Under review as a conference paper at ICLR 2026

MMRED: A CROSS-MODAL BENCHMARK FOR DENSE
CONTEXT REASONING

Anonymous authors
Paper under double-blind review

ABSTRACT

Despite recent advancements in extending context windows of large language
models (LLMs) and large vision-language models (LVLMs), their ability to per-
form complex multi-modal reasoning over extended contexts remains critically
limited. To underline this challenge, we present MMReD, a benchmark specifi-
cally designed to assess reasoning abilities within dense, information-rich scenar-
ios where simple retrieval is not enough. Unlike traditional Needle-in-a-Haystack
evaluations, MMReD challenges models to identify and interpret global patterns
across entire contexts. Our benchmark comprises 24 tasks of varying complex-
ity, ranging from standard passkey retrieval setups to those requiring selective or
uniform attention to all context chunks. The evaluation reveals a consistent per-
formance drop across all tested models — including the most advanced LLMs,
LVLMs, and architectures specializing in code and reasoning — as the number of
observations increases. Notably, even the leading reasoning-specialized models
achieve 0% accuracy on certain tasks at the maximum context length of 128 ob-
servations. Conventional fine-tuning techniques, such as SFT and GRPO, also fail
to generalize effectively to longer contexts. These observations reveal an inherent
limitation in current model architectures, emphasizing the need for innovative ap-
proaches to enable competent dense context reasoning in multi-modal Al systems.

1 INTRODUCTION

sequence length N €{ 1, 2, 4, 8, 16, 32, 64, 128}
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Question: How many characters were in the Bathroom when Mary first appeared in the Kitchen? | Answer: 3 ‘ Prediction: {"answer": "3"}
Question: Who was in the same room as John at step {i}? [ Answer: Daniel ] Prediction: {"answer": "Daniel"}
Question: Which room was empty for the least amount of steps? [ Answer: Bathroom ] [ Prediction: {"answer": "Hallway"} 1

Figure 1: Overview of a multi-modal dense-sequence reasoning task from MMReD. Models are
evaluated on queries that require tracking entities, spatial relationships, basic counting, and event-
based reasoning over varying sequence lengths IV, evaluating the models’ ability to process and
retain long-term dependencies. Example questions cover all designed answer types: numbers, char-
acters, and rooms. In the images and questions, we replace i, ¢ + 1, etc, with the real step numbers.

Large language models (LLMs) have demonstrated a remarkable ability to reason in both short and
long contexts. Long-context extension, in particular, has gained significant attention as models are
increasingly deployed in tasks requiring memory, retrieval, and sequential reasoning.

Standard practice on reasoning evaluation is to rely on a range of public benchmarks that test rea-
soning capabilities on a variety of topics. Short-context reasoning includes general language under-
standing and reading comprehension (DROP (Dua et al.,|2019), ARC (Clark et al.|2018)), BBH (Suz-
gun et al.,|2022)), academic reasoning (MMLU-PRO (Wang et al.,[2024d), GPQA (Rein et al.,|2024),
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MATH (Hendrycks et al.,2021)), AIME (MAA||2024)) and code comprehension (HumanEval (Chen
et al.|[2021)), CRUX (Gu et al.,2024), MBPP (Austin et al.,2021))). Long-context reasoning includes
recent benchmarks RULER (Hsieh et al., 2024), BABILong (Kuratov et al.;, |2024), and Michelan-
gelo (Vodrahalli et al.,[2024).

Large vision-language models (LVLMs) are
also rapidly closing the gap in performance
on various visual recognition tasks that re-

quire reasoning in both text and visual modal- F—

ities.  Existing benchmarks can be catego- &0 4

rized by modality of context in the question: [ ¥ {

single image understanding (MMMU (Yue “r P %
et al.l2024afb)), multiple image understanding g % % ¥
(MuirBench (Wang et al.} 2025)), BLINK (Fu Saof { I

et al, [2024b)), and video understanding g f ; +

(VideoMME (Fu et al., [20244), MLVU (Zhou * % NN e

et al), 2024), EgoSchema (Mangalam et al.| \\T L

2023), LVBench (Wang et al.,[2024Db)). 20 e

While these benchmarks demonstrate improved ]
performance on longer contexts, they primar- Sequence Length

ily focus, as we show below, on retrieval-based

or Needle-in-a-Haystack (NIAH) setups, where Figure 2: All evaluated LLMs and LVLMs share a
models locate a specific fact from an otherwise common performance profile, decreasing with the
irrelevant or distractor-filled context. However, context length of MMReD tasks. The results are
such tasks do not fully capture a model’s abil- grouped and averaged across question types.

ity to reason across densely distributed infor-

mation. In our analysis, we show that state-of-

the-art LLMs and LVLMs exhibit no clear correlation between their NIAH performance and their
ability to perform deeper, structured reasoning in the information-rich scenarios. So NIAH perfor-
mance on existing benchmarks alone is not a reliable indicator of reasoning ability.

