

000 001 002 003 004 005 BEYOND THE HEATMAP: A RIGOROUS EVALUATION OF 006 COMPONENT IMPACT IN MCTS-BASED TSP SOLVERS 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029

030 ABSTRACT 031

032 The “Heatmap + Monte Carlo Tree Search (MCTS)” paradigm has recently
033 emerged as a prominent framework for solving the Traveling Salesman Prob-
034 lem (TSP). While considerable effort has been devoted to enhancing heatmap
035 sophistication through advanced learning models, this paper rigorously examines
036 whether this emphasis is justified, assessing the relative impact of heatmap com-
037 plexity versus MCTS configuration. Our extensive empirical analysis across diverse
038 TSP scales, distributions, and benchmarks reveals two pivotal insights: **1)** The
039 configuration of MCTS strategies strongly influences solution quality, underscor-
040 ing the importance of systematic tuning to achieve optimal results and enabling
041 valid comparisons among different heatmap methodologies. **2)** A rudimentary,
042 parameter-free heatmap based on the intrinsic k -nearest neighbor structure of TSP
043 instances, when coupled with an optimally tuned MCTS, can match or surpass
044 the performance of more sophisticated, learned heatmaps, demonstrating robust
045 generalizability on problem scale and distribution shifts. To facilitate rigorous
046 and fair evaluations in future research, we introduce a streamlined pipeline for
047 standardized MCTS hyperparameter tuning. Collectively, these findings challenge
048 the prevalent assumption that heatmap complexity is the primary determinant of
049 performance, advocating instead for a balanced integration and comprehensive
050 evaluation of both learning and search components within this paradigm.
051
052

053 1 INTRODUCTION

054 The Traveling Salesman Problem (TSP) remains a fundamental challenge in combinatorial opti-
055 mization, drawing considerable interest from theoretical and applied research communities. As an
056 NP-hard problem, the TSP serves as a crucial benchmark for evaluating novel algorithmic strategies
057 for finding optimal or near-optimal solutions efficiently (Applegate et al., 2009). Its practical sig-
058 nificance spans logistics, transportation, manufacturing, and telecommunications, where efficient
059 routing is paramount for cost minimization and operational improvement (Helsgaun, 2017; Nagata
060 and Kobayashi, 2013). Recent machine learning advancements have spurred new methodologies for
061 tackling TSP, notably the “Heatmap + Monte Carlo Tree Search (MCTS)” paradigm (Fu et al., 2021).
062 Leveraging learned heatmaps to guide MCTS in refining solutions, this approach has demonstrated
063 success on large-scale instances and inspired a proliferation of methods (Qiu et al., 2022; Sun and
064 Yang, 2023; Min et al., 2024). This rapid development signals a maturing field where systematic
065 evaluation, comparison, and validation of emerging techniques are increasingly essential.
066

067 Within this “Heatmap + MCTS” framework, a primary research thrust has centered on enhancing
068 heatmap generation, often through increasingly sophisticated learning models, from supervised
069 learning (Fu et al., 2021) to diffusion models (Sun and Yang, 2023). The underlying assumption is
070 often that heatmap sophistication directly translates to superior solution quality. But is this pursuit
071 of complexity the only, or even optimal, path to performance gains? Has the impact of MCTS
072 configurations—the search component responsible for translating heatmap guidance into concrete
073 solutions—been fully acknowledged and systematically investigated? Although numerous solvers
074 have emerged claiming performance improvements, there remains a lack of evaluation-centered
075 scrutiny regarding the actual influence of the MCTS component and the true necessity of intricate
076 heatmap designs. Our work aims to address this gap, challenging the potential cognitive bias that
077 “more complex heatmaps consistently lead to better performance” and providing clarity for researchers
078 and practitioners.
079

This work presents a rigorous, evaluation-centered analysis of the “Heatmap + MCTS” paradigm for TSP. Our primary objective is to examine the deep impact of MCTS configurations and re-evaluate the necessity of heatmap complexity. The central argument of our evaluation is twofold: *first*, that strategic MCTS calibration substantially influences solution quality, demanding meticulous attention; and *second*, that our proposed GT-Prior—a simple, parameter-free k -nearest neighbor heatmap—can rival or even surpass complex learned heatmaps while also demonstrating strong generalization ability. Our evaluation spans various heatmap generation methods, from sophisticated learning-based models to this GT-Prior, and scrutinizes diverse MCTS hyperparameter settings. The empirical validation is performed on TSP instances of varying scales (TSP-500, TSP-1000, and TSP-10000), covering diverse problem structures through various synthetic distributions (including uniform, clustered, explosion, and implosion) and established real-world TSPLIB benchmarks.

The novelty of this paper lies not in proposing a new state-of-the-art solver, but in the rigor of its evaluation process and the critical insights derived. Our contributions are primarily evaluative:

- We empirically quantify and thereby reveal the often-underestimated significance of MCTS configurations in optimizing TSP solutions. Fine-tuning MCTS parameters such as exploration constant and node expansion criteria demonstrably impacts solution quality, urging a re-prioritization in algorithm design.
- We challenge the prevailing emphasis on heatmap complexity by demonstrating that a simple, parameter-free heatmap grounded in the k -nearest neighbor nature of TSP (termed GT-Prior in this work) exhibits strong performance and generalizability across diverse problem scales when combined with an optimized MCTS. This baseline serves to assess the added value of more intricate heatmap models.
- We introduce a streamlined MCTS hyperparameter tuning pipeline, offering a practical tool to facilitate fairer and more robust comparisons in future research on heatmap designs.

These findings collectively advocate for a more holistic understanding and balanced integration of learning and search components within the “Heatmap + MCTS” paradigm. Our work seeks to guide future research towards frameworks that synergistically harness both components, leading to more efficient, robust, and practically deployable TSP solvers, all while aligning with the foundational motivation of this research line: *to better solve large-scale TSP by any means*.

2 HEATMAP + MCTS: BACKGROUND AND CURRENT PERSPECTIVES

This section outlines the foundations of the “Heatmap + Monte Carlo Tree Search” paradigm for solving the Traveling Salesman Problem. We formalize the TSP and its heatmap representation, describe the adapted MCTS framework, review key methodological developments, and examine the current perspectives that motivate our evaluation.

2.1 TRAVELING SALESMAN PROBLEM DEFINITION

The Traveling Salesman Problem (TSP) is a classic combinatorial optimization problem defined over a set of N points $I = \{(x_i, y_i)\}_{i=1}^N$ in the Euclidean plane, where each point denotes a city located at coordinates $(x_i, y_i) \in [0, 1]^2$. The Euclidean distance between any two cities i and j is calculated by $d_{ij} = \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2}$. The objective is to find the shortest closed tour that visits each city exactly once. This optimal tour is represented as a permutation $\pi^* = (\pi_1^*, \pi_2^*, \dots, \pi_N^*)$, minimizing the total length:

$$L(\pi^*) = \sum_{i=1}^{N-1} d_{\pi_i^* \pi_{i+1}^*} + d_{\pi_N^* \pi_1^*}. \quad (1)$$

The performance of a feasible solution π is measured using the optimality gap:

$$Gap = \left(\frac{L(\pi)}{L(\pi^*)} - 1 \right) \times 100\%. \quad (2)$$

In the “Heatmap + MCTS” paradigm, the solution process is guided by a heatmap $P^N \in [0, 1]^{N \times N}$, where each entry P_{ij}^N represents the estimated probability that edge (i, j) appears in the optimal tour. This heatmap serves as a probabilistic prior that informs the subsequent search process.

108
109

2.2 THE MONTE CARLO TREE SEARCH FRAMEWORK FOR TSP

110
111
112
113
114
115

Originally introduced by Fu et al. (2021) to integrate learned heatmap priors with Monte Carlo search, this MCTS framework has become the de facto search backbone for heatmap-guided TSP solvers. MCTS formulates the TSP as a Markov Decision Process (MDP), where each state represents a valid tour and actions correspond to k -opt moves modifying the current solution. While many follow-up studies have reused its core procedure with only superficial adjustments, few have explored deeper search-centric refinements.

116
117
118
119
120
121

In this framework, the search begins by constructing an initial tour: edges are sampled with probability proportional to $e^{P_{ij}^N}$, where P^N is the heatmap prior. The edge weight matrix W is initialized as $W_{ij} = 100 \cdot P_{ij}^N$, the access frequency matrix Q is set to zero, and the overall move counter M starts at zero. Each node in the TSP graph maintains a candidate set to constrain future edge selections. During each simulation, a set of k -opt moves is generated and evaluated using the potential function in Equation (3), guiding the search toward higher-quality tours through repeated updates and restarts.

122
123
124

$$Z_{ij} = \frac{W_{ij}}{\Omega_i} + \alpha \sqrt{\frac{\ln(M+1)}{Q_{ij}+1}}, \quad (3)$$

125
126
127

where $\Omega_i = \sum_{j \neq i} W_{ij}$ normalizes the edge weights from node i , and α is an exploration coefficient. Edges with higher potential are more likely to be selected.

128
129
130

If a generated move yields a shorter tour ($\Delta L < 0$), it is accepted and applied. Otherwise, the search restarts from a newly sampled initial tour. After each move, MCTS updates the edge weights to reflect the observed improvement:

131
132

$$W_{ij} \leftarrow W_{ij} + \beta \left(\exp \left(\frac{L(\pi) - L(\pi')}{L(\pi)} \right) - 1 \right), \quad (4)$$

133
134
135

where β is the learning rate. The access matrix Q is incremented for all modified edges. The process iterates until a fixed time limit is reached, at which point the best tour encountered is returned.

136
137

2.3 EVOLUTION AND PREVAILING RESEARCH IN HEATMAP-GUIDED MCTS

138
139
140
141

The “Heatmap + MCTS” framework, introduced by Fu et al. (2021), marked a significant shift in TSP research by pairing neural heatmap predictions with Monte Carlo Tree Search. Their method used attention-based GCNs to estimate edge probabilities, which then guided a stochastic search to build high-quality tours. This design has inspired numerous variants focused on refining heatmap quality.

142
143
144
145
146

Subsequent efforts introduced more sophisticated models to enhance generalization and structure awareness. DIMES employed meta-learned GNNs (Qiu et al., 2022); DIFUSCO leveraged diffusion-based generative models (Sun and Yang, 2023); and UTSP proposed an unsupervised learning strategy (Min et al., 2024). More recently, SoftDist (Xia et al., 2024) explored a simpler, distance-based heatmap, reflecting growing skepticism toward model complexity.

147
148
149
150
151

However, while heatmap design has seen continuous innovation, the search component—MCTS—has received comparatively less attention. Most prior works adopt default configurations with minimal tuning, and few report the impact of auxiliary steps such as sparsification or additional supervision. As a result, the actual contribution of MCTS to overall performance remains under-investigated.

152
153

2.4 CURRENT PERSPECTIVES AND POTENTIAL OVERSIGHTS

This disparity in research focus reflects several implicit views that have shaped the paradigm: **1**) that heatmap complexity is the primary driver of performance, justifying the emphasis on model sophistication; **2**) that default or minimally tuned MCTS configurations are sufficient for fair comparison, suggesting the search process is either secondary or robust by design; **3**) that MCTS itself is well understood, with its impact assumed to be stable across different problem scales and heatmap types.

154
155
156
157
158
159
160
161

We challenge these views through systematic evaluation. Our results show that MCTS tuning plays a pivotal role—often matching or exceeding the effect of heatmap refinement—and that a simple, parameter-free prior can outperform complex models when coupled with optimized search. These findings argue for a more balanced and transparent evaluation framework in future work.

162

3 EVALUATION METHODOLOGY

164 This section outlines our experimental framework for a rigorous evaluation of the “Heatmap + MCTS”
165 paradigm in solving the TSP. We aim to assess the distinct contributions of heatmap quality and
166 MCTS configuration to solver performance, ensuring fair and robust comparisons.
167168

3.1 EVALUATION OBJECTIVES

169 Our evaluation is structured to answer three central questions:

171 **Q1:** To what extent does the configuration of the MCTS component influence solution quality when
172 applied to diverse heatmap generation techniques?173 **Q2:** Can a simple, parameter-free heatmap with an optimally tuned MCTS match or surpass complex
174 learned heatmaps using default MCTS settings?175 **Q3:** Which MCTS hyperparameters are most influential, and how does their impact vary with
176 heatmap type and problem scale?177 Addressing these questions requires a methodology that isolates MCTS effects for accurate perfor-
178 mance attribution.180

3.2 ENSURING FAIR COMPARISONS

182 Comparing “Heatmap + MCTS” TSP solvers is challenging as MCTS performance can be a con-
183 founding factor. Fixed MCTS settings in prior work may obscure true heatmap efficacy, as MCTS
184 parameters significantly impact solution quality. A sophisticated heatmap might underperform with
185 poorly tuned MCTS, while a simpler one could excel with optimized search.186 To ensure fairness, our methodology mandates dedicated MCTS hyperparameter tuning for *each*
187 evaluated heatmap. This optimizes the search strategy for each heatmap’s characteristics, enabling a
188 more accurate assessment of its intrinsic value.190

3.3 MCTS HYPERPARAMETER TUNING PIPELINE

192 We employ a streamlined MCTS hyperparameter tuning pipeline for standardized and reproducible
193 evaluations across different heatmap methods and TSP scales.195 **Tuning Method.** The pipeline uses grid search over key MCTS hyperparameters. For each heatmap
196 and problem scale (TSP-500, TSP-1000, TSP-10000), configurations are evaluated on a dedicated
197 tuning dataset of synthetic TSP instances. The configuration yielding the best average optimality gap
198 is selected for subsequent test evaluations. This tuning is performed independently for each heatmap.
199200 **Key MCTS Hyperparameters.** Based on prior literature (Fu et al., 2021; Min et al., 2024; Xia
201 et al., 2024) and our own empirical sensitivity analysis, we tune the following key hyperparameters:202

- Alpha: Exploration coefficient (Equation (3)).
- Beta: Edge weight update aggressiveness (Equation (4)).
- Max_Depth: Maximum k for k -opt moves.
- Max_Candidate_Num: Candidate edge set size per node.
- Param_H: MCTS simulations per move.
- Use_Heatmap: Boolean for using heatmap or not for initial candidate set construction.

209 The search space for these parameters is detailed in the Table 12 in Appendix I.

211

3.4 ANALYTICAL TOOLS FOR HYPERPARAMETER IMPORTANCE

213 To quantify each MCTS hyperparameter’s influence on solution quality, we use **SH**apley Additive
214 **eX**planations (SHAP) (Lundberg and Lee, 2017; Lundberg et al., 2020). SHAP values, derived
215 from game theory, attribute performance contributions to each parameter, providing model-agnostic
insights into their importance.

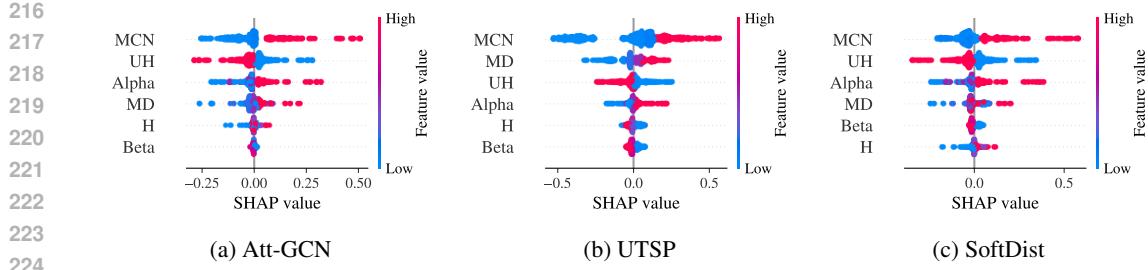


Figure 1: Beeswarm plots of SHAP values for three different heatmaps. MD: Max_Depth, MCN: Max_Candidate_Num, H: Param_H, UH: Use_Heatmap. Each dot represents a feature’s SHAP value for one instance, indicating its impact on the TSP solution length. The x-axis shows SHAP value magnitude and direction, while the y-axis lists features. Vertical stacking indicates similar impacts across instances. Wider spreads suggest greater influence and potential nonlinear effects. Dot color represents the corresponding feature value.

