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ABSTRACT

A robust-accurate estimation of fluid flow is the main building block of a dis-
tributed virtual flow meter. Unfortunately, a big leap in algorithm development
would be required for this objective to come to fruition, mainly due to the in-
ability of current machine learning algorithms to make predictions outside the
training data distribution. To improve predictions outside the training distribution,
we explore the Continual Learning (CL) paradigm for accurately estimating the
characteristics of fluid flow in pipelines. A significant challenge facing CL is the
concept of catastrophic forgetting. In this paper, we provide a novel approach
of how to address the forgetting problem via compressing the distributed sensor
data to increase the capacity of CL memory bank using a compressive learning
algorithm. Through extensive experiments, we show that our approach provides
around 8% accuracy improvement compared to other CL algorithms in the real-
field distributed sensor dataset. Noticeable accuracy improvement is also achieved
when using our proposed approach with the CL-benchmark datasets, achieving
state-of-the-art accuracies of 94.95% and 77.27% for the MNIST and CIFAR-10
datasets, respectively.

1 INTRODUCTION

The distributed virtual flow meter can provide a game-changing functionality in the oil and gas
industry, and other industries requiring accurate characterisation of fluid flows. With a distributed
measurement capability applied to oil and gas production, it is possible to detect and locate water/gas
breakthrough, monitor fractures and pressure drops as they occur, and perform a non-invasive well
integrity inspection (Arief et al., |2021). A distributed flow meter can be defined as a metering
solution that measures volume, velocity, and the fraction of fluid components in every location in
the pipe. The distributed measurements can be in the form of temperature, chemical, strain, or
acoustic signals. In this paper, the distributed measurements are acoustic signals acquired using a
technology called Distributed Acoustic Sensing (DAS). A DAS system consists of a fiber optic cable
wrapped around (or inside) the pipe with one end of the cable attached to the Interrogation Unit (IU).
The TU sends light pulses along the glass fibers, and interprets acoustic events around the cable via
the Rayleigh backscatter mechanism.

Using the acoustic signals, researchers can characterize the fluid flow inside the pipe including the
fluid volume, flow velocity, and phase-fraction of the fluids. Several techniques have been proposed
to accurately estimate these quantities from the acoustic signals, including using geophysical for-
mulations (speed of sound, Joule-Thompson Coefficient, acoustic signal cross correlation, Doppler
Effect), and data-driven machine learning techniques from kernel function to deep learning based
algorithms. The latest work from (Arief et al.| 2022) shows that Deep Neural Network (DNN)
algorithms can be used to estimate the phase-fraction of the fluids from the acoustic data. Unfortu-
nately, the accuracy of such an approach degrades rapidly when the model tries to infer from the data
outside its training distribution; the situation is known as the Out of Distribution (OOD) problem.
Unfortunately, OOD situations are common for real world application of modelling the DAS data.

In this paper, we explore the potential of using a different machine learning paradigm that can
work well with the OOD problem. Instead of using fixed model for inference, our proposal uses
a technique called Continual Learning or CL (Mai et al., [2022). In the CL approach, the model
is trained in a continuous manner, therefore the model is always being adapted as unfamiliar fluid
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Figure 1: Cutout based algorithms, including (a) Vanilla cutout, (b) Multi-Step Cutout with n = 5,
(c) Inverse-cutout, and (d) Compressed output of the inverse-cutout for the compressed learning
algorithm.

dynamic situations are encountered. The CL model never stops being trained and newer data paired
with their label are (continuously) fed to update the model parameters, even if the new data come
from OOD events. For a real world implementation, the CL approach is suitable as a building
block of a distributed flow meter, because pointwise labels characterising the fluid flow events are
often available during oil production thanks to a test separator instrument. The labels the separator
provides, can be used to update the trained model in a continuous manner.

Unfortunately the CL approach has its own shortcomings, the most critical one being catastrophic
forgetting. The forgetting problem occurs when the updated CL model learns new task but forgets
the previously learned tasks, therefore limiting the range of learned situations for which the model
inference can provide accurate estimations. Several algorithms have been proposed to address the

catastrophic forgetting problem, for example by enhancing regularization (Kirkpatrick et al.,

Ahn et al, 2019} [Gomez-Villa et al, 2022), by using parameter isolation (Chen et al.,[2020} [Feng
et al., 2021} [Yan et al.l [2022)), and by rehearsing samples from a memory bank (Chaudhry et al.,

2018} [Prabhu et al., 2020; Bang et al}, [2021)). In this paper, we explore the last approach by using
memory rehearsal to address the forgetting problem. This approach not only provides high accuracy

in the CL benchmarks, but also provides seamless adaptation for non-common data types (including
the DAS data).

