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ABSTRACT

The “Heatmap + Monte Carlo Tree Search (MCTS)” paradigm has recently
emerged as a prominent framework for solving the Traveling Salesman Prob-
lem (TSP). While considerable effort has been devoted to enhancing heatmap
sophistication through advanced learning models, this paper rigorously examines
whether this emphasis is justified, assessing the relative impact of heatmap com-
plexity versus MCTS configuration. Our extensive empirical analysis across diverse
TSP scales, distributions, and benchmarks reveals two pivotal insights: 1) The
configuration of MCTS strategies strongly influences solution quality, underscor-
ing the importance of systematic tuning to achieve optimal results and enabling
valid comparisons among different heatmap methodologies. 2) A rudimentary,
parameter-free heatmap based on the intrinsic k-nearest neighbor structure of TSP
instances, when coupled with an optimally tuned MCTS, can match or surpass
the performance of more sophisticated, learned heatmaps, demonstrating robust
generalizability on problem scale and distribution shifts. To facilitate rigorous
and fair evaluations in future research, we introduce a streamlined pipeline for
standardized MCTS hyperparameter tuning. Collectively, these findings challenge
the prevalent assumption that heatmap complexity is the primary determinant of
performance, advocating instead for a balanced integration and comprehensive
evaluation of both learning and search components within this paradigm.

1 INTRODUCTION

The Traveling Salesman Problem (TSP) remains a fundamental challenge in combinatorial opti-
mization, drawing considerable interest from theoretical and applied research communities. As an
NP-hard problem, the TSP serves as a crucial benchmark for evaluating novel algorithmic strategies
for finding optimal or near-optimal solutions efficiently (Applegate et al., 2009). Its practical sig-
nificance spans logistics, transportation, manufacturing, and telecommunications, where efficient
routing is paramount for cost minimization and operational improvement (Helsgaun, |2017; Nagata
and Kobayashi, |2013). Recent machine learning advancements have spurred new methodologies for
tackling TSP, notably the “Heatmap + Monte Carlo Tree Search (MCTS)” paradigm (Fu et al.,2021)).
Leveraging learned heatmaps to guide MCTS in refining solutions, this approach has demonstrated
success on large-scale instances and inspired a proliferation of methods (Qiu et al.| 2022 |Sun and
Yang|, 2023 Min et al.| [2024). This rapid development signals a maturing field where systematic
evaluation, comparison, and validation of emerging techniques are increasingly essential.

Within this “Heatmap + MCTS” framework, a primary research thrust has centered on enhancing
heatmap generation, often through increasingly sophisticated learning models, from supervised
learning (Fu et al., [2021])) to diffusion models (Sun and Yang, [2023). The underlying assumption is
often that heatmap sophistication directly translates to superior solution quality. But is this pursuit
of complexity the only, or even optimal, path to performance gains? Has the impact of MCTS
configurations—the search component responsible for translating heatmap guidance into concrete
solutions—been fully acknowledged and systematically investigated? Although numerous solvers
have emerged claiming performance improvements, there remains a lack of evaluation-centered
scrutiny regarding the actual influence of the MCTS component and the true necessity of intricate
heatmap designs. Our work aims to address this gap, challenging the potential cognitive bias that
“more complex heatmaps consistently lead to better performance” and providing clarity for researchers
and practitioners.
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This work presents a rigorous, evaluation-centered analysis of the “Heatmap + MCTS” paradigm for
TSP. Our primary objective is to examine the deep impact of MCTS configurations and re-evaluate
the necessity of heatmap complexity. The central argument of our evaluation is twofold: first, that
strategic MCTS calibration substantially influences solution quality, demanding meticulous attention;
and second, that our proposed GT-Prior—a simple, parameter-free k-nearest neighbor heatmap—can
rival or even surpass complex learned heatmaps while also demonstrating strong generalization ability.
Our evaluation spans various heatmap generation methods, from sophisticated learning-based models
to this GT-Prior, and scrutinizes diverse MCTS hyperparameter settings. The empirical validation
is performed on TSP instances of varying scales (TSP-500, TSP-1000, and TSP-10000), covering
diverse problem structures through various synthetic distributions (including uniform, clustered,
explosion, and implosion) and established real-world TSPLIB benchmarks.

The novelty of this paper lies not in proposing a new state-of-the-art solver, but in the rigor of its
evaluation process and the critical insights derived. Our contributions are primarily evaluative:

* We empirically quantify and thereby reveal the often-underestimated significance of MCTS
configurations in optimizing TSP solutions. Fine-tuning MCTS parameters such as explo-
ration constant and node expansion criteria demonstrably impacts solution quality, urging a
re-prioritization in algorithm design.

* We challenge the prevailing emphasis on heatmap complexity by demonstrating that a simple,
parameter-free heatmap grounded in the k-nearest neighbor nature of TSP (termed GT-Prior
in this work) exhibits strong performance and generalizability across diverse problem scales
when combined with an optimized MCTS. This baseline serves to assess the added value of
more intricate heatmap models.

* We introduce a streamlined MCTS hyperparameter tuning pipeline, offering a practical tool to
facilitate fairer and more robust comparisons in future research on heatmap designs.

These findings collectively advocate for a more holistic understanding and balanced integration of
learning and search components within the “Heatmap + MCTS” paradigm. Our work seeks to guide
future research towards frameworks that synergistically harness both components, leading to more
efficient, robust, and practically deployable TSP solvers, all while aligning with the foundational
motivation of this research line: fo better solve large-scale TSP by any means.

2 HEATMAP + MCTS: BACKGROUND AND CURRENT PERSPECTIVES

This section outlines the foundations of the “Heatmap + Monte Carlo Tree Search” paradigm for
solving the Traveling Salesman Problem. We formalize the TSP and its heatmap representation,
describe the adapted MCTS framework, review key methodological developments, and examine the
current perspectives that motivate our evaluation.

2.1 TRAVELING SALESMAN PROBLEM DEFINITION

The Traveling Salesman Problem (TSP) is a classic combinatorial optimization problem defined over
aset of N points I = {(x;,y;)}\, in the Euclidean plane, where each point denotes a city located at
coordinates (z;,y;) € [0, 1]2. The Euclidean distance between any two cities i and j is calculated by
dij = \/(x; — xj)> + (y; — y;)?. The objective is to find the shortest closed tour that visits each city

exactly once. This optimal tour is represented as a permutation 7* = (7], 75, ..., 7y ), minimizing
the total length:
N—-1
L(Tl'*) = Z dfr;fﬁf+1 +d‘rr}kv7ri‘ (D

=1

The performance of a feasible solution 7 is measured using the optimality gap:

_ [ L(x)
Gap = (L(ﬂ'*) — 1) x 100%. 2)

In the “Heatmap + MCTS” paradigm, the solution process is guided by a heatmap P € [0, 1]V ¥V,
where each entry Pi]]\f represents the estimated probability that edge (4, j) appears in the optimal tour.
This heatmap serves as a probabilistic prior that informs the subsequent search process.
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2.2 THE MONTE CARLO TREE SEARCH FRAMEWORK FOR TSP

Originally introduced by [Fu et al.|(2021)) to integrate learned heatmap priors with Monte Carlo search,
this MCTS framework has become the de facto search backbone for heatmap-guided TSP solvers.
MCTS formulates the TSP as a Markov Decision Process (MDP), where each state represents a valid
tour and actions correspond to k-opt moves modifying the current solution. While many follow-up
studies have reused its core procedure with only superficial adjustments, few have explored deeper
search-centric refinements.

In this framework, the search begins by constructing an initial tour: edges are sampled with probability

proportional to e’ f}[’ where P¥ is the heatmap prior. The edge weight matrix W is initialized as
W,;; = 100 - PIJJV , the access frequency matrix @ is set to zero, and the overall move counter M starts
at zero. Each node in the TSP graph maintains a candidate set to constrain future edge selections.
During each simulation, a set of k-opt moves is generated and evaluated using the potential function

in Equation (3), guiding the search toward higher-quality tours through repeated updates and restarts.

Wi In(M +1
o MO+

Zi' = - —_—
’ Q; Qij +1

3

where ; =Y ki W;; normalizes the edge weights from node ¢, and « is an exploration coefficient.
Edges with higher potential are more likely to be selected.

If a generated move yields a shorter tour (AL < 0), it is accepted and applied. Otherwise, the search
restarts from a newly sampled initial tour. After each move, MCTS updates the edge weights to
reflect the observed improvement:

Wiy Wiy + 8 (exp (%) - 1) , 4)

where [ is the learning rate. The access matrix () is incremented for all modified edges. The process
iterates until a fixed time limit is reached, at which point the best tour encountered is returned.

2.3 EVOLUTION AND PREVAILING RESEARCH IN HEATMAP-GUIDED MCTS

The “Heatmap + MCTS” framework, introduced by [Fu et al.|(2021)), marked a significant shift in TSP
research by pairing neural heatmap predictions with Monte Carlo Tree Search. Their method used
attention-based GCNs to estimate edge probabilities, which then guided a stochastic search to build
high-quality tours. This design has inspired numerous variants focused on refining heatmap quality.

Subsequent efforts introduced more sophisticated models to enhance generalization and structure
awareness. DIMES employed meta-learned GNNs (Q1u et al., [2022); DIFUSCO leveraged diffusion-
based generative models (Sun and Yang| [2023)); and UTSP proposed an unsupervised learning
strategy (Min et al.,2024). More recently, SoftDist (Xia et al., 2024) explored a simpler, distance-
based heatmap, reflecting growing skepticism toward model complexity.

However, while heatmap design has seen continuous innovation, the search component—MCTS—has
received comparatively less attention. Most prior works adopt default configurations with minimal
tuning, and few report the impact of auxiliary steps such as sparsification or additional supervision.
As a result, the actual contribution of MCTS to overall performance remains under-investigated.

2.4 CURRENT PERSPECTIVES AND POTENTIAL OVERSIGHTS

This disparity in research focus reflects several implicit views that have shaped the paradigm: 1) that
heatmap complexity is the primary driver of performance, justifying the emphasis on model sophisti-
cation; 2) that default or minimally tuned MCTS configurations are sufficient for fair comparison,
suggesting the search process is either secondary or robust by design; 3) that MCTS itself is well
understood, with its impact assumed to be stable across different problem scales and heatmap types.

We challenge these views through systematic evaluation. Our results show that MCTS tuning plays
a pivotal role—often matching or exceeding the effect of heatmap refinement—and that a simple,
parameter-free prior can outperform complex models when coupled with optimized search. These
findings argue for a more balanced and transparent evaluation framework in future work.
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3  EVALUATION METHODOLOGY

This section outlines our experimental framework for a rigorous evaluation of the “Heatmap + MCTS”
paradigm in solving the TSP. We aim to assess the distinct contributions of heatmap quality and
MCTS configuration to solver performance, ensuring fair and robust comparisons.

3.1 EVALUATION OBJECTIVES

Our evaluation is structured to answer three central questions:

Q1: To what extent does the configuration of the MCTS component influence solution quality when
applied to diverse heatmap generation techniques?

Q2: Can a simple, parameter-free heatmap with an optimally tuned MCTS match or surpass complex
learned heatmaps using default MCTS settings?

Q3: Which MCTS hyperparameters are most influential, and how does their impact vary with
heatmap type and problem scale?

Addressing these questions requires a methodology that isolates MCTS effects for accurate perfor-
mance attribution.

3.2 ENSURING FAIR COMPARISONS

Comparing “Heatmap + MCTS” TSP solvers is challenging as MCTS performance can be a con-
founding factor. Fixed MCTS settings in prior work may obscure true heatmap efficacy, as MCTS
parameters significantly impact solution quality. A sophisticated heatmap might underperform with
poorly tuned MCTS, while a simpler one could excel with optimized search.

To ensure fairness, our methodology mandates dedicated MCTS hyperparameter tuning for each
evaluated heatmap. This optimizes the search strategy for each heatmap’s characteristics, enabling a
more accurate assessment of its intrinsic value.

3.3 MCTS HYPERPARAMETER TUNING PIPELINE

We employ a streamlined MCTS hyperparameter tuning pipeline for standardized and reproducible
evaluations across different heatmap methods and TSP scales.

Tuning Method. The pipeline uses grid search over key MCTS hyperparameters. For each heatmap
and problem scale (TSP-500, TSP-1000, TSP-10000), configurations are evaluated on a dedicated
tuning dataset of synthetic TSP instances. The configuration yielding the best average optimality gap
is selected for subsequent test evaluations. This tuning is performed independently for each heatmap.

Key MCTS Hyperparameters. Based on prior literature (Fu et al., [2021} Min et al.| 2024; Xia
et al.| 2024) and our own empirical sensitivity analysis, we tune the following key hyperparameters:

* Alpha: Exploration coefficient (Equation (3)).

* Beta: Edge weight update aggressiveness (Equation (@)).

¢ Max_Depth: Maximum k for k-opt moves.

* Max_Candidate_Num: Candidate edge set size per node.

e Param_H: MCTS simulations per move.

* Use_Heatmap: Boolean for using heatmap or not for initial candidate set construction.

The search space for these parameters is detailed in the Table[12]in Appendix [I}

3.4 ANALYTICAL TOOLS FOR HYPERPARAMETER IMPORTANCE

To quantify each MCTS hyperparameter’s influence on solution quality, we use SHapley Additive
exPlanations (SHAP) (Lundberg and Leel |2017; [Lundberg et al.l 2020). SHAP values, derived
from game theory, attribute performance contributions to each parameter, providing model-agnostic
insights into their importance.
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Figure 1: Beeswarm plots of SHAP values for three different heatmaps. MD: Max_Depth, MCN:
Max_Candidate_Num, H: Param_H, UH: Use_Heatmap. Each dot represents a feature’s
SHAP value for one instance, indicating its impact on the TSP solution length. The x-axis shows
SHAP value magnitude and direction, while the y-axis lists features. Vertical stacking indicates
similar impacts across instances. Wider spreads suggest greater influence and potential nonlinear
effects. Dot color represents the corresponding feature value.