3.5 EXPERIMENTAL SETUP

Heatmap Methods Evaluated. Our framework is applied to diverse heatmap techniques:

- Learning-based: Att-GCN (Fu et al., 2021), DIMES (Qiu et al., 2022), DIFUSCO (Sun and Yang, 2023), UTSP (Min et al., 2024).
- Distance-based parameterized: SoftDist (Xia et al., 2024).
- Baselines: A non-informative Zero heatmap and our proposed GT-Prior (Section 5.1).

Pretrained models or generation code are sourced from original authors where possible.

Datasets. Experiments use synthetic TSP instances (sizes 500, 1000, 10000) with a distinct tuning set for each size (128 instances for TSP-500/1000, 16 for TSP-10000; cities sampled uniformly from $[0, 1]^2$) and test sets sourced from Fu et al. (2021). Generalization is assessed on varied distributions generated following Fang et al. (2024) and TSPLIB (Reinelt, 1991) benchmarks. Ground-truth solutions were obtained from Concorde (Applegate et al., 2009) (TSP-500/1000) or LKH-3 (Helsgaun, 2017) (TSP-10000).

Evaluation Metrics. 1) *Optimality Gap (Gap)*: Relative solution quality to best-known tours, as in Equation (2); 2) *Improvement*: Gap reduction post-tuning versus default MCTS settings; 3) *Time*: Heatmap generation + MCTS execution (with MCTS time controlled by *Time_Limit*).

Computational Environment. All experiments were run on an AMD EPYC 9754 128-Core CPU with 256 GB of memory. MCTS runtime per instance is *Time_Limit* \times *N* seconds.

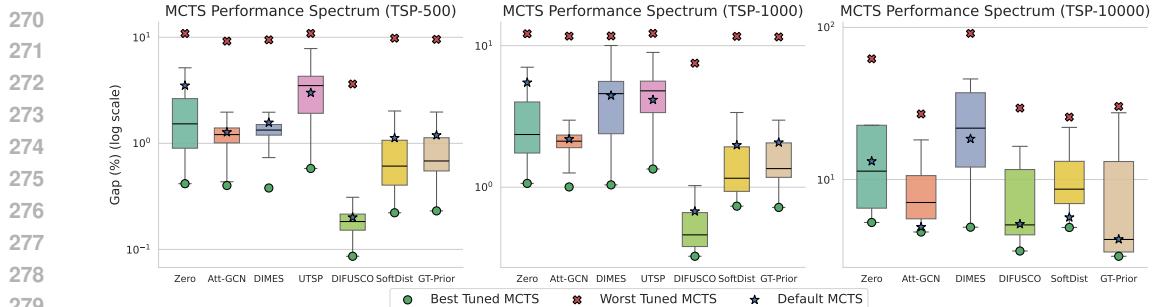
This methodology underpins the analyses and conclusions presented subsequently.

4 COMPONENT IMPACT I: THE CRITICAL ROLE OF MCTS CONFIGURATION

This section presents the empirical analysis of MCTS hyperparameter impact, leveraging the evaluation framework and tuning pipeline detailed in Section 3.3. We first examine the sensitivity and importance of individual MCTS hyperparameters and then quantify the performance gains achieved through their systematic tuning.

4.1 MCTS HYPERPARAMETER SENSITIVITY AND IMPORTANCE

The MCTS hyperparameter tuning pipeline was executed using the search space specified in Table 12 in Appendix H. This space includes configurations inspired by prior works (Fu et al., 2021; Min et al., 2024; Xia et al., 2024) and algorithmic analysis, with default settings highlighted in bold. The impact of these MCTS configurations on TSP solution quality was subsequently analyzed using SHAP values, which attribute performance changes to individual hyperparameters. Positive SHAP

280
281 Figure 2: Box plots of the optimality gap (%) for various heatmap sources, scales, and MCTS settings.
282283 values suggest an increase in solution length (worse performance), while negative values indicate a
284 reduction (better performance).285 Figure 1 presents the SHAP value distributions for key MCTS hyperparameters across three rep-
286 resentative heatmap models (Att-GCN, UTSP, and SoftDist) on TSP-500 instances. Additional
287 plots for other models and problem sizes are provided in Appendix E. The `Max_Candidate_Num`
288 parameter consistently demonstrates a strong, often positive, impact across these models, suggesting
289 that reducing the candidate set size from very large defaults can improve both computational speed
290 and solution quality. `Max_Depth` generally exhibits positive SHAP values, indicating that exces-
291 sively deep k -opt explorations within MCTS can sometimes be detrimental to finding good solutions
292 quickly. The parameters `Alpha` (exploration coefficient) and `Use_Heatmap` (determining initial
293 candidate set construction) show mixed effects, revealing non-linear interactions where their optimal
294 values and impact depend on the specific heatmap being used. For instance, `Beta` (edge weight
295 update aggressiveness) shows a notable positive influence in the SoftDist model, implying that its
296 default update strategy might be suboptimal. Conversely, `Param_H` (MCTS simulations per move)
297 generally demonstrates minimal overall influence across the examined heatmaps within the tested
298 ranges. These findings directly address **Q3**, pinpointing influential MCTS hyperparameters and the
299 context-dependent nature of their effects.300
301

4.2 QUANTIFYING PERFORMANCE GAINS FROM MCTS TUNING

302 To quantify the impact of MCTS configuration, we tuned hyperparameter sets within the given search
303 space and report their performance spectrum. The `Time_Limit` for MCTS was set to 0.1 for
304 TSP-500 and TSP-1000, and 0.01 for TSP-10000. Performance is reported as the *Optimality Gap*
305 (*Gap*). UTSP is not evaluated on TSP-10000 due to unavailability of corresponding heatmaps. The
306 Zero heatmap’s tuning involved setting `Use_Heatmap` to `False`¹.307 Figure 2 illustrates the critical role of MCTS hyperparameter tuning, directly answering **Q1** by
308 demonstrating the extent to which MCTS configuration determines final solution quality across
309 diverse heatmap generation techniques. This impact is evident in the vast performance gap between
310 best-tuned (green circles) and worst-tuned (red ‘x’) configurations; for instance, DIMES on TSP-
311 10000 ranges from a 4.86% gap to a crippling 91.31% based on MCTS settings alone. Consequently,
312 default MCTS configurations (blue stars) are often far from optimal. Dedicated tuning yields
313 significant gains: SoftDist on TSP-500, for instance, saw its gap improve from 1.12% to 0.22%, and
314 the Zero heatmap on TSP-1000 from 5.49% to 1.06%. Even sophisticated heatmaps like DIFUSCO,
315 despite a strong default performance (0.20% gap on TSP-500), still benefit from tuning (achieving
316 0.09%) and can be severely degraded by poor MCTS choices (worst-tuned gap of 3.62%). These
317 observations highlight that careful MCTS configuration is essential to unlock the true potential of any
318 heatmap, elevating the performance of both complex and basic priors.319 In essence, Figure 2 reveals that MCTS configuration is a dominant performance factor. Effective
320 tuning is not only beneficial but crucial, capable of substantially elevating solution quality for all
321 types of heatmaps and enabling even basic priors to achieve strong results. This underscores the
322 necessity of our streamlined MCTS tuning pipeline (Section 3.3) for rigorous evaluations and realizing323
324 ¹For the Zero heatmap, `Use_Heatmap` was set to `False`, as it provides no instance-specific information.

optimal solver performance. The specific MCTS configurations yielding the best-tuned results are in Appendix H.

This one-time hyperparameter tuning (conducted via grid search) is a pre-computation step comparable in effort to training many learning-based heatmap methods and does not affect the MCTS inference time. Further tuning efficiencies can be realized through parallelization or advanced hyperparameter optimization algorithms like SMAC3 (Lindauer et al., 2022), as discussed in Appendix I.

5 COMPONENT IMPACT II: RE-EVALUATING HEATMAP SOPHISTICATION WITH A RIGOROUS BASELINE

While Section 4 established the critical role of MCTS configuration, this section evaluates the prevailing view that increasingly sophisticated heatmap models are the primary drivers of performance in the “Heatmap + MCTS” TSP paradigm. We introduce and evaluate a simple, parameter-free baseline, GT-Prior, derived from the intrinsic k -nearest neighbor structure of TSP solutions. By comparing GT-Prior (with optimized MCTS) against complex learned heatmaps, we assess whether the pursuit of heatmap complexity consistently yields justifiable performance gains, especially when the search component is already operating effectively, providing an answer to **Q2**. This analysis aims to provide a clearer perspective on the added value of intricate heatmap models and advocate for the inclusion of strong, simple baselines in future methodological comparisons.

5.1 THE k -NEAREST PRIOR IN TSP

The k -nearest prior in TSP posits that optimal tour edges predominantly connect a city to one of its closest neighbors. This empirical observation has been implicitly used in constructing sparse graph inputs for learning models (Fu et al., 2021; Sun and Yang, 2023; Min et al., 2024), yet its direct use as a primary heatmap source has been less explored.

To elucidate the k -nearest prior, we conducted a comprehensive analysis of (near-) optimal solutions for TSP instances of various sizes. Given a set of TSP instances \mathcal{I} , for each instance $I \in \mathcal{I}$ and its optimal solution, we calculate the rank of the nearest neighbors for the next city: $k \in \{1, 2, \dots, N\}$, and count their occurrences n_k^I , where n_k^I represents the number of selecting the k -nearest cities in an instance’s optimal solution. We then calculate the distribution:

$$\mathbb{P}_N^I(k) = \frac{n_k^I}{N}, k \in \{1, 2, \dots, N\} \quad (5)$$

and average these distributions across all instances to derive the empirical distribution:

$$\hat{\mathbb{P}}_N(k) = \frac{1}{|\mathcal{I}|} \sum_{I \in \mathcal{I}} \mathbb{P}_N^I(k), k \in \{1, 2, \dots, N\}. \quad (6)$$

To quantify this prior empirically, we analyzed (near-)optimal solutions for uniform TSP instances of varying sizes (TSP-500, TSP-1000 using Concorde; TSP-10000 using LKH-3). For each instance I from a set \mathcal{I} , and its (near-)optimal tour, we computed the frequency n_k^I with which an edge connects to the k -th nearest neighbor. The averaged empirical distribution $\hat{\mathbb{P}}_N(k) = \frac{1}{|\mathcal{I}|} \sum_{I \in \mathcal{I}} \frac{n_k^I}{N}$ is shown in Figure 3. The results reveal a strong locality: the probability of selecting one of the top 5 nearest neighbors exceeds 94%, rising above 99% for the top 10. This distribution is highly consistent across TSP scales, a finding that also holds for instances from different underlying distributions (see Appendix J for similar results).

Leveraging insights from the optimal solution, we construct the heatmap by assigning probabilities to edges based on the empirical distribution of the k -nearest prior $\hat{\mathbb{P}}_N(\cdot)$. For each city i in a TSP

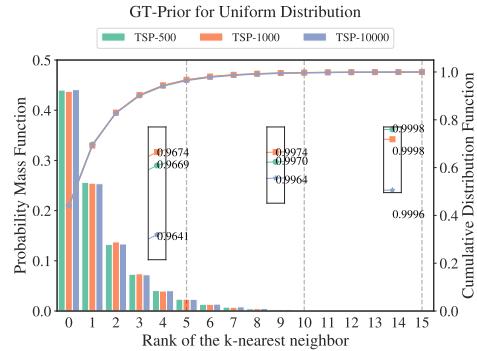


Figure 3: Empirical distribution of k -nearest neighbor selection in optimal TSP tours

378 Table 1: Results on large-scale TSP problems. Abbreviations: RL (Reinforcement learning), SL
 379 (Supervised learning), UL (Unsupervised learning), AS (Active search), G (Greedy decoding), S
 380 (Sampling decoding), BS (Beam-search). * indicates baseline for performance gap. † indicates
 381 methods using heatmaps of test set from Xia et al. (2024) with our MCTS setup. Some methods
 382 show two *Time* terms (heatmap generation and MCTS runtimes). **MCTS times denote the equivalent**
 383 **sequential runtime per instance**. Concorde and Gurobi results are sourced from Fu et al. (2021); Qiu
 384 et al. (2022).

METHOD	TYPE	TSP-500			TSP-1000			TSP-10000		
		LENGTH ↓	GAP ↓	TIME ↓	LENGTH ↓	GAP ↓	TIME ↓	LENGTH ↓	GAP ↓	TIME ↓
CONCORDE	OR(EXACT)	16.55*	—	17.65s	23.12*	—	3.12M	N/A	N/A	N/A
GUROBI	OR(EXACT)	16.55	0.00%	21.39M	N/A	N/A	N/A	N/A	N/A	N/A
LKH-3 (DEFAULT)	OR(HEURISTIC)	16.55	0.00%	14.84s	23.12	0.00%	1.02M	71.77*	—	28.73M
ZERO	MCTS	16.66	0.66%	0.00M+ 50.06s	23.39	1.16%	0.00M+ 1.67M	74.50	3.80%	0.00M+ 16.65M
ATT-GCN [†]	SL+MCTS	16.66	0.69%	0.52M+ 50.06s	23.37	1.09%	0.73M+ 1.67M	73.95	3.03%	4.16M+ 16.65M
DIMES [†]	RL+MCTS	16.66	0.43%	0.97M+ 50.06s	23.37	1.11%	2.08M+ 1.67M	73.97	3.06%	4.65M+ 16.65M
UTSP [†]	UL+MCTS	16.69	0.90%	1.37M+ 50.06s	23.47	1.53%	3.35M+ 1.67M	—	—	—
SOFTDIST [†]	SOFTDIST+MCTS	16.62	0.43%	0.00M+ 50.06s	23.30	0.80%	0.00M+ 1.67M	73.89	2.95%	0.00M+ 16.65M
DIFUSCO [†]	SL+MCTS	16.60	0.33%	3.61M+ 50.06s	23.24	0.53%	11.86M+ 1.67M	73.47	2.37%	28.51M+ 16.65M
FAST-T2T	SL+MCTS	16.57	0.12%	0.50M+ 50.06s	23.27	0.65%	1.78M+ 1.67M	74.80	4.22%	7.73M+ 16.65M
GT-PRIOR	PRIOR+MCTS	16.63	0.50%	0.00M+ 50.06s	23.31	0.85%	0.00M+ 1.67M	73.31	2.14%	0.00M+ 16.65M

400 instance of size N , we assign probabilities to edges (i, j) as follows:

$$P_{ij}^N = \hat{\mathbb{P}}_N(k_{ij}), k_{ij} \in \{1, 2, \dots, N\} \quad (7)$$

404 where k_{ij} is the rank of city j among i 's neighbors in terms of proximity (see the detailed statistical
 405 results in Appendix L). Importantly, this heatmap is parameter-free and scale-independent, thus
 406 requiring no tuning or learning phase.

408 5.2 PERFORMANCE DEMONSTRATION: CHALLENGING COMPLEXITY

410 We evaluated GT-Prior against various heatmap methods, all coupled with MCTS configurations
 411 tuned according to our pipeline (Section 3.3). This ensures that comparisons reflect the heatmap's
 412 intrinsic quality when its search partner is optimized, rather than differences in MCTS efficacy.

414 As shown in Table 1, GT-Prior, a simple parameter-free heatmap, when combined with an optimally
 415 tuned MCTS, achieves performance highly competitive with, and in some cases (TSP-10000) superior
 416 to, far more complex learning-based heatmap generators like DIFUSCO. For TSP-500, TSP-1000,
 417 and TSP-10000, GT-Prior yields optimality gaps of 0.50%, 0.85%, and 2.13%, respectively. This
 418 performance is achieved with no heatmap generation time at inference, similar to SoftDist and Zero.

419 Critically, the Zero heatmap, providing no edge guidance, still achieves respectable gaps (e.g., 0.66%
 420 for TSP-500) solely through tuned MCTS (where `Use_Heatmap` is optimally set to `False`, relying
 421 on distance for candidate selection). This underscores the substantial impact of the search component
 422 itself. The strong showing of GT-Prior and even the tuned Zero heatmap challenges the narrative
 423 that gains in TSP solutions primarily hinge on increasing heatmap model sophistication. It suggests
 424 that much of the solution quality can be attributed to a well-calibrated search process acting on
 425 fundamental problem characteristics, a point potentially understated in evaluations that do not tune
 426 MCTS for simpler baselines.

427 5.3 GENERALIZATION ABILITY: ROBUSTNESS OF SIMPLICITY

429 We further assessed the generalization of GT-Prior by applying the prior derived from TSP-500 data to
 430 larger TSP instances (TSP-1000, TSP-10000), as well as different distributions (derived from uniform
 431 and tested on other distributions), comparing against learned models under the same cross-scale
 432 evaluation.

