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Abstract

Multi-head attention plays a crucial role in the001
recent success of Transformer, which leads002
to consistent performance improvements over003
conventional attention in various applications.004
The popular belief is that its effectiveness stems005
from attending to information from multiple006
representation subspaces. In this paper, we first007
demonstrate that using multiple subspaces is008
not a unique feature of multi-head attention, as009
multi-layer single-head attention also leverages010
multiple subspaces. Then, we suggest the main011
advantage of the multi-head attention is the012
training stability, since it has fewer layers than013
the single-head attention when using the same014
number of subspaces. For example, 24-layer015
16-head Transformer (BERT-large) and 384-016
layer single-head Transformer have roughly017
the same model size and employ the same to-018
tal subspace number (attention head number),019
while the multi-head one is significantly shal-020
lower. Meanwhile, we show that, with recent021
advances in deep learning, we can successfully022
stabilize the training of the deep single-head023
Transformer. As the training difficulty is no024
longer a bottleneck, substantially deeper single-025
head Transformers achieve consistent perfor-026
mance improvements 1.027

1 Introduction028

Transformers (Vaswani et al., 2017) have led to029

a series of breakthroughs in various deep learn-030

ing tasks (Devlin et al., 2019; Velickovic et al.,031

2018b). One crucial component of Transformer is032

the multi-head attention, which has been observed033

to be one major reason behind the success of the034

Transformer. For example, on machine translation035

benchmarks, Recurrent Neural Networks (RNNs)036

can outperform Transformers when both are us-037

ing the multi-head encoder-decoder attention and038

would underperform without using the multi-head039

1Our model implementations and data preparation scripts
will be made publicly available.

attention (Chen et al., 2018). Besides Transformer, 040

multi-head attention has also been incorporated 041

into other models (Chen et al., 2018; Velickovic 042

et al., 2018a; Fang et al., 2019). More discussions 043

on related work is available at Appendix A. 044

Multi-head attention projects the inputs into mul- 045

tiple different subspaces and attend to information 046

from them, while one conventional attention can 047

only attend to information from one subspace, 048

Our Contributions. Our point of start is demon- 049

strating that leveraging multiple subspaces is not 050

a unique feature of multi-head attention. In fact, 051

stacking multiple conventional attention modules 052

also leverage multiple subspaces. 053

As in Figure 1, a multi-head attention module 054

can be viewed as an ensemble model, which com- 055

bines multiple single-head attention modules by 056

calculating their average (more elaborations are in- 057

cluded in Appendix C). Thus, by integrating these 058

modules differently, we can reconstruct a Trans- 059

former to be single-head2 and substantially deeper, 060

without changing the number of subspaces or the 061

inference computation complexity. 062

In our experiments, compared to the shallower 063

multi-head Transformer, the deeper single-head 064

Transformer performs better but is harder to train. 065

It matches the common wisdom that model depth 066

can increase model capacity at the cost of training 067

difficulty. We also observe that, benefited from the 068

recent advance of deep learning (Liu et al., 2020b), 069

the training difficulty is no longer an obstacle. 070

2 Experiment Overview 071

Here, we discuss the experiment setup (more in 072

Appendix D). Then, we compare the shallow multi- 073

head Transformer and deep single-head Trans- 074

former from three aspects, i.e., stability (Sec. 3), 075

performance (Sec. 4), and efficiency (Sec. 5). 076

2We use single-head/multi-head Transformer to refer
Transformer with single-head/multi-head attention.

1



1-Layer 2-Head Transformer and 2-Layer 1-Head Transformer have the same 
total attention head number and roughly the same model size 
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Figure 1: Left: both multi-head and single-head Transformer can attend to information from multiple subspaces.
Right: comparing to the shallow multi-head Transformer, the deep single-head Transformer can achieve a lower
PPL score, while its training is more challenging (without Admin, the 48-layer 1-head Transformer training failed).

