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ABSTRACT

Many of the existing deep learning methods are trained for scenarios which: (1)
use (costly) fine-tuning of the latent spaces on the target dataset in the ”down-
stream task” (2) do not account for continual and open-set learning (3) do not
provide interpretability. Instead of trying to solve the problem of semi- and un-
supervised learning through representation learning, we propose recasting it into
the problem of analysing existing foundational models’ feature spaces. We show
that a simple baseline, based on non-parametric clustering analysis of the latent
feature spaces and pre-trained classifiers on large-scale datasets, can help solve a
set of such problems even without finetuning. It can also be seen as a set of met-
rics for assessment of generalisation within the latent feature spaces. We argue
that better generalising pre-trained architectures can solve a number of problems
without finetuning, providing the basis for lifelong learning without catastrophic
forgetting and with a means of interpretation.

1 INTRODUCTION

Development of new methods for machine learning is often based on large datasets trained offline,
often with supervised labels. To make it work for semi- and unsupervised learning scenarios, many
works use the representation learning techniques involving finetuning of the feature space, Rao et al.
(2019). However, this approach has a number of limitations:

1. it does not explicitly take into account the continually evolving data stream cases
2. such finetuning does not provide multi-task generalisation of already existing features
3. this approach does not account for interpretability

We show that one could build upon the latent spaces of classifiers, such as SWAG-ViT (Dosovitskiy
et al. (2021); Singh et al. (2022)), trained on large amounts of data, to handle continually evolving
data streams in an unsupervised or semi-supervised way, while providing interpretability through
prototypes. The proposed approach constitutes a simple baseline showing competitive performance
against existing continual learning methods. The proposed analysis suggests that with a generic
enough feature space one could perform continual learning using only shallow learning techniques,
such as clustering, within the pre-trained latent spaces without finetuning.

The list of the contributions of the paper include:

• We demonstrate that without any finetuning, clustering of latent representations of foun-
dation models, such as ViT, can competitively solve a range of well-known problems in a
unified framework: unsupervised clustering, few-shot learning, unsupervised domain adap-
tation and continual learning

• The proposed set of evaluations can serve as a simple baseline for quantifying generalisa-
tion without finetuning of the vision transformer models to a range of downstream tasks

Therefore, we argue that with the advancement of foundation models, improvements in semi- and
unsupervised learning methods can shift from end-to-end training toward clustering and decision
making over the foundation models’ latent space. One may also suggest that the proposed frame-
work can help solve other tasks such as reinforcement and collaborative learning. Furthermore, such
scheme, through its simplicity, provides interpretability-through-prototypes (Chen et al. (2019); An-
gelov & Soares (2020)); therefore it would help improve the analysis of decision making and give
the problem owners agency to shape up and analyse the desired solution.
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Figure 1: The overall scheme of the proposed framework (with examples from Stanford Cars dataset
(Krause et al. (2013))

The proposed methodology, presented in Figure 1, involves three stages:

• extracting the latent (foundation) feature space;

• performing clustering within it;

• post-processing of the clustering results to make the overall prediction.

We show that such simple baseline, with a number of parameters multiple orders of magnitude
smaller than the number of parameters of the foundation models with a clear interpretability, can
solve a range of problems of unsupervised and weakly supervised learning without the need in fine-
tuning of the feature space assuming the latter one has good generalisation.

2 RELATED WORK

Unsupervised and semi-supervised learning The problems of unsupervised and semi-supervised
learning take many forms. They are often solved end-to-end, by jointly performing representa-
tion learning and solving the target task. Recently, the vision transformer models (ViTs) (Doso-
vitskiy et al. (2021)) leveraged self-supervised representation learning (Mo et al. (2023)). In this
work, we take advantage of such learnt representations and believe that further advantages in self-
supervised training can capitalise upon this approach. Our focus, however, is to use the existing
trained representations, both demonstrating their ability to solve multiple tasks without finetuning
in self-supervised way and their ability to facilitate a range of semi-supervised learning methods
such as few-shot and active learning, open set learning, continual learning, unsupervised domain
adaptation between others.

Van Gansbeke et al. (2020) considers the problem of clustering of images, with and without explicit
knowledge of the number of classes. Similar to this work, Van Gansbeke et al. (2020) decouple
(semantically meaningful) representation learning from data clustering and decision making, how-
ever, differently from our proposed approach, both stages in Van Gansbeke et al. (2020) involve
gradient descent based optimisation. Vaze et al. (2021) tackles the problem of open set recognition:
recognising whether the sample is from the known classes or not. The authors suggest that it is pos-
sible to use existing classifiers, as well as that improvement of quality of prediction in the closed-set
scenario is correlated with the accuracy for the open-set recognition. Galil et al. (2023) considers
a similar problem of out-of-distribution data detection, and uses well-known architectures such as
ViT.

Unsupervised domain adaptation Peng et al. (2019) describes the problem of unsupervised do-
main adaptation: given the labelled model trained on one domain, is it possible to transfer, without
labels, such model to a different domain representing similar data. In other words, can the model,
which is capable of classifying photos of objects, be altered, without any further labels, to classify
hand drawings of objects of the same classes? This work is followed up by other works solving the
same task such as Dinu et al. (2023).
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Continual learning Buzzega et al. (2020) consider the problem of general continual learning,
which is a scenario where there are no defined task boundaries, and instead there is gradual distribu-
tion shift. Rajasegaran et al. (2020) considers a problem of learning multiple tasks in a task-agnostic
setting (the tasks themselves are not revealed and predicted instead). Madaan et al. (2022) is centred
around the problem of unsupervised continual learning in face of data shift, as well as the related
problem of few-shot learning and out-of-distribution classification with k nearest neighbours.