432 Table 2: Generalization performance of different methods trained on TSP-500 across varying TSP
 433 sizes (TSP-500, TSP-1000, TSP-10000). “Res Type” refers to the result type: “Ori.” indicates
 434 the performance on the same scales during the test phase, while “Gen.” represents the model’s
 435 generalized performance on different scales.

METHOD	RES TYPE	TSP-500		TSP-1000		TSP-10000	
		GAP ↓	DEGENERATION ↓	GAP ↓	DEGENERATION ↓	GAP ↓	DEGENERATION ↓
DIMES	Ori./Gen.	0.43%/0.43%	0.00%	1.11%/1.19%	0.08%	3.05%/4.29%	1.24%
UTSP	Ori./Gen.	0.90%/0.90%	0.00%	1.53%/1.44%	-0.09%	—	—
DIFUSCO	Ori./Gen.	0.33%/0.33%	0.00%	0.53%/0.86%	0.33%	2.36%/5.27%	2.91%
SOFTDIST	Ori./Gen.	0.43%/0.43%	0.00%	0.80%/0.97%	0.17%	2.94%/3.90%	0.96%
GT-PRIOR	Ori./Gen.	0.50%/0.50%	0.00%	0.85%/0.88%	0.03%	2.13%/2.13%	-0.01%

441 Table 3: Optimality gap (%), ↓) across distributions and sizes. Lighter color indicates lower gap.

METHOD	TSP-500			TSP-1000			TSP-10000		
	CLUSTER	EXPLOSION	IMPLOSION	CLUSTER	EXPLOSION	IMPLOSION	CLUSTER	EXPLOSION	IMPLOSION
ZERO	0.79	0.58	0.67	1.22	1.14	1.23	1.81	2.53	2.57
ATT-GCN	0.74	0.58	0.65	1.10	0.96	1.00	1.12	1.57	1.59
DIMES	0.90	0.62	0.72	1.28	1.06	1.16	2.23	2.90	2.91
UTSP	0.97	0.72	0.83	1.38	1.25	1.36	—	—	—
DIFUSCO	0.88	0.65	0.74	0.53	0.42	0.32	1.96	2.50	2.42
SOFTDIST	0.98	0.56	0.49	1.55	1.03	0.75	1.45	1.72	0.33
GT-PRIOR	0.51	0.38	0.49	0.70	0.63	0.74	0.35	0.93	0.58

452 Table 2 reveals GT-Prior’s robust generalization across scales. When the prior derived from uniform
 453 TSP-500 is applied to TSP-10000, GT-Prior’s performance degradation is minimal (merely a -0.01%
 454 change in gap, effectively maintaining its 2.13% gap), substantially outperforming complex learned
 455 models like DIFUSCO, which sees its gap increase from 2.36% to 5.27% (a 2.91% degeneration).
 456 This suggests that simpler priors based on inherent problem structure (like k -nearest neighbors) may
 457 offer greater robustness and scalability than intricate learned patterns, which might overfit to training
 458 distributions or scales.

459 This robustness extends to generalization across qualitatively different problem structures. As
 460 evidenced in Table 3, when MCTS settings (tuned on uniform data, and the heatmap also derived
 461 from uniform data) are applied to instances from clustered, explosion, and implosion distributions,
 462 GT-Prior consistently maintains strong performance. For example, on TSP-10000, GT-Prior achieves
 463 impressive optimality gaps of 0.35% (clustered), 0.93% (explosion), and 0.58% (implosion). These
 464 results frequently surpass those of more complex models like DIFUSCO (1.96%, 2.50%, 2.42%
 465 respectively) under these challenging cross-distribution test conditions. This highlights that GT-Prior’s
 466 fundamental k -nearest neighbor prior is less susceptible to distributional shifts than learned patterns,
 467 which might inadvertently specialize to the characteristics of (typically uniform) training data. While
 468 sophisticated learning-based models can achieve excellent results in certain cases, demonstrating the
 469 generalization ability of their learned features (e.g., DIFUSCO’s strong performance on TSP-1000
 470 across distributions), GT-Prior’s consistent efficacy underscores the value of simple, structurally-
 471 grounded priors for achieving reliable generalization—a key quality for practical and versatile TSP
 472 solvers. This resilience is a crucial evaluative aspect, particularly for solvers intended for diverse,
 473 large-scale applications.

474 More generalization results of models trained on TSP-1000 and TSP-10000 are left in Appendix F,
 475 and additional results on TSPLIB instances are listed in Appendix G.

477 6 CONCLUSIONS

479 This study underscores the necessity of a more balanced and rigorous approach to the “Heatmap
 480 + MCTS” paradigm for the TSP. By empirically demonstrating the distinct impact of MCTS con-
 481 figurations and the competitive strength of a simple, parameter-free k -nearest prior when coupled
 482 with optimized search, our work challenges the prevailing emphasis on heatmap sophistication. The
 483 introduced streamlined MCTS hyperparameter tuning pipeline offers a concrete pathway toward
 484 fairer and more insightful comparisons of future heatmap designs. Looking ahead, these evaluative
 485 insights encourage a research trajectory that moves beyond isolated component optimization. By
 fostering a synergistic, holistically understood, and optimized integration of learning and search, the

486 field can develop TSP solvers that are not only high-performing but also more robust, efficient, and
487 genuinely impactful.
488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540
541
ETHICS STATEMENT542
543
544
545
546
547
548
The research presented in this paper, aimed at improving solutions for the Traveling Salesman
Problem (TSP), has several potential societal impacts. On the positive side, advancements in TSP
solvers can directly enhance efficiency in sectors like logistics and manufacturing, leading to reduced
fuel consumption, lower operational costs, and decreased environmental emissions. Our findings that
simpler, well-tuned methods can be highly effective may also help democratize access to advanced
optimization tools, allowing smaller entities to benefit without requiring massive computational
resources.549
550
551
552
553
554
555
556
557
Conversely, we acknowledge potential negative impacts. As with many advancements in AI and
automation, the increased efficiency from improved TSP solvers could contribute to job displacement
in manual planning and routing roles. There is also a risk of unintended consequences or exacerbating
existing inequities if these tools are deployed without careful consideration of all relevant factors.
Therefore, this work encourages a methodical approach to building AI systems, emphasizing the
importance of understanding and tuning all components. By demonstrating the power of simpler
priors combined with careful search configuration, we advocate for solutions that are more transparent
and robust, aligning with principles of responsible AI development. Continuous attention to fairness,
robustness, and human oversight will be crucial as such technologies are deployed.558
559
REPRODUCIBILITY STATEMENT560
561
562
563
564
565
566
567
568
569
To ensure the reproducibility of our research, we provide a comprehensive suite of resources. The
complete source code, including scripts for hyperparameter tuning and result evaluation, is included
in the supplementary materials. A detailed README file offers step-by-step instructions for setting
up the computational environment and executing the experiments described in this paper. Our full
evaluation methodology, experimental setup, datasets, and computational environment are described
in Section 3.5. The specific MCTS hyperparameter search space and the best-tuned configurations
used to produce our final results are detailed in the Appendix H,I. The procedure for generating our
proposed GT-Prior is explained in Section 5.1. The datasets used in our experiments were sourced
from established benchmarks as cited in Section 3.5, and the generation code for synthetic instances
is also provided.570
571
REFERENCES572
573
574
575
David L Applegate, Robert E Bixby, Vašek Chvátal, William Cook, Daniel G Espinoza, Marcos Goy-
coolea, and Keld Helsgaun. Certification of an optimal tsp tour through 85,900 cities. *Operations
Research Letters*, 37(1):11–15, 2009.
576
577
Irwan Bello, Hieu Pham, Quoc V Le, Mohammad Norouzi, and Samy Bengio. Neural combinatorial
optimization with reinforcement learning. *arXiv preprint arXiv:1611.09940*, 2016.
578
579
Jieyi Bi, Yining Ma, Jiahai Wang, Zhiguang Cao, Jinbiao Chen, Yuan Sun, and Yeow Meng Chee.
580
Learning generalizable models for vehicle routing problems via knowledge distillation. *Advances
in Neural Information Processing Systems*, 35:31226–31238, 2022.
581
582
Xinyun Chen and Yuandong Tian. Learning to perform local rewriting for combinatorial optimization.
583
Advances in neural information processing systems, 32, 2019.
584
585
Jinho Choo, Yeong-Dae Kwon, Jihoon Kim, Jeongwoo Jae, André Hottung, Kevin Tierney, and
Youngjune Gwon. Simulation-guided beam search for neural combinatorial optimization. *Advances
in Neural Information Processing Systems*, 35:8760–8772, 2022.
586
587
Paulo R d O Costa, Jason Rhuggenaath, Yingqian Zhang, and Alp Akcay. Learning 2-opt heuristics
588
for the traveling salesman problem via deep reinforcement learning. In *Asian conference on
589
machine learning*, pages 465–480. PMLR, 2020.
590
591
Michel Deudon, Pierre Courtnut, Alexandre Lacoste, Yossiri Adulyasak, and Louis-Martin Rousseau.
592
Learning heuristics for the tsp by policy gradient. In *Integration of Constraint Programming,
593
Artificial Intelligence, and Operations Research: 15th International Conference, CPAIOR 2018,
Delft, The Netherlands, June 26–29, 2018, Proceedings* 15, pages 170–181. Springer, 2018.

594 Han Fang, Zhihao Song, Paul Weng, and Yutong Ban. Invit: A generalizable routing problem solver
 595 with invariant nested view transformer. *arXiv preprint arXiv:2402.02317*, 2024.

596

597 Zhang-Hua Fu, Kai-Bin Qiu, and Hongyuan Zha. Generalize a small pre-trained model to arbitrarily
 598 large tsp instances. In *Proceedings of the AAAI conference on artificial intelligence*, volume 35,
 599 pages 7474–7482, 2021.

600 Keld Helsgaun. An extension of the lin-kernighan-helsgaun tsp solver for constrained traveling
 601 salesman and vehicle routing problems. *Roskilde: Roskilde University*, 12:966–980, 2017.

602

603 André Hottung, Yeong-Dae Kwon, and Kevin Tierney. Efficient active search for combinatorial
 604 optimization problems. *arXiv preprint arXiv:2106.05126*, 2021.

605 Benjamin Hudson, Qingbiao Li, Matthew Malencia, and Amanda Prorok. Graph neural network
 606 guided local search for the traveling salesperson problem. *arXiv preprint arXiv:2110.05291*, 2021.

607

608 Chaitanya K Joshi, Thomas Laurent, and Xavier Bresson. An efficient graph convolutional network
 609 technique for the travelling salesman problem. *arXiv preprint arXiv:1906.01227*, 2019.

610 Elias Khalil, Hanjun Dai, Yuyu Zhang, Bistra Dilkina, and Le Song. Learning combinatorial
 611 optimization algorithms over graphs. *Advances in neural information processing systems*, 30,
 612 2017.

613

614 Minsu Kim, Jinkyoo Park, et al. Learning collaborative policies to solve np-hard routing problems.
 615 *Advances in Neural Information Processing Systems*, 34:10418–10430, 2021.

616 Minsu Kim, Junyoung Park, and Jinkyoo Park. Sym-nco: Leveraging symmetry for neural
 617 combinatorial optimization. *Advances in Neural Information Processing Systems*, 35:1936–1949,
 618 2022.

619

620 Wouter Kool, Herke van Hoof, and Max Welling. Attention, learn to solve routing problems! In
 621 *International Conference on Learning Representations*, 2019.

622 Yeong-Dae Kwon, Jinho Choo, Byoungjip Kim, Iljoo Yoon, Youngjune Gwon, and Seungjai Min.
 623 Pomo: Policy optimization with multiple optima for reinforcement learning. *Advances in Neural
 624 Information Processing Systems*, 33:21188–21198, 2020.

625

626 Yeong-Dae Kwon, Jinho Choo, Iljoo Yoon, Minah Park, Duwon Park, and Youngjune Gwon. Ma-
 627 trix encoding networks for neural combinatorial optimization. *Advances in Neural Information
 628 Processing Systems*, 34:5138–5149, 2021.

629

630 Yang Li, Jinpei Guo, Runzhong Wang, Hongyuan Zha, and Junchi Yan. Fast t2t: Optimization
 631 consistency speeds up diffusion-based training-to-testing solving for combinatorial optimization.
 632 In *The Thirty-eighth Annual Conference on Neural Information Processing Systems*, 2024.

633

Marius Lindauer, Katharina Eggensperger, Matthias Feurer, André Biedenkapp, Difan Deng, Carolin
 634 Benjamins, Tim Ruhkopf, René Sass, and Frank Hutter. Smac3: A versatile bayesian optimization
 635 package for hyperparameter optimization. *Journal of Machine Learning Research*, 23(54):1–9,
 636 2022.

637

Fei Liu, Xi Lin, Zhenkun Wang, Qingfu Zhang, Tong Xialiang, and Mingxuan Yuan. Multi-task
 638 learning for routing problem with cross-problem zero-shot generalization. In *Proceedings of the
 639 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining*, pages 1898–1908,
 640 2024.

641

Scott M Lundberg and Su-In Lee. A unified approach to interpreting model predictions. In I. Guyon,
 642 U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors,
 643 *Advances in Neural Information Processing Systems 30*, pages 4765–4774. Curran Associates, Inc.,
 644 2017.

645

Scott M. Lundberg, Gabriel Erion, Hugh Chen, Alex DeGrave, Jordan M. Prutkin, Bala Nair, Ronit
 646 Katz, Jonathan Himmelfarb, Nisha Bansal, and Su-In Lee. From local explanations to global
 647 understanding with explainable ai for trees. *Nature Machine Intelligence*, 2(1):2522–5839, 2020.

648 Qiang Ma, Suwen Ge, Danyang He, Darshan Thaker, and Iddo Drori. Combinatorial optimization by
 649 graph pointer networks and hierarchical reinforcement learning. *arXiv preprint arXiv:1911.04936*,
 650 2019.

651 Yimeng Min, Yiwei Bai, and Carla P Gomes. Unsupervised learning for solving the travelling
 652 salesman problem. *Advances in Neural Information Processing Systems*, 36, 2024.

654 Yuichi Nagata and Shigenobu Kobayashi. A powerful genetic algorithm using edge assembly
 655 crossover for the traveling salesman problem. *INFORMS Journal on Computing*, 25(2):346–363,
 656 2013.

657 Xuanhao Pan, Yan Jin, Yuandong Ding, Mingxiao Feng, Li Zhao, Lei Song, and Jiang Bian. H-tsp:
 658 Hierarchically solving the large-scale traveling salesman problem. In *Proceedings of the AAAI
 659 Conference on Artificial Intelligence*, volume 37, pages 9345–9353, 2023.

660 Bo Peng, Jiahai Wang, and Zizhen Zhang. A deep reinforcement learning algorithm using dynamic
 661 attention model for vehicle routing problems. In *Artificial Intelligence Algorithms and Applications:
 662 11th International Symposium, ISICA 2019, Guangzhou, China, November 16–17, 2019, Revised
 663 Selected Papers 11*, pages 636–650. Springer, 2020.

664 Ruizhong Qiu, Zhiqing Sun, and Yiming Yang. Dimes: A differentiable meta solver for combinatorial
 665 optimization problems. *Advances in Neural Information Processing Systems*, 35:25531–25546,
 666 2022.

667 Gerhard Reinelt. Tsplib—a traveling salesman problem library. *ORSA journal on computing*, 3(4):
 668 376–384, 1991.

669 Zhiqing Sun and Yiming Yang. Difusco: Graph-based diffusion solvers for combinatorial optimization.
 670 *Advances in Neural Information Processing Systems*, 36:3706–3731, 2023.

671 Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. *Advances in neural information
 672 processing systems*, 28, 2015.

673 Chenguang Wang and Tianshu Yu. Efficient training of multi-task combinatorial neural solver with
 674 multi-armed bandits. *arXiv preprint arXiv:2305.06361*, 2023.

675 Chenguang Wang, Yaodong Yang, Oliver Slumbers, Congying Han, Tiande Guo, Haifeng Zhang, and
 676 Jun Wang. A game-theoretic approach for improving generalization ability of tsp solvers. *arXiv
 677 preprint arXiv:2110.15105*, 2021.

678 Chenguang Wang, Zhouliang Yu, Stephen McAleer, Tianshu Yu, and Yaodong Yang. Asp: Learn a
 679 universal neural solver! *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 2024.

