓ Gap ↓ Length ↓ Gap ↓ Length ↓ Gap ↓ Length ↓ Gap ↓ Length ↓ Gap ↓ Length ↓ Gap ↓
st70 675 675 0.00% 676 0.15% 675 0.00% 676 0.15% 676 0.15% 676 0.15% 676 0.15%
eil76 538 538 0.00% 538 0.00% 538 0.00% 538 0.00% 538 0.00% 538 0.00% 538 0.00%
kroA200 29368 29368 0.00% 29368 0.00% 29368 0.00% 29368 0.00% 29368 0.00% 29368 0.00% 29368 0.00%
eil51 426 427 0.23% 427 0.23% 427 0.23% 427 0.23% 427 0.23% 427 0.23% 427 0.23%
rat195 2323 2323 0.00% 2323 0.00% 2323 0.00% 2323 0.00% 2323 0.00% 2323 0.00% 2323 0.00%
pr144 58537 58537 0.00% 58537 0.00% 58537 0.00% 58537 0.00% 58537 0.00% 58537 0.00% 58537 0.00%
bier127 118282 118282 0.00% 118282 0.00% 118282 0.00% 118282 0.00% 118282 0.00% 118282 0.00% 118282 0.00%
lin105 14379 14379 0.00% 14379 0.00% 14379 0.00% 14379 0.00% 14379 0.00% 14379 0.00% 14379 0.00%
kroD100 21294 21294 0.00% 21294 0.00% 21294 0.00% 21294 0.00% 21294 0.00% 21294 0.00% 21294 0.00%
kroA100 21282 21282 0.00% 21282 0.00% 21282 0.00% 21282 0.00% 21282 0.00% 21282 0.00% 21282 0.00%
pr152 73682 73682 0.00% 73682 0.00% 73682 0.00% 73682 0.00% 73682 0.00% 73682 0.00% 73682 0.00%
ts225 126643 126643 0.00% 126643 0.00% 126643 0.00% 126643 0.00% 126643 0.00% 126643 0.00% 126643 0.00%
rd400 15281 15289 0.05% 15295 0.09% 15300 0.12% 15323 0.27% 15291 0.07% 15288 0.05% 15292 0.07%
kroB100 22141 22141 0.00% 22141 0.00% 22141 0.00% 22141 0.00% 22141 0.00% 22141 0.00% 22141 0.00%
d198 15780 15780 0.00% 15780 0.00% 15780 0.00% 15794 0.09% 15780 0.00% 15780 0.00% 15780 0.00%
eil101 629 629 0.00% 629 0.00% 629 0.00% 629 0.00% 629 0.00% 629 0.00% 629 0.00%
linhp318 41345 42080 1.78% 42029 1.65% 42175 2.01% 42194 2.05% 42029 1.65% 42029 1.65% 42029 1.65%
gil262 2378 2379 0.04% 2379 0.04% 2379 0.04% 2379 0.04% 2378 0.00% 2379 0.04% 2379 0.04%
rat99 1211 1211 0.00% 1211 0.00% 1211 0.00% 1211 0.00% 1211 0.00% 1211 0.00% 1211 0.00%
berlin52 7542 7542 0.00% 7542 0.00% 7542 0.00% 7542 0.00% 7542 0.00% 7542 0.00% 7542 0.00%
kroC100 20749 20749 0.00% 20749 0.00% 20749 0.00% 20749 0.00% 20749 0.00% 20749 0.00% 20749 0.00%