3.5 EXPERIMENTAL SETUP

Heatmap Methods Evaluated. Our framework is applied to diverse heatmap techniques:

* Learning-based: Att-GCN (Fu et al., |2021), DIMES (Qiu et al., 2022), DIFUSCO (Sun and
'Yang, 2023)), UTSP (Min et al.} 2024).

* Distance-based parameterized: SoftDist (Xia et al.,|2024)).

* Baselines: A non-informative Zero heatmap and our proposed GT-Prior (Section [5.1).

Pretrained models or generation code are sourced from original authors where possible.

Datasets. Experiments use synthetic TSP instances (sizes 500, 1000, 10000) with a distinct tuning
set for each size (128 instances for TSP-500/1000, 16 for TSP-10000; cities sampled uniformly from
[0, 1]2) and test sets sourced from [Fu et al.|(2021). Generalization is assessed on varied distributions
generated following [Fang et al.| (2024) and TSPLIB (Reinelt, [1991) benchmarks. Ground-truth
solutions were obtained from Concorde (Applegate et al., 2009) (TSP-500/1000) or LKH-3 (Helsgaun|
2017) (TSP-10000).

Evaluation Metrics. 1) Optimality Gap (Gap): Relative solution quality to best-known tours, as in
Equation ([2); 2) Improvement: Gap reduction post-tuning versus default MCTS settings; 3) Time:
Heatmap generation + MCTS execution (with MCTS time controlled by Time_Limit).

Computational Environment. All experiments were run on an AMD EPYC 9754 128-Core CPU
with 256 GB of memory. MCTS runtime per instance is Time_Limit X IV seconds.

This methodology underpins the analyses and conclusions presented subsequently.

4 COMPONENT IMPACT I: THE CRITICAL ROLE OF MCTS CONFIGURATION

This section presents the empirical analysis of MCTS hyperparameter impact, leveraging the eval-
uation framework and tuning pipeline detailed in Section [3.3] We first examine the sensitivity and
importance of individual MCTS hyperparameters and then quantify the performance gains achieved
through their systematic tuning.

4.1 MCTS HYPERPARAMETER SENSITIVITY AND IMPORTANCE

The MCTS hyperparameter tuning pipeline was executed using the search space specified in Table[T2]
in Appendix [H| This space includes configurations inspired by prior works (Fu et al., 2021; Min
et al.| [2024; |Xia et al.,[2024) and algorithmic analysis, with default settings highlighted in bold. The
impact of these MCTS configurations on TSP solution quality was subsequently analyzed using
SHAP values, which attribute performance changes to individual hyperparameters. Positive SHAP
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Figure 2: Box plots of the optimality gap (%) for various heatmap sources, scales, and MCTS settings.

values suggest an increase in solution length (worse performance), while negative values indicate a
reduction (better performance).

Figure [I] presents the SHAP value distributions for key MCTS hyperparameters across three rep-
resentative heatmap models (Att-GCN, UTSP, and SoftDist) on TSP-500 instances. Additional
plots for other models and problem sizes are provided in Appendix |E} The Max_Candidate_Num
parameter consistently demonstrates a strong, often positive, impact across these models, suggesting
that reducing the candidate set size from very large defaults can improve both computational speed
and solution quality. Max_Depth generally exhibits positive SHAP values, indicating that exces-
sively deep k-opt explorations within MCTS can sometimes be detrimental to finding good solutions
quickly. The parameters A1lpha (exploration coefficient) and Use_Heatmap (determining initial
candidate set construction) show mixed effects, revealing non-linear interactions where their optimal
values and impact depend on the specific heatmap being used. For instance, Beta (edge weight
update aggressiveness) shows a notable positive influence in the SoftDist model, implying that its
default update strategy might be suboptimal. Conversely, Param_H (MCTS simulations per move)
generally demonstrates minimal overall influence across the examined heatmaps within the tested
ranges. These findings directly address QB3] pinpointing influential MCTS hyperparameters and the
context-dependent nature of their effects.

4.2 QUANTIFYING PERFORMANCE GAINS FROM MCTS TUNING

To quantify the impact of MCTS configuration, we tuned hyperparameter sets within the given search
space and report their performance spectrum. The Time_Limit for MCTS was set to 0.1 for
TSP-500 and TSP-1000, and 0.01 for TSP-10000. Performance is reported as the Optimality Gap
(Gap). UTSP is not evaluated on TSP-10000 due to unavailability of corresponding heatmaps. The
Zero heatmap’s tuning involved setting Use_Heatmap to Fals

Figure [2] illustrates the critical role of MCTS hyperparameter tuning, directly answering Q[I] by
demonstrating the extent to which MCTS configuration determines final solution quality across
diverse heatmap generation techniques. This impact is evident in the vast performance gap between
best-tuned (green circles) and worst-tuned (red ‘x’) configurations; for instance, DIMES on TSP-
10000 ranges from a 4.86% gap to a crippling 91.31% based on MCTS settings alone. Consequently,
default MCTS configurations (blue stars) are often far from optimal. Dedicated tuning yields
significant gains: SoftDist on TSP-500, for instance, saw its gap improve from 1.12% to 0.22%, and
the Zero heatmap on TSP-1000 from 5.49% to 1.06%. Even sophisticated heatmaps like DIFUSCO,
despite a strong default performance (0.20% gap on TSP-500), still benefit from tuning (achieving
0.09%) and can be severely degraded by poor MCTS choices (worst-tuned gap of 3.62%). These
observations highlight that careful MCTS configuration is essential to unlock the true potential of any
heatmap, elevating the performance of both complex and basic priors.

In essence, Figure [2]reveals that MCTS configuration is a dominant performance factor. Effective
tuning is not only beneficial but crucial, capable of substantially elevating solution quality for all
types of heatmaps and enabling even basic priors to achieve strong results. This underscores the
necessity of our streamlined MCTS tuning pipeline (Section[3.3)) for rigorous evaluations and realizing

"For the Zero heatmap, Use_Heatmap was set to False, as it provides no instance-specific information.
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optimal solver performance. The specific MCTS configurations yielding the best-tuned results are in
Appendix [H]

This one-time hyperparameter tuning (conducted via grid search) is a pre-computation step compara-
ble in effort to training many learning-based heatmap methods and does not affect the MCTS inference
time. Further tuning efficiencies can be realized through parallelization or advanced hyperparameter
optimization algorithms like SMAC3 (Lindauer et al.,[2022), as discussed in Appendix [I}

5 COMPONENT IMPACT II: RE-EVALUATING HEATMAP SOPHISTICATION
WITH A RIGOROUS BASELINE

While Section E] established the critical role of MCTS configuration, this section evaluates the
prevailing view that increasingly sophisticated heatmap models are the primary drivers of performance
in the “Heatmap + MCTS” TSP paradigm. We introduce and evaluate a simple, parameter-free
baseline, GT-Prior, derived from the intrinsic k-nearest neighbor structure of TSP solutions. By
comparing GT-Prior (with optimized MCTS) against complex learned heatmaps, we assess whether
the pursuit of heatmap complexity consistently yields justifiable performance gains, especially when
the search component is already operating effectively, providing an answer to Q] This analysis aims
to provide a clearer perspective on the added value of intricate heatmap models and advocate for the
inclusion of strong, simple baselines in future methodological comparisons.

5.1 THE k-NEAREST PRIOR IN TSP

The k-nearest prior in TSP posits that optimal tour GT-Prior for Uniform Distribution
edges predominantly connect a city to one of its clos- TSP-500 TSP-1000 5P-10000
est neighbors. This empirical observation has been 05
implicitly used in constructing sparse graph inputs
for learning models (Fu et al.,|2021; [Sun and Yang]
2023} Min et al, 2024), yet its direct use as a primary
heatmap source has been less explored.
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and average these distributions across all instances to derive the empirical distribution:
- 1
Py(k) = — Y PL(k),ke{1,2,..,N} 6
N() |I|I€ZI N()a 6{77 ’ } ()

To quantify this prior empirically, we analyzed (near-)optimal solutions for uniform TSP instances of

varying sizes (TSP-500, TSP-1000 using Concorde; TSP-10000 using LKH-3). For each instance [

from a set Z, and its (near-)optimal tour, we computed the frequency ni with which an edge connects
~ I

to the k-th nearest neighbor. The averaged empirical distribution Py (k) = ﬁ > ez 3 is shown in

Figure[3] The results reveal a strong locality: the probability of selecting one of the top 5 nearest
neighbors exceeds 94%, rising above 99% for the top 10. This distribution is highly consistent
across TSP scales, a finding that also holds for instances from different underlying distributions (see
Appendix [J] for similar results).

Leveraging insights from the optimal solution, we construct the heatmap by assigning probabilities
to edges based on the empirical distribution of the k-nearest prior Py (-). For each city i in a TSP



Under review as a conference paper at ICLR 2026

Table 1: Results on large-scale TSP problems. Abbreviations: RL (Reinforcement learning), SL
(Supervised learning), UL (Unsupervised learning), AS (Active search), G (Greedy decoding), S
(Sampling decoding), BS (Beam-search). * indicates baseline for performance gap. } indicates
methods using heatmaps of test set from |Xia et al.| (2024)) with our MCTS setup. Some methods
show two Time terms (heatmap generation and MCTS runtimes). MCTS times denote the equivalent
sequential runtime per instance. Concorde and Gurobi results are sourced from [Fu et al.| (2021)); |Qiu
et al.[(2022).

METHOD TyeE ‘ LENGTH | TS(}‘:;\SPOS TIME | | LENGTH | ng;xlpoi)o TIME | LENGTH iTS%igOiOO TIME |
CONCORDE OR(EXACT) 16.55% — 17.65s | 23.12° _ 3.12um N/A N/A N/A

GUROBI OR(EXACT) 16.55 0.00% 21.39Mm N/A N/A N/A N/A N/A N/A

LKH-3 (DEFAULT) OR(HEURISTIC) 16.55 0.00% 14.84s 23.12 0.00% 1.02m 7177 — 28.73m
ZERO MCTS 16.66  0.66% 05'8%”6‘; 2339 1.16% 01'9;)7’”3 7450  3.80% ?222‘;;
ATT-GCN' SL+MCTS 16.66  0.69% %g%“g: 2337 1.09% 0]'_7637“ﬁ4+ 73.95  3.03% ‘1"61_2?;
DIMES' RL+MCTS 16.66  0.43% 2‘370“3; 2337 1.11% 21'9687“3 73.97  3.06% ‘}égx
UTSP! UL+MCTS 16.69  0.90% 15370’2;' 2347 1.53% 31"3657“3' - - -

SOFTDIsT! SOFTDIST+MCTS | 16.62  0.43% 05'8_%“;;' 2330 0.80% 0].?:71\14\: 73.89  2.95% ?ﬁgg‘;
DIFUSCO! SL+MCTS 16.60  0.33% 35'310’:3‘; 2324 0.53% | }:2%* 7347 2.37% 2&%“&*
FAST-T2T SL+MCTS 1657  0.12% gg%"g;' 2327 0.65% '1"7687"14\; 74.80  4.22% 3672’;4;
GT-PRIOR PRIOR+MCTS 16.63  0.50% 05'8_%“;; 2331 0.85% 0].?:71\;1\: 7331 2.14% ?ﬁgg‘;

instance of size IV, we assign probabilities to edges (¢, j) as follows:
PleV:PN(k’LJ)?sz € {1a2a5N} (7)

where £;; is the rank of city j among 7’s neighbors in terms of proximity (see the detailed statistical
results in Appendix [C). Importantly, this heatmap is parameter-free and scale-independent, thus
requiring no tuning or learning phase.

5.2 PERFORMANCE DEMONSTRATION: CHALLENGING COMPLEXITY

We evaluated GT-Prior against various heatmap methods, all coupled with MCTS configurations
tuned according to our pipeline (Section [3.3). This ensures that comparisons reflect the heatmap’s
intrinsic quality when its search partner is optimized, rather than differences in MCTS efficacy.

As shown in Table[I] GT-Prior, a simple parameter-free heatmap, when combined with an optimally
tuned MCTS, achieves performance highly competitive with, and in some cases (TSP-10000) superior
to, far more complex learning-based heatmap generators like DIFUSCO. For TSP-500, TSP-1000,
and TSP-10000, GT-Prior yields optimality gaps of 0.50%, 0.85%, and 2.13%, respectively. This
performance is achieved with no heatmap generation time at inference, similar to SoftDist and Zero.

Critically, the Zero heatmap, providing no edge guidance, still achieves respectable gaps (e.g., 0.66%
for TSP-500) solely through tuned MCTS (where Use_Heatmap is optimally set to False, relying
on distance for candidate selection). This underscores the substantial impact of the search component
itself. The strong showing of GT-Prior and even the tuned Zero heatmap challenges the narrative
that gains in TSP solutions primarily hinge on increasing heatmap model sophistication. It suggests
that much of the solution quality can be attributed to a well-calibrated search process acting on
fundamental problem characteristics, a point potentially understated in evaluations that do not tune
MCTS for simpler baselines.

5.3 GENERALIZATION ABILITY: ROBUSTNESS OF SIMPLICITY

We further assessed the generalization of GT-Prior by applying the prior derived from TSP-500 data to
larger TSP instances (TSP-1000, TSP-10000), as well as different distributions (derived from uniform
and tested on other distributions), comparing against learned models under the same cross-scale
evaluation.
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Table 2: Generalization performance of different methods trained on TSP-500 across varying TSP
sizes (TSP-500, TSP-1000, TSP-10000). “Res Type” refers to the result type: “Ori.” indicates
the performance on the same scales during the test phase, while “Gen.” represents the model’s
generalized performance on different scales.

TSP-500 TSP-1000 TSP-10000
METHOD RES TYPE GAP | DEGENERATION | GAP | DEGENERATION | GAP | DEGENERATION |
DIMES ORI./GEN. | 0.43%/0.43% 0.00% 1.11%/1.19% 0.08% 3.05%14.29% 1.24%
UTSP ORL./GEN. | 0.90%/0.90% 0.00% 1.53%/1.44% -0.09% — —
DIFUSCO  ORI./GEN. | 0.33%/0.33% 0.00% 0.53%/0.86% 0.33% 2.36%15.27% 2.91%
SOFTDIST  ORL/GEN. | 0.43%/0.43% 0.00% 0.80%/0.97% 0.17% 2.94%13.90% 0.96%
GT-PRIOR  ORL/GEN. | 0.50%/0.50% 0.00% 0.85%/0.88% 0.03% 2.13%/2.13% -0.01%

Table 3: Optimality gap (%, |) across distributions and sizes. Lighter color indicates lower gap.

