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Abstract

Adversarial Training (AT) is a well-known frame-
work designed to mitigate adversarial vulnerabili-
ties in neural networks. Recent research indicates
that incorporating adversarial examples (AEs) in
training can enhance models’ generalization ca-
pabilities. To understand the impact of AEs on
learning dynamics, we study AT through the lens
of sample difficulty methodologies. Our findings
show that AT leads to more stable learning dy-
namics compared to Natural Training (NT), re-
sulting in gradual performance improvements and
less overconfident predictions. This suggests that
AT steers training away from learning easy, per-
turbable spurious features toward more resilient
and generalizable ones. However, a trade-off ex-
ists between adversarial robustness and general-
ization gains, due to robust overfitting, limiting
practical deployment. To address this, we pro-
pose using synthesized data to bridge this gap.
Our results demonstrate that AT benefits signifi-
cantly from synthesized data, whereas NT does
not, enhancing generalization without compro-
mising robustness and offering new avenues for
developing robust and generalizable models.

1. Introduction

Adversarial examples (AEs) have emerged as a critical con-
cern for neural networks, posing significant challenges to
deployed systems. These examples are indistinguishable
to the human eye but significantly deceive neural networks,
leading them to misclassify and make erroneous predictions.
The consequences of AEs are substantial, as they can un-
dermine the integrity of various systems, including image
recognition (Xie et al., 2019), autonomous vehicles (Xiong
et al., 2021), medical applications (Ma et al., 2021; Hirano
etal., 2021; Bortsova et al., 2021; Apostolidis & Papakostas,
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2021), large language models (Greshake et al., 2023), and
multimodal systems (Cui et al., 2023b; Zhao et al., 2024,
Dong et al., 2023). Early explorations into this phenomenon
by Szegedy et al. (2013) shed light on the vulnerability of
neural networks to adversarial perturbations. Furthermore,
adversarial training (AT), proposed by Goodfellow et al.
(2014), has emerged as the de facto method for enhancing
the robustness of networks against these vulnerabilities.

On the other hand, recent studies have demonstrated the
intriguing potential of leveraging AEs to augment training
data for purposes other than robustness, such as improving
image recognition performance (Xie et al., 2020; Rebuffi
et al., 2023) and generalization (Alhamoud et al., 2022;
Rebuffi et al., 2022; Deng et al., 2021). This repurposed
usage of AEs has also been beneficial for debiasing the
visual system (Zhang & Sang, 2020), one of the primary
and ongoing challenges of computer vision. This highlights
the complex nature of AEs: even though they pose threats to
neural networks, they also offer opportunities for advancing
learning dynamics for robustness and other purposes.

Despite these advancements, a significant trade-off persists
between achieving adversarial robustness and improving
other essential capabilities. For instance, Kireev et al. (2021)
demonstrated the effectiveness of AEs in enhancing model
performance on commonly corrupted data, illustrating their
potential benefits for better generalization. However, their
findings also indicate that employing AEs necessitates using
a much smaller € attack during adversarial training (1/255
compared to 8/255), which substantially limits the robust-
ness of the models and hinders their practical application.

Studying the impact of AEs on the learning dynamics of net-
works is crucial for understanding what makes them effec-
tive in developing models that balance robustness and gener-
alization effectively. Therefore, we begin to study AT from
different perspectives of example difficulty, such as entropy
(Shannon, 2001) and a pointwise framework of learning by
Kaplun et al. (2022), and reveal a much more stable learn-
ing behavior with less overconfident prediction compared to
Natural Training (NT). Then, we leverage synthesized data
to overcome the shortcomings of AT and reduce the gap in
the trade-off between robustness and generalization.
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2. Example Difficulty Methodologies

Understanding and quantifying the difficulty of samples
within a dataset is crucial for improving model performance
and interpretability. Various methodologies have been de-
veloped to measure this difficulty. However, in this section,
we review two approaches, entropy and the pointwise frame-
work of learning, which provide different perspectives on
model uncertainty and performance.

