Multi-head or Single-head?
An Empirical Comparison for Transformer Training

Anonymous ACL submission

Abstract

Multi-head attention plays a crucial role in the
recent success of Transformer, which leads
to consistent performance improvements over
conventional attention in various applications.
The popular belief is that its effectiveness stems
from attending to information from multiple
representation subspaces. In this paper, we first
demonstrate that using multiple subspaces is
not a unique feature of multi-head attention, as
multi-layer single-head attention also leverages
multiple subspaces. Then, we suggest the main
advantage of the multi-head attention is the
training stability, since it has fewer layers than
the single-head attention when using the same
number of subspaces. For example, 24-layer
16-head Transformer (BERT-large) and 384-
layer single-head Transformer have roughly
the same model size and employ the same to-
tal subspace number (attention head number),
while the multi-head one is significantly shal-
lower. Meanwhile, we show that, with recent
advances in deep learning, we can successfully
stabilize the training of the deep single-head
Transformer. As the training difficulty is no
longer a bottleneck, substantially deeper single-
head Transformers achieve consistent perfor-
mance improvements .

1 Introduction

Transformers (Vaswani et al., 2017) have led to
a series of breakthroughs in various deep learn-
ing tasks (Devlin et al., 2019; Velickovic et al.,
2018b). One crucial component of Transformer is
the multi-head attention, which has been observed
to be one major reason behind the success of the
Transformer. For example, on machine translation
benchmarks, Recurrent Neural Networks (RNNs)
can outperform Transformers when both are us-
ing the multi-head encoder-decoder attention and
would underperform without using the multi-head

'Our model implementations and data preparation scripts
will be made publicly available.

attention (Chen et al., 2018). Besides Transformer,
multi-head attention has also been incorporated
into other models (Chen et al., 2018; Velickovic
et al., 2018a; Fang et al., 2019). More discussions
on related work is available at Appendix A.
Multi-head attention projects the inputs into mul-
tiple different subspaces and attend to information
from them, while one conventional attention can
only attend to information from one subspace,

Our Contributions. Our point of start is demon-
strating that leveraging multiple subspaces is not
a unique feature of multi-head attention. In fact,
stacking multiple conventional attention modules
also leverage multiple subspaces.

As in Figure 1, a multi-head attention module
can be viewed as an ensemble model, which com-
bines multiple single-head attention modules by
calculating their average (more elaborations are in-
cluded in Appendix C). Thus, by integrating these
modules differently, we can reconstruct a Trans-
former to be single-head” and substantially deeper,
without changing the number of subspaces or the
inference computation complexity.

In our experiments, compared to the shallower
multi-head Transformer, the deeper single-head
Transformer performs better but is harder to train.
It matches the common wisdom that model depth
can increase model capacity at the cost of training
difficulty. We also observe that, benefited from the
recent advance of deep learning (Liu et al., 2020b),
the training difficulty is no longer an obstacle.

2 Experiment Overview

Here, we discuss the experiment setup (more in
Appendix D). Then, we compare the shallow multi-
head Transformer and deep single-head Trans-
former from three aspects, i.e., stability (Sec. 3),
performance (Sec. 4), and efficiency (Sec. 5).

>We use single-head/multi-head Transformer to refer
Transformer with single-head/multi-head attention.
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Figure 1: Left: both multi-head and single-head Transformer can attend to information from multiple subspaces.
Right: comparing to the shallow multi-head Transformer, the deep single-head Transformer can achieve a lower
PPL score, while its training is more challenging (without Admin, the 48-layer 1-head Transformer training failed).

Tasks. We conduct experiments on language model
pre-training and translation. For translation, we
use the WMT’ 14 English-German (En-De) as the
benchmark. For language model pre-training, we
evaluate models on SQuAD 2.0 (Rajpurkar et al.,
2018) and GLUE (Wang et al., 2018).