METHOD | TSP-500 TSP-1000 TSP-10000
\ CLUSTER  EXPLOSION  IMPLOSION \ CLUSTER EXPLOSION  IMPLOSION \ CLUSTER  EXPLOSION  IMPLOSION
ZERO 0.79 0.58 0.67
ATT-GCN 0.74 0.58 0.65
DIMES 0.90 0.62 0.72
UTSP 0.97 0.72 0.83
DIFUSCO 0.88 0.65 0.74
SOFTDIST 0.98 0.56 0.49
GT-PRIOR 0.51 0.38 0.49

Table 2| reveals GT-Prior’s robust generalization across scales. When the prior derived from uniform
TSP-500 is applied to TSP-10000, GT-Prior’s performance degradation is minimal (merely a -0.01%
change in gap, effectively maintaining its 2.13% gap), substantially outperforming complex learned
models like DIFUSCO, which sees its gap increase from 2.36% to 5.27% (a 2.91% degeneration).
This suggests that simpler priors based on inherent problem structure (like k-nearest neighbors) may
offer greater robustness and scalability than intricate learned patterns, which might overfit to training
distributions or scales.

This robustness extends to generalization across qualitatively different problem structures. As
evidenced in Table[3] when MCTS settings (tuned on uniform data, and the heatmap also derived
from uniform data) are applied to instances from clustered, explosion, and implosion distributions,
GT-Prior consistently maintains strong performance. For example, on TSP-10000, GT-Prior achieves
impressive optimality gaps of 0.35% (clustered), 0.93% (explosion), and 0.58% (implosion). These
results frequently surpass those of more complex models like DIFUSCO (1.96%, 2.50%, 2.42%
respectively) under these challenging cross-distribution test conditions. This highlights that GT-Prior’s
fundamental k-nearest neighbor prior is less susceptible to distributional shifts than learned patterns,
which might inadvertently specialize to the characteristics of (typically uniform) training data. While
sophisticated learning-based models can achieve excellent results in certain cases, demonstrating the
generalization ability of their learned features (e.g., DIFUSCQO’s strong performance on TSP-1000
across distributions), GT-Prior’s consistent efficacy underscores the value of simple, structurally-
grounded priors for achieving reliable generalization—a key quality for practical and versatile TSP
solvers. This resilience is a crucial evaluative aspect, particularly for solvers intended for diverse,
large-scale applications.

More generalization results of models trained on TSP-1000 and TSP-10000 are left in Appendix [F}
and additional results on TSPLIB instances are listed in Appendix [G}

6 CONCLUSIONS

This study underscores the necessity of a more balanced and rigorous approach to the “Heatmap
+ MCTS” paradigm for the TSP. By empirically demonstrating the distinct impact of MCTS con-
figurations and the competitive strength of a simple, parameter-free k-nearest prior when coupled
with optimized search, our work challenges the prevailing emphasis on heatmap sophistication. The
introduced streamlined MCTS hyperparameter tuning pipeline offers a concrete pathway toward
fairer and more insightful comparisons of future heatmap designs. Looking ahead, these evaluative
insights encourage a research trajectory that moves beyond isolated component optimization. By
fostering a synergistic, holistically understood, and optimized integration of learning and search, the
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field can develop TSP solvers that are not only high-performing but also more robust, efficient, and
genuinely impactful.

10
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ETHICS STATEMENT

The research presented in this paper, aimed at improving solutions for the Traveling Salesman
Problem (TSP), has several potential societal impacts. On the positive side, advancements in TSP
solvers can directly enhance efficiency in sectors like logistics and manufacturing, leading to reduced
fuel consumption, lower operational costs, and decreased environmental emissions. Our findings that
simpler, well-tuned methods can be highly effective may also help democratize access to advanced
optimization tools, allowing smaller entities to benefit without requiring massive computational
resources.

Conversely, we acknowledge potential negative impacts. As with many advancements in Al and
automation, the increased efficiency from improved TSP solvers could contribute to job displacement
in manual planning and routing roles. There is also a risk of unintended consequences or exacerbating
existing inequities if these tools are deployed without careful consideration of all relevant factors.
Therefore, this work encourages a methodical approach to building Al systems, emphasizing the
importance of understanding and tuning all components. By demonstrating the power of simpler
priors combined with careful search configuration, we advocate for solutions that are more transparent
and robust, aligning with principles of responsible Al development. Continuous attention to fairness,
robustness, and human oversight will be crucial as such technologies are deployed.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our research, we provide a comprehensive suite of resources. The
complete source code, including scripts for hyperparameter tuning and result evaluation, is included
in the supplementary materials. A detailed README file offers step-by-step instructions for setting
up the computational environment and executing the experiments described in this paper. Our full
evaluation methodology, experimental setup, datasets, and computational environment are described
in Section[3.5] The specific MCTS hyperparameter search space and the best-tuned configurations
used to produce our final results are detailed in the Appendix [HI|I} The procedure for generating our
proposed GT-Prior is explained in Section[5.1] The datasets used in our experiments were sourced
from established benchmarks as cited in Section[3.5] and the generation code for synthetic instances
is also provided.
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A ADDITIONAL RELATED WORKS

Approaches using machine learning to address the Travelling Salesman Problem (TSP) generally fall
into two distinct groups based on how they generate solutions. The first group, known as construction
methods, incrementally forms a path by sequentially adding cities to an unfinished route, following an
autoregressive process until the entire path is completed. The second group, improvement methods,
starts with a complete route and continually applies local search operations to improve the solution.

Construction Methods Since|Vinyals et al.|(2015));Bello et al.| (2016) introduced the autoregressive
combinatorial optimization neural solver, numerous advancements have emerged in subsequent
years (Deudon et al.| 2018 Kool et al.,[2019; [Peng et al.,|2020; Kwon et al [2021}|2020). These
include enhanced network architectures (Kool et al., |2019), more sophisticated deep reinforcement
learning techniques (Khalil et al.,[2017; Ma et al., |2019; |Choo et al.,|2022)), and improved training
methods (Kim et al.,[2022; Bi et al.| [2022)). For large-scale TSP, [Pan et al.|(2023) adopts a hierarchical
divide-and-conquer approach, breaking down the complex TSP into more manageable open-loop
TSP sub-problems.

Improvement Methods In contrast to construction methods, improvement-based solvers leverage
neural networks to progressively refine an existing feasible solution, continuing the process until the
computational limit is reached. These improvement methods are often influenced by traditional local
search techniques like k-opt, and have been shown to deliver impressive results in various previous
studies (Chen and Tian, [2019; ' Wu et al., 2021} [Kim et al., 2021} [Hudson et al., 2021). |Ye et al.|(2024)
implements a divide-and-conquer approach, using search-based methods to enhance the solutions of
smaller subproblems generated from the larger instances.

Recent breakthroughs in solving large-scale TSP problems (Fu et al., 2021} |Qiu et al., 2022} Sun and
Yang| 2023 [Min et al., 2024; |[Xia et al.| |2024]), have incorporated Monte Carlo tree search (MCTS)
as an effective post-processing technique. These heatmaps serve as priors for guiding the MCTS,
resulting in impressive performance in large-scale TSP solutions, achieving state-of-the-art results.

Other Directions In addition to exploring solution methods for combinatorial optimization prob-
lems, some studies investigate intrinsic challenges encountered during the learning phase. These
include generalization issues during inference (Wang et al., 2021} Zhou et al.l 2023} |Wang et al.,
2024) and multi-task learning (Wang and Yu, 2023} [Liu et al, |2024; Zhou et al., |2024) aimed at
developing foundational models.

B IMPACT OF HEURISTIC POSTPROCESSING

In our experimental reproduction of various learning-based heatmap generation methods for the
Travelling Salesman Problem (TSP), we identified a critical yet often overlooked factor affecting
performance: the post-processing of model-generated heatmaps. This section details the post-
processing strategies employed by different methods and evaluates their impact on performance
metrics.

B.1 POSTPROCESSING STRATEGIES

DIMES DIMES generates an initial heatmap matrix of dimension n x n from a k-nearest neighbors
(k-NN) subgraph of the original TSP instance (k = 50). The post-processing involves two steps:

1. Sparsification: Retaining only the top-5 values for each row, setting all others to a significantly
negative number.

2. Adaptive softmax: Iteratively applying a temperature-scaled softmax function with gradual
temperature reduction until the minimum non-zero probability exceeds a predefined threshold.

DIFUSCO DIFUSCO also generates a sparse heatmap based on the £-NN subgraph (k£ = 50 for
TSP-500, £ = 100 for larger scales). The post-processing differs based on problem scale:
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Table 4: Performance Degeneration for Different Methods with and without Postprocessing on
TSP-500, TSP-1000, and TSP-10000. ‘W’ indicates with postprocessing, while ‘“W/O’ indicates
without postprocessing.

METHOD  POSTPROCESSING ‘ GAP | EISEEESI\I(LORATIONSJ, GAP | —I-DSEPG_];gggATIONSL GAP | T?)};-cl;gr(\l)ggATIONsi
DIMES w0 ‘ 0% 0.93% ‘ o 6.77% ‘ P 12.81%
UTSP in,o ‘ §1733i 1.36% ‘ Z:;gg‘; 2.10% ‘ — —
DIFUSCO R ‘ o 1.88% ‘ 0.00% -0.40% ‘ e 42.52%

1. For TSP-500 and TSP-1000: A single step integrating Euclidean distances, thresholding, and
symmetrization.

2. For TSP-10000: Two steps are applied sequentially: a) Additional supervision using a greedy
decoding strategy followed by 2-opt heuristics. b) The same process as used for smaller instances.

UTSP UTSP’s post-processing is straightforward, involving sparsification of the dense heatmap
matrix by preserving only the top 20 values per row.

B.2 EXPERIMENTAL RESULTS

We conducted experiments on the test set for heatmaps generated by these three methods, both with
and without post-processing, using the default MCTS setting. Results are presented in Table ]

Our findings reveal that heatmaps generated without post-processing generally exhibit performance
degradation, particularly for TSP-10000, where the gap increases by orders of magnitude. This
underscores the importance of sparsification for large-scale instances and highlights the tendency of
existing methodologies to overstate their efficacy in training complex deep learning models.

Interestingly, DIFUSCO’s heatmap without post-processing outperforms its post-processed coun-
terpart for TSP-1000, suggesting that the DIFUSCO model, when well-trained on this scale, can
generate helpful heatmap matrices to guide MCTS without additional refinement.

These results emphasize the critical role of post-processing in enhancing the performance of learning-
based heatmap generation methods for TSP, particularly as problem scales increase. They also
highlight the need for careful evaluation of model outputs and the potential for over-reliance on
post-processing to mask limitations in model training and generalization.

The substantial performance gap between heatmaps with and without post-processing raises questions
about the extent to which the reported performance gains can be attributed solely to the learning
modules of these methods. While the learning components undoubtedly contribute to the overall
effectiveness, the significant impact of post-processing suggests that the raw output of the learning
models may not be as refined or directly applicable as previously thought.

In light of these findings, we recommend that future research on heatmap-based methods for TSP
provide a detailed description of their post-processing operations. Additionally, we suggest reporting
results both with and without post-processing to offer a more comprehensive understanding of the
method’s performance and the relative contributions of its learning and post-processing components.
This approach would foster greater transparency in the field and facilitate more accurate comparisons
between different methodologies.

C ANALYSIS OF ONE-OFF COMPUTATIONAL COSTS

To ensure a holistic comparison, we analyze the one-off setup costs: model training for learning-based
baselines versus hyperparameter tuning for MCTS.
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Training Costs. Table 5| summarizes the training times reported in original papers. Deep learning
methods typically incur heavy computational overheads, requiring significant GPU hours (e.g., ~10
hours for DIMES on TSP-10k).

Table 5: Approximate training times for learning-based methods. Note: Times are rough references
due to hardware variances.

Method TSP-500 TSP-1000  TSP-10000

Att-GCN ~25h ~25h ~25h
DIMES ~1.5h ~1.7h ~10h
UTSP ~0.5h N/A N/A

Tuning vs. Training. MCTS tuning is a comparable one-off cost but is generally more resource-
efficient. Using SMACS3 (detailed in Appendix H), tuning MCTS for TSP-10000 requires only 3.47
hours on a CPU. This is notably lower than the GPU-intensive training required for baselines like
DIMES. Furthermore, the resulting configurations (Table 13) are reusable across similar distributions.|

GT-Prior Construction. The cost of constructing GT-Prior is negligible. It requires solving only
a small set of instances (e.g., 128 for TSP-500) to extract k-NN statistics, avoiding the expensive
pre-training phase entirely.

D FULL EXPERIMENTAL RESULTS

The following table presents the complete results of the large-scale TSP problems, including the
four end-to-end learning-based methods that were previously omitted in the main paper due to space

constraints. These methods include EAN (d O Costa et al.[|2020), AM (Kool et al.; 2019), GCN (Joshi

2019), and POMO+EAS (Hottung et al., 2021). We also included a more recent heatmap
method: Fast-T2T(Li et al.,[2024). The methods listed here employ reinforcement learning (RL),

supervised learning (SL), and unsupervised learning (UL) techniques, in addition to various decoding
strategies such as greedy, sampling, and beam-search.

Complementing these, we introduce specific comparisons with greedy decoding and plain 2-opt to
isolate the impact of the search mechanism. The greedy results exhibit large optimality gaps (e.g.,
>50%), confirming that myopic decisions inevitably discard critical distributional information found
in the heatmaps. Similarly, while plain 2-opt improves solution quality, it lags significantly behind
MCTS on large-scale instances (TSP-10000). This performance gap highlights that local search alone
is insufficient to escape local optima at this scale, validating the necessity of MCTS for providing
high-level global guidance.
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Table 6: Full Results on large-scale TSP problems. Abbreviations: RL (Reinforcement learning),
SL (Supervised learning), UL (Unsupervised learning), AS (Active search), G (Greedy decoding), S
(Sampling decoding), and BS (Beam-search). * indicates the baseline for performance gap calculation.
t indicates methods utilizing heatmaps provided by Xia et al. (2024), with MCTS executed on our
setup. Some methods list two terms for Time, corresponding to heatmap generation and MCTS
runtimes, respectively. Concorde and Gurobi results are sourced from |Fu et al.| (2021); |Q1u et al.
(2022).Added Greedy and 2-opt results.