Visual Transformers Building upon the applications of the attention models to the natural lan-
guage processing (Vaswani et al. (2017)), vision transformers (Dosovitskiy et al. (2021)) allowed not
only to improve the performance but also provide generalisation capabilities (Zhang et al. (2022)).
A substantial amount of literature is devoted to the aspects of pretraining (Singh et al. (2022)), ar-
chitecture design (Liu et al. (2021)), unsupervised representation learning (Oquab et al. (2023)), and
task-specific finetuning of vision transformers Dai et al. (2021). Chen et al. (2021) explored the
impact of the ViT architecture on supervised learning in setting comparable to ResNets.

Transformer Adapters Similar yet different idea to the proposed paper is to use transformer
adapters. Such models build the task-specific architecture for problems such as multitask learning
Bhattacharjee et al. (2023) and dense prediction Chen et al. (2022) on top of fixed internal represen-
tation of the existing transformer models. While the challenge of transformer adapters is to train the
model on top of the transformers which would effectively solve aforementioned new tasks, this work
addresses the question of what tasks can be solved through existing trained vision transformers.

Transparency and Interpretability The pursuit of analysis of existing deep learning models has
led to a number of methods targeting aspects of transparency such as ante hoc, by-design, inter-
pretability and post hoc explainability. The former has been manifested by the interpretable-through-
prototype methods such as ProtoPNet (Chen et al. (2019)) and xDNN (Angelov & Soares (2020)),
as well as explainable architectures such as B-cos (Böhle et al. (2022)). The latter has widely used
methods based on the sensitivity analysis for the input data, such as GradCAM (Selvaraju et al.
(2017)) and Simonyan et al. (2014).

Clustering Majority of the clustering methods and techniques were established decades ago and
include such methods as k-means (MacQueen et al. (1967)), DBSCAN (Ester et al. (1996)) between
others. Many of these methods have one or more limitations concerning streaming data clustering,
scalability and problem-specific parameters such as the number of clusters or thresholds required.
Bayesian non-parametric methods for clustering, Ferguson (1973), provide an established tool for
streaming data clustering and can help circumvent the need to specify the number of clusters. How-
ever, a number of existing approaches does not provide solutions which are scalable enough to
handle large data sample and dimensionality, Zuanetti et al. (2019); Ni et al. (2020).

To take into account the geometric nature of the problem, the methods such as kernel spectral clus-
tering, Socher et al. (2011) have taken advantage of the kernel spaces. However, despite appealing
theoretical properties and ability to detect the number of clusters, the main problem with such meth-
ods are: restrictive cluster models (i.e., assumption of cluster data distributions such a Gaussian may
not work well for extremely high-dimensional data), as well as long inference time and exhaustive
search for cluster candidates in an online clustering scenarios.

In this work, k-means is used as a baseline in offline clustering tasks, and the simple geometric
clustering technique, described in Section 3.1.1, is used for on- and offline clustering.

3 METHODOLOGY

In the following, two distinct problem statements for clustering of latent spaces are formalised:
offline and online clustering.

First, let us define the notations. Consider a Hilbert space X with an inner product k(·, ·). In this
vector space, let us consider a finite sequence of input vectors X ⊂ X with a cardinality NX . In
accordance with the clustering procedure, each of the vectors from X is assigned a cluster from a
set C = {1 . . . NC} according to the assignment function c, where NC may or may not be known.
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Offline clustering The formalisation of the offline clustering of the aforementioned Hilbert space
is built upon Socher et al. (2011). A (dis)similarity matrix K ∈ RNX×NX for the input vectors
X is introduced. The problem is, based on the matrix K and subject to hyperparameters θ of the
algorithm, to infer the number of clusters NC and the cluster assignment function c.

Online clustering In this case, a streaming data inputXn = {x1,x2, . . .xn} is considered, where
the data are coming one-by-one, with the model updating the clustering for the data while the data
are arriving. Only order-independent clustering is considered where for any fixed n the number of
clusters NC and the cluster assignment function c is invariant to the permutation of Xn.

3.1 METHODS

3.1.1 ONLINE CLUSTERING

While there are many clustering methods, many of them do not satisfy the following desiderata:
(1) online learning for streaming data (2) fast, non-iterative, updates for online learning (3) being
non-parametric, especially with no need to specify the number of clusters. The few existing methods
which satisfy such desiderata, such as ELM (Baruah & Angelov (2012)), use assumptions over the
ellipsoid shape of data clusters which may not be efficient for high-dimensional spaces, and therefore
we decided that simpler baseline is needed for our evaluation.

We interpret the problem of clustering as finding a solution to the following combinatorial problem:
find such partition of data that a point belongs to a cluster if and only if its distance to the closest
point of this cluster is less than the minimum distance to any point belonging to the other cluster.
Such simple baseline clustering method, in an on- and offline variants, is described in Algorithms
1 and 2, respectively. In these algorithms, we consider WeaklyConnectedComponents to be
a function returning weakly connected component identifiers per datum C as well as a number of
such connected components. In the online case, UpdateWeaklyConnectedComponents is
an online version of WeaklyConnectedComponents (solving dynamic connectivity problem
Henzinger & Fredman (1998)). In the worst case scenario of the former being coincident with
the latter, its complexity is O(N) (which we use in our experiments). Holm et al. (2001) report,
however, a more efficient, polylogarithmic, complexity for the solution of this problem. We justify
use of such baseline by comparing it in the experimental section on the offline tasks, where possible,
with k-means, and showing that this method is a simple, competitively performing nonparametric
clustering method.