Several CL-based algorithms to model the DAS data for distributed fluid flow estimation are ex-

plored in this paper, including GDumb 2020), Riemannian Walk (Chaudhry et al.
2018), iCaRL (Rebuffi et all [2017), BiC (Wu et al. 2019), and Rainbow Memory (Bang et al.

2021). A fixed memory size is used in the experiments, so that the efficacy of each algorithm on
selecting training samples and on managing memory usage can be fairly compared. Unfortunately,
given the complexity and the size of the DAS data, most of the algorithms failed to provide satis-
factory results. To address the data size and memory problem, we present and test a novel sample
compression algorithm that allows for the rehearsal training to store representative data within the
fixed size storage. The algorithm uses the inverse-cutout technique to compress and isolate the most
relevant part of the input data, and use them for rehearsal, see Fig. [T}

The experimental results show that our proposed algorithm achieves a significant improvement over
other CL algorithms. Using the real-field DAS data, we obtain around 8% accuracy improvement
and a lower forgetting value compared with other CL algorithms, which paves the way for real
world implementation of the algorithm in the distributed fluid flow measurement applications. Even
though the algorithm is designed to model and compress the DAS data, it also provides state-of-the-
art accuracies on other CL benchmark datasets, including the MNIST and CIFAR datasets.

Our contributions in this paper are the following:

* We develop a novel compressed learning algorithm based on the cutout technique, to search
and isolate the most relevant parts of the input data applicable to memory rehearsal.

* We provide a simple and intuitive augmentation technique that enriches image representa-
tion for non-natural image datasets.

* We perform extensive experiments on a real world dataset to build a distributed virtual flow
meter based on DAS and machine learning CL paradigm.
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* We show that our proposal can also be used for natural image datasets by achieving state-
of-the-art accuracies on the CL benchmark datasets.

2 BACKGROUND

Suppose we have streaming DAS data (x, ) coming from an oil-production well, where x denotes
the input data in the form of raw or transformed DAS data, and y denotes the fluid flow measurement
from the well separator; y can be in the form of measurements for oil-volume, gas-volume, water-
volume, or combinations of them. Estimating y given x is a multihead regression task, but due to
the limited research on continual learning in regression tasks, the estimation here is structured as a
classification task using the bin-based regression approach with a number of classes, C'.

2.1 CONTINUAL LEARNING

For a classification task, the Deep Neural Network (DNN) model minimizes the empirical error by
measuring the difference between the class estimation likelihood with the actual class value, and
it assigns a higher penalty when the model estimates the wrong class with high likelihood. The
Cross-entropy (CE) loss function is used to measure the DNN classification error, and is defined as:

c
L==Y yilog(sy), (1

where C' denotes the number of classes, s; denotes the likelihood-score of class ¢, while y; denotes
the the correct label for class i. Both the DNN model and CL-based DNN model are trained using the
CE loss. The main difference between the two is the way the accuracy is measured for each model.
The accuracies for the DNN model are measured using the mean-class accuracy and the mean-
total accuracy defined at (He et al., 2016), while the CL model accuracies are measured using the
highest accuracy from the final task and the average degradation of accuracies over multiple tasks,
see (Lopez-Paz & Ranzato, [2017). Note that the CL model is trained on a time-filtered dataset. This
setting tries to imitate real world streaming data where each time-filtered set represents a different
class distribution (in-time) from the other sets.

In this paper, the time-filtered set is referred to as task (¢) where each task consists of several classes.
The task can be structured as a disjoint task, where the classes in each task are disjoint with the other
classes in the other tasks. This setup is referred to as a disjoint CL. To represent a more realistic real
world phenomenon, the CL approach can also be structured as a blurry CL, where the same class
can exist in two or more tasks.