Method Tooe TSP-500 TSP-1000 TSP-10000
P Length | Gap | Time | | Length | Gap | Time | | Length | Gap | Time |
Concorde OR(exact) 16.55* — 17.65s 23.12* — 3.12m N/A N/A N/A
Gurobi OR(exact) 1655  0.00% 21.39m | N/A N/A N/A N/A N/A N/A
LKH-3 (default) OR(heuristic) 1655  000%  14.84s | 2312  0.00%  1.02m | 7177° — 28.73m
Nearest Insertion OR 2062 2459%  0.00s | 2896  2526%  0.00s 90.51  26.12%  0.38s
Random Insertion OR 1857  1221%  0.00s | 2612  12.98%  0.00s 81.85  14.05%  0.25s
Farthest Insertion OR 1830  1057%  0.00s | 2572  1125%  0.00s 80.59  1230%  0.38s
EAN RL+S 2863 73.03%  946s | 5030  117.59%  17.38s N/A N/A N/A
EAN RL+S+2-0pt 2375  4357% 27.07s | 4773 10646%  2.53m N/A N/A N/A
AM RLA+S 2264  36.84%  733s | 4280  85.15%  29.99s | 43158 5S01.31%  47.36s
AM RL+G 2002 2099%  071s | 3115  3475%  1.49s 141.68  97.40%  22.46s
AM RL+BS 1953 18.03%  103ls | 2990  2923%  46.12s | 12940  8029%  6.79m
GCN SL+G 2072 79.61% 3.3 | 4862  11029%  13.37s N/A N/A N/A
GCN SL+BS 3037 83.55%  17.82s | 5126 121.73%  24.22s N/A N/A N/A
POMO+EAS-Emb RL+AS 1924 1625%  6.00m | N/A N/A N/A N/A N/A N/A
POMO+EAS-Lay RL+AS 1935  1692% 7.59m | N/A N/A N/A N/A N/A N/A
POMO+EAS-Tab RL+AS 2454 4822%  544m | 4956  11436% 29.74m | N/A N/A N/A
0.00m+ 0.00m+ 0.00m+
Zero MCTS ‘ 1666 0.66% oo ‘ 23.39 L16% e ‘ 7450 380% (ceot
SL+MCTS 1666 069% oot | 2337 109w O™ 7305 303 FLOM*
At-GCN' 0.52ms 0.73my 416ms
D2m+ . /3m+ Jdom+
SL+2-0pt 1742 527%  gooer | 2477 706% ot | 7948 1073% ol
0.52m+ 0.73m+ 4.16m+
SL+Greedy 3071 85.63% ooot | 5065 119.41% oodt | 30488 32476% |
RL+MCTS 1666 0.43% 05'370"6” 2337 1.11% 21‘0:7’“" 7397 3.06% ‘:'662‘5“*
DIMES' 0.97ms 2,08 465me
.9 /m+ .Osm+ .60m+
RL+2-0pt 1758 626%  sooet | 2500 8.15% o0t | 9356 3035%  oes
0.97m+ 2.08m+ 4.65m+
RL+Greedy 5143 21082% o 07| 9508 31172% o i | 77178 975.24%  Cy
UL+MCTS 1660 090% ontt | 2347 1sse M| — —
+ .06s 1.67m
vTsP UL+2-opt 1750 6320 M| 5503 goge oM+
+2-0p - S50 50.06s : 207 1.67m - - -
1.37m+ 3.35m+
UL+Greedy 2548 5400% o0 3946 7070% ool — — —
o 0.00m+ 0.00m+ 0.00m+
- SofDist+MCTS | 1662 043%  co W™ | 2330 0s0%  ont | 7389 295% | Jlot
. 0.00m+ 0.00m+ 0.00m+
SoftDistt2-opt | 1750  575% iRt 2482 734% M| 7900 1021% 08t
. 0.00m+ 0.00m+ 0.00m+
SoftDist+Greedy | 2087  2613% o0t | 2006 25.69% gt 9143 27.39%  yae
SL+MCTS 1660 033% 358 lo‘g’f 2324 0539 SO a0 g39g,  2851me
i .06s 1.67m 16.65m
PIFLSCO SL+2-opt 1669  089% SOIMH | o438 susg  IIBOME L gege g6 2851m
+e-op! - 9% 50.06s : 4% 1.67m : 6% 16.65m
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E ADDITIONAL HYPERPARAMETER IMPORTANCE ANALYSIS

We employed the SHAP method to analyze hyperparameter importance across all conducted grid
search experiments. Most resulting beeswarm plots for TSP-500, TSP-1000, and TSP-10000 are
in Figure [ (including ’Zero’ heatmap where Use_Heatmap is set to False). Plots of the UTSP
heatmap are presented in Figure 5]

The patterns of TSP-1000 are similar to those of TSP-500, as discussed in Section@ However, the
patterns for TSP-10000 show a major difference, where the influence of Max_Candidate_Num
and Use_Heatmap becomes dominant. Furthermore, their SHAP values are clearly clustered
rather than continuous, as observed in smaller scales. This could be explained by the candidate
set of large-scale TSP instances having a major impact on the running time of MCTS k-opt search.
Additionally, the time limit setting causes the performance of different hyperparameter settings for
Max_Candidate_Numand Use_Heatmap to become more distinct.

F ADDITIONAL GENERALIZATION ABILITY RESULTS

Tables 7| presents additional results on the generalization ability of various methods when trained on
TSP-1000 and TSP-10000, respectively.

For models trained on TSP-1000, GT-Prior continues to demonstrate superior generalization capability.
When generalizing to smaller instances (TSP-500), GT-Prior shows minimal performance degradation
(0.02%), comparable to DIMES and better than UTSP and SoftDist. For larger instances (TSP-
10000), GT-Prior maintains consistent performance with a slight improvement (-0.02% degradation),
outperforming all other methods. DIFUSCO, while showing good performance on TSP-500 and
TSP-1000, experiences significant degradation (2.91%) when scaling to TSP-10000.

The results for models trained on TSP-10000 further highlight GT-Prior’s robust generalization
ability. When applied to smaller problem sizes (TSP-500 and TSP-1000), GT-Prior exhibits minimal
performance degradation (0.01% and 0.02%, respectively). In contrast, other methods show more
substantial degradation, particularly for TSP-1000. Notably, SoftDist experiences severe perfor-
mance deterioration (73.36%) when generalizing to TSP-1000, while DIFUSCO shows significant
degradation for both TSP-500 (0.63%) and TSP-1000 (2.74%).

These results consistently demonstrate GT-Prior’s exceptional ability to generalize across various
problem scales, maintaining stable performance regardless of whether it is scaling up or down from
the training instance size. This stability is particularly evident when compared to the other methods,
which often struggle with significant performance degradation when generalizing to different problem
sizes.
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Figure 4: Beeswarm plots of SHAP values for six methods across different TSP sizes.
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Figure 5: Beeswarm plots of SHAP values for the UTSP heatmap across different TSP sizes.

Table 7: Generalization on the model trained on TSP1000 (the upper table) and TSP10000 (the lower
table).

METHOD  RES TYPE TSP-500 ‘ TSP-1000 ‘ TSP-10000

GAP | DEGENERATION | | GAP| DEGENERATION | | GAP| DEGENERATION |
s O[89 oma | E owr |38 o
o O[O w1 oews |
DIFUSCO g];‘] ‘ 8:;2% 0.07% ‘ 8:23;/2 0.00% ‘ g:;%ﬁ 2.91%
SOFTDIST g]‘;'q ‘ 8:‘5‘?2 0.08% ‘ g:gggg 0.00% ‘ %:23;‘; 0.74%
GT-PRIOR gg ‘ 8:2%2 0.02% ‘ 8:222 0.00% ‘ %:}?ZO) -0.02%
METHOD  RES TypE TSP-500 ‘ TSP-1000 ‘ TSP-10000

GAP| DEGENERATION | GAP|  DEGENERATION | | GAP] DEGENERATION |
e Q|08 oma | ME ome |3 oms
DIFUSCO g]‘;‘] ‘ 8:3332 0.63% ‘ g:gig‘; 2.81% ‘ %:gg;‘j 0.00%
SOFTDIST gg] ‘ 8:2?2”} 0.22% ‘ 704?%’;0 73.44% ‘ %:gjgj 0.00%
GT-PRIOR gg ‘ 8:2?;’7/‘; 0.01% ‘ g:gggﬁ 0.04% ‘ %{g;‘j 0.00%

G ADDITIONAL RESULTS ON TSPLIB

We categorize all Euclidean 2D TSP instances into three groups based on the number of nodes: Small
(0-500 nodes), Medium (500-2000 nodes), and Large (more than 2000 nodes). For each category, we
evaluate all baseline methods alongside our proposed GT-Prior.

Table 8: Generalization performance testing of different methods on TSPLIB instances. The best
results in the row are shown in bold and the second-best underlined.

Size MCTS Setting Zero  Att-GCN DIMES UTSP  SoftDist DIFUSCO  GT-Prior
Tuned on TSPLIB 0.06% 0.05% 0.08% 0.10% 0.06% 0.07% 0.05%
Small Tuned on Uniform 0.79% 0.67% 0.48% 0.45% 1.23% 0.58% 0.76%
Default 0.87% 0.67% 16.01% 7.16% 1.80% 1.06% 0.20%
Tuned on TSPLIB 1.18% 0.76% 0.97% 1.54% 0.74% 0.35% 0.55%
Medium  Tuned on Uniform  15.24% 11.47% 10.64% 12.03% 6.79% 2.38% 10.08%
Default 4.88% 3.73% 4.06% 13.58% 7.20% 2.87% 3.63%
Tuned on TSPLIB 5.39% 3.58% 4.55% 5.75% 3.03% 3.47% 2.42%
Large Tuned on Uniform 5.54% 3.92% 5.48% 26.51% 4.43% 5.68% 3.52%
Default 6.51% 4.84% 391.89% 1481.66%  11.36% 12.62% 5.51%
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We conducted MCTS evaluations under three distinct parameter settings: (1) Tuned Settings, opti-
mized using uniform TSP instances as listed in Table@ whose results are shown in Table@} (2) the
Default Settings, as originally employed by [Fu et al.| (2021)), whose results are shown in Table [0}
and (3) the Grid Search setting where the MCTS hyperparameters are obtained by instance-level grid
search, whose results are shown in Table[TT] The results in these tables showcase the performance
of the methods in terms of solution length and optimality gap, highlighting the effectiveness of the
proposed GT-Prior approach.

The data in Table [8] particularly under the ‘Tuned on TSPLIB’ setting, further emphasizes the
critical role of hyperparameter selection tailored to the specific data distribution. Here, our proposed
GT-Prior method consistently demonstrates strong performance, achieving the leading optimality
gap for Large instances (2.42%) and tying for the best on Small instances (0.05%). Similarly,
other approaches like Att-GCN (0.05% on Small) and DIFUSCO (0.35% on Medium) also exhibit
their most competitive results when tuned directly on TSPLIB. This underscores that substantial
performance gains are unlocked when hyperparameters align with the problem’s characteristics. While
more granular instance-level hyperparameter optimization, such as the aforementioned grid search
(detailed in Table @, can yield further benefits, its current computational demands are considerable.
Consequently, the efficacy of targeted tuning observed in Table [8|strongly motivates future research
into efficient hyperparameter optimization, including the development of recommendation systems
that could predict near-optimal settings from instance features, thereby achieving robust performance
without exhaustive search.

Several key insights emerge from detailed experimental results. First, we observe a strong interaction
between instance distribution and parameter tuning effectiveness. While methods like UTSP and
DIMES excel on small uniform instances, their performance exhibits high sensitivity to parameter
settings when faced with real-world TSPLIB instances, particularly at larger scales (e.g., UTSP
degrading from 26.51% to 1481.66% on large instances). This finding reveals a fundamental
generalization challenge shared by most learning-based methods - the optimal parameters learned
from one distribution may not transfer effectively to another, highlighting the critical importance of
robust parameter tuning strategies. To illustrate this distribution sensitivity, we visualize representative
hard and easy instances from each group in Figures [6] demonstrating that hard instances deviate
significantly from uniform distribution while easy instances closely resemble it.

prid4 11400 13795

- - e, L
[ 1 b .. L - -
VI . . e ————
.\:' .'.: . S
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| — — P —

d657 u2319

(b) Easy instances at small, medium, and large scales.