Model Specificity. For machine translation, the
original Transformer-base model is 8H-6L-6L
encoder-decoder (Vaswani et al., 2017) 3. Here,
we compare it with 1H-48L-48L encoder-decoder,
and both models have 512-dimension word em-
bedding, 64-dimension per-head attention output,
and 256-y-dimension feedforward network (v is
the number of heads). For language model pre-
training, we compare BERT-base model is 12H-
12L encoder and BERT-large model is 16H-24L
encoder. Here, we compare them with deep single-
head BERT-base model (1H-144L) and deep single-
head BERT-large model (1H-384L). All language
models have 768-dimension word embedding, 64-
dimension per-head attention output, and 256--
dimension word embedding (v is the number of
heads). Moreover, we employed the Admin initial-
ization (Liu et al., 2020b) to stabilize 1H-48L-48L
Transformer-base and 1H-384L BERT-large.

3 Stability Comparison

As in Table 1, after changing the shallow multi-
head Transformer to the deep single-head Trans-
former, the training fails to converge well for 2
out of 3 models. Note that, although the 1H-
144L BERT-base model converges successfully,
the model is sensitive to the choice of initializa-
tion. Specifically, the BERT-base model and BERT-

3«~H-aL(-L)" indicates a Transformer model has y-head
a-layer encoder (and ~y-head [3-layer decoder).

large model are initialized with truncated normal
distribution with 0.02 variance, instead of follow-
ing the common practice (e.g., using the Kaiming
initialization (He et al., 2015) or the Xavier initial-
ization (Glorot and Bengio, 2010)). We observe
that after changing the variance of the initialization,
or following the common practice, the training of
the 1H-144L BERT-base model would also fail.

Meanwhile, we show that, with recent deep
learning advances, we can successfully stabilize
Transformer training. After employing the Ad-
min initializatioin (Liu et al., 2020b), all deep
single-head Transformer models are trained suc-
cessfully, without changing any hyper-parameters.
This shows that, although the deep single-head
Transformer is harder to train, the training diffi-
culty is no longer an obstacle.

4 Performance Comparison

For the machine translation task, we summarize
the results in Table 2. The deep single-head Trans-
former (1H-48L-48L) achieves a 0.5 BLEU im-
provements over the shallow multi-head Trans-
former. Also, the deep single-head Transformer
achieves the same performance with the architec-
ture search algorithm (Evolved Transformer (So
et al., 2019) and DARTSformer (Zhao et al., 2021)),
with slightly less parameters. Specifically, Evolved
Transformer and DARTSformer conducts neural
architecture search on Transformer, and treat the
multi-head attention as the basic module (i.e., the
deep single-head Transformer is not in their search
space). Deep single-head Transformer achieves
comparable performance without hyper-parameter
tuning, which further verifies its effectiveness.

For language model pre-training, the deep single-
head Transformer also achieves consistent perfor-



Transformer-base BERT-base BERT-large
8H-6L-6L 1H-48L-48L 12H-12L.  1H-144L 16H-24L 1H-384L
Training v X /v (w. Admin) v v v X /v (w. Admin)

Table 1: Deep single-head Transformers are harder to train than shallow multi-head Transformers.
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Figure 2: Performance with Different Model Size. Left: the performance of aH-6L-6L (a=1, 2, 4, 6, 8) and 1H-SL-
BL (8=6,12,24,36,48), whose per-head dimension is the same with Transformer-base. Right: the performance of
aH-12L (a=1, 3, 6, 12) and 1H-SL (6=12,36,72,144), whose per-head dimension is the same with BERT-base.

Model ‘ BLEU Param.
8H-6L-6L 27.90 63.2M
1H-48L-48L 28.40 63.6M
2D-CSANS (Yang et al., 2019) | 28.18 88.0M
Evolved*(So et al., 2019) 284 64.1M
DARTSformer'*(Zhao et al., 2021) | 28.4 65.2M

Table 2: Performance on the WMT’ 14 En-De dataset. *
indicates neural architecture search methods. T indicates
the results may not be directly comparable to others, due
to the difference on pre-processing and evaluation.

mance improvements over the original shallow
multi-head Transformer (as in Table 3). Table 4
shows the test performance on the GLUE bench-
mark. The deep single-head Transformer outper-
forms the shallow multi-head Transformer on 7 out
of 9 tasks, and improves the average score (GLUE)
by roughly 1 point. In the mean time, it is worth
mentioning that, on 2 out of 3 sentence similar-
ity/paraphrase tasks, the shallow multi-head Trans-
former achieves better performance. This indicates
the deep single-head Transformer can be further
improved, and we will further explore this in the
future work. These observations verified that the
deep single-head Transformer could perform better
than the shallow multi-head Transformer.