It is worth noting that both blurry or disjoint CL can be trained in an online or offline fashion. Online
training means that the CL model only reads the streaming data once, while the offline training reads
the streaming data multiple times until it reaches satisfactory accuracy. Furthermore, both the online
and offline training can have a memory bank. The memory bank stores the samples of selected
streaming data. When needed, the stored data can be rehearsed to update the CL model to avoid
catastrophic forgetting. In this paper we focus on the offline-blurry CL setting because it has similar
characteristics with the real world implementation of the oil-production environment. We refer the
reader to (Bang et al.,2021)) for an in-depth explanation of different CL settings.

Catastrophic forgetting occurs when the CL model learns new tasks but forgets the previously
learned tasks. This is a common phenomenon in the CL training due to the heavy reliance on
the iterative learning process in many machine learning algorithms, including the DNN-based al-
gorithms. The iterative process uses incremental updates based on the new data for updating its
trainable parameters. Therefore, the longer the model trains on the new data, the larger the bias
towards the new tasks. The CL approaches can be divided into three categories based on the way
the algorithms address the forgetting problem. They are based on (1) Regularization, (2) Parameter
isolation strategy, and (3) Memory management. The regularization approaches control the network
parameter updates to mitigate the forgetting, either by introducing additional loss penalties or con-
straining the parameter updates by changing the parameter gradients during optimization. On the
other hand, the parameter isolation strategy, limits the parameter updates only to a selected range
of useful parameters while keeping the other parameter unchanged. Another type of parameter iso-
lation strategy is by adding new parameters to the existing architecture to increase the network’s
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ability to learn new information without forgetting old one. Finally, the third approach is by using
memory bank and rehearsal. As the term suggests, this approach stores the old streaming data to
a temporary memory, and when the model is introduced to new data, the old data is also rehearsed
either together with the new data or subsequently during optimization.

2.2 MEMORY BASED CONTINUAL LEARNING

The general framework of the memory based CL algorithm adapted from (Mai et al.,[2022) is shown
in Appendix [A] The algorithm relies on two main functionalities, namely a sampling procedure and
a rehearsal process. The sampling procedure allows the algorithm to selectively choose which data
to store in the limited space of the memory bank, while the rehearsal process controls how the old
data are being used to update the existing model. Several algorithms based on the rehearsal and
memory approaches have been proposed to address the catastrophic forgetting problem, including
Greedy Sampler and Dumb Learner (GDumb) (Prabhu et al., |2020), Bias Correction method (BiC)
(Wu et all 2019), and Rainbow Memory (RM) (Bang et al., 2021}).

The GDumb approach focuses on a sampling procedure according to which the spread of class dis-
tribution in the memory bank is balanced. A full retraining with the updated data before performing
inference is then performed. This approach is simple and intuitive, and has shown considerable
performance gains in the CL benchmark. The BiC approach, introduces an additional final layer
into the DNN model for calibrating the training bias. Finally, the RM approach proposes the use of
Monte-Carlo (MC) based uncertainty measurements to better select which samples to store in the
memory bank, and provides an extensive Data Augmentation (DA) proposal to enrich the replayed
results.

2.3 EVALUATION METRICS

The CL model is evaluated by using several metrics. In this paper, we use the common CL metrics
defined in (Lopez-Paz & Ranzatol [2017), including Final Accuracy (AC'C7r) for measuring the
model accuracy on classifying the streaming data, Backward Transfer (BW 1) for measuring the
catastrophic forgetting, and Intransigence (1) for measuring the gap-accuracy between offline and
CL- training.

ACCr is defined as the average reporting accuracy after the 7" tasks have been trained, thus it eval-
uates the final model accuracy after all classes have been exposed to the model. BW T measures
the effect of learning additional tasks on the predictive capability of a model on the previous tasks.
A large negative BW T’ is a sign of catastrophic forgetting. I, on the other hand, measures how
much on average the accuracy of each task differs compared to the upper-bound accuracy of a model
from the non-CL setting. Following the formal definition of the CL metrics at (Lopez-Paz & Ran-
zatol|2017), denoting by R € RT*T of the matrix of task accuracies, the AC'Cp and BW Tr metrics
are defined as:

T
1
ACCr = 7 ; Rri,. 2)
1 T-1
BWTr = ; Rr;— Ry, 3)

where the R; ; denotes the intermediate accuracy of a model on task t; after observing all samples
from task ¢;. Finally, with AC'C}j,n; denoting the upper-bound accuracy from the standard offline
training (non-CL setting), I7 is defined as:

Ir = ACCjoiny — ACCr. €

3 COMPRESSED-CONTINUAL LEARNING

The CL memory algorithms optimize the process of data selection (for memory storage) while also
providing effective rehearsal methods. Those algorithms provide a competitive result for modelling
the image data, including MNIST and CIFAR dataset. Unfortunately, the DAS data is significantly
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Figure 2: The cutout-CL pipeline for generating compressed samples and selecting non-
compressible samples.

different from the image data in terms of size and complexity. The size of the DAS data is several
orders of magnitude higher than the image data and the data itself has a lot of redundancy while
containing considerable amount of noise (Arief et al. |2021). In the next section, we elaborate on
why the existing memory-rehearsal algorithms would not work on the DAS data, and then explain
how our proposal addresses the memory issues. Finally, we show how to train compressed DAS data
using our proposed algorithm.

3.1 RETHINKING REHEARSAL ON DAS

Rehearsal memory aims to allow the machine learning model to remember previously learned tasks
by storing and retraining representative datasets with a fairly balanced distribution from the memory
bank. This approach assumes that the data size is small enough, therefore enough representations
can be stored within the available memory. The large size of DAS datasets presents a challenge.
10 seconds of DAS data representing 1-data point requires (around) 1.2 GB of memory, while a
spectrogram DAS data containing similar information, requires around 120 MB of memory. For
bin-based regression with 72 classes, the memory requirement for storing at least 10-representations
per class is extensive. As the complexity of data representation (i.e. the changes in temperature,
pressure, humidity, presence of noise, and others) increases, the number of representations in the
memory bank required to overcome forgetting increases dramatically. With the current state of
memory-based CL algorithms, storing large data with enough representations in the memory bank,
is not feasible. This is not only due to the limited amount of memory but also due to the limitations
in the augmentation strategies available for non-natural image type datasets.

3.2 MULTI-STEP CUTOUT AUGMENTATION

It has been pointed out in (Bang et al.l 2021) that DA plays a crucial role on memory rehearsal
because it can significantly increase the amount of sampled data through augmentation. The RM
algorithm enjoys a significant accuracy improvement from extensive implementation of the DA
strategy. Unfortunately, most of the DA techniques for natural images are not applicable for the
DAS data because those techniques assume that the image data is invariant under translation, color-
inversion, rotation, and even data blending operations. Unfortunately, the DAS data is not invariant
under these operations.

Here, we use a simple but intuitive DA strategy that can be applied to non-natural image data, such
as DAS data. The algorithm is called Multi-Step Cutout; a more extensive version of the Cutout
algorithm introduced in (DeVries & Taylor, 2017). The cutout algorithm uses a fixed size window
randomly placed on the input data to remove (zeroing) the overlapping area between the window
and the input data, and uses the modified data as the augmentation output. The Multi-Step Cutout,
on the other hand, moves the cutout window multiple times (n_cut times) on the input data randomly,
while zeroing the overlapping location each time the window moves. For the rest of the paper, the
number of cut windows used in this augmentation technique is denoted as n_cut. Fig. [T]depicts the
difference between the cutout and multi-step cutout outputs.

The motivation behind the Multi-Step Cutout is to teach the model to utilize the minimum (but)
relevant part of the input data responsible for making the decision on alleviating most of the noise
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in the input data, therefore it can generalize better. This approach is simple and applicable to non-
natural image data for augmentation because the algorithm does not change the structure within the
data itself.

3.3 CutouT COMPRESSED LEARNING

One solution to addressing the data size problem is by compressing the input data. A classical jpeg
compression is used by (Wang et al, [2022) to allow more data in the memory bank, and has shown
an improvement CL performance. Unfortunately, this image compression technique is not suitable
to compress the DAS data, due to the nature of the data itself. In this section, we provide a novel
approach on how we can compress the DAS data while preserving its ability to be used for rehearsal.
We henceforth refer to this approach as Cutout Compressed Learning (Cutout-CL).