Figure 6: Representative TSPLIB instances visualization.
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Table 9: Performance of different methods on TSPLIB instances of varying sizes. All hyperparameter
settings are tuned on uniform TSP instances as listed in Table @

(a) Small instances (0-500 nodes)

Instance | Optimal Zero Att-GCN DIMES UTSP SoftDist DIFUSCO GT-Prior
Length| Gapl | Length) Gapl | Length| Gap| | Length] Gapl | Length| Gapl | Length] Gapl | Length| Gapl |

st70 675 676 0.15% 676 0.15% 676 0.15% 676 0.15% 724 7.26% 676 0.15% 676 0.15%
eil76 538 538 0.00% 538 0.00% 538 0.00% 538 0.00% 538 0.00% 538 0.00% 538 0.00%
kroA200 | 29368 29368 0.00% 29383 0.05% 29368 0.00% 29382 0.05% 29383 0.05% 29380 0.04% 29368 0.00%
eil51 426 427 0.23% 427 0.23% 427 0.23% 427 0.23% 427 0.23% 427 0.23% 427 0.23%
rat195 2323 2328 0.22% 2328 0.22% 2323 0.00% 2328 0.22% 2328 0.22% 2328 0.22% 2328 0.22%
prl44 58537 59932 2.38% 63736 8.88% 59553 1.74% 59211 1.15% 66950 14.37% 63389 8.29% 65486 11.87%
bier127 118282 118282  0.00% 118282  0.00% 118282  0.00% 118282  0.00% 118282  0.00% 118282  0.00% 118282  0.00%
1in105 14379 14379 0.00% 14379 0.00% 14379 0.00% 14379 0.00% 15081 4.88% 14379 0.00% 14379 0.00%

kroD100 | 21294 21294 0.00% 21294 0.00% 21294 0.00% 21294 0.00% 21294 0.00% 21294 0.00% 21294 0.00%
kroA100 | 21282 21282 0.00% 21282 0.00% 21282 0.00% 21282 0.00% 21282 0.00% 21282 0.00% 21282 0.00%

pris2 73682 74089 0.55% 73682 0.00% 73682 0.00% 73818 0.18% 74443 1.03% 74609 1.26% 74274 0.80%
5225 126643 126643  0.00% | 126643 0.00% | 126643 0.00% | 126643  0.00% | 126643  0.00% 126643  0.00% | 126643  0.00%
rd400 15281 15314 0.22% 15333 0.34% 15323 0.27% 15408 0.83% 15352 0.46% 15320 0.26% 15303 0.14%
kroB100 | 22141 22141 0.00% 22141 0.00% 22141 0.00% 22141 0.00% 22141 0.00% 22141 0.00% 22141 0.00%
d198 15780 15817 0.23% 16344 3.57% 15844 0.41% 15804 0.15% 15816 0.23% 16237 2.90% 15817 0.23%
eill0l 629 629 0.00% 629 0.00% 629 0.00% 629 0.00% 629 0.00% 629 0.00% 629 0.00%
linhp318 | 41345 42558 2.93% 42523 2.85% 42763 3.43% 42420 2.60% 42283 2.27% 42223 2.12% 42387 2.52%
gil262 2378 2380 0.08% 2382 0.17% 2380 0.08% 2380 0.08% 2379 0.04% 2380 0.08% 2380 0.08%
rat99 1211 1211 0.00% 1211 0.00% 1211 0.00% 1211 0.00% 1211 0.00% 1211 0.00% 1211 0.00%

berlin52 7542 7542 0.00% 7542 0.00% 7542 0.00% 7542 0.00% 7542 0.00% 7542 0.00% 7542 0.00%
kroC100 | 20749 20749 0.00% 20749 0.00% 20749 0.00% 20749 0.00% 20749 0.00% 20749 0.00% 20749 0.00%

pr226 80369 87311 8.64% 83828 4.30% 83828 4.30% 81058 0.86% 80850 0.60% 80463 0.12% 85793 6.75%
417 11861 12852 8.36% 11945 0.71% 12169 2.60% 12800 7.92% 13198 11.27% 12158 2.50% 12437 4.86%
kroE100 22068 22068 0.00% 22068 0.00% 22068 0.00% 22068 0.00% 22068 0.00% 22068 0.00% 22068 0.00%
pr76 108159 108159  0.00% | 108159  0.00% | 108159  0.00% | 108159  0.00% 109325 1.08% 108159  0.00% | 108159  0.00%
ch130 6110 6111 0.02% 6111 0.02% 6111 0.02% 6111 0.02% 6242 2.16% 6111 0.02% 6111 0.02%
tsp225 3916 3932 0.41% 3916 0.00% 3919 0.08% 3923 0.18% 3916 0.00% 3916 0.00% 3923 0.18%
rd100 7910 7910 0.00% 7910 0.00% 7910 0.00% 7910 0.00% 7938 0.35% 7910 0.00% 7910 0.00%
pr264 49135 51267 4.34% 50451 2.68% 49949 1.66% 49635 1.02% 49374 0.49% 50389 2.55% 49508 0.76%
pri24 59030 59168 0.23% 59210 0.30% 59551 0.88% 59210 0.30% 59257 0.38% 59688 1.11% 59030 0.00%

kroA150 | 26524 26525 0.00% 26525 0.00% 26525 0.00% 26525 0.00% 26525 0.00% 26525 0.00% 26525 0.00%
kroB200 | 29437 29437 0.00% 29438 0.00% 29437 0.00% 29446 0.03% 29437 0.00% 29437 0.00% 29437 0.00%
kroB150 | 26130 26178 0.18% 26141 0.04% 26176 0.18% 26136 0.02% 26130 0.00% 26143 0.05% 26130 0.00%

prl07 44303 44303 0.00% 44387 0.19% 44303 0.00% 44303 0.00% 44303 0.00% 44303 0.00% 44303 0.00%
1lin318 42029 42558 1.26% 42561 1.27% 42609 1.38% 42420 0.93% 42283 0.60% 42254 0.54% 42387 0.85%
pri36 96772 96772 0.00% 96772 0.00% 96772 0.00% 96772 0.00% 96772 0.00% 96772 0.00% 96772 0.00%
pr299 48191 48279 0.18% 48223 0.07% 48230 0.08% 48191 0.00% 48197 0.01% 48269 0.16% 48197 0.01%
ul59 42080 42080 0.00% 42080 0.00% 42080 0.00% 42080 0.00% 42396 0.75% 42080 0.00% 42080 0.00%
a280 2579 2579 0.00% 2579 0.00% 2579 0.00% 2579 0.00% 2579 0.00% 2579 0.00% 2579 0.00%
pr439 107217 109241 1.89% 108944 1.61% 109594 2.22% 108476 1.17% 110701 3.25% 108485 1.18% 109624 2.24%
ch150 6528 6528 0.00% 6528 0.00% 6528 0.00% 6528 0.00% 6533 0.08% 6528 0.00% 6528 0.00%
d493 35002 35347 0.99% 35331 0.94% 35318 0.90% 35235 0.67% 35297 0.84% 35292 0.83% 35244 0.69%
pcbd42 50778 50935 0.31% 50902 0.24% 50856 0.15% 51060 0.56% 50847 0.14% 50908 0.26% 50927 0.29%
Average ‘ - ‘ 35281 0.79% ‘ 35244 0.67% ‘ 35155 0.48% ‘ 35050 0.45% ‘ 35340 1.23% ‘ 35165 0.58% ‘ 35321 0.76% ‘
(b) Medium instances (500-2000 nodes)
Instance | Optimal Zero Att-GCN DIMES UTSP SoftDist DIFUSCO GT-Prior
Length | Gapl | Length] Gapl | Length| Gapl | Length] Gapl | Length] Gapl | Length) Gapl | Length| Gapl
u574 36905 37211 0.83% 37226 0.87% 37399 1.34% 37211 0.83% 37142 0.64% 36989 0.23% 37146 0.65%
peb1173 56892 57837 1.66% 57715 1.45% 57618 1.28% 57770 1.54% 57633 1.30% 57304 0.72% 57248 0.63%
rat783 8806 8903 1.10% 8887 0.92% 8892 0.98% 8919 1.28% 8884 0.89% 8842 0.41% 8851 0.51%
ul432 152970 156669 2.42% 154684 1.12% 154889 1.25% 154703 1.13% 154338 0.89% 154046 0.70% 154285 0.86%
11400 20127 27446 36.36% 26280 30.57% 23066 14.60% 23467 16.59% 29343 45.79% 21519 6.92% 22924 13.90%
vm1084 239297 255009 6.57% 257899 7.77% 254512 6.36% 246531 3.02% 240016 0.30% 240265 0.40% 244968 2.37%
rat575 6773 6844 1.05% 6826 0.78% 6845 1.06% 6829 0.83% 6814 0.61% 6800 0.40% 6807 0.50%
vm1748 336556 377814 12.26% 385587 14.57% 378032 12.32% 376605 11.90% 341506 1.47% 341443 1.45% 343834 2.16%
11889 316536 | 479282  51.41% | 444184  40.33% | 397609  25.61% | 441143  39.37% | 327774 3.55% 324242 2.43% 451948 42.78%
u724 41910 42288 0.90% 42105 0.47% 42330 1.00% 42317 0.97% 42161 0.60% 42003 0.22% 42086 0.42%
d1291 50801 72786 43.28% 70051 37.89% 71972 41.67% 72779 43.26% 52023 2.41% 51342 1.06% 74911 47.46%
pr1002 259045 265784 2.60% 265338 2.43% 263164 1.59% 264061 1.94% 262591 1.37% 262472 1.32% 262929 1.50%
1577 22249 29723 33.59% 27605 24.07% 30050 35.06% 29581 32.95% 29102 30.80% 25960 16.68% 29222 31.34%
nrw1379 56638 57171 0.94% 57070 0.76% 57326 1.21% 57172 0.94% 58266 2.87% 56961 0.57% 56974 0.59%
11304 252948 332691 31.53% 316879  25.27% 316925  25.29% 316283  25.04% 262598 3.82% 257797 1.92% 297448 17.59%
d657 48912 49228 0.65% 49228 0.65% 49303 0.80% 49350 0.90% 49094 0.37% 49098 0.38% 49118 0.42%
p654 34643 38112 10.01% 38864 12.18% 35210 1.64% 35884 3.58% 47033 35.76% 36765 6.13% 35569 2.67%
d1655 62128 66466 6.98% 65547 5.50% 64743 4.21% 65977 6.20% 63986 2.99% 64358 3.59% 63951 2.93%
ul817 57201 90599 58.39% 68245 19.31% 71276 24.61% 80609 40.92% 58838 2.86% 58587 2.42% 75131 31.35%
ul060 224094 233417 4.16% 232573 3.78% 242781 8.34% 236866 5.70% 227830 1.67% 225164 0.48% 229725 2.51%
11323 270199 306164 13.31% 297453 10.09% 305970 13.24% 307474 13.80% 274440 1.57% 274104 1.45% 293294 8.55%

Average ‘ - ‘ 142449 15.24% ‘ 138583 11.47% ‘ 136662 10.64% ‘ 138644 12.03% ‘ 125305 6.79% ‘ 123621 2.38% ‘ 135160 10.08%
(c) Large instances (2000+ nodes)
Instance Optimal Zero Att-GCN DIMES UTSP SoftDist DIFUSCO GT-Prior
Length |  Gap| | Length| Gapl | Length| Gapl | Length| Gap| | Length] Gapl | Length] Gapl | Length] Gapl
u2152 64253 66719 3.84% 66301 3.19% 67244 4.66% 79556 23.82% 66354 3.27% 66111 2.89% 65467 1.89%
u2319 234256 240657 2.73% 236054 0.77% 237061 1.20% 235667 0.60% 234765 0.22% 236201 0.83% 235093 0.36%
pcb3038 137694 142320 3.36% 141418 2.70% 142646 3.60% 140351 1.93% 139547 1.35% 141446 2.72% 139325 1.18%
13795 28772 35138 22.13% 33971 18.07% 36294 26.14% 43940 52.72% 36803 27.91% 40183 39.66% 35715 24.13%
pr2392 378032 384727 1.77% 388518 2.77% 386985 2.37% 385057 1.86% 385073 1.86% 387623 2.54% 380722 0.71%
fnl4461 182566 187380 2.64% 186985 2.42% 187913 2.93% 185869 1.81% 184057 0.82% 186521 2.17% 184776 1.21%
d2103 80450 83622 3.94% 82614 2.69% 83690 4.03% 86119 7.05% 83644 3.97% 83360 3.62% 81813 1.69%
115934 556045 588550 5.85% 579206 4.17% 589806 6.07% 843158 51.63% 570853 2.66% 594357 6.89% 574556 3.33%
115915 565530 589372 4.22% 588542 4.07% 585404 3.51% 809375 43.12% 578232 2.25% 584327 3.32% 583477 3.17%
usal3509 | 19982859 | 20947758  4.83% | 20613997 3.16% 21033416 5.26% | 28386893  42.06% | 21193246  6.06% | 20723480 3.71% | 20396752 2.07%
brd14051 469385 492159 4.85% 480186 2.30% 489324 4.25% 506961 8.01% 485812 3.50% 482790 2.86% 479123 2.07%
d18512 645238 672990 4.30% 662312 2.65% 667466 3.44% 701169 8.67% 663460 2.82% 662022 2.60% 656164 1.69%
111849 923288 994084 7.67% 955040 3.44% 973842 5.48% 1866653 102.17% 948548 2.74% 953754 3.30% 962460 4.24%
dis112 1573084 1659366 5.48% 1613134 2.55% 1631994 3.74% 1978136 25.75% 1614098 2.61% 1612163 2.48% 1598467 1.61%
Average ‘ - ‘ 1934631 5.54% ‘ 1902019 3.92% ‘ 1936648 5.48% ‘ 2589207 26.51% ‘ 1941749 4.43% ‘ 1911024 5.68% ‘ 1883850 3.52%
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Table 10: Performance of different methods on TSPLIB instances of varying sizes. The hyperparame-
ter settings are the default settings as used by

(a) Small TSPLIB instances (0-500 nodes)