Data: X = {x1,x2, . . .xn} ; distance d(·, ·)
Result: Clustering C, number of clusters NC
C ← ∅;
E0 ← ∅#edges;
for i ∈ [1 . . . n] do
E i = E i−1 ∪ (xi,xargminj ̸=i∈[1...(i−1)]d(xi,xj));

end
C, NC ← WeaklyConnectedComponents (G(X , En));

Algorithm 1: Batch clustering algorithm (offline)

Data: X = {x1,x2, . . .xn} ; distance d(·, ·)
Result: Clustering C, number of clusters NC
C ← ∅;
E0 ← ∅#edges;
for i ∈ [1 . . . n] do
E i = E i−1 ∪ (xi,xargminj ̸=i∈[1...(i−1)]d(xi,xj));
Ci, NCi ← UpdateWeaklyConnectedComponents
(Ci−1, NCi−1 ,X i−1, E i−1,G(X i, E i));

end
Algorithm 2: Clustering algorithm (online)
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3.1.2 CLUSTERING AND OPEN SET RECOGNITION

We address the open set problem presented in Vaze et al. (2021): assigning the new data into the
existing classes or into the none-of-the-above category. The samples which have no class label are
considered outliers and assigned an ’unknown’ label. Consider the clustering C = {c1, c2, . . . cN}.
For each cluster c with the points xc

i , i ∈ {1, . . . , nc}, we use Gaussian kernel density estimation
(see Figure 2) as per Parzen (1962), where ΘK are the kernel parameters:

f c(x) =
1

nc

nc∑
i=1

K(x− xc
i |ΘK), (1)

We compute the outliers by thresholding the maximum density value across all clusters.

3.1.3 CLUSTERING AND UNSUPERVISED DOMAIN ADAPTATION

Figure 2: Clustering and Open Set
Recognition

We consider the following setting for the task: the training
of the model is performed in a few-shot learning setting in the
source domain, where only the labels of the prototypes close to
the cluster centre are selected (see the implementation in Sec-
tion 4.2); in the destination domain, only unsupervised learn-
ing is carried out (See Figure 3). We match these two clus-
terings of the source and target domains, CS and CT , by the
means, and assign the source domain’s cluster label to the tar-
get cluster:

∀c2 ∈ C2 CLASS(c2) = CLASS(argmin
j

l2(µ(c1j ), µ(c
2))), (2)

where µ is the cluster mean operator, and CLASS is the operator of cluster’s assigned class label.

4 EXPERIMENTS

Figure 3: Unsupervised do-
main adaptation

We conduct experiments on tasks such as unsupervised, contin-
ual and few-shot learning, unsupervised domain adaptation, and
demonstrate that, in many cases, the methods achieve competitive
generalisation without finetuning. For the experimental conditions
see Appendix A.

4.1 UNSUPERVISED OFFLINE LEARNING

This setting involves clustering of the training, testing and both
folds of the datasets without any knowledge of labels, except for
the number of classes. The results in Table 1 and explanded results
in Table 5 (Appendix) are presented for CIFAR-10, CIFAR-100,
Stanford Cars and Oxford-IIIT Pets. We also present, for the ref-
erence, the baseline of the purpose-trained ResNet networks (He
et al. (2016)). We evaluate the accuracy by using the Hungarian
algorithm (Egerváry (1931)), following the procedure described in
Appendix A.1. For this simple experiment, we assume the known
number of clusters, coincident with the number of classes, and report the results on the training,
testing and both folds. We see that the results between different folds do not differ much, while
the choice of architecture (using of larger architectures and/or finetuning on ImageNet-1K) makes a
substantial difference, with finetuned on ImageNet-1K (and not on a target dataset) results giving,
notably, over 97% on CIFAR-10 without any label information and 91% on Oxford-IIIT Pet.

1From https://github.com/weiaicunzai/pytorch-cifar100
2From https://github.com/matkalinowski/EfficientNet-on-Stanford-Cars-Dataset
3From https://github.com/matkalinowski/EfficientNet-on-Stanford-Cars-Dataset
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FE method accuracy, training/testing/both (%)
CIFAR-10

VIT-H/14 (SWAG) k-means 81.66± 7.40 / 85.18± 7.42 / 88.89± 6.28
VIT-H/14 (SWAG+IN1K) k-means 97.05± 0.00 / 97.03± 0.03 / 97.06± 0.00

SCAN Van Gansbeke et al. (2020) SCAN 87.6± 0.4 (testing)
ResNet-110 (He et al. (2016)) - 93.39± 0.16 (testing)

CIFAR-100
VIT-H/14 (SWAG) k-means 55.85± 0.74 / 54.40± 1.48 / 55.08± 0.77

VIT-H/14 (SWAG+IN1K) k-means 71.94± 0.86 / 72.10± 0.96 / 72.80± 0.42

RESNET-152(He et al. (2016))1 - 77.69 (testing)
Stanford Cars

VIT-H/14 (SWAG) k-means 44.76± 0.57 / 44.12± 0.52 / 44.64± 0.66
VIT-H/14 (SWAG+IN1K) k-means 48.55± 0.76 / 48.42± 0.85 / 49.24± 0.63