Tasks. We conduct experiments on language model077

pre-training and translation. For translation, we078

use the WMT’14 English-German (En-De) as the079

benchmark. For language model pre-training, we080

evaluate models on SQuAD 2.0 (Rajpurkar et al.,081

2018) and GLUE (Wang et al., 2018).082

Model Specificity. For machine translation, the083

original Transformer-base model is 8H-6L-6L084

encoder-decoder (Vaswani et al., 2017) 3. Here,085

we compare it with 1H-48L-48L encoder-decoder,086

and both models have 512-dimension word em-087

bedding, 64-dimension per-head attention output,088

and 256·γ-dimension feedforward network (γ is089

the number of heads). For language model pre-090

training, we compare BERT-base model is 12H-091

12L encoder and BERT-large model is 16H-24L092

encoder. Here, we compare them with deep single-093

head BERT-base model (1H-144L) and deep single-094

head BERT-large model (1H-384L). All language095

models have 768-dimension word embedding, 64-096

dimension per-head attention output, and 256·γ-097

dimension word embedding (γ is the number of098

heads). Moreover, we employed the Admin initial-099

ization (Liu et al., 2020b) to stabilize 1H-48L-48L100

Transformer-base and 1H-384L BERT-large.101

3 Stability Comparison102

As in Table 1, after changing the shallow multi-103

head Transformer to the deep single-head Trans-104

former, the training fails to converge well for 2105

out of 3 models. Note that, although the 1H-106

144L BERT-base model converges successfully,107

the model is sensitive to the choice of initializa-108

tion. Specifically, the BERT-base model and BERT-109

3“γH-αL(-βL)" indicates a Transformer model has γ-head
α-layer encoder (and γ-head β-layer decoder).

large model are initialized with truncated normal 110

distribution with 0.02 variance, instead of follow- 111

ing the common practice (e.g., using the Kaiming 112

initialization (He et al., 2015) or the Xavier initial- 113

ization (Glorot and Bengio, 2010)). We observe 114

that after changing the variance of the initialization, 115

or following the common practice, the training of 116

the 1H-144L BERT-base model would also fail. 117

Meanwhile, we show that, with recent deep 118

learning advances, we can successfully stabilize 119

Transformer training. After employing the Ad- 120

min initializatioin (Liu et al., 2020b), all deep 121

single-head Transformer models are trained suc- 122

cessfully, without changing any hyper-parameters. 123

This shows that, although the deep single-head 124

Transformer is harder to train, the training diffi- 125

culty is no longer an obstacle. 126

4 Performance Comparison 127

For the machine translation task, we summarize 128

the results in Table 2. The deep single-head Trans- 129

former (1H-48L-48L) achieves a 0.5 BLEU im- 130

provements over the shallow multi-head Trans- 131

former. Also, the deep single-head Transformer 132

achieves the same performance with the architec- 133

ture search algorithm (Evolved Transformer (So 134

et al., 2019) and DARTSformer (Zhao et al., 2021)), 135

with slightly less parameters. Specifically, Evolved 136

Transformer and DARTSformer conducts neural 137

architecture search on Transformer, and treat the 138

multi-head attention as the basic module (i.e., the 139

deep single-head Transformer is not in their search 140

space). Deep single-head Transformer achieves 141

comparable performance without hyper-parameter 142

tuning, which further verifies its effectiveness. 143

For language model pre-training, the deep single- 144

head Transformer also achieves consistent perfor- 145
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Transformer-base BERT-base BERT-large
8H-6L-6L 1H-48L-48L 12H-12L 1H-144L 16H-24L 1H-384L

Training ✓ × /✓(w. Admin) ✓ ✓ ✓ ×/✓(w. Admin)

Table 1: Deep single-head Transformers are harder to train than shallow multi-head Transformers.

25 30 35 40 45 50 55 60 65
Model Size (Millions of Parameters)

23

24

25

26

27

28

BL
EU

 S
co

re
 o

n 
W

M
T1

4 
En

-D
e

Deep Single-Head
Shallow Multi-Head

30 40 50 60 70 80 90 100 110
Model Size (Millions of Parameters)

65.0

67.5

70.0

72.5

75.0

77.5

80.0

Av
er

ag
e 

Sc
or

e 
on

 S
Qu

AD
 2

.0

Shallow Multi-Head SQuAD 2.0
Deep Single-Head SQuAD 2.0

78

79

80

81

82

83

84

85

86

Av
er

ag
e 

Ac
cu

ra
cy

 o
n 

M
NL

I M
at

ch
ed

 &
 M

is-
M

at
ch

ed

Shallow Multi-Head MNLI
Deep Single-Head MNLI

Figure 2: Performance with Different Model Size. Left: the performance of αH-6L-6L (α=1, 2, 4, 6, 8) and 1H-βL-
βL (β=6,12,24,36,48), whose per-head dimension is the same with Transformer-base. Right: the performance of
αH-12L (α=1, 3, 6, 12) and 1H-βL (β=12,36,72,144), whose per-head dimension is the same with BERT-base.