Instance | Optimal Zero Att-GCN DIMES UTSP SoftDist DIFUSCO GT-Prior

i Length ] Gap| | Lengthy Gap) | Length) Gap| | Lengthl  Gap) | Lengthy Gap| | Length|{ Gap| | Length| Gap|
st70 675 676 0.15% 676 0.15% 1056 56.44% 676 0.15% 694 2.81% 676 0.15% 676 0.15%
kroA200 29368 29635 0.91% 29368 0.00% 29464 0.33% 29529 0.55% 29383 0.05% 29831 1.58% 29397 0.10%
¢il76 538 538 0.00% 538 0.00% 803 49.26% 538 0.00% 538 0.00% 538 0.00% 538 0.00%
prl44 58537 58554 0.03% 67632 15.54% 72458 23.78% 58537 0.00% 66184 13.06% 58901 0.62% 58537 0.00%
rat195 2323 2365 1.81% 2323 0.00% 2331 0.34% 2352 1.25% 2323 0.00% 2337 0.60% 2328 0.22%
eil51 426 427 0.23% 427 0.23% 653 53.29% 427 0.23% 427 0.23% 427 0.23% 427 0.23%
bier127 118282 118580 0.25% 118282 0.00% 118715 0.37% 118282 0.00% 118423 0.12% 118657 0.32% 118282  0.00%
1lin105 14379 14379 0.00% 14379 0.00% 16437 14.31% 14379 0.00% 15073 4.83% 14401 0.15% 14379 0.00%
kroD100 21294 21294 0.00% 21294 0.00% 28391 33.33% 21309 0.07% 21294 0.00% 21374 0.38% 21294 0.00%
pris2 73682 73880 0.27% 73682 0.00% 86257 17.07% 73682 0.00% 73682 0.00% 74029 0.47% 73682 0.00%
kroA100 | 21282 21282 0.00% 21282 0.00% 25168 18.26% 21282 0.00% 21282 0.00% 21396 0.54% 21282 0.00%
5225 126643 127147 0.40% 126713 0.06% 143360 13.20% 126726 0.07% 126962 0.25% 126643 0.00% 126643  0.00%
rd400 15281 15819 3.52% 15413 0.86% 15829 3.59% 15580 1.96% 15418 0.90% 15350 0.45% 15454 1.13%
kroB100 22141 22193 0.23% 22141 0.00% 26014 17.49% 22141 0.00% 22141 0.00% 22601 2.08% 22141 0.00%
d198 15780 15883 0.65% 15784 0.03% 16016 1.50% 15874 0.60% 15806 0.16% 15859 0.50% 15789 0.06%
eill01 629 630 0.16% 629 0.00% 914 45.31% 629 0.00% 629 0.00% 629 0.00% 629 0.00%
linhp318 41345 43250 4.61% 42359 2.45% 43263 4.64% 42453 2.68% 43111 4.27% 42336 2.40% 42212 2.10%
gil262 2378 2433 2.31% 2383 0.21% 2482 4.37% 2394 0.67% 2392 0.59% 2380 0.08% 2389 0.46%
rat99 1211 1211 0.00% 1211 0.00% 1218 0.58% 1211 0.00% 1211 0.00% 1214 0.25% 1211 0.00%

berlin52 7542 7542 0.00% 7542 0.00% 10569 40.14% 7542 0.00% 7542 0.00% 7542 0.00% 7542 0.00%
kroC100 | 20749 20749 0.00% 20749 0.00% 24666 18.88% 20749 0.00% 20749 0.00% 20901 0.73% 20749 0.00%

pr226 80369 80822 0.56% 83203 3.53% 84543 5.19% 81060 0.86% 85411 6.27% 83028 3.31% 80369 0.00%
1417 11861 11932 0.60% 12014 1.29% 14036 18.34% 45810 286.22% 14897 25.60% 13977 17.84% 11907 0.39%
kroE100 22068 22068 0.00% 22068 0.00% 26062 18.10% 22068 0.00% 22068 0.00% 22135 0.30% 22068 0.00%
pr76 108159 108159  0.00% | 108159  0.00% 130741 20.88% | 108159 0.00% 109325 1.08% 111683 3.26% 108159  0.00%
ch130 6110 6149 0.64% 6111 0.02% 7706 26.12% 6120 0.16% 6248 2.26% 6157 0.77% 6111 0.02%
rd100 7910 7910 0.00% 7910 0.00% 14528 83.67% 7910 0.00% 7932 0.28% 7910 0.00% 7910 0.00%
tsp225 3916 3982 1.69% 3923 0.18% 3945 0.74% 3966 1.28% 3919 0.08% 3920 0.10% 3923 0.18%
pr264 49135 49552 0.85% 49135 0.00% 49248 0.23% 49844 1.44% 49309 0.35% 49180 0.09% 49135 0.00%
pri24 59030 59030 0.00% 59030 0.00% 76615 29.79% 59030 0.00% 59524 0.84% 59385 0.60% 59030 0.00%

kroA150 | 26524 26726 0.76% 26525 0.00% 26719 0.74% 26528 0.02% 26525 0.00% 26556 0.12% 26525 0.00%
kroB200 29437 29619 0.62% 29455 0.06% 29511 0.25% 29552 0.39% 29438 0.00% 29659 0.75% 29475 0.13%
kroB150 | 26130 26143 0.05% 26132 0.01% 26335 0.78% 26176 0.18% 26130 0.00% 26149 0.07% 26130 0.00%

pr107 44303 44358 0.12% 44387 0.19% 48621 9.75% 44303 0.00% 44303 0.00% 44387 0.19% 44303 0.00%
1in318 42029 43250 2.91% 42352 0.77% 43116 2.59% 42453 1.01% 43111 2.57% 42646 1.47% 42212 0.44%
pri36 96772 97515 0.77% 96772 0.00% 119314 23.29% 96785 0.01% 96772 0.00% 96781 0.01% 96772 0.00%
pr299 48191 48979 1.64% 48280 0.18% 48257 0.14% 48594 0.84% 48241 0.10% 48306 0.24% 48303 0.23%
uls9 42080 42080 0.00% 42080 0.00% 43188 2.63% 42080 0.00% 42396 0.75% 42685 1.44% 42080 0.00%
a280 2579 2633 2.09% 2579 0.00% 2581 0.08% 2589 0.39% 2581 0.08% 2579 0.00% 2585 0.23%
pr439 107217 109872 2.48% 108631 1.32% 108602 1.29% 108424 1.13% 115530 7.75% 108855 1.53% 107656  0.41%
ch150 6528 6562 0.52% 6528 0.00% 8178 25.28% 6528 0.00% 6528 0.00% 6533 0.08% 6528 0.00%
d493 35002 35874 2.49% 35373 1.06% 35522 1.49% 36384 3.95% 35480 1.37% 35537 1.53% 35487 1.39%

peb4d2 50778 52292 2.98% 51098 0.63% 51147 0.73% 51775 1.96% 51177 0.79% 50976 0.39% 51095 0.62%

Average ‘ - ‘ 35208 0.87% ‘ 35268 0.67% ‘ 38711 16.01% ‘ 35870 7.16% ‘ 35630 1.80% ‘ 35280 1.06% ‘ 34961 0.20%
(b) Medium TSPLIB instances (500-2000 nodes)

Instance | Optimal Zero Att-GCN DIMES UTSP SoftDist DIFUSCO GT-Prior

> P Length ] Gap| | Length| Gap| | Length] Gapl | Lengthy Gap| | Length] Gap| | Length] Gapl| | Length{ Gap|
us74 36905 38171 3.43% 37545 1.73% 37803 2.43% 38018 3.02% 37545 1.73% 37026 0.33% 37441 1.45%
pebl1173 56892 60231 5.87% 58452 2.74% 58664 3.11% 59761 5.04% 58209 2.31% 57717 1.45% 58251 2.39%
ul432 152970 162741 6.39% 157322 2.85% 157056  2.67% 159654 4.37% 155566 1.70% 154734 1.15% 156126 2.06%
rat783 8806 9230 4.81% 8995 2.15% 9088 3.20% 9124 3.61% 8936 1.48% 8863 0.65% 8986 2.04%
11400 20127 20917 3.93% 23347 16.00% 20932 4.00% 37919 88.40% 30111 49.61% 22608 12.33% 21272 5.69%
vm1084 239297 251602 5.14% 242848 1.48% 245994 2.80% 252204 5.39% 243541 1.77% 242375 1.29% 244267 2.08%
rat575 6773 6982 3.09% 6901 1.89% 7053 4.13% 6959 2.75% 6871 1.45% 6801 0.41% 6842 1.02%

vm1748 336556 352556 4.75% 344077 2.23% 347356 3.21% | 372117  10.57% | 344193 2.27% 340888 1.29% 343973 2.20%
11889 316536 335641 6.04% 325270 2.76% 338164  6.83% 358570  13.28% | 329839 4.20% 322969  2.03% 328399 3.75%
u724 41910 43487 3.76% 42525 1.47% 42915 2.40% 43106 2.85% 42508 1.43% 42081 0.41% 42420 1.22%
di291 50801 52757 3.85% 52063 2.48% 53833 597% 54231 6.75% 52230 2.81% 51937 2.24% 52553 3.45%
pr1002 259045 273143 5.44% | 264647 2.16% 267949  3.44% | 268931 3.82% 266468 2.87% 263242 1.62% 264704 2.18%
1577 22249 23351 4.95% 26082 17.23% 23954 7.66% 27592 24.01% 28630 28.68% 25493 14.58% 27531 23.74%
nrwl379 | 56638 58991 4.15% 57681 1.84% 57737 1.94% 65399 15.47% 58021 2.44% 57297 1.16% 57654 1.79%
11304 252948 270179 6.81% | 259681 2.66% 270057  6.76% | 268425 6.12% 264884 4.72% 255970 1.19% 263748 4.27%

d657 48912 50971 4.21% 49798 1.81% 50577 3.40% 50437 3.12% 49657 1.52% 49153 0.49% 49616 1.44%
p654 34643 35266 1.80% 36233 4.59% 35873 3.55% 49921 44.10% 44016 27.06% 37936 9.51% 35979 3.86%
d1655 62128 66819 7.55% 63970 2.96% 64668 4.09% 75875 22.13% 64467 3.76% 63575 2.33% 63610 2.39%
ul8l17 57201 61671 7.81% 59226 3.54% 60219 5.28% 63152 10.40% 59585 4.17% 58780 2.76% 59318 3.70%

ul060 224094 | 232616  3.80% | 227340 145% 232619  3.80% | 236167 5.39% 228869 2.13% 227868 1.68% 229515 2.42%
rl1323 270199 | 283701 5.00% | 276363 2.28% 282500  4.55% | 282676  4.62% 278379 3.03% 274038  1.42% 278283 2.99%

Average ‘ - ‘ 128143 4.88% ‘ 124779 3.73% ‘ 126905 4.06% ‘ 132392 13.58% ‘ 126310 7.20% ‘ 123873 2.87% ‘ 125261 3.63%
(c) Large TSPLIB instances (>2000 nodes)

Instance Optimal Zero Att-GCN DIMES UTSP SoftDist DIFUSCO GT-Prior

Sta Length) Gapl | Length) Gapl | Lengthl Gapl | Lengthl Gapl | Lengh) Gapl | Lenghl Gapl | Lengthl Gapl
u2152 64253 68293 6.29% 66717 3.83% 69322 7.89% 71240 10.87% 96834 50.71% 77826 21.12% 66600 3.65%
u2319 234256 243093 3.77% 237114 1.22% 251125 7.20% 244142 4.22% 235644 0.59% 237035 1.19% 236159 0.81%
pcb3038 137694 150518 9.31% 142015 3.14% 163500 18.74% 148143 7.59% 141977 3.11% 157341 14.27% 141372 2.67%
13795 28772 30032 4.38% 35694 24.06% 35201 22.34% 50835 76.68% 36579 27.13% 42120 46.39% 38852 35.03%
pr2392 378032 392998 3.96% 391367 3.53% 426194 12.74% 401216 6.13% 438424 15.98% 430218 13.80% 385009 1.85%
fnl4461 182566 192471 5.43% 187802 2.87% 235876 29.20% 229934 25.95% 186632 2.23% 192868 5.64% 186359 2.08%
d2103 80450 88698 10.25% 83881 4.26% 96968 20.53% 88022 9.41% 84662 5.24% 90773 12.83% 82723 2.83%
115934 556045 590393 6.18% 576829 3.74% 703750 26.56% 781490 40.54% 647689 16.48% 645291 16.05% 592889 6.63%
115915 565530 603653 6.74% 587231 3.84% 694199 22.75% 809014 43.05% 644676 14.00% 656872 16.15% 591517 4.60%
usal3509 | 19982859 | 21177174  5.98% 20733868 3.76% | 442759283 2115.70% | 1115269461 5481.13% | 21094456  5.56% 22241850 11.30% | 20742301 3.80%
brd14051 469385 496359 5.75% 484032 3.12% 3757018 700.41% 13600054 2797.42% 493461 5.13% 489311 4.25% 483657 3.04%
d18512 645238 685983 6.31% 665993 3.22% 4922388 662.88% 22893796 3448.12% 664334 2.96% 663087 2.77% 659537 2.22%
111849 923288 1014118 9.84% 961746 4.17% 7381138 699.44% 40891587 4328.91% 990268 7.25% 977396 5.86% 970070 5.07%
dis112 1573084 1681649 6.90% 1621028 3.05% 19507797 1140.10% 71782581 4463.18% 1615421 2.69% 1653223 5.09% 1618636 2.90%

Average | - | 1958245  6.51% | 1912522  4.84% | 34357411 391.89% | 90518679  1481.66%

1955075 11.36% | 2039657  12.62% | 1913977  5.51%
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Table 11: Performance of different methods on TSPLIB instances of varying sizes. The hyperparame-
ter settings are obtained by grid search.