RESNET-152(He et al. (2016))2 - 77.8 (testing)
Oxford-IIIT Pet

VIT-H/14 (SWAG) k-means 87.55± 2.79 / 86.10± 2.56 / 87.62± 2.47
VIT-H/14 (SWAG+IN1K) k-means 90.35± 2.05 / 91.59± 1.21 / 91.01± 2.45

RESNET-152(He et al. (2016))3 - 94.5 (testing)

Table 1: Clustering results (CIFAR10&100, Stanford Cars/Oxford-IIIT Pet); SWAG denotes weakly
supervised SWAG (Singh et al. (2022)), IN1K denotes finetuning on ImageNet-1K (5 runs), number
of clusters exactly matches the number of classes, ResNet models are a supervised learning baseline

FE method clusters accuracy (training/testing) (%)
CIFAR-10

VIT-H/14 (SWAG) k-means 200 95.31± 0.20 / 95.15± 0.16
VIT-H/14 (SWAG) k-means 10 84.26± 6.06 / 81.41± 4.85
VIT-H/14 (SWAG) batch 4092 96.66 / 96.40

VIT-H/14 (SWAG+IN1K) k-means 200 96.42± 0.17 / 96.54± 0.13
VIT-H/14 (SWAG+IN1K) k-means 10 97.05± 0.00 / 93.62± 0.00
VIT-H/14 (SWAG+IN1K) batch 5896 97.67/97.05

CIFAR-100
VIT-H/14 (SWAG) k-means 2000 72.66± 0.36 / 71.01± 0.50
VIT-H/14 (SWAG) k-means 100 55.35± 0.62 / 54.77± 0.64
VIT-H/14 (SWAG) batch 4029 72.95 / 73.31

VIT-H/14 (SWAG+IN1K) k-means 2000 80.72± 0.11 / 80.46± 0.12
VIT-H/14 (SWAG+IN1K) k-means 100 72.52± 0.84 / 72.97± 0.60
VIT-H/14 (SWAG+IN1K) batch 6313 84.28 / 81.84

Table 2: Few shot active learning results (CIFAR-10 and CIFAR100); SWAG denotes weakly super-
vised SWAG (Singh et al. (2022)) pretraining, IN1K denotes finetuning on ImageNet-1K

4.2 FEW-SHOT ACTIVE LEARNING

For the few-shot learning task, we select, for each cluster centroid, the closest real example. We
assume that for these examples we can request labels. The results in Table 2, expanded in Tables
6 and 7, show substantial improvement in performance comparing to the unsupervised learning in
the previous section: while the best results for CIFAR-100 reach 84% in this setting, one can get
only 72% in the clustering scenario. When taking into account the number of clusters, however, the
equivalent one-shot active learning scenario yields comparable 72.97% accuracy against 72.80% in
the unsupervised case. Hereafter we refer to the implementation of Algorithm 1 as ’batch’.
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no f/t, 1 task at a time no f/t, 10 tasks at a
time

f/t on IN1K, 1 task at a
time

f/t on IN1K, 10 tasks at
a time

CIFAR-100

Oxford-IIIT Pet

FGVC-Aircraft

Figure 4: Online learning, ViT-H/14, f/t=finetuning, run on five randomly shuffled sequences

4.3 WEAKLY-SUPERVISED TASK AGNOSTIC CONTINUAL ACTIVE LEARNING

Following the experimental setting from Rajasegaran et al. (2020) and using Algorithm 2 for online
clustering, we provide the continual learning results in Figure 4. The end performance, by design of
the online algorithm, exactly coincides with the corresponding batch results as per Section 4.2. We
present additional testing scenarios in Appendix E. For CIFAR-100, the model with a task increment
of ten achieves 81.84%, while the incremental learning iTAML model, using a reduced version of
ResNet-18 (ResNet-18(1/3)) and gradient descent based incremental learning method, achieves 78%
according to Figure 6 of Rajasegaran et al. (2020). The naı̈ve finetuning in the same scenario gives
circa 12% (Rajasegaran et al. (2020)). This results support the hypothesis that it is possible to match
the performance of the best purpose-built existing continual learning methods by using the fixed
feature space without finetuning, if such feature space (such as ViT-H/14) is rich enough.

4.4 OPEN-SET RECOGNITION

The results in Table 3 compare the open-set recognition method, described in Section 3.1.2, to the
baselines according to Vaze et al. (2021). We notice that, consistently with the few-shot and online
learning results, described in Sections 4.1 and 4.2, the results on both closed and open set are worse
for the fine-grained classification problems, which is especially noticeable for the FGVC-Aircraft
data. As detailed in Appendix A.2, we employ the same split as per Vaze et al. (2021): the accuracy
is reported for the closed set, AUROC and OSCR are reported on easy / medium&hard open classes.