pr226 80369 80369 0.00% 80369 0.00% 80369 0.00% 80369 0.00% 80369 0.00% 80369 0.00% 80369 0.00%
fl417 11861 11871 0.08% 11862 0.01% 11867 0.05% 11870 0.08% 11871 0.08% 11863 0.02% 11862 0.01%
kroE100 22068 22068 0.00% 22068 0.00% 22068 0.00% 22068 0.00% 22068 0.00% 22068 0.00% 22068 0.00%
pr76 108159 108159 0.00% 108159 0.00% 108159 0.00% 108159 0.00% 108159 0.00% 108159 0.00% 108159 0.00%
ch130 6110 6111 0.02% 6111 0.02% 6111 0.02% 6111 0.02% 6111 0.02% 6111 0.02% 6111 0.02%
tsp225 3916 3916 0.00% 3916 0.00% 3916 0.00% 3916 0.00% 3916 0.00% 3916 0.00% 3916 0.00%
rd100 7910 7910 0.00% 7910 0.00% 7910 0.00% 7910 0.00% 7910 0.00% 7910 0.00% 7910 0.00%
pr264 49135 49135 0.00% 49135 0.00% 49135 0.00% 49135 0.00% 49135 0.00% 49135 0.00% 49135 0.00%
pr124 59030 59030 0.00% 59030 0.00% 59030 0.00% 59030 0.00% 59030 0.00% 59030 0.00% 59030 0.00%
kroA150 26524 26524 0.00% 26524 0.00% 26524 0.00% 26524 0.00% 26524 0.00% 26525 0.00% 26524 0.00%
kroB200 29437 29437 0.00% 29437 0.00% 29437 0.00% 29437 0.00% 29437 0.00% 29437 0.00% 29437 0.00%
kroB150 26130 26130 0.00% 26130 0.00% 26130 0.00% 26130 0.00% 26130 0.00% 26130 0.00% 26130 0.00%
pr107 44303 44303 0.00% 44303 0.00% 44303 0.00% 44303 0.00% 44303 0.00% 44303 0.00% 44303 0.00%
lin318 42029 42080 0.12% 42029 0.00% 42128 0.24% 42194 0.39% 42029 0.00% 42107 0.19% 42029 0.00%
pr136 96772 96772 0.00% 96772 0.00% 96772 0.00% 96772 0.00% 96772 0.00% 96772 0.00% 96772 0.00%
pr299 48191 48191 0.00% 48191 0.00% 48191 0.00% 48191 0.00% 48191 0.00% 48191 0.00% 48191 0.00%
u159 42080 42080 0.00% 42080 0.00% 42080 0.00% 42080 0.00% 42080 0.00% 42080 0.00% 42080 0.00%
a280 2579 2579 0.00% 2579 0.00% 2579 0.00% 2579 0.00% 2579 0.00% 2579 0.00% 2579 0.00%
pr439 107217 107303 0.08% 107219 0.00% 107480 0.25% 107810 0.55% 107308 0.08% 107346 0.12% 107269 0.05%
ch150 6528 6528 0.00% 6528 0.00% 6528 0.00% 6528 0.00% 6528 0.00% 6528 0.00% 6528 0.00%
d493 35002 35067 0.19% 35017 0.04% 35102 0.29% 35151 0.43% 35096 0.27% 35142 0.40% 35045 0.12%
pcb442 50778 50818 0.08% 50815 0.07% 50810 0.06% 50809 0.06% 50778 0.00% 50908 0.26% 50786 0.02%