(a) Small instances (0-500 nodes)

Insta | - Zero Att-GCN DIMES UTSP SoftDist DIFUSCO GT-Prior
nstance ! Optimal

| | Length | Gap| | Length| Gap| | Length| Gapl| | Length| Gap| | Length| Gap| | Length| Gapl | Length] Gapl|
st70 675 675 0.00% 676 0.15% 675 0.00% 676 0.15% 676 0.15% 676 0.15% 676 0.15%
eil76 538 538 0.00% 538 0.00% 538 0.00% 538 0.00% 538 0.00% 538 0.00% 538 0.00%
kroA200 29368 29368 0.00% 29368 0.00% 29368 0.00% 29368 0.00% 29368 0.00% 29368 0.00% 29368 0.00%
eil51 426 427 0.23% 427 0.23% 427 0.23% 427 0.23% 427 0.23% 427 0.23% 427 0.23%
rat195 2323 2323 0.00% 2323 0.00% 2323 0.00% 2323 0.00% 2323 0.00% 2323 0.00% 2323 0.00%
prl44 58537 58537 0.00% 58537 0.00% 58537 0.00% 58537 0.00% 58537 0.00% 58537 0.00% 58537 0.00%
bier127 118282 118282  0.00% 118282  0.00% 118282  0.00% 118282 0.00% 118282 0.00% 118282 0.00% 118282 0.00%
lin105 14379 14379 0.00% 14379 0.00% 14379 0.00% 14379 0.00% 14379 0.00% 14379 0.00% 14379 0.00%

kroD100 | 21294 21294 0.00% 21294 0.00% 21294 0.00% 21294 0.00% 21294 0.00% 21294 0.00% 21294 0.00%
kroA100 | 21282 21282 0.00% 21282 0.00% 21282 0.00% 21282 0.00% 21282 0.00% 21282 0.00% 21282 0.00%

pri52 73682 73682 0.00% 73682 0.00% 73682 0.00% 73682 0.00% 73682  0.00% 73682  0.00% 73682  0.00%
5225 126643 126643  0.00% | 126643 0.00% | 126643 0.00% | 126643 0.00% | 126643 0.00% | 126643 0.00% | 126643 0.00%
rd400 15281 15289 0.05% 15295 0.09% 15300 0.12% 15323 0.27% 15291 0.07% 15288  0.05% 15292 0.07%
kroB100 | 22141 22141 0.00% 22141 0.00% 22141 0.00% 22141 0.00% 22141 0.00% 22141 0.00% 22141 0.00%
d19g 15780 15780 0.00% 15780 0.00% 15780 0.00% 15794 0.09% 15780 0.00% 15780  0.00% 15780  0.00%
cill01 629 629 0.00% 629 0.00% 629 0.00% 629 0.00% 629 0.00% 629 0.00% 629 0.00%
linhp318 | 41345 42080 1.78% 42029 1.65% 42175 2.01% 42194 2.05% 42029 1.65% 42029 1.65% 42029 1.65%
gil262 2378 2379 0.04% 2379 0.04% 2379 0.04% 2379 0.04% 2378 0.00% 2379 0.04% 2379 0.04%
rat99 1211 1211 0.00% 1211 0.00% 1211 0.00% 1211 0.00% 1211 0.00% 1211 0.00% 1211 0.00%

berlin52 7542 7542 0.00% 7542 0.00% 7542 0.00% 7542 0.00% 7542 0.00% 7542 0.00% 7542 0.00%
kroC100 | 20749 20749 0.00% 20749 0.00% 20749 0.00% 20749 0.00% 20749 0.00% 20749 0.00% 20749 0.00%

pr226 80369 80369 0.00% 80369 0.00% 80369 0.00% 80369 0.00% 80369  0.00% 80369  0.00% 80369  0.00%
417 11861 11871 0.08% 11862 0.01% 11867 0.05% 11870 0.08% 11871 0.08% 11863 0.02% 11862  0.01%
kroE100 22068 22068 0.00% 22068 0.00% 22068 0.00% 22068 0.00% 22068  0.00% 22068  0.00% 22068  0.00%
pr76 108159 | 108159  0.00% | 108159  0.00% | 108159 0.00% | 108159 0.00% | 108159 0.00% | 108159 0.00% | 108159 0.00%
ch130 6110 6111 0.02% 6111 0.02% 6111 0.02% 6111 0.02% 6111 0.02% 6111 0.02% 6111 0.02%
tsp225 3916 3916 0.00% 3916 0.00% 3916 0.00% 3916 0.00% 3916 0.00% 3916 0.00% 3916 0.00%
rd100 7910 7910 0.00% 7910 0.00% 7910 0.00% 7910 0.00% 7910 0.00% 7910 0.00% 7910 0.00%
pr264 49135 49135 0.00% 49135 0.00% 49135 0.00% 49135 0.00% 49135 0.00% 49135 0.00% 49135 0.00%
pri24 59030 59030 0.00% 59030 0.00% 59030 0.00% 59030 0.00% 59030  0.00% 59030  0.00% 59030  0.00%

kroA150 | 26524 26524 0.00% 26524 0.00% 26524 0.00% 26524 0.00% 26524  0.00% 26525 0.00% 26524 0.00%
kroB200 | 29437 29437 0.00% 29437 0.00% 29437 0.00% 29437 0.00% 29437 0.00% 29437 0.00% 29437 0.00%
kroB150 | 26130 26130 0.00% 26130 0.00% 26130 0.00% 26130 0.00% 26130  0.00% 26130  0.00% 26130  0.00%

prl07 44303 44303 0.00% 44303 0.00% 44303 0.00% 44303 0.00% 44303 0.00% 44303 0.00% 44303 0.00%
1in318 42029 42080 0.12% 42029 0.00% 42128 0.24% 42194 0.39% 42029  0.00% 42107 0.19% 42029  0.00%
pri36 96772 96772 0.00% 96772 0.00% 96772 0.00% 96772 0.00% 96772 0.00% 96772 0.00% 96772 0.00%
pr299 48191 48191 0.00% 48191 0.00% 48191 0.00% 48191 0.00% 48191 0.00% 48191 0.00% 48191 0.00%
uls9 42080 42080 0.00% 42080 0.00% 42080 0.00% 42080 0.00% 42080  0.00% 42080  0.00% 42080  0.00%
a280 2579 2579 0.00% 2579 0.00% 2579 0.00% 2579 0.00% 2579 0.00% 2579 0.00% 2579 0.00%
pr439 107217 107303  0.08% | 107219  0.00% 107480  0.25% 107810  0.55% 107308  0.08% 107346 0.12% 107269 0.05%
ch150 6528 6528 0.00% 6528 0.00% 6528 0.00% 6528 0.00% 6528 0.00% 6528 0.00% 6528 0.00%
d493 35002 35067 0.19% 35017 0.04% 35102 0.29% 35151 0.43% 35096 0.27% 35142 0.40% 35045 0.12%

pcb442 50778 50818 0.08% 50815 0.07% 50810 0.06% 50809 0.06% 50778 0.00% 50908 0.26% 50786 0.02%

Average ‘ - ‘ 34921 0.06% ‘ 34915 0.05% ‘ 34929 0.08% ‘ 34941 0.10% ‘ 34918 0.06% ‘ 34925 0.07% ‘ 34916 0.05%
(b) Medium instances (500-2000 nodes)
teance | Ontimat | Zero At-GCN DIMES UTSP SoftDist DIFUSCO GT-Prior
nstance | Optimal

| | Length | Gap| | Length| Gapl | Length| Gap| | Length| Gapl | Length] Gap| | Length Gap| | Length| Gap|
us74 36905 37150 0.66% 36978 0.20% 37064 0.43% 37088 0.50% 37002 0.26% 36935 0.08% 37001 0.26%
peb1173 56892 57481 1.04% 57283 0.69% 57283 0.69% 57487 1.05% 56968 0.13% 57084 0.34% 57206 0.55%
rat783 8806 8861 0.62% 8869 0.72% 8865 0.67% 8884 0.89% 8827 0.24% 8820 0.16% 8819 0.15%
ul432 152970 155871 1.90% 153877 0.59% 153824 0.56% 154276  0.85% 153662 0.45% 153336 0.24% 153542 0.37%
11400 20127 20276 0.74% 20206 0.39% 20234 0.53% 20289 0.80% 20351 1.11% 20253 0.63% 20191 0.32%
vm1084 239297 241824  1.06% | 239883  0.24% | 242129 1.18% | 243158 1.61% | 240677  0.58% 239492 0.08% 240242 0.39%
rat575 6773 6801 0.41% 6807 0.50% 6807 0.50% 6831 0.86% 6780 0.10% 6783 0.15% 6787 0.21%

vm1748 336556 340748 1.25% | 340010 1.03% | 342178  1.67% | 343242  1.99% | 339937 1.00% | 337632 0.32% | 339204  0.79%
11889 316536 321629  1.61% | 321778  1.66% | 323176  2.10% | 325917  2.96% | 321654 1.62% | 318314 0.56% | 321452 1.55%

u724 41910 42124 0.51% 42111 0.48% 42128 0.52% 42205 0.70% 42001 0.22% 41982 0.17% 42041 0.31%
d1291 50801 51408 1.19% 51208 0.80% 51320 1.02% 51892 2.15% 51220 0.82% 50887 0.17% 51230 0.84%
pr1002 259045 261895  1.10% | 261505 0.95% | 261808 1.07% | 261683  1.02% | 261075  0.78% | 260798  0.68% | 260856  0.70%
1577 22249 22699 2.02% 22531 1.27% 22451 0.91% 22922 3.02% 22686 1.96% 22432 0.82% 22350 0.45%
nrwl379 | 56638 56991 0.62% 56993 0.63% 57013 0.66% 57112 0.84% 57010 0.66% 56787 0.26% 56881 0.43%
11304 252948 255681 1.08% | 254493  0.61% | 255372  0.96% | 254380 0.57% | 254075  0.45% | 253518 0.23% | 2538383  0.37%
d6s7 48912 49107 0.40% 49102 0.39% 49104 0.39% 49151 0.49% 49031 0.24% 48954 0.09% 49034 0.25%
p654 34643 34671 0.08% 34663 0.06% 34674 0.09% 34714 0.20% 34757 0.33% 34645 0.01% 34643 0.00%
d1655 62128 64249 3.41% 62935 1.30% 63165 1.67% 64179 3.30% 63058 1.50% 62520 0.63% 62758 1.01%
ul817 57201 58886 2.95% 58154 1.67% 58677 2.58% 59710 4.39% 58190 1.73% 57842 1.12% 58120 1.61%
ul060 224094 | 227374  1.46% | 226136 091% | 227122  1.35% | 229197 2.28% | 225843  0.78% | 224839  0.33% | 224804 0.32%
11323 270199 | 272220 0.75% | 272431 0.83% | 2724838  0.85% | 275511 1.97% | 271577  0.51% | 271131  0.34% | 271751  0.57%
Average | - | 123235  1.18% | 122759  0.76% | 123184  0.97% | 123801 1.54% | 122684  0.74% | 122142 0.35% | 122514  0.55%

(c) Large instances (2000+ nodes)

Instanc ‘ s ‘ Zero Att-GCN DIMES UTSP SoftDist DIFUSCO GT-Prior
nstance Optimal

| | Length)  Gap) | Length] Gap| | Length{ Gapl | Length, Gapl | Length] Gapl | Length) Gap| | Length] Gapl
u2152 64253 67471 5.01% 66068 2.82% 66843 4.03% 68491 6.60% 65839 2.47% 65516 1.97% 65551 2.02%
u2319 234256 240322 2.59% 235175 0.39% 235562 0.56% 236094 0.78% 234601 0.15% 235421 0.50% 234929 0.29%
pcb3038 137694 143874 4.49% 140016 1.69% 142489 3.48% 141517 2.78% 138962 0.92% 141604 2.84% 138911 0.88%
13795 28772 32286 12.21% 30944 7.55% 31063 7.96% 31397 9.12% 30140 4.75% 30880 7.33% 30546 6.17%
pr2392 378032 386207 2.16% 386482 2.24% 386655 2.28% 383247 1.38% 383037 1.32% 387877 2.60% 381598 0.94%
fnld461 182566 188373 3.18% 185826 1.79% 186745 2.29% 188081 3.02% 184360 0.98% 186633 2.23% 184471 1.04%
d2103 80450 83672 4.00% 82438 2.47% 83990 4.40% 84567 5.12% 82022 1.95% 81886 1.78% 81010 0.70%
115934 556045 595415 7.08% 577629 3.88% 590654 6.22% 616033 10.79% 572562 2.97% 579799 4.27% 574982 3.41%
15915 565530 594801 5.18% 588374 4.04% 592293 4.73% 604537 6.90% 581947 2.90% 584322 3.32% 584110 3.29%
usal3509 | 19982859 | 21193040  6.06% | 20972608 4.95% | 21240984 6.30% | 21425850  7.22% | 21329926 6.74% | 21165172  5.92% | 20642852 3.30%
brd14051 469385 495040 5.47% 488704 4.12% 492982 5.03% 498371 6.18% 489854 4.36% 487329 3.82% 482231 2.74%
d18512 645238 679290 5.28% 672809 4.27% 675878 4.75% 683918 5.99% 671251 4.03% 669281 3.73% 662290 2.64%
111849 923288 990945 7.33% 974291 5.52% 987813 6.99% 1002904 8.62% 970110 5.07% 962745 4.27% 959355 3.91%
dis112 1573084 1657644 5.38% 1641612 4.36% | 1646903  4.69% 1668137 6.04% 1633396  3.83% 1636603  4.04% 1614104  2.61%

Average | - | 1953455  539% | 1931641 3.8%

1954346 4.55% | 1973796  5.75% | 1954857  3.03% | 1943933  3.47% | 1902638 2.42%
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This generalization issue is particularly noteworthy as it affects all methods except the Zero heatmap,
which maintains relatively stable performance across different instance sizes and parameter settings.
The Zero heatmap’s consistency (varying only from 5.54% to 6.51% on large instances) provides
compelling evidence for our thesis that the MCTS component’s contribution to solution quality has
been historically undervalued in the framework. Furthermore, this stability suggests that proper
MCTS parameter tuning might be more crucial for achieving robust performance than developing
increasingly sophisticated heatmap generation methods.

From a practical perspective, our analysis also reveals an important computational consideration. The
learning-based baselines necessitate GPU resources for both training and inference stages, potentially
creating a bottleneck when dealing with real-world data. In contrast, methods that reduce reliance on
complex learned components might offer more practical utility in resource-constrained settings while
maintaining competitive performance through careful parameter optimization.

These findings collectively suggest that future research in this domain might benefit from a more bal-
anced focus between heatmap sophistication and MCTS optimization, particularly when considering
real-world applications where robustness and computational efficiency are paramount.

H TUNED HYPERPARAMETER SETTINGS

In this section, we present the search space in Table [I2] and results of hyperparameter tuning,
summarized in the following Table The table includes the various hyperparameter combinations
explored during the tuning process and their corresponding heatmap generation methods.

I HYPERPARAMETER TUNING WITH SMAC3

In addition to the grid search method employed
in the main content of this paper, we also con-
ducted hyperparameter tuning using the Se-
quential Model-based Algorithm Configuration
(SMAC3) framework (Lindauer et al., [2022).

Table 12: The MCTS hyperparameter search space.
Bolded configurations indicate default settings
from prior works.