Entropy Entropy is a fundamental concept in informa-
tion theory, often used to quantify the uncertainty or un-
predictability in a probability distribution (Shannon, 2001).
Entropy can be applied to the output probabilities of a model
to measure the uncertainty associated with its predictions
(Wang et al., 2016; Sorscher et al., 2022; Simsek et al.,
2022). Specifically, for a given input x with output proba-
bilities {p1,pa, . .., pn}, the entropy H(z) is defined as:

H(z) == pilogpi, M)
i=1

where p; is the probability assigned by the model to the ¢-th
class, and n is the total number of classes. Higher entropy
indicates greater uncertainty and can be interpreted as the
model finding the example more difficult to classify.

Pointwise Framework of Learning The Pointwise
Framework of Learning introduced by Kaplun et al. (2022)
offers a novel perspective by evaluating the performance
of a collection of models on individual data points rather
than averaging performance over a distribution of inputs.
This methodology provides a more granular understanding
of model performance, revealing how different models per-
form on specific inputs as resources such as training time,
dataset size, and model complexity increase.

The core of this framework is the concept of learning pro-
files: for a given input point z, the learning profile captures
the performance of models on z (output probability) as a
function of increasing resources. Formally, for an input
point z = (z,y) and a family of classifiers 7T, the learning
profile maps the global accuracy of classifiers to their per-
formance on z. This approach allows for the identification
of four distinct categories of points: “easy,” “hard,” ”com-
patible (or monotone),” and ’non-monotone.” Easy points
are those for which even low-accuracy models perform well.
Hard points are those for which even high-accuracy models
struggle. Monotone points closely track the global accuracy
of the models, while non-monotone points exhibit behav-
ior where higher-accuracy models might perform worse
on these inputs, and there is no clear pattern of improving
performance on individual samples as resources increase.
Appendix A shows instances of learning profiles of these cat-
egories. Details and a Python implementation for assigning
a data point to categories are provided in Appendix B.

3. Experimental Setup

We assessed the learning dynamics of Natural Training (NT)
and Adversarial Training (AT) on the CIFAR-10 and CIFAR-
100 datasets (Krizhevsky et al., 2009). For each method, we
trained five models with different random seed initializations
to both reduce the variance in the results and to have a
collection of models for defining point categories. We used
the SGD optimizer with a Multi-Step learning rate schedule
(decaying at epochs 70 and 90), starting with an initial
learning rate of 0.1, a batch size of 128, and a weight decay
of 1 x 10~4, for 120 epochs. For AT, adversarial examples
were generated using the Projected Gradient Descent (PGD)
attack (Madry et al., 2017) with 10 iterations and various
epsilon € values, with each attack initialized randomly.

4. Learning Dynamic

We delve into the specifics of AT and NT learning dynam-
ics by examining various methodologies for quantifying
example difficulty. We aim to provide a comprehensive
view of their different learning dynamics at the sample level.
We first focus on entropy as a measure of uncertainty (Sec-
tion 4.1), then on the pointwise framework of learning for
categorizing data points based on their learning profiles (Sec-
tion 4.2). Later, we show that there is a trade-off between
attack strength and monotonicity in learning (Section 4.3).
Finally, we test both NT and AT on the specific case study
of the CIFAR10-Neg dataset (Kaplun et al., 2022), which in-
volves samples with a negative correlation between accuracy
and increased resources (Section 4.4).

4.1. Entropy Analysis

Figure 1a illustrates the entropy distributions of predictions
for models trained using NT and AT. The entropy values are
higher and more spread out in the AT models compared to
the NT models across both datasets. This broader distribu-
tion indicates that AT encourages models to maintain more
cautious predictions, with probabilities more distributed
across classes rather than showing overconfident predictions
concentrated on a single class.