The Cutout-CL algorithm works by finding the most relevant part of the input data for performing
classification, and only stores that part for memory rehearsal. The most relevant part is defined as
the part that occupies the smallest area of the input data but gives the lowest likelihood error (from
Eq.[T). The Multi-Step Cutout algorithm is used for training the CL-model to enhance augmentation
as well as for maximizing the utilization of the most relevant part of the input data. An inverse-
cutout algorithm is (then) used for finding the most relevant part of the data. Instead of zeroing
the overlapping window like in the cutout algorithm, the inverse-cutout leaves the overlapping part
unchanged and zeroes all the other non overlapping part of the input data. The inverse-cutout uses
one parameter (p) defined as the percentage of data to leave-out for compression. This approach is
not only efficient for isolating important parts of the input data for sampled compression by only
storing the leave-out part, but also provides fast indexing for recovery by only storing the isolated
part and the bounding box location of the isolated part. By utilizing the compressed samples, the
memory size in our proposal can be increased by p~!, therefore the new memory size K, is defined
as K,, = K x p~!, where K denotes the initial memory size.

The proposed compression technique uses both the Multi-Step Cutout and Inverse-Cutout algo-
rithms, and is implemented as prescribed in the following. First, the model is trained using the
Multi-Step Cutout augmentation; for natural image datasets, the first step is optional due to the
abundance of DA techniques for natural images. Second, at the end of each task, multiple runs of
the Inverse-Cutout algorithm are applied for each sample; here, the CE score for each run is also
calculated. For each sample-run with correct classification, the run with minimum CE score is used
to update the corresponding sample in the sample selection, replacing the non-compressed version
of the sample. It should be noted that samples without correct classification in the multiple runs, de-
noted as non-compressed samples, are given low-priority for the episodic memory selection. Fig.
depicts the implementations of the Cutout-CL pipeline for selecting and generating compressed and
non-compressed samples. For the episodic memory selection, the compressed samples are selected
randomly based on the number of maximum number of samples per class (n. ). It is important
to mention that the number of samples per class needs to be balanced to avoid imbalanced class
prediction. The memory selection for each class is shown in Algorithm [T}

Algorithm 1: Compressed Learning Memory Selection

Input : Compressed samples X 1, Non-Compressed samples X 2, Number of samples per class [V,
Compression rate p, Total number of seen classes Ci;
Initialize : Memory M <« {} * M;

1: for <c=0,1,2,.. C¢>do > Iterate through all seen classes.

2: Ney, X1ey, X2. « Ne[c], X1[c], X2[] > Populate data from the compressed learning
process.

3: M + M + RandSelect(X 1., min(n., len(X1,))) > Random sampling through the
Compressed samples.

4: ne  (ne —min(ne, len(X1.))) *p > Update the maximum number of available spaces
for the Non-Compressed samples.

5: M < M + RandSelect(X2., min(ne, len(X2.))) > Random sampling through the

Non-Compressed samples.
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(a) MNIST Images. (b) CIFAR-10 images.
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Figure 3: The cutout-CL outputs where the leave-out percentage is defined by p. The rows show
side-by-side depiction of the compressed and original images, while the columns represent different
classes.

3.4 UNDERSTANDING CUTOUT-CL

At the high level, our proposal works similarly to the random selection episodic memory algorithm
(Bang et al.l 2021). The main difference is that the Cutout-CL benefits from the extra space the
compressed data provides. It has been well established that an increase in the memory space for
CL-learning leads to an increase in final accuracy and better handling of the forgetting problem.
Moreover, it has also been pointed out in (Selvaraju et al., |2017), as well as in the attention-based
DNN (Vaswani et al.,|2017) that a machine learning model builds its feature representation by high-
lighting the specific part of the input data and (tends) to ignore the whole space of the input data. Our
proposal capitalizes on this knowledge, by providing a simple but intuitive compression technique
that provides more sample spaces in the fixed memory bank by isolating only the relevant part of
the input data. Therefore, we hypothesize that by only storing relevant parts of the data and using
them for retraining a model, we can acquire a similar (or even better) model than a model trained
using the full-size of input data”.

The compression rate in our proposal is controlled by p. A small p yields a larger pool of memory
but it comes with a cost that the small p often cannot isolate all the relevant details in the images.
Fig. [3|shows the behaviour of compressed learning output towards different values of p on different
type of datasets. Optimizing the value of p requires understanding of the nature of each class in the
dataset. For simplicity, in this paper we use a fixed value p for all classes, and show that even with a
fixed p and random selection of samples, a reasonable accuracy improvement can be achieved over
the other CL-algorithms.

4 EXPERIMENTS

4.1 DATA SOURCE AND PREPARATIONS

The DAS dataset we used in this paper was from two-phase gas production with varying gas volume
fractions acquired in an offshore production well. The reference data (oil and gas volumes) was
acquired using a test separator measurement located on the platform topside. For the CL-setup, we
used bin-based regression from the combination of different range of values for both oil and gas,
resulting in 72 classes.