Average - 34921 0.06% 34915 0.05% 34929 0.08% 34941 0.10% 34918 0.06% 34925 0.07% 34916 0.05%

(b) Medium instances (500–2000 nodes)

Instance Optimal Zero Att-GCN DIMES UTSP SoftDist DIFUSCO GT-Prior

Length ↓ Gap ↓ Length ↓ Gap ↓ Length ↓ Gap ↓ Length ↓ Gap ↓ Length ↓ Gap ↓ Length ↓ Gap ↓ Length ↓ Gap ↓
u574 36905 37150 0.66% 36978 0.20% 37064 0.43% 37088 0.50% 37002 0.26% 36935 0.08% 37001 0.26%
pcb1173 56892 57481 1.04% 57283 0.69% 57283 0.69% 57487 1.05% 56968 0.13% 57084 0.34% 57206 0.55%
rat783 8806 8861 0.62% 8869 0.72% 8865 0.67% 8884 0.89% 8827 0.24% 8820 0.16% 8819 0.15%
u1432 152970 155871 1.90% 153877 0.59% 153824 0.56% 154276 0.85% 153662 0.45% 153336 0.24% 153542 0.37%
fl1400 20127 20276 0.74% 20206 0.39% 20234 0.53% 20289 0.80% 20351 1.11% 20253 0.63% 20191 0.32%
vm1084 239297 241824 1.06% 239883 0.24% 242129 1.18% 243158 1.61% 240677 0.58% 239492 0.08% 240242 0.39%
rat575 6773 6801 0.41% 6807 0.50% 6807 0.50% 6831 0.86% 6780 0.10% 6783 0.15% 6787 0.21%
vm1748 336556 340748 1.25% 340010 1.03% 342178 1.67% 343242 1.99% 339937 1.00% 337632 0.32% 339204 0.79%
rl1889 316536 321629 1.61% 321778 1.66% 323176 2.10% 325917 2.96% 321654 1.62% 318314 0.56% 321452 1.55%
u724 41910 42124 0.51% 42111 0.48% 42128 0.52% 42205 0.70% 42001 0.22% 41982 0.17% 42041 0.31%
d1291 50801 51408 1.19% 51208 0.80% 51320 1.02% 51892 2.15% 51220 0.82% 50887 0.17% 51230 0.84%
pr1002 259045 261895 1.10% 261505 0.95% 261808 1.07% 261683 1.02% 261075 0.78% 260798 0.68% 260856 0.70%
fl1577 22249 22699 2.02% 22531 1.27% 22451 0.91% 22922 3.02% 22686 1.96% 22432 0.82% 22350 0.45%
nrw1379 56638 56991 0.62% 56993 0.63% 57013 0.66% 57112 0.84% 57010 0.66% 56787 0.26% 56881 0.43%
rl1304 252948 255681 1.08% 254493 0.61% 255372 0.96% 254380 0.57% 254075 0.45% 253518 0.23% 253883 0.37%
d657 48912 49107 0.40% 49102 0.39% 49104 0.39% 49151 0.49% 49031 0.24% 48954 0.09% 49034 0.25%
p654 34643 34671 0.08% 34663 0.06% 34674 0.09% 34714 0.20% 34757 0.33% 34645 0.01% 34643 0.00%
d1655 62128 64249 3.41% 62935 1.30% 63165 1.67% 64179 3.30% 63058 1.50% 62520 0.63% 62758 1.01%
u1817 57201 58886 2.95% 58154 1.67% 58677 2.58% 59710 4.39% 58190 1.73% 57842 1.12% 58120 1.61%
u1060 224094 227374 1.46% 226136 0.91% 227122 1.35% 229197 2.28% 225843 0.78% 224839 0.33% 224804 0.32%
rl1323 270199 272220 0.75% 272431 0.83% 272488 0.85% 275511 1.97% 271577 0.51% 271131 0.34% 271751 0.57%

Average - 123235 1.18% 122759 0.76% 123184 0.97% 123801 1.54% 122684 0.74% 122142 0.35% 122514 0.55%

(c) Large instances (2000+ nodes)

Instance Optimal Zero Att-GCN DIMES UTSP SoftDist DIFUSCO GT-Prior

Length ↓ Gap ↓ Length ↓ Gap ↓ Length ↓ Gap ↓ Length ↓ Gap ↓ Length ↓ Gap ↓ Length ↓ Gap ↓ Length ↓ Gap ↓
u2152 64253 67471 5.01% 66068 2.82% 66843 4.03% 68491 6.60% 65839 2.47% 65516 1.97% 65551 2.02%
u2319 234256 240322 2.59% 235175 0.39% 235562 0.56% 236094 0.78% 234601 0.15% 235421 0.50% 234929 0.29%
pcb3038 137694 143874 4.49% 140016 1.69% 142489 3.48% 141517 2.78% 138962 0.92% 141604 2.84% 138911 0.88%
fl3795 28772 32286 12.21% 30944 7.55% 31063 7.96% 31397 9.12% 30140 4.75% 30880 7.33% 30546 6.17%
pr2392 378032 386207 2.16% 386482 2.24% 386655 2.28% 383247 1.38% 383037 1.32% 387877 2.60% 381598 0.94%
fnl4461 182566 188373 3.18% 185826 1.79% 186745 2.29% 188081 3.02% 184360 0.98% 186633 2.23% 184471 1.04%
d2103 80450 83672 4.00% 82438 2.47% 83990 4.40% 84567 5.12% 82022 1.95% 81886 1.78% 81010 0.70%
rl5934 556045 595415 7.08% 577629 3.88% 590654 6.22% 616033 10.79% 572562 2.97% 579799 4.27% 574982 3.41%
rl5915 565530 594801 5.18% 588374 4.04% 592293 4.73% 604537 6.90% 581947 2.90% 584322 3.32% 584110 3.29%
usa13509 19982859 21193040 6.06% 20972608 4.95% 21240984 6.30% 21425850 7.22% 21329926 6.74% 21165172 5.92% 20642852 3.30%
brd14051 469385 495040 5.47% 488704 4.12% 492982 5.03% 498371 6.18% 489854 4.36% 487329 3.82% 482231 2.74%
d18512 645238 679290 5.28% 672809 4.27% 675878 4.75% 683918 5.99% 671251 4.03% 669281 3.73% 662290 2.64%
rl11849 923288 990945 7.33% 974291 5.52% 987813 6.99% 1002904 8.62% 970110 5.07% 962745 4.27% 959355 3.91%
d15112 1573084 1657644 5.38% 1641612 4.36% 1646903 4.69% 1668137 6.04% 1633396 3.83% 1636603 4.04% 1614104 2.61%