680 Yaxin Wu, Wen Song, Zhiguang Cao, Jie Zhang, and Andrew Lim. Learning improvement heuristics
 681 for solving routing problems. *IEEE transactions on neural networks and learning systems*, 33(9):
 682 5057–5069, 2021.

683 Yifan Xia, Xianliang Yang, Zichuan Liu, Zhihao Liu, Lei Song, and Jiang Bian. Position: Rethinking
 684 post-hoc search-based neural approaches for solving large-scale traveling salesman problems. In
 685 *Proceedings of the 41st International Conference on Machine Learning*, pages 54178–54190,
 686 2024.

687 Haoran Ye, Jiarui Wang, Helan Liang, Zhiguang Cao, Yong Li, and Fanzhang Li. Glop: Learning
 688 global partition and local construction for solving large-scale routing problems in real-time. In
 689 *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 38, pages 20284–20292,
 690 2024.

691 Jianan Zhou, Yaxin Wu, Wen Song, Zhiguang Cao, and Jie Zhang. Towards omni-generalizable
 692 neural methods for vehicle routing problems. In *International Conference on Machine Learning*,
 693 pages 42769–42789. PMLR, 2023.

694 Jianan Zhou, Zhiguang Cao, Yaxin Wu, Wen Song, Yining Ma, Jie Zhang, and Chi Xu. Mvmoe:
 695 Multi-task vehicle routing solver with mixture-of-experts. *arXiv preprint arXiv:2405.01029*, 2024.

702 **A ADDITIONAL RELATED WORKS**
703704 Approaches using machine learning to address the Travelling Salesman Problem (TSP) generally fall
705 into two distinct groups based on how they generate solutions. The first group, known as construction
706 methods, incrementally forms a path by sequentially adding cities to an unfinished route, following an
707 autoregressive process until the entire path is completed. The second group, improvement methods,
708 starts with a complete route and continually applies local search operations to improve the solution.
709710 **Construction Methods** Since Vinyals et al. (2015); Bello et al. (2016) introduced the autoregressive
711 combinatorial optimization neural solver, numerous advancements have emerged in subsequent
712 years (Deudon et al., 2018; Kool et al., 2019; Peng et al., 2020; Kwon et al., 2021; 2020). These
713 include enhanced network architectures (Kool et al., 2019), more sophisticated deep reinforcement
714 learning techniques (Khalil et al., 2017; Ma et al., 2019; Choo et al., 2022), and improved training
715 methods (Kim et al., 2022; Bi et al., 2022). For large-scale TSP, Pan et al. (2023) adopts a hierarchical
716 divide-and-conquer approach, breaking down the complex TSP into more manageable open-loop
717 TSP sub-problems.
718719 **Improvement Methods** In contrast to construction methods, improvement-based solvers leverage
720 neural networks to progressively refine an existing feasible solution, continuing the process until the
721 computational limit is reached. These improvement methods are often influenced by traditional local
722 search techniques like k -opt, and have been shown to deliver impressive results in various previous
723 studies (Chen and Tian, 2019; Wu et al., 2021; Kim et al., 2021; Hudson et al., 2021). Ye et al. (2024)
724 implements a divide-and-conquer approach, using search-based methods to enhance the solutions of
725 smaller subproblems generated from the larger instances.
726727 Recent breakthroughs in solving large-scale TSP problems (Fu et al., 2021; Qiu et al., 2022; Sun and
728 Yang, 2023; Min et al., 2024; Xia et al., 2024), have incorporated Monte Carlo tree search (MCTS)
729 as an effective post-processing technique. These heatmaps serve as priors for guiding the MCTS,
730 resulting in impressive performance in large-scale TSP solutions, achieving state-of-the-art results.
731732 **Other Directions** In addition to exploring solution methods for combinatorial optimization
733 problems, some studies investigate intrinsic challenges encountered during the learning phase. These
734 include generalization issues during inference (Wang et al., 2021; Zhou et al., 2023; Wang et al.,
735 2024) and multi-task learning (Wang and Yu, 2023; Liu et al., 2024; Zhou et al., 2024) aimed at
736 developing foundational models.
737738 **B IMPACT OF HEURISTIC POSTPROCESSING**
739740 In our experimental reproduction of various learning-based heatmap generation methods for the
741 Travelling Salesman Problem (TSP), we identified a critical yet often overlooked factor affecting
742 performance: the post-processing of model-generated heatmaps. This section details the post-
743 processing strategies employed by different methods and evaluates their impact on performance
744 metrics.
745746 **B.1 POSTPROCESSING STRATEGIES**
747748 **DIMES** DIMES generates an initial heatmap matrix of dimension $n \times n$ from a k -nearest neighbors
749 (k -NN) subgraph of the original TSP instance ($k = 50$). The post-processing involves two steps:
750751 1. Sparsification: Retaining only the top-5 values for each row, setting all others to a significantly
752 negative number.
753 2. Adaptive softmax: Iteratively applying a temperature-scaled softmax function with gradual
754 temperature reduction until the minimum non-zero probability exceeds a predefined threshold.
755756 **DIFUSCO** DIFUSCO also generates a sparse heatmap based on the k -NN subgraph ($k = 50$ for
757 TSP-500, $k = 100$ for larger scales). The post-processing differs based on problem scale:
758

756
757 Table 4: Performance Degeneration for Different Methods with and without Postprocessing on
758 TSP-500, TSP-1000, and TSP-10000. ‘W’ indicates with postprocessing, while ‘W/O’ indicates
759 without postprocessing.

METHOD	POSTPROCESSING	TSP-500		TSP-1000		TSP-10000	
		GAP ↓	DEGENERATIONS ↓	GAP ↓	DEGENERATIONS ↓	GAP ↓	DEGENERATIONS ↓
DIMES	W/O	2.50%	0.93%	9.07%	6.77%	15.87%	12.81%
	W	1.57%		2.30%		3.05%	
UTSP	W/O	4.50%	1.36%	6.30%	2.10%	—	—
	W	3.14%		4.20%			
DIFUSCO	W/O	2.33%	1.88%	0.66%	-0.40%	45.20%	42.52%
	W	0.45%		1.07%		2.69%	

760
761
762
763
764
765
766
767
768
769
770 1. For TSP-500 and TSP-1000: A single step integrating Euclidean distances, thresholding, and
771 symmetrization.
772
773 2. For TSP-10000: Two steps are applied sequentially: a) Additional supervision using a greedy
774 decoding strategy followed by 2-opt heuristics. b) The same process as used for smaller instances.

775 **UTSP** UTSP’s post-processing is straightforward, involving sparsification of the dense heatmap
776 matrix by preserving only the top 20 values per row.

777 B.2 EXPERIMENTAL RESULTS

778 We conducted experiments on the test set for heatmaps generated by these three methods, both with
779 and without post-processing, using the default MCTS setting. Results are presented in Table 4.

780 Our findings reveal that heatmaps generated without post-processing generally exhibit performance
781 degradation, particularly for TSP-10000, where the gap increases by orders of magnitude. This
782 underscores the importance of sparsification for large-scale instances and highlights the tendency of
783 existing methodologies to overstate their efficacy in training complex deep learning models.

784 Interestingly, DIFUSCO’s heatmap without post-processing outperforms its post-processed coun-
785 terpart for TSP-1000, suggesting that the DIFUSCO model, when well-trained on this scale, can
786 generate helpful heatmap matrices to guide MCTS without additional refinement.

787 These results emphasize the critical role of post-processing in enhancing the performance of learning-
788 based heatmap generation methods for TSP, particularly as problem scales increase. They also
789 highlight the need for careful evaluation of model outputs and the potential for over-reliance on
790 post-processing to mask limitations in model training and generalization.

791 The substantial performance gap between heatmaps with and without post-processing raises questions
792 about the extent to which the reported performance gains can be attributed solely to the learning
793 modules of these methods. While the learning components undoubtedly contribute to the overall
794 effectiveness, the significant impact of post-processing suggests that the raw output of the learning
795 models may not be as refined or directly applicable as previously thought.

796 In light of these findings, we recommend that future research on heatmap-based methods for TSP
797 provide a detailed description of their post-processing operations. Additionally, we suggest reporting
798 results both with and without post-processing to offer a more comprehensive understanding of the
799 method’s performance and the relative contributions of its learning and post-processing components.
800 This approach would foster greater transparency in the field and facilitate more accurate comparisons
801 between different methodologies.

802 C ANALYSIS OF ONE-OFF COMPUTATIONAL COSTS

803 To ensure a holistic comparison, we analyze the one-off setup costs: model training for learning-based
804 baselines versus hyperparameter tuning for MCTS.

810
 811 **Training Costs.** Table 5 summarizes the training times reported in original papers. Deep learning
 812 methods typically incur heavy computational overheads, requiring significant GPU hours (e.g., ~ 10
 813 hours for DIMEs on TSP-10k).

814 Table 5: Approximate training times for learning-based methods. Note: Times are rough references
 815 due to hardware variances.

Method	TSP-500	TSP-1000	TSP-10000
Att-GCN	~ 25 h	~ 25 h	~ 25 h
DIMEs	~ 1.5 h	~ 1.7 h	~ 10 h
UTSP	~ 0.5 h	N/A	N/A

816
 817 **Tuning vs. Training.** MCTS tuning is a comparable one-off cost but is generally more resource-
 818 efficient. Using SMAC3 (detailed in Appendix H), tuning MCTS for TSP-10000 requires only **3.47**
 819 **hours on a CPU.** This is notably lower than the GPU-intensive training required for baselines like
 820 DIMEs. Furthermore, the resulting configurations (Table 13) are reusable across similar distributions.
 821

822 **GT-Prior Construction.** The cost of constructing GT-Prior is negligible. It requires solving only
 823 a small set of instances (e.g., 128 for TSP-500) to extract k -NN statistics, avoiding the expensive
 824 pre-training phase entirely.

831 D FULL EXPERIMENTAL RESULTS

832
 833 The following table presents the complete results of the large-scale TSP problems, including the
 834 four end-to-end learning-based methods that were previously omitted in the main paper due to space
 835 constraints. These methods include EAN (d O Costa et al., 2020), AM (Kool et al., 2019), GCN (Joshi
 836 et al., 2019), and POMO+EAS (Hottung et al., 2021). We also included a more recent heatmap
 837 method: Fast-T2T(Li et al., 2024). The methods listed here employ reinforcement learning (RL),
 838 supervised learning (SL), and unsupervised learning (UL) techniques, in addition to various decoding
 839 strategies such as greedy, sampling, and beam-search.

840 Complementing these, we introduce specific comparisons with greedy decoding and plain 2-opt to
 841 isolate the impact of the search mechanism. The greedy results exhibit large optimality gaps (e.g.,
 842 $>50\%$), confirming that myopic decisions inevitably discard critical distributional information found
 843 in the heatmaps. Similarly, while plain 2-opt improves solution quality, it lags significantly behind
 844 MCTS on large-scale instances (TSP-10000). This performance gap highlights that local search alone
 845 is insufficient to escape local optima at this scale, validating the necessity of MCTS for providing
 846 high-level global guidance.

847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863

864

865

866

Table 6: Full Results on large-scale TSP problems. Abbreviations: RL (Reinforcement learning), SL (Supervised learning), UL (Unsupervised learning), AS (Active search), G (Greedy decoding), S (Sampling decoding), and BS (Beam-search). * indicates the baseline for performance gap calculation. † indicates methods utilizing heatmaps provided by Xia et al. (2024), with MCTS executed on our setup. Some methods list two terms for *Time*, corresponding to heatmap generation and MCTS runtimes, respectively. Concorde and Gurobi results are sourced from Fu et al. (2021); Qiu et al. (2022).**Added Greedy and 2-opt results.**

873

874

Method	Type	TSP-500			TSP-1000			TSP-10000		
		Length ↓	Gap ↓	Time ↓	Length ↓	Gap ↓	Time ↓	Length ↓	Gap ↓	Time ↓
Concorde	OR(exact)	16.55*	—	17.65s	23.12*	—	3.12m	N/A	N/A	N/A
Gurobi	OR(exact)	16.55	0.00%	21.39m	N/A	N/A	N/A	N/A	N/A	N/A
LKH-3 (default)	OR(heuristic)	16.55	0.00%	14.84s	23.12	0.00%	1.02m	71.77*	—	28.73m
Nearest Insertion	OR	20.62	24.59%	0.00s	28.96	25.26%	0.00s	90.51	26.12%	0.38s
Random Insertion	OR	18.57	12.21%	0.00s	26.12	12.98%	0.00s	81.85	14.05%	0.25s
Farthest Insertion	OR	18.30	10.57%	0.00s	25.72	11.25%	0.00s	80.59	12.30%	0.38s
EAN	RL+S	28.63	73.03%	9.46s	50.30	117.59%	17.38s	N/A	N/A	N/A
EAN	RL+S+2-opt	23.75	43.57%	27.07s	47.73	106.46%	2.53m	N/A	N/A	N/A
AM	RL+S	22.64	36.84%	7.33s	42.80	85.15%	29.99s	431.58	501.31%	47.36s
AM	RL+G	20.02	20.99%	0.71s	31.15	34.75%	1.49s	141.68	97.40%	22.46s
AM	RL+BS	19.53	18.03%	10.31s	29.90	29.23%	46.12s	129.40	80.29%	6.79m
GCN	SL+G	29.72	79.61%	3.13s	48.62	110.29%	13.37s	N/A	N/A	N/A
GCN	SL+BS	30.37	83.55%	17.82s	51.26	121.73%	24.22s	N/A	N/A	N/A
POMO+EAS-Emb	RL+AS	19.24	16.25%	6.00m	N/A	N/A	N/A	N/A	N/A	N/A
POMO+EAS-Lay	RL+AS	19.35	16.92%	7.59m	N/A	N/A	N/A	N/A	N/A	N/A
POMO+EAS-Tab	RL+AS	24.54	48.22%	5.44m	49.56	114.36%	29.74m	N/A	N/A	N/A
Zero	MCTS	16.66	0.66%	0.00m+ 50.06s	23.39	1.16%	0.00m+ 1.67m	74.50	3.80%	0.00m+ 16.65m
Att-GCN [†]	SL+MCTS	16.66	0.69%	0.52m+ 50.06s	23.37	1.09%	0.73m+ 1.67m	73.95	3.03%	4.16m+ 16.65m
	SL+2-opt	17.42	5.27%	0.52m+ 50.06s	24.77	7.16%	0.73m+ 1.67m	79.48	10.73%	4.16m+ 16.65m
	SL+Greedy	30.71	85.63%	0.52m+ 0.02s	50.65	119.11%	0.73m+ 0.05s	304.88	324.76%	4.16m+ 2.13s
DIMES [†]	RL+MCTS	16.66	0.43%	0.97m+ 50.06s	23.37	1.11%	2.08m+ 1.67m	73.97	3.06%	4.65m+ 16.65m
	RL+2-opt	17.58	6.26%	0.97m+ 50.06s	25.00	8.15%	2.08m+ 1.67m	93.56	30.35%	4.65m+ 16.65m
	RL+Greedy	51.43	210.82%	0.97m+ 0.02s	95.18	311.72%	2.08m+ 0.05s	771.78	975.24%	4.65m+ 2.17s
UTSP [†]	UL+MCTS	16.69	0.90%	1.37m+ 50.06s	23.47	1.53%	3.35m+ 1.67m	—	—	—
	UL+2-opt	17.59	6.32%	1.37m+ 50.06s	25.03	8.28%	3.35m+ 1.67m	—	—	—
	UL+Greedy	25.48	54.00%	1.37m+ 0.02s	39.46	70.70%	3.35m+ 0.05s	—	—	—
SoftDist [†]	SoftDist+MCTS	16.62	0.43%	0.00m+ 50.06s	23.30	0.80%	0.00m+ 1.67m	73.89	2.95%	0.00m+ 16.65m
	SoftDist+2-opt	17.50	5.75%	0.00m+ 50.06s	24.82	7.34%	0.00m+ 1.67m	79.10	10.21%	0.00m+ 16.65m
	SoftDist+Greedy	20.87	26.13%	0.00m+ 0.02s	29.06	25.69%	0.00m+ 0.05s	91.43	27.39%	0.00m+ 2.26s
DIFUSCO [†]	SL+MCTS	16.60	0.33%	3.61m+ 50.06s	23.24	0.53%	11.86m+ 1.67m	73.47	2.37%	28.51m+ 16.65m
	SL+2-opt	16.69	0.89%	3.61m+ 50.06s	24.38	5.45%	11.86m+ 1.67m	78.78	9.76%	28.51m+ 16.65m
	SL+Greedy	18.92	14.36%	3.61m+ 0.02s	36.90	59.61%	11.86m+ 0.05s	120.53	67.92%	28.51m+ 2.13s
Fast-T2T	SL+MCTS	16.57	0.12%	0.50m+ 50.06s	23.27	0.65%	1.78m+ 1.67m	74.80	4.22%	7.73m+ 16.65m
	SL+2-opt	16.71	0.99%	0.50m+ 50.06s	23.92	3.48%	1.78m+ 1.67m	112.99	57.42%	7.73m+ 16.65m
	SL+Greedy	18.32	10.75%	0.50m+ 0.02s	25.89	11.98%	1.78m+ 0.05s	101.05	40.78%	7.73m+ 2.23s
GT-Prior	Prior+MCTS	16.63	0.50%	0.00m+ 50.06s	23.31	0.85%	0.00m+ 1.67m	73.31	2.14%	0.00m+ 16.65m
	Prior+2-opt	17.54	5.99%	0.00m+ 50.06s	24.91	7.77%	0.00m+ 1.67m	79.39	10.61%	0.00m+ 16.65m
	Prior+Greedy	25.69	55.27%	0.00m+ 0.02s	40.45	74.99%	0.00m+ 0.05s	197.77	175.53%	0.00m+ 2.26s