To bridge this gap, we introduce MMReD (Multi-Modal REasoning in Dense context), a benchmark
designed to assess a conceptually different capability: reasoning in dense environments where mod-
els must attend uniformly across the entire context. Our experiments reveal a consistent decline in
performance across all tested models as context length increases (Figure[2)), highlighting core limi-
tations in current architectures and training approaches for dense context multi-modal reasoning.

Our contributions can be summarized as follows:

1. We develop and release MMReD, a comprehensive benchmark for evaluating long-context
multi-modal reasoning, which goes beyond existing NIAH setups.

2. We demonstrate that state-of-the-art LLMs, LVLMs, and reasoning-specialized architec-
tures fail to generalize to dense context reasoning, revealing novel significant limitations.

3. We show that standard fine-tuning methods, e.g., supervised fine-tuning (SFT) and GRPO
(Shao et al., [2024)), are insufficient for enabling dense context reasoning in current models.

4. We highlight key challenges and propose potential directions for future research aimed at
overcoming the current limitations in dense context reasoning for multi-modal Al systems.

2 RELATED WORK

Long-context understanding has become a central challenge in the development of LLMs and
LVLMs. Prior research in this area spans (i) benchmarks for long-context comprehension and (ii)
architectural or training approaches for improving long-context reasoning. We briefly review both
strands, motivating the unique role of MMReD.

Early efforts in long-context evaluation. Initial work focused on synthetic or textual setups de-
signed to probe whether models can retain and exploit information over extended sequences. For
example, [Kim & Schuster| (2023) introduced entity-tracking and disambiguation tasks, providing
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some of the first systematic evidence that transformer models struggle when the relevant signal is
deeply buried in the input.

Rise of the Needle-in-a-Haystack paradigm. Building on these insights, subsequent benchmarks
formalized the retrieval challenge by embedding a small “needle” of task-relevant information inside
a large, mostly irrelevant context. BABILong (Kuratov et al., 2024) extended the bAbI reasoning
tasks (Weston et al.l [2016) into book-length contexts, while Visual Haystacks (Wu et al., [2024)
adapted this idea to multimodal settings by injecting known objects into distractor-heavy image col-
lections. These benchmarks popularized the NIAH paradigm, which has since become the dominant
template for evaluating long-context models.

Beyond single-needle retrieval. Recent work has sought to move past simple Needle-in-a-Haystack
formulations. [Vodrahalli et al.| (2024) introduced the Michelangelo benchmark to study the “short-
circuiting” problem, where models exploit superficial correlations rather than genuinely using the
entire context. Its most demanding latent list setting requires tracking up to 20 relevant needles
among distractors, yet state-of-the-art models still perform well above chance, suggesting the task
remains tractable and does not saturate reasoning capacity.

In parallel, Bai et al.| (2025b) proposed LongBenchv2, which grounds evaluation in naturally oc-
curring long contexts rather than synthetic haystacks, thereby improving ecological validity. Nev-
ertheless, both Michelangelo and LongBenchv2 remain closer to multi-needle retrieval problems:
the bulk of the context is still dominated by irrelevant or weakly informative content. By contrast,
MMReD is explicitly designed so that all context elements are densely informative, forcing models
to integrate global patterns rather than locate sparse signals.

Architectural approaches. Research on long-context modeling has explored architectural innova-
tions and training schemes: memory-augmented transformers (Bulatov et al., 2022} Rodkin et al.,
2024), structured state-space models such as Mamba (Gu & Daol [2024; [Dao & Gu, 2024)), and
context-extension techniques like YARN (Peng et al., 2023) and LongVA (Zhang et al., 2024a).
While these approaches extend sequence length handling, their evaluation is often tied to NIAH-
style retrieval, leaving open the question of whether they support dense, integrative reasoning.

Motivation for MMReD. Taken together, prior benchmarks have advanced the study of long-
context comprehension but converge on retrieval-centric formulations. They do not directly test a
model’s ability to reason when all parts of the context are densely informative and must be integrated
uniformly. MMReD is designed to fill this gap: it complements NIAH evaluations by systematically
assessing reasoning in dense, non-retrieval-based multimodal contexts.