Average - 1953455 5.39% 1931641 3.58% 1954346 4.55% 1973796 5.75% 1954857 3.03% 1943933 3.47% 1902638 2.42%
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This generalization issue is particularly noteworthy as it affects all methods except the Zero heatmap,
which maintains relatively stable performance across different instance sizes and parameter settings.
The Zero heatmap’s consistency (varying only from 5.54% to 6.51% on large instances) provides
compelling evidence for our thesis that the MCTS component’s contribution to solution quality has
been historically undervalued in the framework. Furthermore, this stability suggests that proper
MCTS parameter tuning might be more crucial for achieving robust performance than developing
increasingly sophisticated heatmap generation methods.

From a practical perspective, our analysis also reveals an important computational consideration. The
learning-based baselines necessitate GPU resources for both training and inference stages, potentially
creating a bottleneck when dealing with real-world data. In contrast, methods that reduce reliance on
complex learned components might offer more practical utility in resource-constrained settings while
maintaining competitive performance through careful parameter optimization.

These findings collectively suggest that future research in this domain might benefit from a more bal-
anced focus between heatmap sophistication and MCTS optimization, particularly when considering
real-world applications where robustness and computational efficiency are paramount.

H TUNED HYPERPARAMETER SETTINGS

In this section, we present the search space in Table 12 and results of hyperparameter tuning,
summarized in the following Table 14. The table includes the various hyperparameter combinations
explored during the tuning process and their corresponding heatmap generation methods.

I HYPERPARAMETER TUNING WITH SMAC3

Table 12: The MCTS hyperparameter search space.
Bolded configurations indicate default settings
from prior works.

Hyperparameter Range

Alpha [0,1, 2]
Beta [10, 100, 150]
Max_Depth [10, 50, 100, 200]
Max_Candidate_Num [5, 20, 50,1000]
Param_H [2, 5,10]
Use_Heatmap [True,False]

In addition to the grid search method employed
in the main content of this paper, we also con-
ducted hyperparameter tuning using the Se-
quential Model-based Algorithm Configuration
(SMAC3) framework (Lindauer et al., 2022).
SMAC3 is designed for optimizing algorithm
configurations through an efficient and adaptive
search process that balances exploration and ex-
ploitation of the hyperparameter space.

The SMAC3 framework utilizes a surrogate
model based on tree-structured Parzen estima-
tors (TPE) to predict the performance of various
hyperparameter configurations. This model is
iteratively refined as configurations are evaluated, allowing SMAC3 to identify promising areas of
the search space more effectively than traditional methods.

Table 13: The Comparison of Tuning Time Be-
tween Grid Search and SMAC3. “h” indicates
hours.

Grid Search SMAC3

TSP-500 24h 1.39h
TSP-1000 48h 2.78h
TSP-10000 6h 3.47h

For our experiments, we configured SMAC3
to optimize the same hyperparameters as those
previously tuned via grid search. The search
space remains identical to that demonstrated in
Table 12, However, we set SMAC3 to search for
50 epochs (50 different hyperparameter combi-
nations) instead of exploring the entire search
space (864 different combinations) and the time
limit for MCTS was set to 50 seconds for TSP-
500, 100 seconds for TSP-1000, and 1000 sec-
onds for TSP-10000. We show the time cost of
each tuning method in Table 13.

The results of these experiments, including the hyperparameter settings identified by SMAC3 and their
corresponding performance metrics, are presented in Tables 14 and 15. As shown, the performance
achieved by SMAC3 is comparable to that of grid search. Specifically, for TSP-500 and TSP-1000,
SMAC3 produces results similar to those of Att-GCN DIFUSCO and GT-Prior, with even better
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(b) Clustered
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Figure 7: Empirical distribution of k-nearest neighbor in optimal TSP tours of different distributions.

outcomes observed on TSP-10000. This improvement can be attributed to the extended tuning time
allowed by SMAC3 compared to grid search. Given the significant difference in time costs, SMAC3
proves to be an efficient and economical option for tuning MCTS hyperparameters.