4.5 UNSUPERVISED DOMAIN ADAPTATION

We reproduce the experiment setting from Peng et al. (2019), with the precise experimental details
described in Appendix A. Our scenario differs from Peng et al. (2019) in that the model is only fitted
on the source domain in a few-shot active learning setting as per Section 4.2, where only selected
examples of the data from multiple domains are labelled, in order to analyse the model’s ability
to work in a semi-supervised setting. Domain adaptation is implemented according to the method
described in Section 3.1.3. The results for the experimental setting, which uses the DomainNet
dataset and batch clustering, are presented in Table 4; further examples, using ViT-H/14 without
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Task Method closed set
acc. (%) AUROC OSCR

CUB
Welinder et al. (2010)

ARPL+(from Vaze et al. (2021)) 85.9 83.5/75.5 76.0/69.6
MLS(from Vaze et al. (2021)) 88.3 88.3/79.3 79.8/73.1

proposed 92.35 88.95/75.84 79.22/68.72

Stanford Cars
Krause et al. (2013)

ARPL+(from Vaze et al. (2021)) 96.9 94.8/83.6 92.8/82.3
MLS(from Vaze et al. (2021)) 97.1 94.0/82.2 92.2/81.1

proposed 85.23 76.87/71.03 62.06/57.62

FGVC-Aircraft
Maji et al. (2013)

ARPL+(from Vaze et al. (2021)) 91.5 87.0/77.7 83.3/74.9
MLS(from Vaze et al. (2021)) 91.7 90.7/82.3 86.8/79.8

proposed 37.54 63.97/51.08 24.12/18.77

Table 3: Open set task performance (batch clustering, VIT-H/14, SWAG pretrained on ImageNet1K),
the # of clusters is 437, 707 and 506 for CUB, Stanford Cars, and FGVC-Aircraft respectively

clp inf pnt qdr rel skt avg best baseline avg oracle
clp 79.72 62.71 66.01 44.88 71.75 70.73 63.21 24.1 71.0± 0.63
inf 37.24 50.12 32.73 25.51 38.55 36.08 34.02 20.2 36.1± 0.61
pnt 62.75 56.00 74.03 37.48 65.75 62.06 56.81 26.0 68.1± 0.49
qdr 12.24 9.37 8.61 35.19 9.91 12.61 10.55 9.3 69.1± 0.52
rel 77.49 71.51 74.08 43.04 87.29 75.73 68.37 27.2 81.3± 0.49
skt 61.00 53.30 58.00 37.26 59.72 70.00 53.86 24.2 65.2± 0.57
avg 50.14 50.58 47.89 37.63 49.14 51.44 47.80 21.9 65.1± 0.55

Table 4: Unsupervised domain adaptation, ViT-H/14, finetuned on ImageNet1K (columns denote
source domains, and rows denote target domains), the oracle values are taken from Peng et al.
(2019) for ResNet-152, best baseline is MCD (Saito et al. (2018)), taken from Peng et al. (2019)

finetuning and k-means clustering, are presented in Appendix D. It contains six domains (namely
sketch (ske), real (rel), quickdraw (qdr), painting (pnt), infograph (inf), and clipart(clp)) , each split
into the same 345 categories of common objects. As we demonstrate further in Section 4.6, not only
the method performs much better in scenarios of single domain adaptation from Peng et al. (2019), it
also can demonstrate, through the interpretation mechanism, justification for decision making. The
oracle baseline corresponds to the setting of supervised training on the target domain.

4.6 ANALYSIS OF INTERPRETABILITY

We demonstrate that not only the method constitutes a strong baseline, but it is also capable of
interpretability through prototypes. Apart from the visual power and appeal to human perception
of the prototypes the method also provides the distance between a query and the nearest prototype
(see Figure 5) which is a numerical estimate of the dissimilarity. For the same latent space, this
numerical estimate can be compared like-for-like between different examples and datasets.

One can see from Figure 5, as well as from Figure 8 in the Appendix, that in many cases, even
for the incorrect classification, the closest examples make semantic sense. In Figure 8a, the model
successfully relates aircraft carriers in different poses, sketched or photographed. The alarm clock
(Figure 8b) recognises the quickdraw prototypes, but struggles to generalise to the sketch prototypes.
Angel quickdraw prototypes (see Figure 5a ) show confusion (in the quickdraw domain) between
similarly-looking angels, spiders and bats. The results are worse for cross-domain examples. The
quickdraw sample in Figure 5b, supposed to be a bat, looks indeed much like an apple. This is
duly reflected by the model outputs. Coffee cup example (see Figure 5c), demonstrates competition
between the coffee cup and the knife prototypes as the image contains both. Seeing the nearest
blueberry example to the real diamond query image (see Figure 5d) helps make sense out of the in-
correct recognition. In the hot tub example (Figure 8c), one can see that the varieties of appearances
of the same objects are shown to have a low distance. The feature space also places closer different
types of light fixtures, as one can see in Figure 8d, in sketch and real domains alike.The limitations
of differentiating between geometric figures such as hexagons and octagons (see Figure 5e suggest
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(a) Angel, recognised incorrectly (testing, sketch → quickdraw), left: sketch, right: quickdraw

(b) Bat, recognised incorrectly (testing, sketch → quickdraw), left: sketch, right: quickdraw

(c) Coffee cup (testing, sketch → real), left: sketch, right: real

(d) Diamond, recognised incorrectly (testing, sketch → real), left: sketch, right: real

(e) Octagon, recognised incorrectly (testing, sketch → quickdraw), left: sketch, right: quickdraw

Figure 5: Interpretability examples (the leftmost images are queries, and the further ones are proto-
types)

that despite generality, textural information often trumps the semantic one. For the dogs scenario on
training data (see Figure 8e, one can see that while the model has sometimes advantage to find the
exact match with the prototypes, it also shows remarkable cross-domain generalisation.

Figure 9 of the Appendix demonstrates that the inferior results for datasets such as Stanford Cars
(Krause et al. (2013)) is caused by difficulty to distinguish between similar fine-grained classes.
While the foundational latent spaces allow remarkable generalisation, they still have limitations of
accuracy on such problems. Therefore, further representation learning refinement is necessary.