Furthermore, as shown in Figure 1b, the evolution of mean
entropy over test data points during training varies signifi-
cantly with different e values of adversarial examples. No-
tably, models trained with larger € exhibit a slower decrease
in entropy over training steps. This gradual reduction in
entropy implies that the models trained under AT remain
uncertain for longer durations, which could indicate an ongo-
ing engagement with more complex or less obvious features
of the training data. This prolonged uncertainty prevents
premature convergence on simple, easily perturbable, and
non-generalizable features, such as textures or background
elements that are not essential for accurate classification.
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Figure 1. Entropy: Comparison of entropy distribution (a) and mean entropy evolution (b) between Natural Training (NT) and Adversarial
Training (AT) for CIFAR-10 (top) and CIFAR-100 (bottom) datasets. The left subfigures show that AT models have higher and more
spread-out entropy values, indicating more cautious predictions. The right subfigures depict slower decreases in mean entropy for models
trained with larger e values, suggesting prolonged uncertainty and engagement with complex and generalizable features.

Therefore, we can hypothesize that using a larger € not
only improves robustness but also provides a dynamic en-
vironment that prioritizes the predictivity of features over
simplicity in learning. However, as we see in Section 5, this
is not always the case; we often observe a performance drop
with larger e. We will discuss the root cause and present a
promising approach using synthesized data to tackle it.

4.2. Point Categories

Based on Section 2, a learning profile for an individual
sample can be defined by mapping the average overall per-
formance of a collection of models to their pointwise perfor-
mance (the probability assigned to the sample for the true
class) as resources increase. We examine the case where
time (or training steps) increases and categorize all test data
points accordingly, as detailed in Appendix B. Figure 2 il-
lustrates the distribution of these categories under Natural
Training (NT). Our observations, consistent with (Kaplun
et al., 2022), reveal significant levels of non-monotonicity
in NT. This non-monotonicity suggests that improvements
in overall model accuracy can sometimes lead to degraded
performance on specific data points, likely due to the failure
to learn stable features.

4.3. Attack Strength and Monotonicity

On the other hand, AT exhibits more monotonic behavior, as
shown in Figure 3. This behavior becomes more pronounced
with larger €, showing a positive correlation between the e
used for AEs and monotonicity. However, this also presents
a trade-off between monotonicity and hardness. This learn-
ing dynamic could be considered a desired behavior if we
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Figure 2. Point Categories Distribution: The distribution of point
categories for models trained with Natural Training (NT) on the
CIFAR-10 (left) and CIFAR-100 (right) datasets.

had not observed an overall performance degradation, as it
also indicates less overconfident predictions. Similar to Sec-
tion 4.1, we desire to use a large attack strength € in practice
both for adversarial robustness and to gain the benefits of
monotonicity in learning dynamics. In Section 5, we discuss
this matter and address this gap by using synthesized data.

4.4. CIFAR10-Neg

According to Miller et al. (2021), there is a strong pos-
itive correlation between out-of-distribution (OOD) per-
formance and in-distribution (ID) performance for a wide
range of models and distribution shifts. However, Kaplun
et al. (2022) challenged this assumption by using learning
profiles to create a dataset called CIFAR-10-NEG, which
negatively correlated with accuracy on the CIFAR-10 test,
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Figure 3. Attack Strength and Monotonicity: The percentage of categories for CIFAR-10 (left) and CIFAR-100 (right) using NT and
AT with varying perturbation strengths (€). Increasing attack strength correlates with more monotonic behavior, indicating a positive
correlation, but also highlights a trade-off between hardness and monotonicity.

thereby showing a reverse correlation between ID and OOD
performance for the first time. This dataset, a subset of
CINIC-10 (Darlow et al., 2018) samples with the highest
non-monotonicity score, revealed intriguing learning dy-
namics where the models’ performance initially improves
up to 60% but then starts to decline to 20% as the overall
performance on the ID set continues to improve.