J k-NEAREST NEIGHBOR PRIOR IN TSP INSTANCES WITH DIFFERENT
DISTRIBUTIONS

We solved and analyzed TSP problem instances across several different distributions and found that
their k-Nearest Neighbor Prior distribution similarities were quite high, as shown in the Figure 7.

K ABLATION STUDY ON THE EFFICACY OF HYPERPARAMETER TUNING

To better understand the efficacy of hyperparameter tuning in MCTS for solving TSP, we conducted
an ablation study focusing on two critical aspects: the relationship between search time and solution
quality, and the sample efficiency of our tuning process. These experiments provide valuable insights
into our algorithm’s performance characteristics and highlight areas for potential optimization.

K.1 IMPACT OF TUNING STAGE TIME_LIMIT ON SOLVER PERFORMANCE

The relationship between Time_Limit and hyperparameter quality is crucial in MCTS hyperpa-
rameter tuning. While longer search times might intuitively yield better results, they also lead to
significantly increased tuning time. We conducted an ablation study to investigate this trade-off and
seek a balance between performance and efficiency.

Experimental Setup We examined the impact of search time on solver performance for TSP-500
and TSP-1000 instances, varying the tuning stage Time_Limit from 0.1 to 0.05 and 0.01.
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Figure 8: Impact of search time on solver performance across different hyperparameter configurations.

Figure 8 shows the performance of different methods with varying inference times, each with
three hyperparameter sets tuned using different Time_Limit values. Surprisingly, the relative
performance remains largely consistent across search durations, suggesting that hyperparameter
effectiveness can be accurately assessed within a limited time frame.

For TSP-500, most heatmaps exhibit similar performance across all tuning stage Time_Limit
values, with Zero and GT-Prior methods showing nearly identical performance curves. The best
learning-based method, DIFUSCO, displays a small performance gap at the default 50-second
inference time limit. However, this gap widens with longer inference times, suggesting that optimal
MCTS settings for high-quality heatmaps may vary with different Time_Limit values during tuning
phase. Efficiently tuning hyperparameters for such high-quality heatmaps remains a future research
direction. Notably, TSP-1000 results show even smaller performance gaps between different tuning
stage Time_Limit values, indicating that shorter tuning times can yield satisfactory hyperparameter
settings for larger problem instances.

The consistency of relative performance across search times has significant implications for efficient
hyperparameter tuning in large-scale TSP solving. This insight enables the development of accelerated
evaluation procedures that can identify promising hyperparameter settings without exhaustive, long-
duration searches.

K.2 SAMPLE EFFICIENCY

Experiments were conducted to evaluate the sample efficiency of the hyperparameter tuning procedure
for our proposed k-nearest prior heatmap. By varying the number of TSP instances in the training set
and measuring the resulting solution quality of the tuned hyperparameter setting, insights were gained
into the computational efficiency of our method. With only 64 samples for hyperparameter tuning,
our proposed GT-prior achieved a gap of 0.493% on TSP-500 and 0.866% on TSP-1000, rivaling
the performance of hyperparameter tuning with 256 samples, which achieved 0.493% on TSP-500
and 0.858% on TSP-1000. These results demonstrate the high sample efficiency of our approach,
enabling effective tuning with minimal computational resources.

L GT-PRIOR INFORMATION

We provide detailed information about GT-Prior for constructing the heatmap for TSP500, TSP1000,
and TSP10000 as follows:

# TSP500:
[4.40078125e-01, 2.56265625e-01, 1.32750000e-01, 7.32656250e-02,
4.08125000e-02, 2.35937500e-02, 1.34062500e-02, 7.75000000e-03,
4.48437500e-03, 2.73437500e-03, 1.78125000e-03, 1.18750000e-03,
6.87500000e-04, 3.75000000e-04, 3.75000000e-04, 1.87500000e-04,
7.81250000e-05, 1.56250000e-05, 4.68750000e-05, 1.56250000e-05,
4.68750000e-05, 3.12500000e-05, 1.56250000e-05, 1.56250000e-05]

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Table 14: Tune parameters of all the methods for TSP500, TSP1000 and TSP10000 by grid search
(the left table) and SMAC3 (the right table). Added Fast-T2T.