To simplify the training process, the DAS data was transformed to stacks of spectrogram images
with size of (256, 486, 576) with the first, second, and third dimensions represent spatial, frequency,
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Table 1: Experiment results from offline and continual learning using DAS-Spectrogram dataset on
different augmentation settings

(a) Offline learning results in ACCjoint (b) CL learning results
ncut=1 ncut=5 n_cut=20 Methods ACCs BWTy I
40.83 46.45 48.08 n_cut=1 24.11 -40.66 16.72

n_cut=35 25.44 -40.16  21.01
n_cut =20 29.73 -39.51 18.35

and time domains, respectively. Each spectrogram contains 10-seconds of DAS recording at 10 KHz
sampling rate, and 256 spatial samples at around 1 m sampling rate. A 50% overlapping window
both in time and space is used to enrich the preprocessing output. For the CL-setup, the 72 classes
were spread out into 8 tasks randomly using blurryl0 setup. We refer the reader to (Bang et al.,
2021)) for details on how the blurry setup is performed.

4.2 CONTINUAL LEARNING ON DAS DATA

In this paper, we used a ResNet18 architecture (He et al.}|2016) to train the spectrogram DAS data.
The main objective is to find out how well our proposed approach performs on the CL-setting.
Unless otherwise mentioned, we used initial learning rate of 0.001, memory size of 1000, batch
size of 6, cutout size of 25% of initial input data, and maximum 256 training epochs per tasks. To
conserve training time for each task, the training was moved to the next task after there was no
training-accuracy improvement over 4 consecutive epochs. Additionally, due to the slow training
time, only 10% of uniformly sampled DAS data was used for the experiment. Training 8 CL-tasks
with over 10% of DAS data required (on average) more than 1 week on a single 16GB NVIDIA
P100.

Augmentation results. We started the experiments by measuring the upper bound or joint accuracy
(ACCjoint) on the DAS data. Table[Ij shows the results of the joint accuracy on several different
n_cut settings of the Multi-Step Cutout Augmentation. The result confirms the usability of such
augmentation algorithm on the spectrogram data by providing around 5-8% on the overall accuracy
improvement. We also performed the same augmentation technique on the CL-setting using random
search for sample selections; the result is presented in Table[Ip. Even though, the improvement is
smaller compared to the Offline-setting, the proposed augmentation performs well on the CL-setting
with n_cut=20 providing the highest ACCs and BW Tg of 29.73% and -39.51%, respectively. It is
worth mentioning that n_cut=1 achieves the lowest I3 due to the low ACC),;, n_cut=1 setting
achieve.

Table 2: Spectrogram-DAS CL accuracy

Methods ACC5 BWT5 I5

RM 24.85 -40.50 23.23
RWalk 25.89 - 22,19
EWC 25.15 - 22.93
Cutout-CL

No-Aug* 27.22 -42.66  20.86
p = 0.05 32.10 -28.05 15.98
p=0.10 29.73 -32.49  18.35
p=0.25 26.63 -4290  21.45

Cutout-CL results. Following the results on Augmentation, we then performed Cutout-CL on
multiple compression rates from p = 0.05 to p = 0.50. We used n_cut=20 of Multistep aug-
mentation as the augmentation technique, and report the results in Table 2] Additionally, we also
performed Cutout-CL with p = 0.25 without Multistep Augmentation as a comparison with other
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Table 3: Last Accuracies on (a) MNIST and (b) CIFAR-10 datasets

(a) Results on MNIST dataset

(b) Results on CIFAR-10 dataset

Methods ACCHs Iy Methods ACCs Iy
GDumb 88.21 +£0.63 10.03+0.61 GDumb 44.87+0.82 4895+1.04
BiC 91.11+0.13 7.13 £0.05 BiC 60.89 £5.13 3293+494
RM 9435+036 3.88+0.34 RM 7227 +1.31 21.55+1.08
EWC 89.51+151 8.72+1.60 EWC 7412+ 1.51 19.70 +1.28
Cutout-CL Cutout-CL

(p=0.25) 89.19+0.51 9.05+0.60 (p=0.10) 77.27 £0.58 16.55 +0.45
(p=0.50) 9451+£097 3.73£1.08 (p=0.25) 75.08 £0.93 18.74 £0.70
(p=0.75) 9495+0.82 3.29+0.93 (p=0.50) 7391 £0.79 1991 +0.67

CL-algorithms. The results in Table 2] confirm our hypothesis that we can generate a quality model
by combining the Multi-Step Augmentation with cutout compression to perform CL-learning. Our
proposal with p = 0.05 achieves the highest accuracy of 32.10, which is only 15.98 point differ-
ent from the offline accuracy of 48.08 from Table [Th. It is interesting to note that considering our
baseline accuracy from n_cut=1 of 24.11, the increase in overall improvement is around 8%.