Figure 4 shows our analysis of evaluating a collection of NT
and AT models on CIFAR-10-NEG dataset. We observed
two phases of accuracy evolution. In the first phase, consis-
tent with (Kaplun et al., 2022), we observe a rise and decline
in performance on CIFAR-10-neg until it reaches about 25%
accuracy. However, in the second phase, as we continue
further training, we see a rise in performance again, though
lower than its peak in the first phase. Our analysis shows a
complementary observation to (Kaplun et al., 2022), and we
speculate the second rise in performance is due to training
models until convergence.

Despite these complementary results, we tested AT models
and observed a trend of more stable performance improve-
ment. Larger e values used for AEs led to gains in both sta-
ble accuracy improvement on CIFAR-10-NEG and higher
accuracy overall. This supports our insight that AEs provide
a dynamic improvement for learning stable features that can
enhance both robustness and generalization.

5. Benefit of Synthesized Data on AT

Thus far, our observations indicate that incorporating ad-
versarial examples results in less overconfident predictions
due to higher entropy (Section 4.1) and more monotonic
learning behavior (Section 4.2). However, as previously
mentioned, increasing the attack strength € in AT leads to
an overall performance drop, despite increasing robustness.
This issue poses a limitation to the practical usage of AT. For
example, Kireev et al. (2021) highlights the potential of AEs
in enhancing out-of-distribution (OOD) generalization of
models on common data corruptions in CIFAR-10-C. How-
ever, they demonstrated a trade-off between attack strength
and improvement gain. Notably, for this dataset, the optimal
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Figure 4. CIFAR-10-NEG: Performance evaluation of NT and AT
models on the CIFAR-10-NEG dataset. It illustrates two distinct
phases of accuracy evolution. In Phase 1, for NT, there is a rise
and subsequent decline in performance consistent with (Kaplun
et al., 2022). In Phase 2, performance increases again but remains
lower than the initial peak, showing complementary results. On
the other hand, for AT models, larger € values result in consistent
performance improvement, showing more stable behavior.

benefit is achieved with a small € value of 1/255. However,
this is significantly smaller than the commonly used e value
of 8/255 for building robust models.

The performance drop associated with higher e values has
been extensively studied in the literature, with robust over-
fitting identified as the primary issue (Yu et al., 2022). In-
creasing attack strength exacerbates this problem. Various
approaches have been developed to mitigate robust overfit-
ting, but one of the most promising solutions is the use of
synthesized or generated data (Gowal et al., 2021; Wang
et al., 2023; Bartoldson et al., 2024), which effectively in-
creases the number of training samples.

In our study, we leverage synthesized data generated by
diffusion models provided by (Wang et al., 2023). Our
experimental setup remains consistent, with each training
batch comprising half original dataset samples and half gen-
erated data. This method incurs no additional computational
overhead since the training process is conducted over a fixed
number of batches per epoch. For the rest of the settings,
we followed our initial setup mentioned in Section 3.

Figure 5 illustrates the benefits of synthesized data in en-
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Figure 5. CIFAR-C Datasets. Accuracy of NT and AT models on CIFAR-10-C (left) and CIFAR-100-C (right) at various € levels. AT
models with synthesized data (blue line) consistently outperform those with original data (red line), especially at higher € values. NT
models (light green and dark green dashed lines) show slight improvements with synthesized data. Synthesized data effectively mitigates
robust overfitting in AT, enhancing robustness and generalization. Further details on individual corruptions can be found in Appendix C.

hancing the performance of AT models on CIFAR-10-C and
CIFAR-100-C. These datasets are extensions of CIFAR-10
and CIFAR-100, respectively, designed to evaluate model
performance on common image corruptions. They consist
of test set images processed with 19 different types of cor-
ruptions, such as noise, blur, weather effects, and digital
distortions, applied at five levels of severity.