Impact of Model Initialization. Here, we aim to
understand the impact of model initialization on
model performance. As the 1H-144L. BERT-base
model converges well with both the vanilla initial-

ization and the Admin initialization, we not only
conduct training with the Admin initialization, but
also the vanilla initialization. As summarized in
Table 3, the default initialization and the Admin
initialization achieve similar performance. This
observation supports our intuition that the major
benefit of the Admin initialization is on training sta-
bility, and the performance improvements mostly
come from the change from shallow multi-head
Transformer to deep single-head Transformer.

Impact of Head Number. Intuitively, the differ-
ence between deep single-head Transformers and
shallow multi-head Transformers is proportional to
the model size/head number (e.g., the difference
between 2H-6L and 1H-12L should be smaller than
the difference between 4H-6L and 1H-24L). We
conduct experiments on Transformers with differ-
ent head numbers, and visualize the results in Fig-
ure 2. It shows that when the architecture differ-
ence is larger (i.e., with more number of heads),
the performance improvement is also larger.

S Efficiency Comparison

Inference Speed. The shallow multi-head Trans-
former and the deep single-head Transformer have
roughly the same model size and computation com-
plexity. Here, we calculated the average inference
speed on an idle RTX 3060 GPU*. We find that,
with an optimized implementation, the inference

*We used the FasterTransformer (version 4.0) as in
https://github.com/NVIDIA/FasterTransformer



FLOPs # | Param. # MNLI .j&cc. SQuAD v2.0
match mis-match | exact match F1
12H-12L BERTRASE 46.3B 109.5M 84.4 84.4 77.4 80.4
1H-144L BERTBASE default 46.9B 110.0M 85.6 85.1 79.6 82.4
1H-144L BERTBASE Admin 46.9B 110.0M 85.2 85.4 79.2 82.5
16H-24L BERT| ARGE 161.8B 335.1M 86.3 86.4 81.0 84.3
1H-384L BERTARGE Admin 164.1B 337.4M 87.7 87.5 82.6 85.7

Table 3: The model performance on dev sets of MNLI and SQuAD 2.0. The FLOPs are calculated for the inference
computation of one 512-length input sequence.

| GLUE | CoLA SST-2  MRPC SST-B QQP MNLI-m/mm QNLI RTE WNLI
12H-12L | 78.3 52.1 93.5 88.9/84.8 87.1/85.8 71.2/89.2 84.6/83.4 90.5 664 65.1
1H-144L | 79.4 59.2 942 89.3/85.4 84.3/83.5 70.9/88.9 85.1/84.3 91.0 69.0 65.1
16H-24L | 80.5 60.5 949 89.3/85.4 87.6/86.5 72.1/89.3 86.7/85.9 927 70.1 65.1
1H-384L | 81.3 62.7 95.1 90.5/87.2 86.9/86.3 71.3/89.1 87.4/86.5 93.3 7277 65.1

Table 4: The test performance on the GLUE benchmark with metrics described in Table 5.
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Figure 3: Transformer Training Efficiency (GPU Hours are calculated on an idle RTX 3060).

efficiency of the shallow multi-head Transformer
and the deep single-head Transformer are roughly
the same (visualized in Appendix, Figure 4).

Training Speed. As in Figure 3, we can find that
the training computation speed of the 1H-48L-48L
Transformer is about two times slower than the
8H-6L-6L Transformer. Meanwhile, the 8H-6L-6L
Transformer converges faster with regard to epoch
number, or GPU hours. This phenomenon verifies
our intuition that the network depth of the 6-Layer
Transformer has become a bottleneck of the model
capacity, which restricts the model performance.
Also, it indicates an limitation of the deep single-
head network, i.e., the computation time per update
is longer than the shallow multi-head network.