METHOD ALPHA BETA H MCN UH MD

TSP500

ZERO 2 10 2 5 0 100
ATT-GCN 0 150 5 5 0 100
DIMES 0 100 5 5 0 200
DIFUSCO 1 150 2 5 0 50
UTSP 0 100 5 5 0 50
SOFTDIST 1 100 5 20 0 200
FAST-T2T 1 150 2 20 0 200
GT-PRIOR 0 10 5 5 1 200

TSP1000

ZERO 1 100 5 5 0 100
ATT-GCN 0 150 5 5 0 200
DIMES 0 150 2 5 0 200
DIFUSCO 0 150 2 5 1 100
UTSP 1 100 5 5 0 50
SOFTDIST 0 150 2 20 1 200
FAST-T2T 0 150 2 1000 1 50
GT-PRIOR 1 10 5 5 1 200

TSP10000

ZERO 0 100 2 20 0 10
ATT-GCN 1 150 2 5 1 50
DIMES 1 100 2 20 0 10
DIFUSCO 0 100 5 20 0 50
SOFTDIST 2 100 5 20 0 10
FAST-T2T 2 150 2 20 0 10
GT-PRIOR 1 100 10 1000 1 100

METHOD ALPHA BETA H MCN UH MD

TSP500

ZERO 0 150 2 5 0 50
ATT-GCN 2 150 2 5 0 100
DIMES 0 100 5 5 0 200
DIFUSCO 1 150 2 5 0 50
UTSP 0 100 5 5 0 50
SOFTDIST 1 100 5 20 0 200
FAST-T2T 1 10 2 20 0 50
GT-PRIOR 0 10 5 5 1 200

TSP1000

ZERO 0 150 2 5 0 100
ATT-GCN 2 150 2 5 0 100
DIMES 2 150 5 5 0 100
DIFUSCO 0 150 2 5 1 200
UTSP 0 100 5 5 0 50
SOFTDIST 1 100 2 50 1 200
FAST-T2T 1 10 2 50 1 50
GT-PRIOR 0 150 2 5 1 200

TSP10000

ZERO 0 100 2 20 0 10
ATT-GCN 1 150 2 5 1 50
DIMES 1 100 2 20 0 10
DIFUSCO 0 100 5 20 0 50
SOFTDIST 2 100 5 20 0 10
FAST-T2T 1 10 10 50 0 200
GT-PRIOR 1 100 10 1000 1 100

Table 15: Results of Hyperparameter Tuning using SMAC3. The underlined figures in the table
indicate results that are equal to or better than those of Grid Search, rounded to two decimal places.
Added Fast-T2T.

METHOD TYPE
TSP-500 TSP-1000 TSP-10000

LENGTH ↓ GAP ↓ TIME ↓ LENGTH ↓ GAP ↓ TIME ↓ LENGTH ↓ GAP ↓ TIME ↓
CONCORDE OR(EXACT) 16.55∗ — 17.65S 23.12∗ — 3.12M N/A N/A N/A
GUROBI OR(EXACT) 16.55 0.00% 21.39M N/A N/A N/A N/A N/A N/A
LKH-3 (DEFAULT) OR(HEURISTIC) 16.55 0.00% 14.84S 23.12 0.00% 1.02M 71.77∗ — 28.73M