915

916

917

918 E ADDITIONAL HYPERPARAMETER IMPORTANCE ANALYSIS
919920 We employed the SHAP method to analyze hyperparameter importance across all conducted grid
921 search experiments. Most resulting beeswarm plots for TSP-500, TSP-1000, and TSP-10000 are
922 in Figure 4 (including 'Zero' heatmap where Use_Heatmap is set to False). Plots of the UTSP
923 heatmap are presented in Figure 5.924 The patterns of TSP-1000 are similar to those of TSP-500, as discussed in Section 4.1. However, the
925 patterns for TSP-10000 show a major difference, where the influence of Max_Candidate_Num
926 and Use_Heatmap becomes dominant. Furthermore, their SHAP values are clearly clustered
927 rather than continuous, as observed in smaller scales. This could be explained by the candidate
928 set of large-scale TSP instances having a major impact on the running time of MCTS k -opt search.
929 Additionally, the time limit setting causes the performance of different hyperparameter settings for
930 Max_Candidate_Num and Use_Heatmap to become more distinct.931
932 F ADDITIONAL GENERALIZATION ABILITY RESULTS
933934 Tables 7 presents additional results on the generalization ability of various methods when trained on
935 TSP-1000 and TSP-10000, respectively.
936937 For models trained on TSP-1000, GT-Prior continues to demonstrate superior generalization capability.
938 When generalizing to smaller instances (TSP-500), GT-Prior shows minimal performance degradation
939 (0.02%), comparable to DIMES and better than UTSP and SoftDist. For larger instances (TSP-
940 10000), GT-Prior maintains consistent performance with a slight improvement (-0.02% degradation),
941 outperforming all other methods. DIFUSCO, while showing good performance on TSP-500 and
942 TSP-1000, experiences significant degradation (2.91%) when scaling to TSP-10000.943 The results for models trained on TSP-10000 further highlight GT-Prior's robust generalization
944 ability. When applied to smaller problem sizes (TSP-500 and TSP-1000), GT-Prior exhibits minimal
945 performance degradation (0.01% and 0.02%, respectively). In contrast, other methods show more
946 substantial degradation, particularly for TSP-1000. Notably, SoftDist experiences severe perfor-
947 mance deterioration (73.36%) when generalizing to TSP-1000, while DIFUSCO shows significant
948 degradation for both TSP-500 (0.63%) and TSP-1000 (2.74%).
949950 These results consistently demonstrate GT-Prior's exceptional ability to generalize across various
951 problem scales, maintaining stable performance regardless of whether it is scaling up or down from
952 the training instance size. This stability is particularly evident when compared to the other methods,
953 which often struggle with significant performance degradation when generalizing to different problem
954 sizes.
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

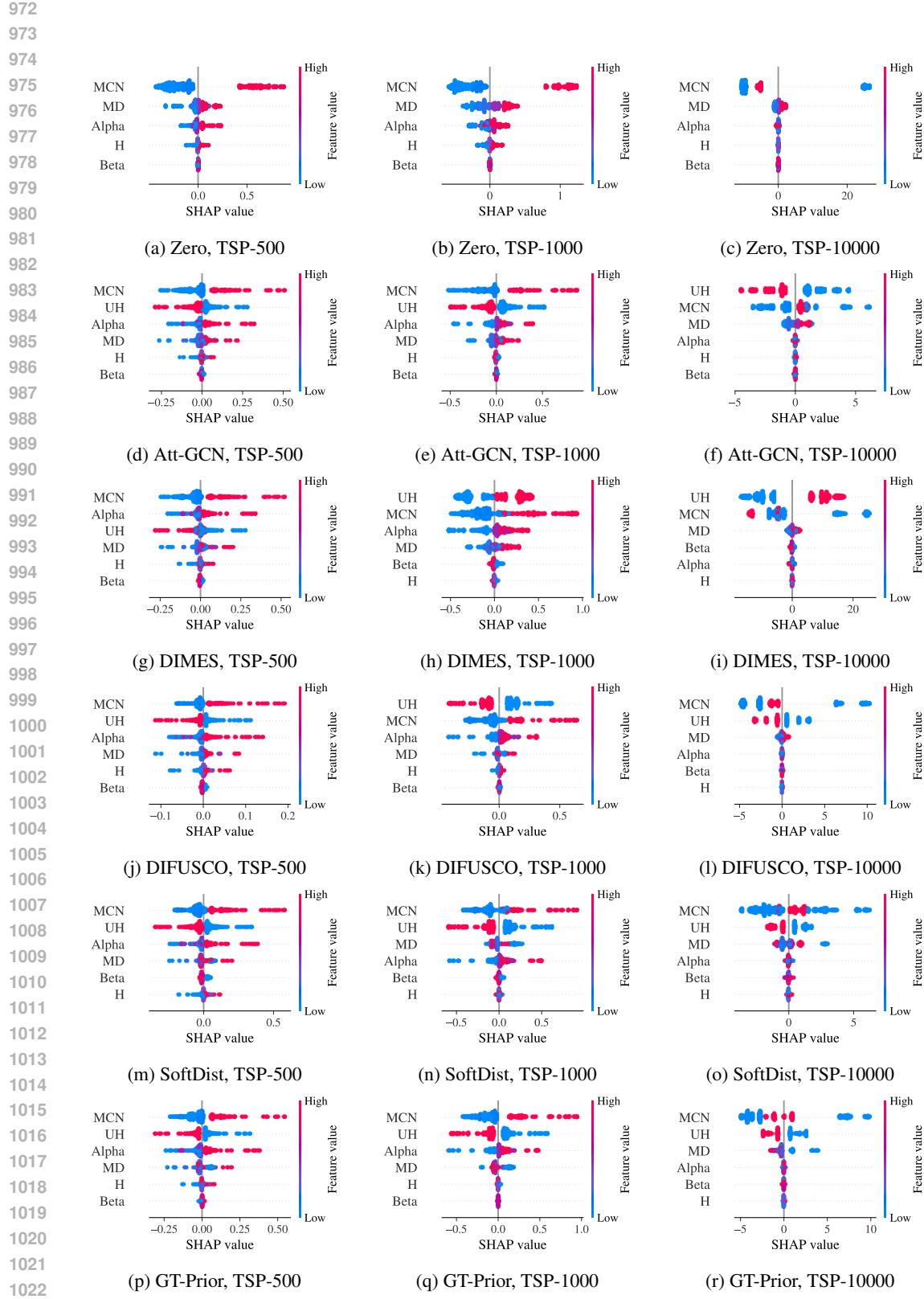


Figure 4: Beeswarm plots of SHAP values for six methods across different TSP sizes.

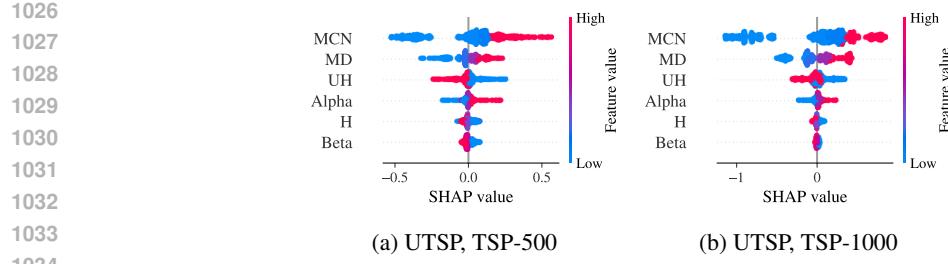


Figure 5: Beeswarm plots of SHAP values for the UTSP heatmap across different TSP sizes.

Table 7: Generalization on the model trained on TSP1000 (the upper table) and TSP10000 (the lower table).

METHOD	RES TYPE	TSP-500		TSP-1000		TSP-10000	
		GAP ↓	DEGENERATION ↓	GAP ↓	DEGENERATION ↓	GAP ↓	DEGENERATION ↓
DIMES	ORI.	0.69%		1.11%		3.05%	
	GEN.	0.71%	0.02%	1.11%	0.00%	4.06%	1.01%
UTSP	ORI.	0.90%		1.53%		—	
	GEN.	0.96%	0.06%	1.53%	0.00%	—	—
DIFUSCO	ORI.	0.33%		0.53%		2.36%	
	GEN.	0.26%	-0.07%	0.53%	0.00%	5.27%	2.91%
SOFTDIST	ORI.	0.43%		0.80%		2.94%	
	GEN.	0.51%	0.08%	0.80%	0.00%	3.68%	0.74%
GT-PRIOR	ORI.	0.50%		0.85%		2.13%	
	GEN.	0.52%	0.02%	0.85%	0.00%	2.11%	-0.02%

METHOD	RES TYPE	TSP-500		TSP-1000		TSP-10000	
		GAP ↓	DEGENERATION ↓	GAP ↓	DEGENERATION ↓	GAP ↓	DEGENERATION ↓
DIMES	ORI.	0.69%		1.11%		3.05%	
	GEN.	0.75%	0.06%	1.18%	0.07%	3.05%	0.00%
DIFUSCO	ORI.	0.33%		0.53%		2.36%	
	GEN.	0.95%	0.63%	3.34%	2.81%	2.36%	0.00%
SOFTDIST	ORI.	0.43%		0.80%		2.94%	
	GEN.	0.65%	0.22%	74.24%	73.44%	2.94%	0.00%
GT-PRIOR	ORI.	0.50%		0.85%		2.13%	
	GEN.	0.51%	0.01%	0.89%	0.04%	2.13%	0.00%

G ADDITIONAL RESULTS ON TSPLIB

We categorize all Euclidean 2D TSP instances into three groups based on the number of nodes: Small (0-500 nodes), Medium (500-2000 nodes), and Large (more than 2000 nodes). For each category, we evaluate all baseline methods alongside our proposed GT-Prior.

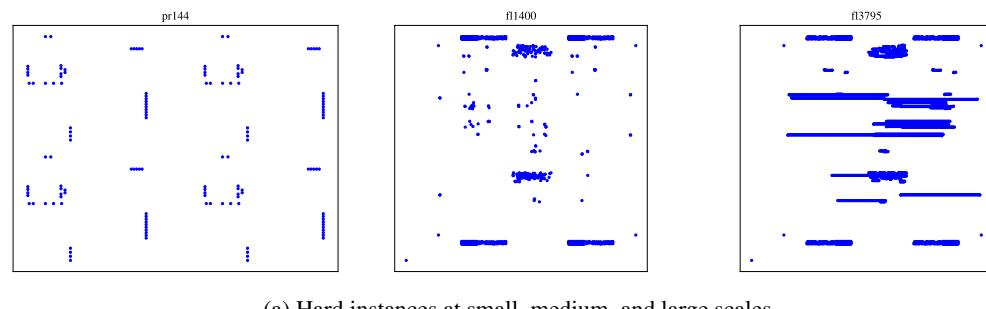
Table 8: Generalization performance testing of different methods on TSPLIB instances. The best results in the row are shown in bold and the second-best underlined.

Size	MCTS Setting	Zero	Att-GCN	DIMES	UTSP	SoftDist	DIFUSCO	GT-Prior
Small	Tuned on TSPLIB	0.06%	0.05%	0.08%	0.10%	0.06%	0.07%	<u>0.05%</u>
	Tuned on Uniform	0.79%	0.67%	0.48%	0.45%	1.23%	0.58%	0.76%
	Default	0.87%	<u>0.67%</u>	16.01%	7.16%	1.80%	1.06%	0.20%
Medium	Tuned on TSPLIB	1.18%	0.76%	0.97%	1.54%	0.74%	0.35%	<u>0.55%</u>
	Tuned on Uniform	15.24%	11.47%	10.64%	12.03%	<u>6.79%</u>	2.38%	10.08%
	Default	4.88%	3.73%	4.06%	13.58%	7.20%	2.87%	<u>3.63%</u>
Large	Tuned on TSPLIB	5.39%	3.58%	4.55%	5.75%	<u>3.03%</u>	3.47%	2.42%
	Tuned on Uniform	5.54%	<u>3.92%</u>	5.48%	26.51%	4.43%	5.68%	3.52%
	Default	6.51%	4.84%	391.89%	1481.66%	11.36%	12.62%	<u>5.51%</u>

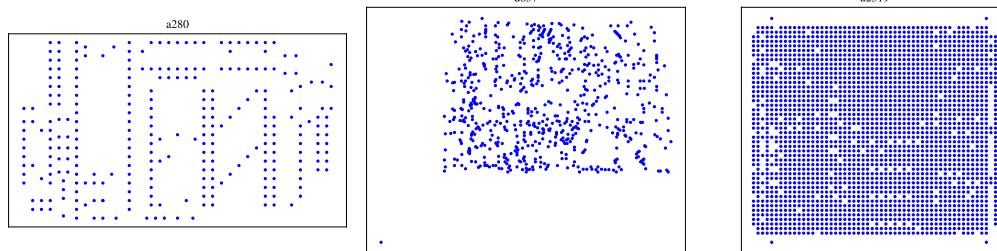
1080
 1081 We conducted MCTS evaluations under three distinct parameter settings: (1) Tuned Settings, opti-
 1082 mized using uniform TSP instances as listed in Table 14, whose results are shown in Table 9, (2) the
 1083 Default Settings, as originally employed by Fu et al. (2021), whose results are shown in Table 10,
 1084 and (3) the Grid Search setting where the MCTS hyperparameters are obtained by instance-level grid
 1085 search, whose results are shown in Table 11. The results in these tables showcase the performance
 1086 of the methods in terms of solution length and optimality gap, highlighting the effectiveness of the
 1087 proposed GT-Prior approach.

1088 The data in Table 8, particularly under the ‘Tuned on TSPLIB’ setting, further emphasizes the
 1089 critical role of hyperparameter selection tailored to the specific data distribution. Here, our proposed
 1090 GT-Prior method consistently demonstrates strong performance, achieving the leading optimality
 1091 gap for Large instances (2.42%) and tying for the best on Small instances (0.05%). Similarly,
 1092 other approaches like Att-GCN (0.05% on Small) and DIFUSCO (0.35% on Medium) also exhibit
 1093 their most competitive results when tuned directly on TSPLIB. This underscores that substantial
 1094 performance gains are unlocked when hyperparameters align with the problem’s characteristics. While
 1095 more granular instance-level hyperparameter optimization, such as the aforementioned grid search
 1096 (detailed in Table 11), can yield further benefits, its current computational demands are considerable.
 1097 Consequently, the efficacy of targeted tuning observed in Table 8 strongly motivates future research
 1098 into efficient hyperparameter optimization, including the development of recommendation systems
 1099 that could predict near-optimal settings from instance features, thereby achieving robust performance
 1100 without exhaustive search.