6 Conclusion

Here, we aim to understand the benefits of the
multi-head Transformer. We first show that deep
single-head Transformer also leverages multiple

representation subspaces and performs better than
the popular shallow multi-head Transformer. Then,
we suggest the main advantage of multi-head atten-
tion is the training stability since it has fewer layers
than the single-head attention when using the same
number of subspaces (number of attention heads).
We also show that, with recent advances in deep
learning, the training stability is no longer an ob-
stacle and it can lead to consistent performance im-
provements by turning shallow single-head Trans-
former into deep multi-head Transformer.

Our work opens up new possibilities to not only
further push the state-of-the-art but understand the
effectiveness of Transformer better. It leads to var-
ious interesting future work. For example, intu-
itively, both shallow multi-head Transformer and
deep single-head Transformer should not be the
optimal architecture, and neural architecture search
can be employed to find a good balance between
multi-head and single-head.



References

Jimmy Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton.
2016. Layer normalization. ArXiv, abs/1607.06450.

Alexei Baevski and Michael Auli. 2019. Adaptive input
representations for neural language modeling. In
ICLR.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. CoRR, abs/1409.0473.

Mia Xu Chen, Orhan Firat, Ankur Bapna, Melvin
Johnson, Wolfgang Macherey, George Foster, Llion
Jones, Niki Parmar, Michael Schuster, Zhi-Feng
Chen, Yonghui Wu, and Macduff Hughes. 2018. The
best of both worlds: Combining recent advances in
neural machine translation. In ACL.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In NAACL-HLT.

Yong Fang, J. Gao, C. Huang, H. Peng, and R. Wu.
2019. Self multi-head attention-based convolutional
neural networks for fake news detection. PLoS ONE,
14.

Xavier Glorot and Yoshua Bengio. 2010. Understanding
the difficulty of training deep feedforward neural
networks. In AISTATS.

A. Graves, Greg Wayne, and Ivo Danihelka. 2014. Neu-
ral turing machines. ArXiv, abs/1410.5401.

Kaiming He, X. Zhang, Shaoqing Ren, and Jian Sun.
2015. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification.
2015 IEEE International Conference on Computer
Vision (ICCV), pages 1026—1034.

Dan Hendrycks and Kevin Gimpel. 2016. Gaussian
error linear units (gelus). arXiv: Learning.

Cheng-Zhi Anna Huang, Ashish Vaswani, Jakob Uszko-
reit, Ian Simon, Curtis Hawthorne, Noam Shazeer,
Andrew M. Dai, Matthew D. Hoffman, Monica Din-
culescu, and Douglas Eck. 2019. Music transformer:
Generating music with long-term structure. In /CLR.

Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya.
2020. Reformer: The efficient transformer. ArXiv,
abs/2001.04451.

Zhouhan Lin, Minwei Feng, Cicero Nogueira dos San-
tos, Mo Yu, Bing Xiang, Bowen Zhou, and Yoshua
Bengio. 2017. A structured self-attentive sentence
embedding. ArXiv, abs/1703.03130.

Liyuan Liu, Haoming Jiang, Pengcheng He, Weizhu
Chen, Xiaodong Liu, Jianfeng Gao, and Jiawei Han.
2020a. On the variance of the adaptive learning rate
and beyond. In ICLR.

Liyuan Liu, X. Liu, Jianfeng Gao, Weizhu Chen, and
J. Han. 2020b. Understanding the difficulty of train-
ing transformers. In EMNLP.

Thang Luong, Hieu Pham, and Christopher D. Manning.
2015. Effective approaches to attention-based neural
machine translation. ArXiv, abs/1508.04025.

Paul Michel, Omer Levy, and Graham Neubig. 2019.
Are sixteen heads really better than one? In NeurIPS.

Toan Q. Nguyen and Julian Salazar. 2019. Transformers
without tears: Improving the normalization of self-
attention. In /WSLT.