ZERO MCTS 16.67 0.73% 0.00M+
50.06S

23.39 1.17% 0.00M+
1.67M

74.44 3.71% 0.00M+
16.65M

ATT-GCN† SL+MCTS 16.66 0.69% 0.52M+
50.06S

23.38 1.15% 0.73M+
1.67M

73.87 2.92% 4.16M+
16.65M

DIMES† RL+MCTS 16.67 0.73% 0.97M+
50.06S

23.42 1.31% 2.08M+
1.67M

74.17 3.33% 4.65M+
16.65M

UTSP† UL+MCTS 16.72 1.07% 1.37M+
50.06S

23.51 1.68% 3.35M+
1.67M

— — —

SOFTDIST† SOFTDIST+MCTS 16.62 0.46% 0.00M+
50.06S

23.33 0.90% 0.00M+
1.67M

75.34 4.97% 0.00M+
16.65M

DIFUSCO† SL+MCTS 16.62 0.43% 3.61M+
50.06S

23.24 0.53% 11.86M+
1.67M

73.26 2.06% 28.51M+
16.65M

FAST-T2T SL+MCTS 16.60 0.34% 0.00M+
50.06S

23.29 0.74% 0.00M+
1.67M

75.11 4.65% 0.00M+
16.65M

GT-PRIOR PRIOR+MCTS 16.63 0.50% 0.00M+
50.06S

23.32 0.85% 0.00M+
1.67M

73.26 2.07% 0.00M+
16.65M

# TSP1000:
[4.37554687e-01, 2.54718750e-01, 1.37671875e-01, 7.41093750e-02,
3.97890625e-02, 2.35156250e-02, 1.32265625e-02, 7.45312500e-03,
4.73437500e-03, 3.00781250e-03, 1.59375000e-03, 1.08593750e-03,
5.62500000e-04, 2.96875000e-04, 2.65625000e-04, 1.71875000e-04,
1.01562500e-04, 4.68750000e-05, 1.56250000e-05, 3.12500000e-05,
2.34375000e-05, 7.81250000e-06, 1.56250000e-05]

# TSP10000:
[4.4175625e-01, 2.5409375e-01, 1.3292500e-01, 7.1950000e-02,
3.9518750e-02, 2.3750000e-02, 1.4143750e-02, 8.0937500e-03,
4.9125000e-03, 3.3312500e-03, 1.8437500e-03, 1.1125000e-03,
8.3750000e-04, 5.5625000e-04, 3.7500000e-04, 2.6250000e-04,
1.8125000e-04, 8.7500000e-05, 6.8750000e-05, 5.0000000e-05,
5.0000000e-05, 2.5000000e-05, 2.5000000e-05, 6.2500000e-06,
1.2500000e-05, 6.2500000e-06, 6.2500000e-06, 6.2500000e-06,
6.2500000e-06, 6.2500000e-06]
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M LIMITATIONS AND FUTURE WORK

Our study, while highlighting the critical role of MCTS configuration and the efficacy of simple
priors, has several limitations that suggest avenues for future research:

• Scope of TSP Variants and MCTS Adaptation: The current analysis, including the GT-Prior,
focuses on Euclidean TSP, and the MCTS framework utilizes TSP-specific k-opt moves. The
direct applicability of our findings and the GT-Prior to non-Euclidean TSPs, other combinatorial
optimization problems, or different MCTS action spaces warrants further investigation.

• Empirical Nature of MCTS Tuning: While we demonstrate the profound impact of MCTS
tuning, our approach to finding optimal configurations is empirical. A deeper theoretical
understanding of the relationship between TSP instance properties (or heatmap characteristics)
and optimal MCTS hyperparameters could lead to more principled, instance-adaptive tuning
strategies, reducing the reliance on extensive offline searches.

• Hyperparameter Tuning Efficiency: While the proposed GT-Prior heatmap is computationally
inexpensive at inference, the MCTS hyperparameter tuning process itself (using grid search
in our current implementation) can be resource-intensive, especially if the search space is
large or if tuning is performed on very large-scale instances. Although this is a one-time
offline cost, optimizing the tuning process itself (e.g., using more sophisticated Bayesian
optimization, evolutionary algorithms, or meta-learning for hyperparameter optimization as
hinted in Appendix I) would be beneficial for practical adoption and for exploring even larger
parameter spaces.

• Exploration of Alternative Search Mechanisms: This study operates within the MCTS
framework as the search component. While MCTS is powerful, exploring whether the insights
on the heatmap vs. search balance extend to other search metaheuristics (e.g., guided local
search, iterated local search, or even learned search policies) when paired with various heatmap
generation techniques could be a valuable research direction.

Addressing these aspects could lead to more versatile, theoretically grounded, and practically efficient
learning-based solvers for TSP and other challenging optimization problems.

N LLM USAGE STATEMENT

During the preparation of this manuscript, we utilized a large language model (LLM) as a writing
assistant. The LLM’s role was strictly limited to improving the clarity, grammar, and readability
of our text through sentence polishing and paragraph restructuring. The LLM did not contribute to
research ideation, experimental design, data analysis, or the formulation of conclusions. All scientific
content and claims are the sole responsibility of the human authors.
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