Model BLEU Param.

8H-6L-6L 27.90 63.2M
1H-48L-48L 28.40 63.6M

2D-CSANs†(Yang et al., 2019) 28.18 88.0M

Evolved∗(So et al., 2019) 28.4 64.1M
DARTSformer†∗(Zhao et al., 2021) 28.4 65.2M

Table 2: Performance on the WMT’14 En-De dataset. ∗

indicates neural architecture search methods. † indicates
the results may not be directly comparable to others, due
to the difference on pre-processing and evaluation.

mance improvements over the original shallow146

multi-head Transformer (as in Table 3). Table 4147

shows the test performance on the GLUE bench-148

mark. The deep single-head Transformer outper-149

forms the shallow multi-head Transformer on 7 out150

of 9 tasks, and improves the average score (GLUE)151

by roughly 1 point. In the mean time, it is worth152

mentioning that, on 2 out of 3 sentence similar-153

ity/paraphrase tasks, the shallow multi-head Trans-154

former achieves better performance. This indicates155

the deep single-head Transformer can be further156

improved, and we will further explore this in the157

future work. These observations verified that the158

deep single-head Transformer could perform better159

than the shallow multi-head Transformer.160

Impact of Model Initialization. Here, we aim to161

understand the impact of model initialization on162

model performance. As the 1H-144L BERT-base163

model converges well with both the vanilla initial-164

ization and the Admin initialization, we not only 165

conduct training with the Admin initialization, but 166

also the vanilla initialization. As summarized in 167

Table 3, the default initialization and the Admin 168

initialization achieve similar performance. This 169

observation supports our intuition that the major 170

benefit of the Admin initialization is on training sta- 171

bility, and the performance improvements mostly 172

come from the change from shallow multi-head 173

Transformer to deep single-head Transformer. 174

Impact of Head Number. Intuitively, the differ- 175

ence between deep single-head Transformers and 176

shallow multi-head Transformers is proportional to 177

the model size/head number (e.g., the difference 178

between 2H-6L and 1H-12L should be smaller than 179

the difference between 4H-6L and 1H-24L). We 180

conduct experiments on Transformers with differ- 181

ent head numbers, and visualize the results in Fig- 182

ure 2. It shows that when the architecture differ- 183

ence is larger (i.e., with more number of heads), 184

the performance improvement is also larger. 185

5 Efficiency Comparison 186

Inference Speed. The shallow multi-head Trans- 187

former and the deep single-head Transformer have 188

roughly the same model size and computation com- 189

plexity. Here, we calculated the average inference 190

speed on an idle RTX 3060 GPU4. We find that, 191

with an optimized implementation, the inference 192

4We used the FasterTransformer (version 4.0) as in
https://github.com/NVIDIA/FasterTransformer
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FLOPs # Param. # MNLI Acc. SQuAD v2.0
match mis-match exact match F1

12H-12L BERTBASE 46.3B 109.5M 84.4 84.4 77.4 80.4
1H-144L BERTBASE default 46.9B 110.0M 85.6 85.1 79.6 82.4
1H-144L BERTBASE Admin 46.9B 110.0M 85.2 85.4 79.2 82.5

16H-24L BERTLARGE 161.8B 335.1M 86.3 86.4 81.0 84.3
1H-384L BERTLARGE Admin 164.1B 337.4M 87.7 87.5 82.6 85.7

Table 3: The model performance on dev sets of MNLI and SQuAD 2.0. The FLOPs are calculated for the inference
computation of one 512-length input sequence.