1101 Several key insights emerge from detailed experimental results. First, we observe a strong interaction
 1102 between instance distribution and parameter tuning effectiveness. While methods like UTSP and
 1103 DIMES excel on small uniform instances, their performance exhibits high sensitivity to parameter
 1104 settings when faced with real-world TSPLIB instances, particularly at larger scales (e.g., UTSP
 1105 degrading from 26.51% to 1481.66% on large instances). This finding reveals a fundamental
 1106 generalization challenge shared by most learning-based methods - the optimal parameters learned
 1107 from one distribution may not transfer effectively to another, highlighting the critical importance of
 1108 robust parameter tuning strategies. To illustrate this distribution sensitivity, we visualize representative
 1109 hard and easy instances from each group in Figures 6, demonstrating that hard instances deviate
 1110 significantly from uniform distribution while easy instances closely resemble it.



(a) Hard instances at small, medium, and large scales.



(b) Easy instances at small, medium, and large scales.

Figure 6: Representative TSPLIB instances visualization.

1134

1135

1136 Table 9: Performance of different methods on TSPLIB instances of varying sizes. All hyperparameter
1137 settings are tuned on uniform TSP instances as listed in Table 14.

1138

1139

(a) Small instances (0–500 nodes)

1140

Instance	Optimal	Zero		Att-GCN		DIMES		UTSP		SoftDist		DIFUSCO		GT-Prior	
		Length ↓	Gap ↓	Length ↓	Gap ↓	Length ↓	Gap ↓								
st70	675	676	0.15%	676	0.15%	676	0.15%	676	0.15%	724	7.26%	676	0.15%	676	0.15%
eil76	538	538	0.00%	538	0.00%	538	0.00%								
kroA200	29368	29368	0.00%	29383	0.05%	29368	0.00%	29382	0.05%	29383	0.05%	29380	0.04%	29368	0.00%
eil51	426	427	0.23%	427	0.23%	427	0.23%								
rat195	2323	2328	0.22%	2328	0.22%	2323	0.00%	2328	0.22%	2328	0.22%	2328	0.22%	2328	0.22%
pr144	58537	59932	2.38%	63736	8.88%	59553	1.74%	59211	1.15%	66950	14.37%	63389	8.29%	65486	11.87%
bier127	118282	118282	0.00%	118282	0.00%	118282	0.00%								
lin105	14379	14379	0.00%	14379	0.00%	14379	0.00%	14379	0.00%	15081	4.88%	14379	0.00%	14379	0.00%
kroD100	21294	21294	0.00%	21294	0.00%	21294	0.00%								
kroA100	21282	21282	0.00%	21282	0.00%	21282	0.00%								
pr152	73682	74089	0.55%	73682	0.00%	73682	0.00%	73818	0.18%	74443	1.03%	74609	1.26%	74274	0.80%
ts225	126643	126643	0.00%	126643	0.00%	126643	0.00%								
rd400	15281	15314	0.22%	15333	0.34%	15323	0.27%	15408	0.83%	15352	0.46%	15320	0.26%	15303	0.14%
kroB100	22141	22141	0.00%	22141	0.00%	22141	0.00%								
d198	15780	15817	0.23%	16344	3.57%	15844	0.41%	15804	0.15%	15816	0.23%	16237	2.90%	15817	0.23%
eil101	629	629	0.00%	629	0.00%	629	0.00%								
linhp318	41345	42558	2.93%	42523	2.85%	42763	3.43%	42420	2.60%	42283	2.27%	42223	2.12%	42387	2.52%
gu1262	2378	2380	0.08%	2382	0.17%	2380	0.08%	2380	0.08%	2379	0.04%	2380	0.08%	2380	0.08%
rat99	1211	1211	0.00%	1211	0.00%	1211	0.00%								
berlin52	7542	7542	0.00%	7542	0.00%	7542	0.00%								
kroC100	20749	20749	0.00%	20749	0.00%	20749	0.00%								
pr226	80369	87311	8.64%	83828	4.30%	83828	4.30%	81058	0.86%	80850	0.60%	80463	0.12%	85793	6.75%
f417	11861	12852	8.36%	11945	0.71%	12169	2.60%	12800	7.92%	13198	11.27%	12158	2.50%	12437	4.86%
kroE100	22068	22068	0.00%	22068	0.00%	22068	0.00%								
pr76	108159	108159	0.00%	108159	0.00%	108159	0.00%	108159	0.00%	109325	1.08%	108159	0.00%	108159	0.00%
ch130	6110	6111	0.02%	6111	0.02%	6111	0.02%	6111	0.02%	6242	2.16%	6111	0.02%	6111	0.02%
stp225	3916	3932	0.41%	3916	0.00%	3919	0.08%	3923	0.18%	3916	0.00%	3916	0.00%	3923	0.18%
rd100	7910	7910	0.00%	7910	0.00%	7910	0.00%	7910	0.00%	7938	0.35%	7910	0.00%	7910	0.00%
pr264	49135	51267	4.34%	50451	2.68%	49949	1.66%	49635	1.02%	49374	0.49%	50389	2.55%	49508	0.76%
pr124	59030	59168	0.23%	59210	0.30%	59551	0.88%	59210	0.30%	59257	0.38%	59688	1.11%	59030	0.00%
kroA150	26524	26525	0.00%	26525	0.00%	26525	0.00%								
kroB200	29437	29437	0.00%	29438	0.00%	29437	0.00%	29446	0.03%	29437	0.00%	29437	0.00%	29437	0.00%
kroB150	26130	26178	0.18%	26141	0.04%	26176	0.18%	26136	0.02%	26130	0.00%	26143	0.05%	26130	0.00%
pr107	44303	44303	0.00%	44387	0.19%	44303	0.00%	44303	0.00%	44303	0.00%	44303	0.00%	44303	0.00%
lin318	42029	42558	1.26%	42561	1.27%	42609	1.38%	42420	0.93%	42283	0.60%	42254	0.54%	42387	0.85%
pr136	96772	96772	0.00%	96772	0.00%	96772	0.00%								
pr299	48191	48279	0.18%	48223	0.07%	48230	0.08%	48191	0.00%	48197	0.01%	48269	0.16%	48197	0.01%
u159	42080	42080	0.00%	42080	0.00%	42080	0.00%	42080	0.00%	42396	0.75%	42080	0.00%	42080	0.00%
a280	2579	2579	0.00%	2579	0.00%	2579	0.00%								
pr439	107217	109241	1.89%	108944	1.61%	109594	2.22%	108476	1.17%	110701	3.25%	108485	1.18%	109624	2.24%
ch150	6528	6528	0.00%	6528	0.00%	6528	0.00%	6528	0.00%	6533	0.08%	6528	0.00%	6528	0.00%
d493	35002	35347	0.99%	35331	0.94%	35318	0.90%	35235	0.67%	35297	0.84%	35292	0.83%	35244	0.69%
pcb442	50788	50935	0.31%	50902	0.24%	50856	0.15%	51060	0.56%	50847	0.14%	50908	0.26%	50927	0.29%
Average	-	35281	0.79%	35244	0.67%	35155	0.48%	35050	0.45%	35340	1.23%	35165	0.58%	35321	0.76%

1163

(b) Medium instances (500–2000 nodes)

1164

Instance	Optimal	Zero		Att-GCN		DIMES		UTSP		SoftDist		DIFUSCO		GT-Prior	
		Length ↓	Gap ↓	Length ↓	Gap ↓	Length ↓	Gap ↓	Length ↓	Gap ↓	Length ↓	Gap ↓	Length ↓	Gap ↓	Length ↓	Gap ↓
u574	36905	37211	0.83%	37226	0.87%	37399	1.34%	37211	0.83%	37142	0.64%	36989	0.23%	37146	0.65%
pcb1173	56892	57837	1.69%	57715	1.45%	57618	1.28%	57770	1.54%	57633	1.30%	57304	0.72%	57248	0.63%
rat783	8806	8903	1.10%	8887	0.92%	8892	0.98%	8919	1.28%	8884	0.89%	8842	0.41%	8851	0.51%
u1432	152970	156669	2.42%	154684	1.12%	154889	1.25%	154703	1.13%	154338	0.89%	154046	0.70%	154285	0.86%
f1400	20127	27446	36.36%	26280	30.57%	23066	14.60%	23467	16.59%	23943	45.79%	21519	6.92%	22924	13.90%
vm1084	23927	255009	6.57%	257899	7.77%	254512	4.66%	246531	3.02%	240016	0.30%	240265	0.40%	244968	2.37%
rat575	6773	6844	1.05%	68262	0.78%	6845	1.06%	6829	0.83%	6814	0.61%	6800	0.40%	6807	0.50%
vm1748	336556	378714	12.26%	385587	14.57%	378032	12.32%	376605	11.90%	341506	1.47%	341443	1.45%	343834	2.16%
r11889	316536	47982	51.41%	441484	40.33%	49303	0.80%	49350	0.90%	49904	0.37%	49098	0.38%	49118	0.42%
p654	34643	38112	10.01%	38664	12.18%	35210	1.64%	35884	3.58%	47033	35.76%	36765	6.13%	35569	2.67%
d1655	62128	66466	6.98%	65547	5.50%	64743	4.21%	65977	6.20%	63986	2.99%	64358	3.59%	63951	2.93%
u1817	57201	90599	58.39%	68245	19.31%	71276	24.61%	80609	40.92%	58838	2.86%	58857	2.42%	75131	31.35%
u1060	224094														

1188

1189

1190 Table 10: Performance of different methods on TSPLIB instances of varying sizes. The hyperparameter
1191 settings are the default settings as used by Fu et al. (2021).

1192

1193

(a) Small TSPLIB instances (0–500 nodes)

Instance	Optimal	Zero		Att-GCN		DIMES		UTSP		SoftDist		DIFUSCO		GT-Prior	
		Length ↓	Gap ↓	Length ↓	Gap ↓	Length ↓	Gap ↓	Length ↓	Gap ↓	Length ↓	Gap ↓	Length ↓	Gap ↓	Length ↓	Gap ↓
st70	675	676	0.15%	676	0.15%	1056	56.44%	676	0.15%	694	2.81%	676	0.15%	676	0.15%
kroA200	29368	29635	0.91%	29368	0.00%	29464	0.33%	29529	0.55%	29383	0.05%	29831	1.58%	29397	0.10%
eil76	538	538	0.00%	538	0.00%	803	49.26%	538	0.00%	538	0.00%	538	0.00%	538	0.00%
pr144	58537	58554	0.03%	67632	15.54%	72458	23.78%	58537	0.00%	66184	13.06%	58901	0.62%	58537	0.00%
rat195	2323	2365	1.81%	2323	0.00%	2331	0.34%	2352	1.25%	2323	0.00%	2337	0.60%	2328	0.22%
eil51	426	427	0.23%	427	0.23%	653	53.29%	427	0.23%	427	0.23%	427	0.23%	427	0.23%
bier127	118282	118580	0.25%	118282	0.00%	118715	0.37%	118282	0.00%	118423	0.12%	118657	0.32%	118282	0.00%
lin105	14379	14379	0.00%	14379	0.00%	16437	14.31%	14379	0.00%	15073	4.83%	14401	0.15%	14379	0.00%
kroD100	21294	21294	0.00%	21294	0.00%	28391	33.33%	21309	0.07%	21294	0.00%	21374	0.38%	21294	0.00%
pr152	73682	73880	0.27%	73682	0.00%	86257	17.07%	73682	0.00%	73682	0.00%	74029	0.47%	73682	0.00%
kroA100	21282	21282	0.00%	21282	0.00%	25168	18.26%	21282	0.00%	21282	0.00%	21396	0.54%	21282	0.00%
ts225	126643	127147	0.40%	126713	0.06%	143360	13.20%	126726	0.07%	126962	0.25%	126643	0.00%	126643	0.00%
rd400	15281	15819	3.52%	15413	0.86%	15829	3.59%	15580	1.96%	15418	0.90%	15350	0.45%	15454	1.13%
kroB100	22141	22193	0.23%	22141	0.00%	26014	17.49%	22141	0.00%	22141	0.00%	22601	2.08%	22141	0.00%
d198	15780	15883	0.65%	15784	0.03%	16016	1.50%	15874	0.60%	15806	0.16%	15859	0.50%	15789	0.06%
eil101	629	630	0.16%	629	0.00%	914	45.31%	629	0.00%	629	0.00%	629	0.00%	629	0.00%
linhp318	41345	43250	4.61%	42359	2.45%	43263	4.64%	42453	2.68%	43111	4.27%	42336	2.40%	42212	2.10%
gil262	2378	2433	2.31%	2383	0.21%	2482	4.37%	2394	0.67%	2392	0.59%	2380	0.08%	2389	0.46%
rat99	1211	1211	0.00%	1211	0.00%	1218	0.58%	1211	0.00%	1211	0.00%	1214	0.25%	1211	0.00%
berlin52	7542	7542	0.00%	7542	0.00%	10569	40.14%	7542	0.00%	7542	0.00%	7542	0.00%	7542	0.00%
kroC100	20749	20749	0.00%	20749	0.00%	24666	18.88%	20749	0.00%	20749	0.00%	20901	0.73%	20749	0.00%
pr226	80369	80822	0.56%	83203	3.53%	84543	5.19%	81060	0.86%	85411	6.27%	83028	3.31%	80369	0.00%
fl417	11861	11932	0.60%	12014	1.29%	14036	18.34%	45810	286.22%	14897	25.60%	13977	17.84%	11907	0.39%
kroE100	22068	22068	0.00%	22068	0.00%	26062	18.10%	22068	0.00%	22068	0.00%	22135	0.30%	22068	0.00%
pr76	108159	108159	0.00%	108159	0.00%	130741	20.88%	108159	0.00%	109325	1.08%	111683	3.26%	108159	0.00%
ch130	6110	6149	0.64%	6111	0.02%	7706	26.12%	6120	0.16%	6248	2.26%	6157	0.77%	6111	0.02%
rd100	7910	7910	0.00%	7910	0.00%	14528	83.67%	7910	0.00%	7932	0.28%	7910	0.00%	7910	0.00%
tsp225	3916	3982	1.69%	3923	0.18%	3945	0.74%	3966	1.28%	3919	0.08%	3920	0.10%	3923	0.18%
pr264	49135	49552	0.85%	49135	0.00%	49248	0.23%	49844	1.44%	49309	0.35%	49180	0.09%	49135	0.00%
pr124	59030	59030	0.00%	59030	0.00%	76615	29.79%	59030	0.00%	59524	0.84%	59385	0.60%	59030	0.00%
kroA150	26524	26726	0.76%	26525	0.00%	26719	0.74%	26528	0.02%	26525	0.00%	26556	0.12%	26525	0.00%
kroB200	29437	29619	0.62%	29455	0.06%	29511	0.25%	29552	0.39%	29438	0.00%	29659	0.75%	29475	0.13%
kroB150	26130	26143	0.05%	26132	0.01%	26335	0.78%	26176	0.18%	26130	0.00%	26149	0.07%	26130	0.00%
pr107	44303	44358	0.12%	44387	0.19%	48621	9.75%	44303	0.00%	44303	0.00%	44387	0.19%	44503	0.00%
lin318	42029	43250	2.91%	42352	0.77%	43116	2.59%	42453	1.01%	43111	2.57%	42646	1.47%	42212	0.44%
pr136	96772	97515	0.77%	96772	0.00%	119314	23.29%	96785	0.01%	96772	0.00%	96781	0.01%	96772	0.00%
pr299	48191	48979	1.64%	48280	0.18%	48257	0.14%	48257	0.84%	48594	0.84%	48241	0.10%	48306	0.24%
u159	42080	42080	0.00%	42080	0.00%	43188	2.63%	42080	0.00%	42396	0.75%	42685	1.44%	42080	0.00%
a280	2579	2633	2.09%	2579	0.00%	2581	0.08%	2589	0.39%	2581	0.08%	2579	0.00%	2585	0.23%
pr439	107217	109872	2.48%	108631	1.32%	108602	1.29%	108424	1.13%	115530	7.75%	108855	1.53%	107656	0.41%
ch150	6528	6562	0.52%	6528	0.00%	8178	25.28%	6528	0.00%	6528	0.00%	6533	0.08%	6528	0.00%
d493	35002	35874	2.49%	35373	1.06%	35522	1.49%	36384	3.95%	35480	1.37%	35537	1.53%	35487	1.39%
pob442	50778	52292	2.98%	51098	0.63%	51147	0.73%	51775	1.96%	51177	0.79%	50976	0.39%	51095	0.62%
Average	-	35208	0.87%	35268	0.67%	38711	16.01%	35870	7.16%	35630	1.80%	35280	1.06%	34961	0.20%

(b) Medium TSPLIB instances (500–2000 nodes)

Instance	Optimal	Zero		Att-GCN		DIMES		UTSP		SoftDist		DIFUSCO		GT-Prior	
		Length ↓	Gap ↓	Length ↓	Gap ↓	Length ↓	Gap ↓	Length ↓	Gap ↓	Length ↓	Gap ↓	Length ↓	Gap ↓	Length ↓	Gap ↓
u574	36905	38171	3.43%	37545	1.73%	37803	2.43%	38018	3.02%	37545	1.73%	37026	0.33%	37441	1.45%
pcb173	56892	60231	5.87%	58452	2.74%	58664	3.11%	59761	5.04%	58209	2.31%	57717	1.45%	58251	2.39%
u1432	152970	162741	6.39%	157322	2.85%	157056	2.67%	159654	4.37%	155666	1.70%	154734	1.15%	156126	2.06%
rat783	8806	9230	4.81%	8995	2.15%	9098	3.20%	9124	3.61%	8936	1.48%	8863	0.65%	8986	2.04%
fl1400	20127	20917	3.93%	23347	16.00%	20932	4.00%	37919	88.40%	30111	49.61%	242375	1.29%	244267	2.08%
vn1084	23927	251602	5.14%	242848	1.48%	245994	2.80%	252204	5.39%	243541	1.77%	340888	1.29%	34397	2.20%
rat575	6773	6982	3.09%	6901	1.89%	7053	4.13%	6959	2.75%	6871	1.45%	6801	0.41%	6842	1.02%
vn1748	336556	352556	4.75%	344077	2.23%	34736	3.21%	372117	10.57%	344193	2.27%	340888	1.29%	34397	2.20%
rl1889	316536	335641	6.04%	325720	2.76%	338164	6.83%	358570	13.28%	329839	4.20%	322969	2.03%	328399	3.75%
u724	41910	43487	3.76%	42525	1.47%	42915	2.40%	42508	2.85%	42508	1.43%	42081	0.41%	42420	1.22%
u1291	50801	52735	3.85%	52063	2.48%	53833	5.97%	542							

1242

1243 Table 11: Performance of different methods on TSPLIB instances of varying sizes. The hyperparameter
1244 settings are obtained by grid search.