We do not observe significant performance improvements
when using synthesized data for NT, with almost no en-
hancement on CIFAR-10-C and only a slight improvement
on CIFAR-100-C. However, AT benefits greatly from syn-
thesized data, showing substantial improvements over both
NT and AT with original data. Notably, with synthesized
data, we can use larger € values for AEs, resulting in more
robust models while maintaining high accuracy on corrupted
data. This suggests that mitigating robust overfitting with
additional data is particularly effective, allowing us to create
models that not only remain robust but also enhance gener-
alization. This opens new possibilities for developing more
reliable models for real-world applications.

6. Related Work

Adversarial Training and Examples Adversarial Train-
ing (AT), is the standard for enhancing neural network ro-
bustness against adversarial examples (AEs) (Goodfellow
et al., 2014). Subsequent research has refined AT, devel-
oping stronger attacks and defenses (Madry et al., 2017;
Zhang et al., 2019). However, using synthesized data in AT
is a promising solution to mitigate robust overfitting and
improve robustness (Gowal et al., 2021; Wang et al., 2023;
Bartoldson et al., 2024). Beyond robustness, AEs have also
been used to enhance model performance. Xie et al. (2020)
showed that augmenting training data with AEs improves
image recognition accuracy. Similarly, Rebuffi et al. (2023)
and Alhamoud et al. (2022) found that AEs boost general-
ization. This dual use of AEs highlights their potential for
developing more resilient and generalizable models.

Example Difficulty Quantifying sample difficulty is cru-
cial for improving model performance and interpretability
(Baldock et al., 2021; Cui et al., 2023a). For example, Cui
et al. (2023a) show that by penalizing overconfident pre-
dictions based on sample difficulty, we can enhance model
accuracy. One simple approach is entropy estimation from
information theory, which measures prediction uncertainty
and provides insights into model difficulty (Shannon, 2001;
Wang et al., 2016; Sorscher et al., 2022; Simsek et al., 2022).
Another approach is the pointwise framework of learning
by Kaplun et al. (2022), which evaluates the performance
of models on individual data points and introduces learning
profiles that can be used to measure difficulty.

7. Conclusion & Discussion

We explored the impact of adversarial examples on the learn-
ing dynamics of neural networks, focusing on both robust-
ness and generalization. Our findings indicate that Adver-
sarial Training (AT) leads to more stable learning dynamics
compared to Natural Training (NT), resulting in gradual
performance improvements and less overconfident predic-
tions. This suggests that AT encourages models to focus on
more both resilient and generalizable features. We identified
a trade-off between adversarial robustness and generaliza-
tion gains, primarily due to robust overfitting, which limits
the practical deployment of AT. To address this issue, we
used synthesized data into the training process. Our results
demonstrated that AT benefits significantly from extra data,
which enhances generalization without compromising ro-
bustness. This approach offers new avenues for developing
robust and generalizable models for real-world applications.

Future work should extend the use of synthesized data to
other types of out-of-distribution (OOD) tasks to validate its
effectiveness across different scenarios. Additionally, test-
ing our findings with other variations of adversarial training
could provide deeper insights and further optimize the bal-
ance between robustness and generalization.
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Impact Statement

Adversarial examples pose significant challenges to neu-
ral networks, undermining their reliability in critical appli-
cations like autonomous vehicles and healthcare. While
Adversarial Training (AT) has been effective in enhancing
model robustness, it often compromises generalization capa-
bilities. Our study addresses this tradeoff by incorporating
publicly available synthesized data, enabling the develop-
ment of models that are both robust and generalizable. This
improvement is vital for ensuring the safety and reliability of
Al systems and accelerating the adoption of Al technologies
for a safer society.
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A. Point Categories

We provide additional details on the point categories identified in the Figure 6. The learning profiles depicted in Figure 6
represent the behavior of models on specific data points across various stages of training. These profiles help to categorize

data points into four types:

Easy Points: These are points that models can learn to classify correctly very early in the training process. Even
models with lower overall accuracy perform well on these points.

Hard Points: These points are challenging for models to classify correctly. High-accuracy models still struggle with
these points, indicating inherent difficulty in learning from these examples.