GLUE CoLA SST-2 MRPC SST-B QQP MNLI-m/mm QNLI RTE WNLI

12H-12L 78.3 52.1 93.5 88.9/84.8 87.1/85.8 71.2/89.2 84.6/83.4 90.5 66.4 65.1
1H-144L 79.4 59.2 94.2 89.3/85.4 84.3/83.5 70.9/88.9 85.1/84.3 91.0 69.0 65.1

16H-24L 80.5 60.5 94.9 89.3/85.4 87.6/86.5 72.1/89.3 86.7/85.9 92.7 70.1 65.1
1H-384L 81.3 62.7 95.1 90.5/87.2 86.9/86.3 71.3/89.1 87.4/86.5 93.3 72.7 65.1

Table 4: The test performance on the GLUE benchmark with metrics described in Table 5.
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Figure 3: Transformer Training Efficiency (GPU Hours are calculated on an idle RTX 3060).

efficiency of the shallow multi-head Transformer193

and the deep single-head Transformer are roughly194

the same (visualized in Appendix, Figure 4).195

Training Speed. As in Figure 3, we can find that196

the training computation speed of the 1H-48L-48L197

Transformer is about two times slower than the198

8H-6L-6L Transformer. Meanwhile, the 8H-6L-6L199

Transformer converges faster with regard to epoch200

number, or GPU hours. This phenomenon verifies201

our intuition that the network depth of the 6-Layer202

Transformer has become a bottleneck of the model203

capacity, which restricts the model performance.204

Also, it indicates an limitation of the deep single-205

head network, i.e., the computation time per update206

is longer than the shallow multi-head network.207

6 Conclusion208

Here, we aim to understand the benefits of the209

multi-head Transformer. We first show that deep210

single-head Transformer also leverages multiple211

representation subspaces and performs better than 212

the popular shallow multi-head Transformer. Then, 213

we suggest the main advantage of multi-head atten- 214

tion is the training stability since it has fewer layers 215

than the single-head attention when using the same 216

number of subspaces (number of attention heads). 217

We also show that, with recent advances in deep 218

learning, the training stability is no longer an ob- 219

stacle and it can lead to consistent performance im- 220

provements by turning shallow single-head Trans- 221

former into deep multi-head Transformer. 222

Our work opens up new possibilities to not only 223

further push the state-of-the-art but understand the 224

effectiveness of Transformer better. It leads to var- 225

ious interesting future work. For example, intu- 226

itively, both shallow multi-head Transformer and 227

deep single-head Transformer should not be the 228

optimal architecture, and neural architecture search 229

can be employed to find a good balance between 230

multi-head and single-head. 231
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A Related Work344