1245

(a) Small instances (0–500 nodes)

1246

Instance	Optimal	Zero		Att-GCN		DIMES		UTSP		SoftDist		DIFUSCO		GT-Prior		
		Length ↓	Gap ↓													
st70	675	675	0.00%	676	0.15%	675	0.00%	676	0.15%	676	0.15%	676	0.15%	676	0.15%	
eil76	538	538	0.00%	538	0.00%	538	0.00%	538	0.00%	538	0.00%	538	0.00%	538	0.00%	
kroA200	29368	29368	0.00%													
eil51	426	427	0.23%	427	0.23%	427	0.23%	427	0.23%	427	0.23%	427	0.23%	427	0.23%	
rat195	2323	2323	0.00%	2323	0.00%	2323	0.00%	2323	0.00%	2323	0.00%	2323	0.00%	2323	0.00%	
pr144	58537	58537	0.00%	58537	0.00%	58537	0.00%	58537	0.00%	58537	0.00%	58537	0.00%	58537	0.00%	
bier127	118282	118282	0.00%													
lin105	14379	14379	0.00%	14379	0.00%	14379	0.00%	14379	0.00%	14379	0.00%	14379	0.00%	14379	0.00%	
kroD100	21294	21294	0.00%	21294	0.00%	21294	0.00%	21294	0.00%	21294	0.00%	21294	0.00%	21294	0.00%	
kroA100	21282	21282	0.00%	21282	0.00%	21282	0.00%	21282	0.00%	21282	0.00%	21282	0.00%	21282	0.00%	
pr152	73682	73682	0.00%	73682	0.00%	73682	0.00%	73682	0.00%	73682	0.00%	73682	0.00%	73682	0.00%	
ts225	126643	126643	0.00%	126643	0.00%	126643	0.00%	126643	0.00%	126643	0.00%	126643	0.00%	126643	0.00%	
rd400	15289	0.05%	15295	0.09%	15300	0.12%	15323	0.27%	15291	0.07%	15288	0.05%	15292	0.07%		
kroB100	22141	22141	0.00%	22141	0.00%	22141	0.00%	22141	0.00%	22141	0.00%	22141	0.00%	22141	0.00%	
d198	15780	15780	0.00%	15780	0.00%	15780	0.00%	15794	0.09%	15780	0.00%	15780	0.00%	15780	0.00%	
eil101	629	629	0.00%	629	0.00%	629	0.00%	629	0.00%	629	0.00%	629	0.00%	629	0.00%	
linhp318	41345	42080	0.178%	42029	1.65%	42175	2.01%	42194	2.05%	42029	1.65%	42029	1.65%	42029	1.65%	
gil262	2378	2379	0.04%	2379	0.04%	2379	0.04%	2379	0.04%	2378	0.00%	2379	0.04%	2379	0.04%	
rat99	1211	1211	0.00%	1211	0.00%	1211	0.00%	1211	0.00%	1211	0.00%	1211	0.00%	1211	0.00%	
berlin52	7542	7542	0.00%	7542	0.00%	7542	0.00%	7542	0.00%	7542	0.00%	7542	0.00%	7542	0.00%	
kroC100	20749	20749	0.00%	20749	0.00%	20749	0.00%	20749	0.00%	20749	0.00%	20749	0.00%	20749	0.00%	
pr226	80369	80369	0.00%	80369	0.00%	80369	0.00%	80369	0.00%	80369	0.00%	80369	0.00%	80369	0.00%	
f417	11861	11871	0.08%	11862	0.01%	11867	0.05%	11870	0.08%	11871	0.08%	11863	0.02%	11862	0.01%	
kroF100	22068	22068	0.00%	22068	0.00%	22068	0.00%									
pr76	108159	108159	0.00%	108159	0.00%	108159	0.00%	108159	0.00%	108159	0.00%	108159	0.00%	108159	0.00%	
ch130	6110	6111	0.02%	6111	0.02%	6111	0.02%	6111	0.02%	6111	0.02%	6111	0.02%	6111	0.02%	
tsp225	3916	3916	0.00%	3916	0.00%	3916	0.00%	3916	0.00%	3916	0.00%	3916	0.00%	3916	0.00%	
rd100	7910	7910	0.00%	7910	0.00%	7910	0.00%	7910	0.00%	7910	0.00%	7910	0.00%	7910	0.00%	
pr264	49135	49135	0.00%	49135	0.00%	49135	0.00%	49135	0.00%	49135	0.00%	49135	0.00%	49135	0.00%	
pr124	59030	59030	0.00%	59030	0.00%	59030	0.00%	59030	0.00%	59030	0.00%	59030	0.00%	59030	0.00%	
kroA150	26524	26524	0.00%	26524	0.00%	26524	0.00%	26524	0.00%	26524	0.00%	26524	0.00%	26524	0.00%	
kroB200	29437	29437	0.00%	29437	0.00%	29437	0.00%	29437	0.00%	29437	0.00%	29437	0.00%	29437	0.00%	
kroB150	26130	26130	0.00%	26130	0.00%	26130	0.00%	26130	0.00%	26130	0.00%	26130	0.00%	26130	0.00%	
pr107	44303	44303	0.00%	44303	0.00%	44303	0.00%	44303	0.00%	44303	0.00%	44303	0.00%	44303	0.00%	
lin318	42029	42080	0.12%	42029	0.00%	42128	0.24%	42194	0.39%	42029	0.00%	42107	0.19%	42029	0.00%	
pr136	96772	96772	0.00%	96772	0.00%	96772	0.00%	96772	0.00%	96772	0.00%	96772	0.00%	96772	0.00%	
pr299	48191	48191	0.00%	48191	0.00%	48191	0.00%	48191	0.00%	48191	0.00%	48191	0.00%	48191	0.00%	
u159	42080	42080	0.00%	42080	0.00%	42080	0.00%	42080	0.00%	42080	0.00%	42080	0.00%	42080	0.00%	
a280	2579	2579	0.00%	2579	0.00%	2579	0.00%									
pr439	107217	107303	0.08%	107219	0.00%	107480	0.25%	107810	0.55%	107308	0.08%	107346	0.12%	107269	0.05%	
ch150	6528	6528	0.00%	6528	0.00%	6528	0.00%									
d493	35002	35067	0.19%	35017	0.04%	35102	0.29%	35151	0.43%	35096	0.27%	35142	0.40%	35045	0.12%	
pcb442	50788	50818	0.08%	50815	0.07%	50810	0.06%	50809	0.06%	50778	0.00%	50908	0.26%	50786	0.02%	
Average	-	34921	0.06%	34915	0.05%	34929	0.08%	34941	0.10%	34918	0.06%	34925	0.07%	34916	0.05%	

1271

(b) Medium instances (500–2000 nodes)

1272

Instance	Optimal	Zero		Att-GCN		DIMES		UTSP		SoftDist		DIFUSCO		GT-Prior	
		Length ↓	Gap ↓	Length ↓	Gap ↓	Length ↓	Gap ↓	Length ↓	Gap ↓						
u574	36905	37150	0.66%	36978	0.20%	37064	0.43%	37088	0.50%	37002	0.26%	36935	0.08%	37001	0.26%
pcb173	56892	57481	1.04%	57283	0.69%	57283	0.69%	57487	1.05%	56968	0.13%	57084	0.34%	57206	0.55%
rat783	8806	8861	0.62%	8869	0.72%	8865	0.67%	8884	0.89%	8827	0.24%	8820	0.16%	8819	0.15%
u1432	152970	155871	1.90%	153877	0.59%	153824	0.56%	154276	0.85%	153662	0.45%	153336	0.24%	153542	0.37%
f1400	20276	20276	0.74%	20206	0.39%	20234	0.53%	20289	0.80%	20351	1.11%	20253	0.63%	20191	0.32%
vm1084	239297	241824	1.06%	239883	0.24%	242129	1.18%	243158	1.61%	240677	0.58%	239492	0.08%	240242	0.39%
rat575	6773	6801	0.41%	6807	0.50%	6807	0.50%	6831	0.86%	6780	0.10%	6783	0.15%	6787	0.21%
vm1748	336556	340748	1.25%	340010	1.03%	342178	1.67%	343242	1.99%	339393	1.00%	337632	0.32%	339204	0.79%
r1889	316536	321629	1.61%	321778	1.66%	323176	2.10%	325917	2.96%	321654	1.62%	318314	0.56%	321452	1.55%
u724	41910	42124	0.51%	42111	0.48%	42128	0.52%	42205	0.70%	42001	0.22%	41982	0.17%	42041	0.31%
d1291	50801	51408	1.19%	51208	0.80%	5120	1.02%	51892	2.15%	51220	0.82%	50887	0.17%	51230	0.84%
pr1002	259045	261895	1.10%	261505	0.95%	261808	1.07%	261683	1.02%	261075	0.78%	260798	0.68%	260856	0.70%
f1577	22249	22699	2.02%	22531	1.27%	22451	0.91%	22922	3.02%	22686	1.96%	22432	0.82%	22350	0.45%
nrw1379	56638	56991	0.62%												

1296 This generalization issue is particularly noteworthy as it affects all methods except the Zero heatmap,
 1297 which maintains relatively stable performance across different instance sizes and parameter settings.
 1298 The Zero heatmap’s consistency (varying only from 5.54% to 6.51% on large instances) provides
 1299 compelling evidence for our thesis that the MCTS component’s contribution to solution quality has
 1300 been historically undervalued in the framework. Furthermore, this stability suggests that proper
 1301 MCTS parameter tuning might be more crucial for achieving robust performance than developing
 1302 increasingly sophisticated heatmap generation methods.

1303 From a practical perspective, our analysis also reveals an important computational consideration. The
 1304 learning-based baselines necessitate GPU resources for both training and inference stages, potentially
 1305 creating a bottleneck when dealing with real-world data. In contrast, methods that reduce reliance on
 1306 complex learned components might offer more practical utility in resource-constrained settings while
 1307 maintaining competitive performance through careful parameter optimization.

1308 These findings collectively suggest that future research in this domain might benefit from a more bal-
 1309 anced focus between heatmap sophistication and MCTS optimization, particularly when considering
 1310 real-world applications where robustness and computational efficiency are paramount.

1312 H TUNED HYPERPARAMETER SETTINGS

1313 In this section, we present the search space in Table 12 and results of hyperparameter tuning,
 1314 summarized in the following Table 14. The table includes the various hyperparameter combinations
 1315 explored during the tuning process and their corresponding heatmap generation methods.

1318 I HYPERPARAMETER TUNING WITH SMAC3

1319 In addition to the grid search method employed
 1320 in the main content of this paper, we also con-
 1321 ducted hyperparameter tuning using the Se-
 1322 quential Model-based Algorithm Configuration
 1323 (SMAC3) framework (Lindauer et al., 2022).
 1324 SMAC3 is designed for optimizing algorithm
 1325 configurations through an efficient and adaptive
 1326 search process that balances exploration and ex-
 1327 ploitation of the hyperparameter space.

1328 The SMAC3 framework utilizes a surrogate
 1329 model based on tree-structured Parzen estima-
 1330 tors (TPE) to predict the performance of various
 1331 hyperparameter configurations. This model is
 1332 iteratively refined as configurations are evaluated, allowing SMAC3 to identify promising areas of
 1333 the search space more effectively than traditional methods.

1334 For our experiments, we configured SMAC3
 1335 to optimize the same hyperparameters as those
 1336 previously tuned via grid search. The search
 1337 space remains identical to that demonstrated in
 1338 Table 12. However, we set SMAC3 to search for
 1339 50 epochs (50 different hyperparameter com-
 1340 binations) instead of exploring the entire search
 1341 space (864 different combinations) and the time
 1342 limit for MCTS was set to 50 seconds for TSP-
 1343 500, 100 seconds for TSP-1000, and 1000 sec-
 1344 onds for TSP-10000. We show the time cost of
 1345 each tuning method in Table 13.

1346 The results of these experiments, including the hyperparameter settings identified by SMAC3 and their
 1347 corresponding performance metrics, are presented in Tables 14 and 15. As shown, the performance
 1348 achieved by SMAC3 is comparable to that of grid search. Specifically, for TSP-500 and TSP-1000,
 1349 SMAC3 produces results similar to those of Att-GCN DIFUSCO and GT-Prior, with even better

1317 Table 12: The MCTS hyperparameter search space.
 1318 Bolded configurations indicate default settings
 1319 from prior works.

Hyperparameter	Range
Alpha	[0, 1, 2]
Beta	[10, 100, 150]
Max_Depth	[10, 50, 100, 200]
Max_Candidate_Num	[5, 20, 50, 1000]
Param_H	[2, 5, 10]
Use_Heatmap	[True, False]

1320 Table 13: The Comparison of Tuning Time Be-
 1321 tween Grid Search and SMAC3. “h” indicates
 1322 hours.

	Grid Search	SMAC3
TSP-500	24h	1.39h
TSP-1000	48h	2.78h
TSP-10000	6h	3.47h

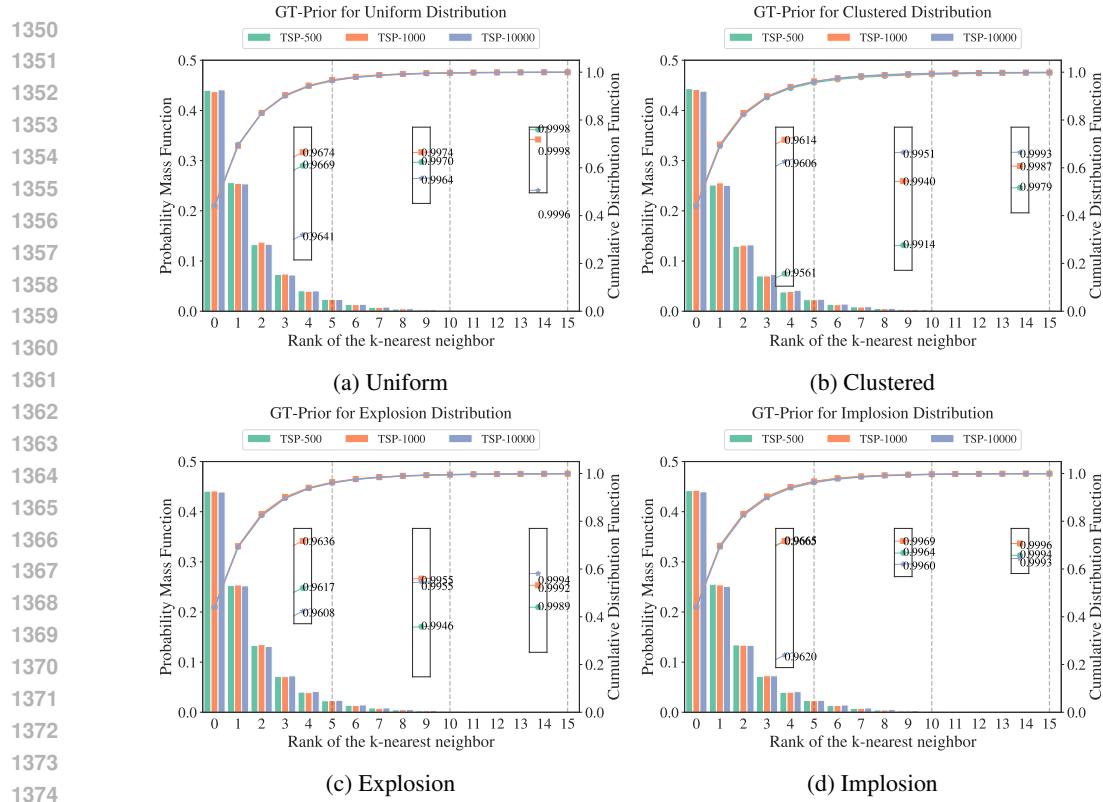


Figure 7: Empirical distribution of k -nearest neighbor in optimal TSP tours of different distributions.

outcomes observed on TSP-10000. This improvement can be attributed to the extended tuning time allowed by SMAC3 compared to grid search. Given the significant difference in time costs, SMAC3 proves to be an efficient and economical option for tuning MCTS hyperparameters.