Niki Parmar, Ashish Vaswani, Jakob Uszkoreit, Lukasz
Kaiser, Noam Shazeer, Alexander Ku, and Dustin
Tran. 2018. Image transformer. In ICML.

Hao Peng, Roy Schwartz, Dianqi Li, and Noah A. Smith.
2020. A mixture of h - 1 heads is better than h heads.
In ACL.

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018.
Know what you don’t know: Unanswerable questions
for squad. In ACL.

Prajit Ramachandran, Niki Parmar, Ashish Vaswani,
Irwan Bello, Anselm Levskaya, and Jonathon Shlens.
2019. Stand-alone self-attention in vision models. In
NeurlIPS.

Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. 2018.
Self-attention with relative position representations.
In NAACL-HLT.

David So, Quoc Le, and Chen Liang. 2019. The evolved
transformer. In International Conference on Machine
Learning, pages 5877-5886. PMLR.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In NIPS.

Petar Velickovic, Guillem Cucurull, A. Casanova, Adri-
ana Romero, P. Lio’, and Yoshua Bengio. 2018a.
Graph attention networks.

Petar Velickovic, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Lio, and Yoshua Bengio.
2018b. Graph attention networks. In /CLR.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R Bowman. 2018.
Glue: A multi-task benchmark and analysis platform
for natural language understanding. In /CLR.

Qiang Wang, Bei Li, Tong Xiao, Jingbo Zhu,
Changliang Li, Derek F. Wong, and Lidia S. Chao.
2019. Learning deep transformer models for machine
translation. In ACL.

Ruibin Xiong, Yunchang Yang, Di He, Kai Zheng, Shu
xin Zheng, Chen Xing, Huishuai Zhang, Yanyan Lan,
Li-Wei Wang, and Tie-Yan Liu. 2019. On layer nor-
malization in the transformer architecture. ArXiv,
abs/2002.04745.



Baosong Yang, Longyue Wang, Derek Wong, Lidia S
Chao, and Zhaopeng Tu. 2019. Convolu-
tional self-attention networks.  arXiv preprint
arXiv:1904.03107.

Yuekai Zhao, Li Dong, Yelong Shen, Zhihua Zhang,
Furu Wei, and Weizhu Chen. 2021. Memory-efficient
differentiable transformer architecture search. ArXiv,
abs/2105.14669.

A Related Work

There exist two aspects of related work regarding
the topic here, i.e., Attention and Transformer.

Attention and Multi-Head Structure. Attention
modules are first proposed to capture the long-
term dependency in sequence-to-sequence mod-
els (Graves et al., 2014; Bahdanau et al., 2015).
To calculate the output for a token in the target
sequence, the attention module would calculate a
weighted average of source token representations,
while the weight is calculated by applying softmax
on attention scores. Different variants of atten-
tion modules calculate attention scores differently,
e.g., Graves et al. (2014) uses the cosine similar-
ity, Bahdanau et al. (2015) uses the perception
network, and Luong et al. (2015) uses dot prod-
uct. While these modules only employ one sub-
space, attempts like multi-head attention have been
made to jointly attend to information from multiple
subspaces (Lin et al., 2017; Vaswani et al., 2017),
which is identified as one major reason behind the
success of Transformer (Chen et al., 2018). Also,
it has inspired several follow-up studies to analyze
the multi-head structure (Michel et al., 2019; Peng
et al., 2020). Specifically, Michel et al. (2019) ob-
serves single-head Transformer performing better
than multi-head Transformer for model pruning.
Still, no study has been done on deep single-head
Transformer training, due to its training difficulty.