There exist two aspects of related work regarding345

the topic here, i.e., Attention and Transformer.346

Attention and Multi-Head Structure. Attention347

modules are first proposed to capture the long-348

term dependency in sequence-to-sequence mod-349

els (Graves et al., 2014; Bahdanau et al., 2015).350

To calculate the output for a token in the target351

sequence, the attention module would calculate a352

weighted average of source token representations,353

while the weight is calculated by applying softmax354

on attention scores. Different variants of atten-355

tion modules calculate attention scores differently,356

e.g., Graves et al. (2014) uses the cosine similar-357

ity, Bahdanau et al. (2015) uses the perception358

network, and Luong et al. (2015) uses dot prod-359

uct. While these modules only employ one sub-360

space, attempts like multi-head attention have been361

made to jointly attend to information from multiple362

subspaces (Lin et al., 2017; Vaswani et al., 2017),363

which is identified as one major reason behind the364

success of Transformer (Chen et al., 2018). Also,365

it has inspired several follow-up studies to analyze366

the multi-head structure (Michel et al., 2019; Peng367

et al., 2020). Specifically, Michel et al. (2019) ob-368

serves single-head Transformer performing better369

than multi-head Transformer for model pruning.370

Still, no study has been done on deep single-head371

Transformer training, due to its training difficulty.372

Transformer. Transformer (Vaswani et al., 2017)373

has led to a series of breakthroughs in various do-374

mains (Devlin et al., 2019; Velickovic et al., 2018b;375

Huang et al., 2019; Parmar et al., 2018; Ramachan-376

dran et al., 2019). Meanwhile, Transformer train-377

ing has been found to be more challenging and378

attracted lots of attention to analyze why Trans-379

former is harder to train and how to stabilize Trans-380

former training (Liu et al., 2020a; Baevski and Auli,381

2019; Nguyen and Salazar, 2019; Wang et al., 2019;382

Xiong et al., 2019; Liu et al., 2020b). Many efforts383

have been made to improve Transformer, e.g., rela-384

tive position encoding (Shaw et al., 2018) or replac-385

ing dot-product attention with locality-sensitive 386

hashing (Kitaev et al., 2020). Here, we choose to 387

focus our study on the original Transformer model 388

as proposed in Vaswani et al. (2017), and uses the 389

initialization technique Admin to stabilize model 390

training (Liu et al., 2020b), since this method does 391

not include any additional hyper-parameters and 392

its final model is equivalent to the original Trans- 393

former. 394

B Transformer Architecture 395

The Transformer architecture contains two types 396

of sub-layers, i.e., Attention sub-layers and Feed- 397

forward sub-layers. Each sub-layer is constructed 398

with the shortcut connection and the Layer Norm. 399

Specifically, it calculates the output as xi+1 = 400

fLN(xi + f(xi)), where xi is the input of layer i 401

and the output of layer i− 1 (top layers have larger 402

indexes), fLN is the Layer Norm , and f(·) is multi- 403

head attention fATT(·) or feedforward fFFN(·) for 404

Attention sub-layers and Feedforward sub-layers 405

respectively. 406

Layer Norm. Layer norm (Ba et al., 2016) plays 407

a vital role in the Transformer architecture. It is 408

defined as fLN(x) = γ x−µ
σ +ν, where µ and σ are 409

the mean and standard deviation of x, γ and ν are 410

learnable parameters. 411

Feedforward. Transformers use two-layer per- 412

ceptrons as feedforward networks, i.e., fFFN(x) = 413

ϕ(xW (1))W (2), where W (·) are parameters, and 414

ϕ(·) is the non-linear function. Specifically, the 415

original Transformer ReLU as the activation func- 416

tion, while later study uses other types of activation 417

function, e.g., BERT uses GELU as the activation 418

function (Hendrycks and Gimpel, 2016). 419

Attention. Transformers use the multi-head atten- 420

tion to capture the dependency among input to- 421

kens, which is based on the scaled dot-product 422

attention. Scaled dot-product attention tries to 423

query information from the source sequence that 424

is relevant to the target sequence. Specifically, 425

assuming the length of the source sequence and 426

the target sequence to be n and hidden dimen- 427

sion to be m, the target sequence would be en- 428

coded as Q ∈ Rn×m, source sequence would 429

be encoded as K ∈ Rn×m and V ∈ Rn×m. 430

The scaled dot-product attention would calculate 431

the output as fScaled Dot-Product Attention(Q,K, V ) = 432

softmax(QKT
√
m

)V , where softmax(·) is the row- 433

wise softmax. 434
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Figure 4: The Inference Speed of BERT-base with Different Batch Size and Sequence Length.