5 CONCLUSION

We show that, with just fixed foundational feature representation and an online clustering technique,
one can solve a number of problems such as open set recognition, unsupervised and few-shot learn-
ing, continual learning and unsupervised domain adaptation, in a way that is interpretable through
prototypes. We conclude that while the results are strong on coarse-grained datasets such as CIFAR-
100, they are lagging behind in fine-grained problems such as Stanford Cars and FGVC-Aircraft
(see Table 3). In many cases, however, even though the results are wrong from the benchmark’s
point of view, they still can constitute a plausible answer (see Figures 5 and 9). These problems
have potential to be solved by improvements in fixed representation learning through foundational
feature extractors without finetuning, which becomes, as it is evidenced by the experiments above,
a plausible alternative to finetuning-based continual learning methods. The described methodology
can serve as a benchmark for evaluating such representation learning.
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A EXPERIMENTAL SETUP

We use the pretrained SWAG-ViT (Singh et al. (2022)) models from publicly available repository4.
H/14 (SWAG) model corresponds to the pretrained model with no finetuning. H/14(SWAG+IN1K)
model corresponds to the model finetuned on ImageNet1K. The same convention applies to dif-
ferent variations of SWAG-ViT: ViT-L/16, as well as ViT-B/16. To ensure consistent experimental
environment, for all experiments we use NVIDIA RTX A2000 12GB powered workstation.

sklearn k-means clustering is used. The batch clustering is implemented us-
ing sklearn and pytorch. For the kernel density estimator in Section 4.4, we use
sklearn.neighbors.KernelDensity class with a bandwidth of 0.2.

For the unsupervised (Section 4.1) and few-shot learning (Section 4.2) experiments, we estimate
confidence intervals by running the clustering methods five different times with five different ran-
doms seeds. The proposed batch clustering baseline is deterministic, and therefore the confidence
intervals could not be given.

A.1 HUNGARIAN ALGORITHM EVALUATION OF UNSUPERVISED LEARNING

The evaluation of the unsupervised learning in Section 4.1 is performed using the Hungarian algo-
rithm matching: the cluster identifiers are matched to the ground-truth labels by maximising the sum
of number of samples in the clusters corresponding to the class given unique one-to-one assignment
between the clusters and the classes.

A.2 OPEN SET TRAINING CONDITIONS

We replicate the same open-set evaluation protocol as Vaze et al. (2021). The split of data is the same.
The accuracy is reported for the closed set, AUROC and Open-Set Classification Rate (OSCR) are
reported on easy / medium&hard open classes. OSCR Dhamija et al. (2018) is designed to measure
the trade-off between accuracy and detection rate for varying confidence threshold.

4https://github.com/facebookresearch/SWAG
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FE method accuracy, training/testing/both (%)
CIFAR-10

VIT-B/16 (SWAG) k-means 73.72± 6.97 / 76.29± 3.92 / 74.30± 5.00
VIT-B/16 (SWAG+IN1K) k-means 91.15± 1.68 / 91.56± 1.42 / 91.21± 1.65

VIT-L/16 (SWAG) k-means 81.48± 2.72 / 83.05± 4.92 / 86.04± 6.00
VIT-L/16 (SWAG+IN1K) k-means 89.56± 1.87 /87.42± 2.76 / 89.57± 1.90

VIT-H/14 (SWAG) k-means 81.66± 7.40 / 85.18± 7.42 / 88.89± 6.28
VIT-H/14 (SWAG+IN1K) k-means 97.05± 0.00 / 97.03± 0.03 / 97.06± 0.00

SCAN Van Gansbeke et al. (2020) SCAN 87.6± 0.4 (testing)
ResNet-110 (He et al. (2016)) - 93.39± 0.16 (testing)

CIFAR-100
VIT-B/16 (SWAG) k-means 44.09± 0.49 / 43.48± 0.70 / 43.64± 0.28
VIT-L/16 (SWAG) k-means 55.36± 1.25 / 53.20± 1.15 / 54.53± 1.17

VIT-L/16 (SWAG+IN1K) k-means 68.06± 1.42 / 67.88± 0.91 / 68.09± 0.87
VIT-H/14 (SWAG) k-means 55.85± 0.74 / 54.40± 1.48 / 55.08± 0.77

VIT-H/14 (SWAG+IN1K) k-means 71.94± 0.86 / 72.10± 0.96 / 72.80± 0.42

RESNET-1525 - 77.69 (testing)
Stanford Cars

VIT-H/14 (SWAG) k-means 44.76± 0.57 / 44.12± 0.52 / 44.64± 0.66
VIT-H/14 (SWAG+IN1K) k-means 48.55± 0.76 / 48.42± 0.85 / 49.24± 0.63

RESNET-1526 - 77.8
Oxford-IIIT Pet

VIT-H/14 (SWAG) k-means 87.55± 2.79 / 86.10± 2.56 / 87.62± 2.47
VIT-H/14 (SWAG+IN1K) k-means 90.35± 2.05 / 91.59± 1.21 / 91.01± 2.45

RESNET-1527 - 94.5 (testing)

Table 5: Clustering results (CIFAR10&100, Stanford Cars/Oxford-IIIT Pet); SWAG denotes weakly
supervised SWAG (Singh et al. (2022)), IN1K denotes finetuning on ImageNet-1K (5 runs), number
of clusters exactly matches the number of classes

B EXPANDED CLUSTERING RESULTS

We present the expanded clustering results in Table 5.