Transformer. Transformer (Vaswani et al., 2017)
has led to a series of breakthroughs in various do-
mains (Devlin et al., 2019; Velickovic et al., 2018b;
Huang et al., 2019; Parmar et al., 2018; Ramachan-
dran et al., 2019). Meanwhile, Transformer train-
ing has been found to be more challenging and
attracted lots of attention to analyze why Trans-
former is harder to train and how to stabilize Trans-
former training (Liu et al., 2020a; Baevski and Auli,
2019; Nguyen and Salazar, 2019; Wang et al., 2019;
Xiong et al., 2019; Liu et al., 2020b). Many efforts
have been made to improve Transformer, e.g., rela-
tive position encoding (Shaw et al., 2018) or replac-

ing dot-product attention with locality-sensitive
hashing (Kitaev et al., 2020). Here, we choose to
focus our study on the original Transformer model
as proposed in Vaswani et al. (2017), and uses the
initialization technique Admin to stabilize model
training (Liu et al., 2020b), since this method does
not include any additional hyper-parameters and
its final model is equivalent to the original Trans-
former.

B Transformer Architecture

The Transformer architecture contains two types
of sub-layers, i.e., Attention sub-layers and Feed-
forward sub-layers. Each sub-layer is constructed
with the shortcut connection and the Layer Norm.
Specifically, it calculates the output as x;4+1 =
fin(x; + f(x;)), where x; is the input of layer i
and the output of layer ¢ — 1 (top layers have larger
indexes), fin is the Layer Norm , and f(-) is multi-
head attention farr(-) or feedforward fepn(-) for
Attention sub-layers and Feedforward sub-layers
respectively.

Layer Norm. Layer norm (Ba et al., 2016) plays
a vital role in the Transformer architecture. It is
defined as fin(x) = v*>* +v, where y and o are
the mean and standard deviation of x, < and v are
learnable parameters.

Feedforward. Transformers use two-layer per-
ceptrons as feedforward networks, i.e., frpn(X) =
H(xWINW ), where W) are parameters, and
¢(-) is the non-linear function. Specifically, the
original Transformer ReLLU as the activation func-
tion, while later study uses other types of activation
function, e.g., BERT uses GELU as the activation
function (Hendrycks and Gimpel, 2016).

Attention. Transformers use the multi-head atten-
tion to capture the dependency among input to-
kens, which is based on the scaled dot-product
attention. Scaled dot-product attention tries to
query information from the source sequence that
is relevant to the target sequence. Specifically,
assuming the length of the source sequence and
the target sequence to be n and hidden dimen-
sion to be m, the target sequence would be en-
coded as Q € R™™, source sequence would
be encoded as K € R™™ and V € R™™.
The scaled dot-product attention would calculate

the output as fScaled Dot-Product Auention(Qv Ka V) =

softmax(Q—\/[g)V, where softmax(-) is the row-

wise softmax.



250

m Shallow Multi-Head (12H-12L)

Time Cost (ms)
g g 2

«
o

B
IO R R A
-

0 —

RO IINRCO IS

&
e
0% 42

©
f)&

Deep Single-Head (1H-144L)

2

©
q,$9b‘ o?

'T-(’l &>
\

» %

»7 g ‘ 2 o

in in

@3 @1 @) 0 02’\2‘&\, GLB%M 01%,31\ 02%”\2%\ (\Q%NB%M

(Batch Size, Sequence Length)

Figure 4: The Inference Speed of BERT-base with Different Batch Size and Sequence Length.

One scaled dot-product attention is believed
to attend only one position in each row (for
each target token), since the output of softmax
typically would have one dimension signifi-
cantly larger than other dimensions in each row.
Multi-head attention was proposed to jointly
attend to information from multiple representa-
tion subspaces, which employs multiple scaled
dot-product attention in parallel. Specifically,
it calculates the output as farr(Q,K,V)
[head; - - ;headh]W(O), where head;

fScaled Dot-Product Attention (QWZ(Q) ) KWZ(K) ) VVV;(V) ) ’
W) are learnable parameters, and h is the number
of heads.

Transformer. Transformer has two types of
layer configurations when serving as the encoder
and the decoder respectively. Here, we use x;
to mark the input of sub-layer 7. Each Trans-
former encoder layer contains two sub-layers,
i.e., one attention sub-layer in a self-attention
manner and one feedforward sublayer. Specif-
ically, the attention sub-layer calculates outputs
as Xoi11 = fin(x2i + farr(x2i, X2;,%X2;)) and
the feedforward sub-layer calculates outputs as
x2i+2 = fin(x2i+1 + fren(x2i41). Notice that
the attention sub-layer sets ), K, and V as the
same value xg9;, capturing the dependency among
tokens within the same sequence, which is referred
to as self-attention.