J k -NEAREST NEIGHBOR PRIOR IN TSP INSTANCES WITH DIFFERENT DISTRIBUTIONS

We solved and analyzed TSP problem instances across several different distributions and found that their k -Nearest Neighbor Prior distribution similarities were quite high, as shown in the Figure 7.

K ABLATION STUDY ON THE EFFICACY OF HYPERPARAMETER TUNING

To better understand the efficacy of hyperparameter tuning in MCTS for solving TSP, we conducted an ablation study focusing on two critical aspects: the relationship between search time and solution quality, and the sample efficiency of our tuning process. These experiments provide valuable insights into our algorithm’s performance characteristics and highlight areas for potential optimization.

K.1 IMPACT OF TUNING STAGE TIME_LIMIT ON SOLVER PERFORMANCE

The relationship between `Time_Limit` and hyperparameter quality is crucial in MCTS hyperparameter tuning. While longer search times might intuitively yield better results, they also lead to significantly increased tuning time. We conducted an ablation study to investigate this trade-off and seek a balance between performance and efficiency.

Experimental Setup We examined the impact of search time on solver performance for TSP-500 and TSP-1000 instances, varying the tuning stage `Time_Limit` from 0.1 to 0.05 and 0.01.

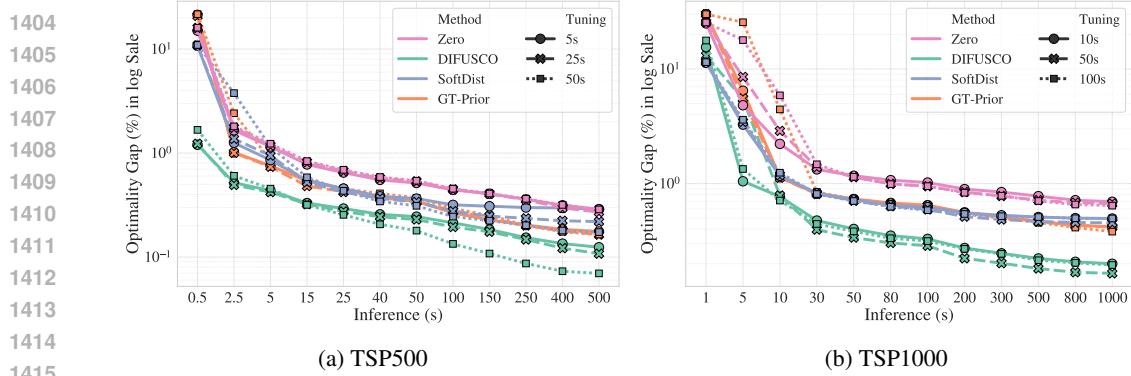


Figure 8: Impact of search time on solver performance across different hyperparameter configurations.

Figure 8 shows the performance of different methods with varying inference times, each with three hyperparameter sets tuned using different `Time_Limit` values. Surprisingly, the relative performance remains largely consistent across search durations, suggesting that hyperparameter effectiveness can be accurately assessed within a limited time frame.

For TSP-500, most heatmaps exhibit similar performance across all tuning stage `Time_Limit` values, with Zero and GT-Prior methods showing nearly identical performance curves. The best learning-based method, DIFUSCO, displays a small performance gap at the default 50-second inference time limit. However, this gap widens with longer inference times, suggesting that optimal MCTS settings for high-quality heatmaps may vary with different `Time_Limit` values during tuning phase. Efficiently tuning hyperparameters for such high-quality heatmaps remains a future research direction. Notably, TSP-1000 results show even smaller performance gaps between different tuning stage `Time_Limit` values, indicating that shorter tuning times can yield satisfactory hyperparameter settings for larger problem instances.

The consistency of relative performance across search times has significant implications for efficient hyperparameter tuning in large-scale TSP solving. This insight enables the development of accelerated evaluation procedures that can identify promising hyperparameter settings without exhaustive, long-duration searches.

K.2 SAMPLE EFFICIENCY

Experiments were conducted to evaluate the sample efficiency of the hyperparameter tuning procedure for our proposed k -nearest prior heatmap. By varying the number of TSP instances in the training set and measuring the resulting solution quality of the tuned hyperparameter setting, insights were gained into the computational efficiency of our method. With only 64 samples for hyperparameter tuning, our proposed GT-prior achieved a gap of 0.493% on TSP-500 and 0.866% on TSP-1000, rivaling the performance of hyperparameter tuning with 256 samples, which achieved 0.493% on TSP-500 and 0.858% on TSP-1000. These results demonstrate the high sample efficiency of our approach, enabling effective tuning with minimal computational resources.

L GT-PRIOR INFORMATION

We provide detailed information about GT-Prior for constructing the heatmap for TSP500, TSP1000, and TSP10000 as follows:

```
# TSP500:
[4.40078125e-01, 2.56265625e-01, 1.32750000e-01, 7.32656250e-02,
4.08125000e-02, 2.35937500e-02, 1.34062500e-02, 7.75000000e-03,
4.48437500e-03, 2.73437500e-03, 1.78125000e-03, 1.18750000e-03,
6.87500000e-04, 3.75000000e-04, 3.75000000e-04, 1.87500000e-04,
7.81250000e-05, 1.56250000e-05, 4.68750000e-05, 1.56250000e-05,
4.68750000e-05, 3.12500000e-05, 1.56250000e-05, 1.56250000e-05]
```

1458 Table 14: Tune parameters of all the methods for TSP500, TSP1000 and TSP10000 by grid search
1459 (the left table) and SMAC3 (the right table). [Added Fast-T2T](#).
1460

	METHOD	ALPHA	BETA	H	MCN	UH	MD		METHOD	ALPHA	BETA	H	MCN	UH	MD
TSP500	ZERO	2	10	2	5	0	100	TSP500	ZERO	0	150	2	5	0	50
	ATT-GCN	0	150	5	5	0	100		ATT-GCN	2	150	2	5	0	100
	DIMES	0	100	5	5	0	200		DIMES	0	100	5	5	0	200
	DIFUSCO	1	150	2	5	0	50		DIFUSCO	1	150	2	5	0	50
	UTSP	0	100	5	5	0	50		UTSP	0	100	5	5	0	50
	SOFTDIST	1	100	5	20	0	200		SOFTDIST	1	100	5	20	0	200
	FAST-T2T	1	150	2	20	0	200		FAST-T2T	1	10	2	20	0	50
TSP1000	GT-PRIOR	0	10	5	5	1	200		GT-PRIOR	0	10	5	5	1	200
	ZERO	1	100	5	5	0	100	TSP1000	ZERO	0	150	2	5	0	100
	ATT-GCN	0	150	5	5	0	200		ATT-GCN	2	150	2	5	0	100
	DIMES	0	150	2	5	0	200		DIMES	2	150	5	5	0	100
	DIFUSCO	0	150	2	5	1	100		DIFUSCO	0	150	2	5	1	200
	UTSP	1	100	5	5	0	50		UTSP	0	100	5	5	0	50
	SOFTDIST	0	150	2	20	1	200		SOFTDIST	1	100	2	50	1	200
TSP10000	FAST-T2T	0	150	2	1000	1	50		FAST-T2T	1	10	2	50	1	50
	GT-PRIOR	1	10	5	5	1	200		GT-PRIOR	0	150	2	5	1	200
	ZERO	0	100	2	20	0	10	TSP10000	ZERO	0	100	2	20	0	10
	ATT-GCN	1	150	2	5	1	50		ATT-GCN	1	150	2	5	1	50
	DIMES	1	100	2	20	0	10		DIMES	1	100	2	20	0	10
	DIFUSCO	0	100	5	20	0	50		DIFUSCO	0	100	5	20	0	50
	SOFTDIST	2	100	5	20	0	10		SOFTDIST	2	100	5	20	0	10
FAST-T2T	FAST-T2T	2	150	2	20	0	10		FAST-T2T	1	10	10	50	0	200
	GT-PRIOR	1	100	10	1000	1	100		GT-PRIOR	1	100	10	1000	1	100

1477 Table 15: Results of Hyperparameter Tuning using SMAC3. The underlined figures in the table
1478 indicate results that are equal to or better than those of Grid Search, rounded to two decimal places.
1479 [Added Fast-T2T](#).
1480

METHOD	TYPE	TSP-500			TSP-1000			TSP-10000		
		LENGTH ↓	GAP ↓	TIME ↓	LENGTH ↓	GAP ↓	TIME ↓	LENGTH ↓	GAP ↓	TIME ↓
CONCORDE	OR(EXACT)	16.55*	—	17.65s	23.12*	—	3.12m	N/A	N/A	N/A
GUROBI	OR(EXACT)	16.55	0.00%	21.39m	N/A	N/A	N/A	N/A	N/A	N/A
LKH-3 (DEFAULT)	OR(HEURISTIC)	16.55	0.00%	14.84s	23.12	0.00%	1.02m	71.77*	—	28.73m
ZERO	MCTS	16.67	0.73%	0.00m+ 50.06s	23.39	1.17%	0.00m+ 1.67m	<u>74.44</u>	<u>3.71%</u>	0.00m+ 16.65m
ATT-GCN [†]	SL+MCTS	<u>16.66</u>	<u>0.69%</u>	0.52m+ 50.06s	23.38	1.15%	0.73m+ 1.67m	<u>73.87</u>	<u>2.92%</u>	4.16m+ 16.65m
DIMES [†]	RL+MCTS	16.67	0.73%	0.97m+ 50.06s	23.42	1.31%	2.08m+ 1.67m	74.17	3.33%	4.65m+ 16.65m
UTSP [†]	UL+MCTS	16.72	1.07%	1.37m+ 50.06s	23.51	1.68%	3.35m+ 1.67m	—	—	—
SOFTDIST [†]	SOFTDIST+MCTS	16.62	0.46%	0.00m+ 50.06s	23.33	0.90%	0.00m+ 1.67m	75.34	4.97%	0.00m+ 16.65m
DIFUSCO [†]	SL+MCTS	<u>16.62</u>	<u>0.43%</u>	3.61m+ 50.06s	<u>23.24</u>	<u>0.53%</u>	11.86m+ 1.67m	<u>73.26</u>	<u>2.06%</u>	28.51m+ 16.65m
FAST-T2T	SL+MCTS	16.60	0.34%	0.00m+ 50.06s	23.29	0.74%	0.00m+ 1.67m	75.11	4.65%	0.00m+ 16.65m
GT-PRIOR	PRIOR+MCTS	<u>16.63</u>	<u>0.50%</u>	0.00m+ 50.06s	<u>23.32</u>	<u>0.85%</u>	0.00m+ 1.67m	<u>73.26</u>	<u>2.07%</u>	0.00m+ 16.65m

```

1497 # TSP1000:
1498 [4.37554687e-01, 2.54718750e-01, 1.37671875e-01, 7.41093750e-02,
1499 3.97890625e-02, 2.35156250e-02, 1.32265625e-02, 7.45312500e-03,
1500 4.73437500e-03, 3.00781250e-03, 1.59375000e-03, 1.08593750e-03,
1501 5.62500000e-04, 2.96875000e-04, 2.65625000e-04, 1.71875000e-04,
1502 1.01562500e-04, 4.68750000e-05, 1.56250000e-05, 3.12500000e-05,
1503 2.34375000e-05, 7.81250000e-06, 1.56250000e-05]
1504 # TSP10000:
1505 [4.41756250e-01, 2.54093750e-01, 1.32925000e-01, 7.19500000e-02,
1506 3.95187500e-02, 2.37500000e-02, 1.41437500e-02, 8.09375000e-03,
1507 4.91250000e-03, 3.33125000e-03, 1.84375000e-03, 1.11250000e-03,
1508 8.37500000e-04, 5.56250000e-04, 3.75000000e-04, 2.62500000e-04,
1509 1.81250000e-04, 8.75000000e-05, 6.87500000e-05, 5.00000000e-05,
1510 5.00000000e-05, 2.50000000e-05, 2.50000000e-05, 6.25000000e-06,
1511 1.25000000e-05, 6.25000000e-06, 6.25000000e-06, 6.25000000e-06,
1512 6.25000000e-06, 6.25000000e-06]

```

1512 **M LIMITATIONS AND FUTURE WORK**
15131514 Our study, while highlighting the critical role of MCTS configuration and the efficacy of simple
1515 priors, has several limitations that suggest avenues for future research:
1516

- 1517 • **Scope of TSP Variants and MCTS Adaptation:** The current analysis, including the GT-Prior,
1518 focuses on Euclidean TSP, and the MCTS framework utilizes TSP-specific k -opt moves. The
1519 direct applicability of our findings and the GT-Prior to non-Euclidean TSPs, other combinatorial
1520 optimization problems, or different MCTS action spaces warrants further investigation.
1521
- 1522 • **Empirical Nature of MCTS Tuning:** While we demonstrate the profound impact of MCTS
1523 tuning, our approach to finding optimal configurations is empirical. A deeper theoretical
1524 understanding of the relationship between TSP instance properties (or heatmap characteristics)
1525 and optimal MCTS hyperparameters could lead to more principled, instance-adaptive tuning
1526 strategies, reducing the reliance on extensive offline searches.
1527
- 1528 • **Hyperparameter Tuning Efficiency:** While the proposed GT-Prior heatmap is computationally
1529 inexpensive at inference, the MCTS hyperparameter tuning process itself (using grid search
1530 in our current implementation) can be resource-intensive, especially if the search space is
1531 large or if tuning is performed on very large-scale instances. Although this is a one-time
1532 offline cost, optimizing the tuning process itself (e.g., using more sophisticated Bayesian
1533 optimization, evolutionary algorithms, or meta-learning for hyperparameter optimization as
1534 hinted in Appendix I) would be beneficial for practical adoption and for exploring even larger
1535 parameter spaces.
1536
- 1537 • **Exploration of Alternative Search Mechanisms:** This study operates within the MCTS
1538 framework as the search component. While MCTS is powerful, exploring whether the insights
1539 on the heatmap vs. search balance extend to other search metaheuristics (e.g., guided local
1540 search, iterated local search, or even learned search policies) when paired with various heatmap
1541 generation techniques could be a valuable research direction.
1542

1543 Addressing these aspects could lead to more versatile, theoretically grounded, and practically efficient
1544 learning-based solvers for TSP and other challenging optimization problems.
15451546 **N LLM USAGE STATEMENT**
15471548 During the preparation of this manuscript, we utilized a large language model (LLM) as a writing
1549 assistant. The LLM’s role was strictly limited to improving the clarity, grammar, and readability
1550 of our text through sentence polishing and paragraph restructuring. The LLM did not contribute to
1551 research ideation, experimental design, data analysis, or the formulation of conclusions. All scientific
1552 content and claims are the sole responsibility of the human authors.
15531554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565