One scaled dot-product attention is believed435

to attend only one position in each row (for436

each target token), since the output of softmax437

typically would have one dimension signifi-438

cantly larger than other dimensions in each row.439

Multi-head attention was proposed to jointly440

attend to information from multiple representa-441

tion subspaces, which employs multiple scaled442

dot-product attention in parallel. Specifically,443

it calculates the output as fATT(Q,K, V ) =444

[head1; · · · ; headh]W (O), where headi =445

fScaled Dot-Product Attention(QW
(Q)
i ,KW

(K)
i , V W

(V )
i ),446

W (·) are learnable parameters, and h is the number447

of heads.448

Transformer. Transformer has two types of449

layer configurations when serving as the encoder450

and the decoder respectively. Here, we use xi451

to mark the input of sub-layer i. Each Trans-452

former encoder layer contains two sub-layers,453

i.e., one attention sub-layer in a self-attention454

manner and one feedforward sublayer. Specif-455

ically, the attention sub-layer calculates outputs456

as x2i+1 = fLN(x2i + fATT(x2i,x2i,x2i)) and457

the feedforward sub-layer calculates outputs as458

x2i+2 = fLN(x2i+1 + fFFN(x2i+1). Notice that459

the attention sub-layer sets Q, K, and V as the460

same value x2i, capturing the dependency among461

tokens within the same sequence, which is referred462

to as self-attention.463

Each Transformer decoder layer contains three464

sub-layers, besides the self-attention sublayer and465

the feedforward sublayer, it also includes an466

encoder-decoder attention sub-layer between them.467

Specifically, the encoder-decoder attention sub-468

layer calculates outputs as x3i+2 = fLN(x3i+1 +469

fATT(x3i+1,h,h), where K and V are set to the470

encoder output h.471

C Implicit Ensemble Structure 472

As in Figure 1, multi-head attention sub-layers and 473

feedforward sub-layers have the implicit ensem- 474

ble structure, i.e., each of these sub-layers can be 475

viewed as an ensemble of smaller models. Now let 476

us proceed to introduce those parallel structures in 477

detail. Notations are introduced in Section B. 478

Attention. We split the weight matrix W (O) 479

into h parts by rows, i.e., we mark W (O) = 480

[W
(O)T

1 ; · · · ;W (O)T

h ]T . Then, the multi-head at- 481

tention calculates outputs as: 482

fATT(Q,K, V ) 483

=[head1; · · · ; headh]W (O) =
h∑

i=1

headiW
(O)
i 484

=

h∑
i=1

softmax(
QW

(Q)
i W

(K)T

j KT

√
m

)VW
(V )
i W

(O)
i 485

Note that each head can be viewed as a low- 486

rank version of the general attention (Luong et al., 487

2015). 488

Thus, the multi-head attention can be viewed 489

as jointly attending multiple places by ensembling 490

multiple conventional attention modules. Specifi- 491

cally, the general attention module (Luong et al., 492

2015) calculates outputs as: 493

fGeneral Attention(Q,K, V ) = softmax(QW1K
T )VW2 494

Comparing fATT and fGeneral Attention, we can find 495

their major difference is that the multi-head 496

attention decomposes the m × m matrix W1 497

and W2 into W
(Q)
i W

(K)T

i√
m

and W
(V )
i W

(O)
i , where 498

W
(Q)
i ,W

(K)
i ,W

(V )
i ,W

(O)T

i ∈ Rm×m
h . With this 499

low-rank decomposition, the parameter number 500
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and computation complexity of the multi-head at-501

tention module would stay the same no matter what502

the value of h is (i.e., how many heads one layer503

has).504

Feedforward. Similar to the Attention mod-505

ule, we can also rewrite the Feedforward sub-506

layer as an ensemble of h modules.5 Specifi-507

cally, we split the weight matrix W (1) into h parts508

by rows and W (2) into h parts by columns, i.e.,509

we mark W (1) = [W
(1)
1 ; · · · ;W (1)

h ] and W (2) =510

[W
(2)T

1 ; · · · ;W (2)T

h ]T . Then, the feedforward sub-511

layer calculates outputs can be rewrote as:512

fFFN(x) = ϕ(xW (1))W (2) =
h∑

i=1

ϕ(xW
(1)
i )W

(2)
i513

Thus, the Feedforward sub-layer can be viewed as514

an ensemble of h sub-modules. Note that since the515

sum of the h sub-modules would be normalized516

by Layer Norm, their outputs are integrated in an517

averaging manner.518

Average Ensemble. Each Transformer sub-layer519

calculates outputs as fLN(x + f(x)), where f(·)520

could be fFFN(·) and fATT(·). Thus, the sum calcu-521

lated in the computation of fATT and fFFN would522

be normalized by Var[x+ f(x)]. In this way, the523

joint effect of layer norm and the sum would be524

similar to combining these modules in an average525

ensemble manner.526

D Experiment Details527

D.1 Experiment Setup528

In our experiments, we adopt hyper-parameter set-529

tings from previous work (Liu et al., 2020b; Devlin530

et al., 2019). More experiment details can be found531

as below.532

Transformer Model Configurations. We con-533

duct experiments with three Transformer models,534

i.e., Transformer-base for the WMT’14 English-535

German (EN-DE) translation task, BERT-base, and536

BERT-large for the language model pre-training.537

Specifically, the original Transformer-base model538

is 8H-6L-6L, and we compare it with 1H-48L-48L.539

The original BERT-base and BERT-large models540

are 12H-12L and 16H-24L, and we compare them541

with 1H-144L and 1H-384L. We use the Admin542

initialization (Liu et al., 2020b) to stabilize 1H-48L-543

48L Transformer-base and 1H-384L BERT-large.544

5Note h here is decided to be consistent with the Multi-
Head Attention sub-layers.