C EXPANDED RESULTS ON FEW SHOT ACTIVE LEARNING

We present additional results for few shot active learning in Table 6

D EXPANDED RESULTS ON UNSUPERVISED DOMAIN ADAPTATION

In Tables 8 and 9, we present further results on the problem of unsupervised domain adaptation.

E FURTHER RESULTS ON ONLINE LEARNING

In Figures 6 and 7, we present further results on online learning.

F FURTHER INTERPRETABILITY EXAMPLES

Further interpretability examples, discussed in Section 4.6, presented in Figures 8 and 9.
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FE method clusters accuracy (training/testing) (%)
VIT-B/16 (SWAG) k-means 200 87.98± 0.49 / 86.78± 0.38
VIT-B/16 (SWAG) k-means 100 86.86± 0.80 / 85.30± 0.92
VIT-B/16 (SWAG) k-means 50 85.25± 0.58 / 83.36± 0.29
VIT-B/16 (SWAG) k-means 10 73.06± 5.02 / 71.17± 4.42
VIT-B/16 (SWAG) batch 4700 89.74 / 90.71

VIT-B/16 (SWAG+IN1K) k-means 200 92.54± 0.47 / 92.00± 0.29
VIT-B/16 (SWAG+IN1K) k-means 100 92.00± 0.49 / 91.32± 0.31
VIT-B/16 (SWAG+IN1K) k-means 50 91.78± 0.76 / 91.13± 0.65
VIT-B/16 (SWAG+IN1K) k-means 10 91.15± 0.17 / 88.59± 0.25
VIT-B/16 (SWAG+IN1K) batch 6363 95.37 / 94.10

VIT-L/16 (SWAG) k-means 200 94.76± 0.21 / 94.57± 0.06
VIT-L/16 (SWAG) k-means 100 93.99± 0.11 / 93.64± 0.19
VIT-L/16 (SWAG) k-means 50 92.71± 0.66 / 92.66± 0.56
VIT-L/16 (SWAG) k-means 10 84.68± 1.18 / 82.68± 0.63
VIT-L/16 (SWAG) batch 4444 95.83 / 95.75

VIT-L/16 (SWAG+IN1K) k-means 200 94.95± 0.15 / 94.75± 0.09
VIT-L/16 (SWAG+IN1K) k-means 100 94.34± 0.51 / 94.69± 0.27
VIT-L/16 (SWAG+IN1K) k-means 50 93.58± 0.29 / 94.19± 0.18
VIT-L/16 (SWAG+IN1K) k-means 10 89.56± 1.87 / 91.50± 0.16
VIT-L/16 (SWAG+IN1K) batch 5983 96.79/95.69

VIT-H/14 (SWAG) k-means 200 95.31± 0.20 / 95.15± 0.16
VIT-H/14 (SWAG) k-means 100 95.27± 0.20 / 94.63± 0.32
VIT-H/14 (SWAG) k-means 50 94.38± 0.38 / 93.25± 0.20
VIT-H/14 (SWAG) k-means 10 84.26± 6.06 / 81.41± 4.85
VIT-H/14 (SWAG) batch 4092 96.66 / 96.40

VIT-H/14 (SWAG+IN1K) k-means 200 96.42± 0.17 / 96.54± 0.13
VIT-H/14 (SWAG+IN1K) k-means 100 95.93± 0.11 / 96.35± 0.21
VIT-H/14 (SWAG+IN1K) k-means 50 96.09± 0.25 / 96.26± 0.21
VIT-H/14 (SWAG+IN1K) k-means 10 97.05± 0.00 / 93.62± 0.00
VIT-H/14 (SWAG+IN1K) batch 5896 97.67/97.05

Table 6: Few shot active learning results (CIFAR10); SWAG denotes weakly supervised SWAG
(Singh et al. (2022)) pretraining, IN1K denotes finetuning on ImageNet-1K

(a) ViT-H/14 (no f/t), 1
task at a time

(b) ViT-H/14 (no f/t), 10
tasks at a time

(c) ViT-H/14 (f/t on
IN1K), 1 task at a time

(d) ViT-H/14 (f/t on
IN1K), 10 tasks at a time

Figure 6: Online learning for Stanford Cars task

(a) ViT-H/14 (no f/t), 1
task at a time

(b) ViT-H/14 (no f/t), 10
tasks at a time

(c) ViT-H/14 (f/t on
IN1K), 1 task at a time

(d) ViT-H/14 (f/t on
IN1K), 10 tasks at a time

Figure 7: Online learning for CUB task
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FE method clusters accuracy (%)
VIT-B/16 (SWAG) k-means 2000 59.53± 0.14 / 56.88± 0.16
VIT-B/16 (SWAG) k-means 1000 57.02± 0.26 / 54.81± 0.78
VIT-B/16 (SWAG) k-means 500 53.92± 0.71 / 51.84± 0.27
VIT-B/16 (SWAG) k-means 100 42.17± 0.64 / 41.56± 0.32
VIT-B/16 (SWAG) batch 4625 59.09 / 60.13

VIT-B/16 (SWAG+IN1K) k-means 2000 72.12± 0.28 / 69.84± 0.42
VIT-B/16 (SWAG+IN1K) k-means 1000 70.36± 0.24 / 68.34± 0.21
VIT-B/16 (SWAG+IN1K) k-means 500 67.96± 0.50 / 66.05± 0.58
VIT-B/16 (SWAG+IN1K) k-means 100 60.34± 0.85 / 57.55± 0.52
VIT-B/16 (SWAG+IN1K) batch 6719 76.98 / 73.58