4.3 CONTINUAL LEARNING ON OTHER DATASETS

In order to compare our proposal with other CL-algorithms, we also experimented with CL-
benchmark datasets, such as the MNIST and CIFAR-10 datasets. We follow the data preparation
and hyper-parameter settings in (Bang et al., 2021)); additional settings include K=500 trained on
disjoint, blurry10, and blurry30 settings with Cutmix (Yun et al.,|2019) and AutoAug (Cubuk et al.,
2019) as the DA techniques; the results are presented in Table 4]in Appendix [B] Our proposal with
p = 0.1 achieves state-of-the-art accuracies both for blurry10 and blurry30 of 80.83 + 0.53 and
88.91 + 0.20, respectively. It is worth noting that the results from other algorithms in Table @] were
populated from (Bang et al.,|2021) which uses the highest test accuracies from the final task as the
reporting accuracies.

We also reproduced the results both for MNIST and CIFAR-10 and used the last epoch accuracies
as the reporting accuracies. The results are presented in Tables [3p and [3p both for MNIST and
CIFAR-10 datasets, respectively. The results show that our proposal achieves the highest accuracies
of 94.95 £ 0.82 and 77.27 £ 0.58 for MNIST and CIFAR-10 datasets, respectively. Interestingly, the
values of the compression rate p need to be adjusted properly due to the different behaviour on how
objects in the two datasets are represented. It requires at least 50% of the whole area of the image
to fully isolate the main object in the MNIST images. In CIFAR-10, however, even when isolating
10% of the image area, the classifier can recognize the object in the image correctly. Fig. [3| shows
how the compression rate affects the output between the two datasets.

5 CONCLUSIONS

We have presented the Cutout-CL, an iterative compressed continual learning pipeline based on the
inverse-cutout technique to isolate only the relevant part of the input data and use them for rehearsal,
increasing the available memory space in the process. In addition, we also proposed a simple and
intuitive data augmentation method applicable to non-natural image datasets. Throughout extensive
evaluation, we have shown that our proposals provide significant improvements in term of higher
ACCrt and BWTr for modelling the DAS data, aiming to deliver a robust distributed virtual flow
meter application.

Additionally, using the CL-benchmark datasets, including MNIST and CIFAR-10 datasets, we have
shown that our proposal can also be applied to such datasets by achieving state-of-the-art accuracies
in both datasets. Finally, using a relatively small p, we have shown that the experimental evidence
supports our hypothesis that by only storing relevant parts of the data and using them for retraining
a model, we can acquire a better model than the model trained using the full-size of input data.
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A MEMORY BASED CL ALGORITHM

Algorithm 2: General step of memory-based CL

Input : DAS data x, Label y, Parameters 6;
Initialize : Memory M <« {} * M Batch size b;

1: xpr, Yyur < MemoryRetrieval(M, b)

2. X, Y+ xUzxn,yUyn
3: 0 « ModelUpdate(X, Y,0)

4: M < MemoryUpdate(M, x, y)

B BENCHMARK RESULTS OF CL-ALGORITHMS ON CIFAR-10

Table 4: ACC5 of CL-algorithms on CIFAR-10

Methods Disjoint Blurry10 Blurry30
GDumb 4247 +1.15 43.16+0.77 45.72+0.64
BiC 59.53£4.30 61.45+6.25 71.93+245
RM 61.91+0.63 76.86+0.04 85.10+0.16
RWalk 65.04 £0.11 78.59+1.37 85.18+£0.57
iCaRL 65.61 £2.57 57.07+2.74 64.90+7.95
EWC 64.00+1.34 78.67+1.06 85.00+0.42
Cutout-CL

(p=0.1) 6543+2.83 80.83+0.53 88.91+0.20
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