More detailed configurations are included in the 545

appendix. 546

Translation. Here, we conduct experiments on 547

WMT’14 EN-DE and evaluate model performance 548

based on their BLEU score on the test set and per- 549

plexity score on the development set6. 550

BERT. Here, we follow the training setting from 551

Devlin et al. (2019) and evaluate pre-trained lan- 552

guage models on the SQuAD 2.0 (Rajpurkar et al., 553

2018) datasets for question answering, and the 554

GLUE benchmark (Wang et al., 2018), which in- 555

cludes 9 subtasks (as in Table 5). 556

D.2 Model Specificity 557

For machine translation, the original Transformer- 558

base model is 8H-6L-6L Transformer encoder- 559

decoder with 512-dimension word embedding, 64- 560

dimension per-head attention output, and 2048- 561

dimension feedforward network (Vaswani et al., 562

2017). Here, we compare it with 1H-48L-48L 563

Transformer encoder-decoder with 512-dimension 564

word embedding, 64-dimension per-head atten- 565

tion output, and 256-dimension feedforward net- 566

work. For language model pre-training, BERT-base 567

model is 12H-12L Transformer encoder with 768- 568

dimension word embedding, 64-dimension per- 569

head attention output, and 3072-dimension feed- 570

forward network; BERT-large model is 16H-24L 571

Transformer encoder with 1024-dimension word 572

embedding, 64-dimension per-head attention out- 573

put, and 4096-dimension feedforward network (De- 574

vlin et al., 2019). Here, we compare them with deep 575

single-head BERT-base model (1H-144L Trans- 576

former encoder with 768-dimension word embed- 577

ding, single-head 64-dimension per-head atten- 578

tion output, and 256-dimension word embedding) 579

and deep single-head BERT-large model (1H-384L 580

Transformer encoder with 768-dimension word em- 581

bedding, 64-dimension per-head attention output, 582

and 256-dimension word embedding). To stabi- 583

lize 1H-48L-48L Transformer-base and 1H-384L 584

BERT-large, we use the Admin initialization (Liu 585

et al., 2020b). 586

D.3 Implementation Detail 587

Besides the layer number and head number, we 588

adopted all hyper-parameters from previous work. 589

Specifically, we followed (Liu et al., 2020b) for 590

6We mimicked the pre-processing setting from So et al.
(2019). BLEU score is calculated by the BLEU implementa-
tion of fairseq (0.8.0).
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Corpus |Train| |Label| Task Metric(s) Domain

Single-Sentence Classification

CoLA 8.5k 2 acceptibility Matthews corr. misc.
SST-2 67k 2 sentiment accuracy movie reviews

Sentence Similarity/Paraphrase

MRPC 3.7k 2 paraphrase accuracy/F1 news
STS-B 5.7k - similarity Pearson/Spearman corr. misc.
QQP 364k 2 similarity accuracy/F1 social QA questions

Natural Language Inference (NLI)

MNLI 393k 3 NLI (mis)matched acc. misc.
QNLI 108k 2 QA/NLI accuracy Wikipedia
RTE 2.5k 2 NLI accuracy misc.
WNLI 634 2 coreference/NLI accuracy fiction books

Table 5: GLUE task descriptions and statistics. The second and fourth column denotes the number of training
examples and the number of classes. Note that STS-B is a regression task.

machine translation experiments and (Devlin et al.,591

2019) for language model pre-training experiments.592

It is worth mentioning that, in (Liu et al., 2020b),593

the default initialization method is the Xavier ini-594

tialization (Glorot and Bengio, 2010), which de-595

pends on the size of the weight matrix. Here, to596

control variables, we fix the initialization scale597

to be the same with original multi-head shallow598

Transformer. Meanwhile, for language model pre-599

training, since (Devlin et al., 2019) fixes the initial-600

ization scale for all models, we directly adopt the601

initialization strategy without modification.602

D.4 Training Detail603

For machine translation experiments, we followed604

(Liu et al., 2020b) to conduct data pre-processing,605

conduct model training on Nvidia GPUs (includ-606

ing Quadro RTX 8000, GeForce RTX 3060, and607

Quadro RTX A6000). As to language model pre-608

training experiments, we followed (Devlin et al.,609

2019) to conduct data pre-processing, conduct610

model training with Google TPU v3.611

9