VIT-L/16 (SWAG) k-means 2000 70.74± 0.30 / 69.02± 0.19
VIT-L/16 (SWAG) k-means 1000 67.83± 0.33 / 66.98± 0.41
VIT-L/16 (SWAG) k-means 500 65.43± 0.34 / 65.21± 0.28
VIT-L/16 (SWAG) k-means 100 54.90± 0.75/ 54.02± 0.84
VIT-L/16 (SWAG) batch 4319 72.13 / 70.91

VIT-L/16 (SWAG+IN1K) k-means 2000 77.79± 0.10 / 76.95± 0.13
VIT-L/16 (SWAG+IN1K) k-means 1000 75.82± 0.13 / 75.78± 0.29
VIT-L/16 (SWAG+IN1K) k-means 500 74.04± 0.27 / 74.43± 0.26
VIT-L/16 (SWAG+IN1K) k-means 100 67.80± 1.25 / 68.76± 0.79
VIT-L/16 (SWAG+IN1K) batch 6317 81.79 / 78.89

VIT-H/14 (SWAG) k-means 2000 72.66± 0.36 / 71.01± 0.50
VIT-H/14 (SWAG) k-means 1000 69.92± 0.36 / 69.38± 0.33
VIT-H/14 (SWAG) k-means 500 67.59± 0.43 / 67.20± 0.50
VIT-H/14 (SWAG) k-means 100 55.35± 0.62 / 54.77± 0.64
VIT-H/14 (SWAG) batch 4029 72.95 / 73.31

VIT-H/14 (SWAG+IN1K) k-means 10000 89 / 82
VIT-H/14 (SWAG+IN1K) k-means 5000 84 / 82
VIT-H/14 (SWAG+IN1K) k-means 2000 80.72± 0.11 / 80.46± 0.12
VIT-H/14 (SWAG+IN1K) k-means 1000 79.13± 0.40 / 79.51± 0.56
VIT-H/14 (SWAG+IN1K) k-means 500 77.87± 0.19 / 78.75± 0.25
VIT-H/14 (SWAG+IN1K) k-means 100 72.52± 0.84 / 72.97± 0.60
VIT-H/14 (SWAG+IN1K) batch 6313 84.28 / 81.84

Table 7: Few shot active learning results(CIFAR100); SWAG denotes weakly supervised SWAG
(Singh et al. (2022)) pretraining, IN1K denotes finetuning on ImageNet-1K

clp inf pnt qdr rel skt avg
clp 0.7446 0.4167 0.4907 0.4247 0.5991 0.6001 0.5063
inf 0.3358 0.4267 0.2931 0.2197 0.3537 0.3242 0.3053
pnt 0.5068 0.3690 0.6777 0.3596 0.5230 0.5197 0.4556
qdr 0.0960 0.0452 0.0562 0.3639 0.0798 0.0809 0.0716
rel 0.6903 0.5734 0.6111 0.4256 0.8290 0.6622 0.5925
skt 0.5701 0.3886 0.4887 0.4051 0.5269 0.6820 0.4759
avg 0.4398 0.3586 0.3880 0.3669 0.4165 0.4374 0.4012

Table 8: Unsupervised domain adaptation, ViT-H/14 without finetuning (columns denote source
domains, and rows denote target domains)
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clp inf pnt qdr rel skt avg
clp 77.92± 0.08 58.05± 1.57 64.02± 0.68 39.21± 0.62 68.97± 0.16 68.39± 0.37 59.73± 0.28
inf 37.20± 0.62 47.39± 0.44 29.94± 1.61 22.97± 0.46 34.21± 0.36 34.20± 0.94 31.70± 0.38
pnt 63.46± 0.46 54.06± 1.70 71.77± 0.27 34.91± 0.88 64.31± 0.29 61.55± 0.27 55.66± 0.36
qdr 9.92± 0.06 7.54± 0.63 6.34± 0.19 28.21± 0.18 7.30± 0.26 10.54± 0.18 8.33± 0.18
rel 77.05± 0.49 66.88± 1.01 72.68± 0.26 37.29± 0.83 84.83± 0.22 73.96± 0.64 65.57± 0.29
skt 59.37± 0.64 49.68± 1.55 56.15± 0.19 33.25± 0.21 57.02± 0.52 66.43± 0.12 51.10± 0.32
avg 49.40± 0.44 47.25± 1.21 45.83± 0.50 33.53± 0.53 46.37± 0.19 49.72± 0.39 45.35± 0.15

Table 9: Unsupervised domain adaptation, ViT-H/14, k-means clustering (5× 345 = 1725 clusters,
345 classes), ImageNet1K finetuning (columns denote source domains, and rows denote target do-
mains)

(a) Aircraft carrier (testing, sketch → real), left: sketch, right: real prototypes

(b) Alarm clock (testing, sketch → quickdraw), left: sketch prototypes, right: quickdraw prototypes

(c) Hot tub (testing, sketch → real), left: sketch prototypes, right: real prototypes

(d) Chandelier (training, sketch → real), left: sketch prototypes, right: real prototypes

(e) Dog (training, sketch → real), left: sketch prototypes, right: real prototypes

Figure 8: Interpretability examples

Figure 9: Interpretability examples: few shot learning (Stanford Cars Krause et al. (2013))
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