* Monotone (Compatible) Points: These points show a clear trend where the performance of models improves
consistently with more training. The accuracy on these points generally follows the global accuracy trend of the model.

* Non-Monotone Points: For these points, the performance does not follow a consistent pattern. In some cases,
higher-accuracy models might perform worse on these points, and improvements are not straightforward as training

progresses.
These categories provide insights into the behavior of models on individual data points, offering a more nuanced understand-
ing of model performance beyond aggregate metrics.

Category: Easy Category: Hard

1.00 airplane bird deer  mmm frog s ship 1.00 airplane bird deer mmm frog - ship “
automobile cat dog [ horse W truck automobile cat dog W horse W truck
N 4 ™
0.75 0.75
> >
= =
a a
®0.50 2050
e o
a [
0.25 0.25
0.00 0.00
20 40 60 20 40 60
Steps Steps
Category: Monotone Category: Non-Monotone
1.00 airplane bird deer w frog - ship 1.00 airplane bird deer mn frog - ship
automobile cat dog W horse W truck automobile cat dog W horse  mmm truck
0.75 0.75

Probability

o

w

o

Probability

=]
w
o

o
N
%]
*
=]
N
v

0.00
20 40 60 80 100 20 40 60

Steps Steps

80

0.00

Figure 6. Learning Profiles: The figure illustrates the learning profiles of four distinct categories of data points: Easy, Hard, Monotone
(Compatible), and Non-Monotone. The width of each color represents the probability assigned to the corresponding class. Top Left:
Easy points where models quickly achieve high accuracy. Top Right: Hard points where models struggle to achieve high accuracy even
with extensive training. Bottom Left: Monotone points where performance consistently improves with more training steps. Bottom
Right: Non-Monotone points where performance varies irregularly with more training steps, sometimes decreasing despite overall model

improvements.



Adversarial Training with Synthesized Data: A Path to Robust and Generalizable Neural Networks

B. Assigning Samples to Categories

In the Pointwise Framework of Learning introduced by Kaplun et al. (2022), data points are categorized based on their
learning profile. To assign each data point to a category, we monitor the performance drops of models on that data point
throughout the training process from one step to another. If the amount of drop in performance exceeds a certain threshold,
the data point is categorized as “non-monotone,” indicating irregular performance where higher accuracy models might
perform worse on these inputs. For data points that do not exhibit significant performance drops, we compare their learning
profiles to predefined profile templates. These templates are as follows: “easy” points have consistently high performance
(denoted by p = 1), “hard” points have consistently low performance (denoted by p = 0), and “compatible” points have
performance that tracks the global average accuracy of the models (denoted by p = ¢, where c is the confidence of the
model’s prediction for the true class). By matching the data point’s learning profile to these templates, we can classify it into
the most similar group, providing a nuanced understanding of model performance on individual data points.

import numpy as np

3 def point_category(avg_accuracies, avg_y_hats, y, threshold):
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14 # Calculate the total confidence drop
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20 if total_confidence_drop > threshold:

2 return ’‘non-monotone’

22
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25 ’easy’: (np.ones_like (confidences) - confidences).sum(),
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4L ona
i ASs

return min(distances, key=distances.get)

as the one with the minimum distance

gn the ca




Adversarial Training with Synthesized Data: A Path to Robust and Generalizable Neural Networks

C. CIFAR10-C and CIFAR-100-C Individual Corruptions

Figures 7 and 8 show the accuracies of NT and AT models for different corruption types for CIFAR-10-C and CIFAR-100-C,
respectively, showing the significant benefit of synthesized data for AT.
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Figure 7. CIFAR10-C Dataset: Individual corruptions accuracies of NT and AT models on CIFAR-10-C at various € levels.
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Figure 8. CIFAR100-C Dataset: Individual corruptions accuracies of NT and AT models on CIFAR-100-C at various ¢ levels.