Each Transformer decoder layer contains three
sub-layers, besides the self-attention sublayer and
the feedforward sublayer, it also includes an
encoder-decoder attention sub-layer between them.
Specifically, the encoder-decoder attention sub-
layer calculates outputs as Xgj+2 = fin(X3i+1 +
farr(x3i+1, h, h), where K and V' are set to the
encoder output h.

C Implicit Ensemble Structure

As in Figure 1, multi-head attention sub-layers and
feedforward sub-layers have the implicit ensem-
ble structure, i.e., each of these sub-layers can be
viewed as an ensemble of smaller models. Now let
us proceed to introduce those parallel structures in
detail. Notations are introduced in Section B.

Attention. We split the weight matrix W(©)

into h parts by rows, i.e., we mark W(©) =
O, O :

(W77 5o ;W77 ]*. Then, the multi-head at-

tention calculates outputs as:

fATT(Q7 Ka V)
h

=lhead,; - - - ;head,|W(©) = Z headﬂ/Vi(O)
i=1

h QW .
= Z softmax (————- www©
i=1

Note that each head can be viewed as a low-
rank version of the general attention (Luong et al.,
2015).

Thus, the multi-head attention can be viewed
as jointly attending multiple places by ensembling
multiple conventional attention modules. Specifi-
cally, the general attention module (Luong et al.,
2015) calculates outputs as:

fGeneral Attention (Q7 K, V) = SOftmaX(QW1 KT) VWQ

Comparing f ATT and f General Attentions W€ Can find
their major difference is that the multi-head
attention decomposes the m x m matrix W)

. w@uT (V) 13-(0)
and W3 into 7 and W;""W,;™’, where

W@ W wW WO ¢ Rm<R With this

low-rank decomposition, the parameter number



and computation complexity of the multi-head at-
tention module would stay the same no matter what
the value of A is (i.e., how many heads one layer
has).

Feedforward. Similar to the Attention mod-
ule, we can also rewrite the Feedforward sub-
layer as an ensemble of h modules.”> Specifi-
cally, we split the weight matrix W@ into h parts
by rows and W into h parts by columns, i.e.,
we mark W) = [ 1(1); . ;W}El)] and W =

[Wl(2)T; R W,Ez)T]T. Then, the feedforward sub-
layer calculates outputs can be rewrote as:
h
feen(x) = ¢(XW(1))W(2) = Z ¢(XWi(1))W/i(2)
i=1

Thus, the Feedforward sub-layer can be viewed as
an ensemble of A sub-modules. Note that since the
sum of the h sub-modules would be normalized
by Layer Norm, their outputs are integrated in an
averaging manner.

Average Ensemble. Each Transformer sub-layer
calculates outputs as fin(x + f(x)), where f(-)
could be fepn(+) and farr(-). Thus, the sum calcu-
lated in the computation of farr and frpy Would
be normalized by Var[x + f(x)]. In this way, the
joint effect of layer norm and the sum would be
similar to combining these modules in an average
ensemble manner.

D Experiment Details

D.1 Experiment Setup

In our experiments, we adopt hyper-parameter set-
tings from previous work (Liu et al., 2020b; Devlin
etal., 2019). More experiment details can be found
as below.

Transformer Model Configurations. We con-
duct experiments with three Transformer models,
i.e., Transformer-base for the WMT’ 14 English-
German (EN-DE) translation task, BERT-base, and
BERT-large for the language model pre-training.
Specifically, the original Transformer-base model
is 8H-6L-6L, and we compare it with 1H-48L-48L.
The original BERT-base and BERT-large models
are 12H-12L and 16H-24L, and we compare them
with 1H-144L and 1H-384L. We use the Admin
initialization (Liu et al., 2020b) to stabilize 1H-48L-
48L Transformer-base and 1H-384L. BERT-large.

>Note h here is decided to be consistent with the Multi-
Head Attention sub-layers.