SMACS3 is designed for optimizing algorithm _ Hyperparameter Range
configurations through an efficient and adaptive  a1pha 0,1,2

search process that balances exploration and ex- peta 10, 100, 150]
ploitation of the hyperparameter space. Max_Depth 10, 50, 100, 200]

The SMAC3 framework utilizes a surrogate
model based on tree-structured Parzen estima-
tors (TPE) to predict the performance of various
hyperparameter configurations. This model is
iteratively refined as configurations are evaluated, allowing SMACS3 to identify promising areas of
the search space more effectively than traditional methods.

Param_H 2,5,10]

|
Max_Candidate_Num [5,20,50,1000]
[
Use_Heatmap [True,False]

For our experiments, we configured SMAC3  Table 13: The Comparison of Tuning Time Be-

to optimize the same hyperparameters as those  tween Grid Search and SMAC3. “h” indicates
previously tuned via grid search. The search pours.

space remains identical to that demonstrated in
Table [12] However, we set SMAC3 to search for
50 epochs (50 different hyperparameter combi-

Grid Search SMAC3

nations) instead of exploring the entire search TSP-500 24h 1.3%h
space (864 different combinations) and the time TSP-1000 48h 2.78h
limit for MCTS was set to 50 seconds for TSP- TSP-10000 6h 3.47h

500, 100 seconds for TSP-1000, and 1000 sec-
onds for TSP-10000. We show the time cost of
each tuning method in Table [I3]

The results of these experiments, including the hyperparameter settings identified by SMAC3 and their
corresponding performance metrics, are presented in Tables[I4]and [I5] As shown, the performance
achieved by SMAC3 is comparable to that of grid search. Specifically, for TSP-500 and TSP-1000,
SMACS3 produces results similar to those of Att-GCN DIFUSCO and GT-Prior, with even better
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Figure 7: Empirical distribution of k-nearest neighbor in optimal TSP tours of different distributions.

outcomes observed on TSP-10000. This improvement can be attributed to the extended tuning time
allowed by SMAC3 compared to grid search. Given the significant difference in time costs, SMAC3
proves to be an efficient and economical option for tuning MCTS hyperparameters.

J  k-NEAREST NEIGHBOR PRIOR IN TSP INSTANCES WITH DIFFERENT
DISTRIBUTIONS

We solved and analyzed TSP problem instances across several different distributions and found that
their k-Nearest Neighbor Prior distribution similarities were quite high, as shown in the Figure[7]

K ABLATION STUDY ON THE EFFICACY OF HYPERPARAMETER TUNING

To better understand the efficacy of hyperparameter tuning in MCTS for solving TSP, we conducted
an ablation study focusing on two critical aspects: the relationship between search time and solution
quality, and the sample efficiency of our tuning process. These experiments provide valuable insights
into our algorithm’s performance characteristics and highlight areas for potential optimization.

K.1 IMPACT OF TUNING STAGE TIME_LIMIT ON SOLVER PERFORMANCE

The relationship between Time_Limit and hyperparameter quality is crucial in MCTS hyperpa-
rameter tuning. While longer search times might intuitively yield better results, they also lead to
significantly increased tuning time. We conducted an ablation study to investigate this trade-off and
seek a balance between performance and efficiency.

Experimental Setup We examined the impact of search time on solver performance for TSP-500
and TSP-1000 instances, varying the tuning stage Time_Limit from 0.1 to 0.05 and 0.01.
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Figure 8: Impact of search time on solver performance across different hyperparameter configurations.

Figure [§] shows the performance of different methods with varying inference times, each with
three hyperparameter sets tuned using different Time_TLimit values. Surprisingly, the relative
performance remains largely consistent across search durations, suggesting that hyperparameter
effectiveness can be accurately assessed within a limited time frame.

For TSP-500, most heatmaps exhibit similar performance across all tuning stage Time_Limit
values, with Zero and GT-Prior methods showing nearly identical performance curves. The best
learning-based method, DIFUSCO, displays a small performance gap at the default 50-second
inference time limit. However, this gap widens with longer inference times, suggesting that optimal
MCTS settings for high-quality heatmaps may vary with different Time_Limit values during tuning
phase. Efficiently tuning hyperparameters for such high-quality heatmaps remains a future research
direction. Notably, TSP-1000 results show even smaller performance gaps between different tuning
stage Time_Limit values, indicating that shorter tuning times can yield satisfactory hyperparameter
settings for larger problem instances.

The consistency of relative performance across search times has significant implications for efficient
hyperparameter tuning in large-scale TSP solving. This insight enables the development of accelerated
evaluation procedures that can identify promising hyperparameter settings without exhaustive, long-
duration searches.

K.2 SAMPLE EFFICIENCY

Experiments were conducted to evaluate the sample efficiency of the hyperparameter tuning procedure
for our proposed k-nearest prior heatmap. By varying the number of TSP instances in the training set
and measuring the resulting solution quality of the tuned hyperparameter setting, insights were gained
into the computational efficiency of our method. With only 64 samples for hyperparameter tuning,
our proposed GT-prior achieved a gap of 0.493% on TSP-500 and 0.866% on TSP-1000, rivaling
the performance of hyperparameter tuning with 256 samples, which achieved 0.493% on TSP-500
and 0.858% on TSP-1000. These results demonstrate the high sample efficiency of our approach,
enabling effective tuning with minimal computational resources.

L GT-PRIOR INFORMATION

We provide detailed information about GT-Prior for constructing the heatmap for TSP500, TSP1000,
and TSP10000 as follows:

# TSP500:

[4.40078125e-01, 2.56265625e-01, 1.32750000e-01, 7.32656250e-02,
4.08125000e-02, .35937500e-02, 1.34062500e-02, .75000000e-03,
4.48437500e-03, .73437500e-03, 1.78125000e-03, .18750000e-03,
6.87500000e-04, 3.75000000e-04, 3.75000000e-04, 1.87500000e-04,
7.81250000e-05, .56250000e-05, 4.68750000e-05, .56250000e-05,
4.68750000e-05, .12500000e-05, 1.56250000e-05, .56250000e-05]

W W N
B s W e
= N =S
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Table 14: Tune parameters of all the methods for TSP500, TSP1000 and TSP10000 by grid search
Added Fast-T2T.

(the left table) and SMACS3 (the right table).

METHOD ALPHA BETA H MCN UH MD METHOD ALPHA BETA H MCN UH MD
ZERO 2 10 2 5 0 100 ZERO 150 2 5 0 50
ATT-GCN 0 150 5 5 0 100 ATT-GCN 2 150 2 5 0 100
DIMES 0 100 5 5 0 200 DIMES 0 100 5 5 0 200
TSP500 DIFUSCO 1 150 2 5 0 50 TSP500 DIFUSCO 1 150 2 5 0 50
UTSP 0 100 5 5 0 50 UTSP 0 100 5 5 0 50
SOFTDIST 1 100 5 20 0 200 SOFTDIST 1 100 5 20 0 200
FAST-T2T 1 150 2 20 0 200 FAST-T2T 1 10 2 20 0 50
GT-PRIOR 0 10 5 5 1 200 GT-PRIOR 0 10 5 5 1 200
ZERO 1 100 5 5 0 100 ZERO 0 150 2 5 0 100
ATT-GCN 0 150 5 5 0 200 ATT-GCN 2 150 2 5 0 100
DIMES 0 150 2 5 0 200 DIMES 2 150 5 5 0 100
TSP1000  DIFUSCO 0 150 2 5 1 100 TSP1000 DIFUSCO 0 150 2 5 1 200
UTSP 1 100 5 5 0 50 UTSP 0 100 5 5 0 50
SOFTDIST 0 150 2 20 1 200 SOFTDIST 1 100 2 50 1 200
FAST-T2T 0 150 2 1000 1 50 FAST-T2T 1 10 2 50 1 50
GT-PRIOR 1 10 5 5 1 200 GT-PRIOR 0 150 2 5 1 200
ZERO 0 100 2 20 0 10 ZERO 0 100 2 20 0 10
ATT-GCN 1 150 2 5 1 50 ATT-GCN 1 150 2 5 1 50
TSP10000 DIMES 1 100 2 20 0 10 DIMES 1 100 2 20 0 10
DIFUSCO 0 100 5 20 0 50 TSP10000 DIFUSCO 0 100 5 20 0 50
SOFTDIST 2 100 5 20 0 10 SOFTDIST 2 100 5 20 0 10
FAST-T2T 2 150 2 20 0 10 FAST-T2T 1 10 10 50 0 200
GT-PRIOR 1 100 10 1000 1 100 GT-PRIOR 1 100 10 1000 1 100

Table 15: Results of Hyperparameter Tuning using SMAC3. The
indicate results that are equal to or better than those of Grid Search,
Added Fast-T2T.

underlined figures in the table

rounded to two decimal places.

TSP-500 TSP-1000 TSP-10000
METHOD TyPE LENGTH] GAp| TIME] | LENGTH] GaAP| TIME | LENGTH|  GAP | TIME |
CONCORDE OR(EXACT) 16.55* — 17.65s 23.12* — 3.12m N/A N/A N/A
GUROBI OR(EXACT) 16.55 0.00% 21.39Mm N/A N/A N/A N/A N/A N/A
LKH-3 (DEFAULT) OR(HEURISTIC) 16.55 0.00% 14.84s 23.12 0.00% 1.02m 71.77* — 28.73m
0.00M+ 0.00M+ 0.00M+
ZERO MCTS 16.67 0.73% 50.065 23.39 1.17% L.67M 74.44 3.71% 16.65M
+ 0.52M+ 0.73M+ 4.16M+
ATT-GCN SL+MCTS 16.66 0.69% 5506 23.38 1.15% L.67M 73.87 2.92% ¢ e5m
; 0.97mM+ 2.08M+ 4.65M+
T
DIMES RL+MCTS 16.67 0.73% 50.065 23.42 1.31% 1.67M 74.17 3.33% 16.65M
1.37M+ 3.35M+
i
UTSP UL+MCTS 16.72 1.07% 50.065 23.51 1.68% 1.67m — — —
+ 0.00M+ 0.00M+ 0.00M+
SOFTDIST SOFTDIST+MCTS 16.62 0.46% 55 065 23.33 0.90% 1.67m 75.34 4.97% |6 65m
3.61M+ 11.86M+ 28.51M+
§
DIFUSCO SL+MCTS 16.62 0.43% 50.065 23.24 0.53% 1.67M 73.26 2.06% 16.65M
0.00M+ 0.00M+ 0.00M+
FAST-T2T SL+MCTS 16.60 0.34% 50.06s 23.29 0.74% 1.67M 75.11 4.65% 16.65M
0.00M+ 0.00M+ 0.00M+
GT-PRIOR PRIOR+MCTS 16.63 0.50% 50.065 23.32 0.85% 1.67M 73.26 2.07% 16.65M

TSP1000:

#
[4.37554687e-01,
3.97890625e-02,
4.73437500e-03,
5.62500000e-04,
1.01562500e-04,
2.34375000e-05,

O U1 O We— FH

AN WD

TSP10000:
4.4175625e-01,
.9518750e-02,
.9125000e-03,
.3750000e-04,
.8125000e-04,
.0000000e-05,
.2500000e-05,
.2500000e-06,

oY O UTWN

2.54718750e-01,
.35156250e-02,
.00781250e-03,
.96875000e-04,
.68750000e-05,
.81250000e-06,

2.5409375e-01,
.3750000e-02,
.3312500e-03,
.5625000e-04,
.7500000e-05,
.5000000e-05,
.2500000e-06,
.2500000e-06]

I S

1.3292500e-01,

ANy W

28

.4143750e-02,
.8437500e-03,
.7500000e-04,
.8750000e-05,
.5000000e-05,
.2500000e-06,

o oY O N

1.37671875e-01,
.32265625e-02,
.59375000e-03,
.65625000e-04,
.56250000e-05,
.56250000e-05]

W =

7.1950000e-02,

.0937500e-03,
.1125000e-03,
.6250000e-04,
.0000000e-05,
.2500000e-06,
.2500000e-06,

7.41093750e-02,
.45312500e-03,
.08593750e-03,
.71875000e-04,
.12500000e-05,
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M

LIMITATIONS AND FUTURE WORK

Our study, while highlighting the critical role of MCTS configuration and the efficacy of simple
priors, has several limitations that suggest avenues for future research:

Scope of TSP Variants and MCTS Adaptation: The current analysis, including the GT-Prior,
focuses on Euclidean TSP, and the MCTS framework utilizes TSP-specific k-opt moves. The
direct applicability of our findings and the GT-Prior to non-Euclidean TSPs, other combinatorial
optimization problems, or different MCTS action spaces warrants further investigation.

Empirical Nature of MCTS Tuning: While we demonstrate the profound impact of MCTS
tuning, our approach to finding optimal configurations is empirical. A deeper theoretical
understanding of the relationship between TSP instance properties (or heatmap characteristics)
and optimal MCTS hyperparameters could lead to more principled, instance-adaptive tuning
strategies, reducing the reliance on extensive offline searches.

Hyperparameter Tuning Efficiency: While the proposed GT-Prior heatmap is computationally
inexpensive at inference, the MCTS hyperparameter tuning process itself (using grid search
in our current implementation) can be resource-intensive, especially if the search space is
large or if tuning is performed on very large-scale instances. Although this is a one-time
offline cost, optimizing the tuning process itself (e.g., using more sophisticated Bayesian
optimization, evolutionary algorithms, or meta-learning for hyperparameter optimization as
hinted in Appendix [I) would be beneficial for practical adoption and for exploring even larger
parameter spaces.

Exploration of Alternative Search Mechanisms: This study operates within the MCTS
framework as the search component. While MCTS is powerful, exploring whether the insights
on the heatmap vs. search balance extend to other search metaheuristics (e.g., guided local
search, iterated local search, or even learned search policies) when paired with various heatmap
generation techniques could be a valuable research direction.

Addressing these aspects could lead to more versatile, theoretically grounded, and practically efficient
learning-based solvers for TSP and other challenging optimization problems.

N

LLM USAGE STATEMENT

During the preparation of this manuscript, we utilized a large language model (LLM) as a writing
assistant. The LLM’s role was strictly limited to improving the clarity, grammar, and readability
of our text through sentence polishing and paragraph restructuring. The LLM did not contribute to
research ideation, experimental design, data analysis, or the formulation of conclusions. All scientific
content and claims are the sole responsibility of the human authors.
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