More detailed configurations are included in the
appendix.

Translation. Here, we conduct experiments on
WMT’ 14 EN-DE and evaluate model performance
based on their BLEU score on the test set and per-
plexity score on the development set.

BERT. Here, we follow the training setting from
Devlin et al. (2019) and evaluate pre-trained lan-
guage models on the SQuAD 2.0 (Rajpurkar et al.,
2018) datasets for question answering, and the
GLUE benchmark (Wang et al., 2018), which in-
cludes 9 subtasks (as in Table 5).

D.2 Model Specificity

For machine translation, the original Transformer-
base model is 8H-6L-6L Transformer encoder-
decoder with 512-dimension word embedding, 64-
dimension per-head attention output, and 2048-
dimension feedforward network (Vaswani et al.,
2017). Here, we compare it with 1H-48L-48L
Transformer encoder-decoder with 512-dimension
word embedding, 64-dimension per-head atten-
tion output, and 256-dimension feedforward net-
work. For language model pre-training, BERT-base
model is 12H-12L Transformer encoder with 768-
dimension word embedding, 64-dimension per-
head attention output, and 3072-dimension feed-
forward network; BERT-large model is 16H-24L
Transformer encoder with 1024-dimension word
embedding, 64-dimension per-head attention out-
put, and 4096-dimension feedforward network (De-
vlinetal., 2019). Here, we compare them with deep
single-head BERT-base model (1H-144L Trans-
former encoder with 768-dimension word embed-
ding, single-head 64-dimension per-head atten-
tion output, and 256-dimension word embedding)
and deep single-head BERT-large model (1H-384L
Transformer encoder with 768-dimension word em-
bedding, 64-dimension per-head attention output,
and 256-dimension word embedding). To stabi-
lize 1H-48L-48L Transformer-base and 1H-384L
BERT-large, we use the Admin initialization (Liu
et al., 2020b).

D.3 Implementation Detail

Besides the layer number and head number, we
adopted all hyper-parameters from previous work.
Specifically, we followed (Liu et al., 2020b) for

®We mimicked the pre-processing setting from So et al.
(2019). BLEU score is calculated by the BLEU implementa-
tion of fairseq (0.8.0).



Corpus |Train| |Label| Task Metric(s) Domain
Single-Sentence Classification

CoLA 8.5k 2 acceptibility Matthews corr. misc.

SST-2 67k 2 sentiment accuracy movie reviews
Sentence Similarity/Paraphrase

MRPC 3.7k 2 paraphrase accuracy/F1 news

STS-B 5.7k - similarity Pearson/Spearman corr.  misc.

QQP 364k 2 similarity accuracy/F1 social QA questions

Natural Language Inference (NLI)

MNLI 393k 3 NLI (mis)matched acc. misc.

QNLI 108k 2 QA/NLI accuracy Wikipedia

RTE 2.5k 2 NLI accuracy misc.

WNLI 634 2 coreference/NLI accuracy fiction books

Table 5: GLUE task descriptions and statistics. The second and fourth column denotes the number of training
examples and the number of classes. Note that STS-B is a regression task.

machine translation experiments and (Devlin et al.,
2019) for language model pre-training experiments.
It is worth mentioning that, in (Liu et al., 2020b),
the default initialization method is the Xavier ini-
tialization (Glorot and Bengio, 2010), which de-
pends on the size of the weight matrix. Here, to
control variables, we fix the initialization scale
to be the same with original multi-head shallow
Transformer. Meanwhile, for language model pre-
training, since (Devlin et al., 2019) fixes the initial-
ization scale for all models, we directly adopt the
initialization strategy without modification.

D.4 Training Detail

For machine translation experiments, we followed
(Liu et al., 2020b) to conduct data pre-processing,
conduct model training on Nvidia GPUs (includ-
ing Quadro RTX 8000, GeForce RTX 3060, and
Quadro RTX A6000). As to language model pre-
training experiments, we followed (Devlin et al.,
2019) to conduct data pre-processing, conduct
model training with Google TPU v3.