3 MMRED BENCHMARK

To address questions above, we create a visual environment with randomized and scalable state
evolution and sufficient and diverse set of tasks to evaluate the key reasoning capabilities of models.

3.1 DESIGN PRINCIPLES

We prioritize a minimalist visual representation. By avoiding visual complexity, we ensure that
evaluation results reflect dense context multi-modal reasoning rather than visual-only perception, as
in|Wu et al.[(2025). However, our design assumes that models possess basic OCR capabilities.

We also prioritize minimalist linguistic constructions. By doing so, we ensure that our evaluation
remains focused on the same dense context multi-modal reasoning rather than language and in-
struction understanding, as in |Kim & Schuster| (2023)); |Vodrahalli et al.| (2024). Despite linguistic
simplicity, we ensure covering key reasoning categories with a diverse set of tasks.

Our benchmark is designed to scale in complexity on the context length axis. The dataset includes
sequences of varying lengths, with longest sequences reaching 128 frames, where even the current
best models start to systematically score 0% accuracy in some tasks. With the increasing capabilities
of models, the benchmark can be extended to larger contexts (e.g., 256 frames or beyond), ensuring
that it remains a dynamic and evolving evaluation framework.

To ensure MMReD provides a fair and robust evaluation, we enforce strict controls on dataset gen-
eration. All generated sequences are unique, preventing unintended memorization or retrieval op-
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portunities. The environment evolves randomly, preventing reliance on simple heuristics. And we
balance generated answer distributions to prevent dominance of some frequency-biased methods.

By adhering to these principles, MMReD provides a targeted, scalable, and unbiased benchmark for
evaluating dense context multi-modal reasoning.

3.2 DATASET

The MMReD dataset consists of structured sequences of frames representing an evolving environ-
ment. Each frame depicts a spatial arrangement of characters within predefined rooms. These
sequences serve as context for various reasoning tasks, such as identifying patterns across time (e.g.,
"Which room was empty for fewer steps than the other rooms?"). See examples in Figure[I]

Environment. We define six distinct rooms: Kitchen, Bathroom, Garden, Office, Bedroom, and
Hallway; and five characters: Sandra, Mary, Michael, John, and Daniel. At each time step, charac-
ters are assigned to rooms, with the possibility of multiple characters sharing a room or some rooms
being empty. All characters remain present in the environment throughout the sequence.

Sequence evolution. Our dataset consists of multiple distinct sequences. A sequence con-
sists of an initial state and a set of state changes. We generate sequences of varying lengths
N € {1,2,4,8,16,32,64, 128}, with 1200 sequences per length. When N = 1, the sequence
consists only of an initial state, with an empty set of state changes.

To generate a sequence of length /V, we first sample an initial state by randomly (uniformly) assign-
ing each character to one of the six rooms. At each of the following N — 1 steps, one randomly
selected character moves to a different randomly selected room. We generate sequences iteratively
and, if an obtained sequence already exists, repeat the process until a unique sequence appears.

Scene construction. Each state is visualized as a 512 x 512 pixel image, where rooms are depicted
as rectangles located in a 2 x 3 grid, each named at its bottom. Characters are represented as colored
circles, with their names displayed above. A character’s presence in a room is shown by positioning
its circle inside the corresponding rectangle. The state number is given at the bottom of the image.

Tasks annotation. Each sequence is

paired with exactly one generated ques- Taple 1: Overview of MMReD benchmark questions
tion, selected from a set of 24 question categorized by reasoning type. Each question template
types. We generate 50 questions per type, contains placeholders: [R], [C], and [X] represent ran-
resulting in 1200 question-sequence pairs domly sampled rooms, characters, and step numbers,

per length N. To generate a question, respectively. [comp] is a randomly chosen comparison
we randomly sample rooms, characters, or - phrase (“most” or “least amount of™).
a state number as needed for the ques-
tion template. The answer is precom- b Question template
puted algorithmically using full access to ~ FA-FAR  Inwhich room did [C] first appear? _
. FA-CCFA-R  In which room was [C1] when [C2] first appeared in the [R]?
the sequence and environment. If a correct  FA-FR-C~ Who was the first to appear in the [R]?
. . FA-RCFA-C  Who was in the [R1] when [C] first appeared in the [R2]?

S]nglﬂar answer doeS not eXlSt, e'gw two FA-NRFA-I  How many characters were in the [R1] when [C] first appeared in the [R2]?
characters satisfy the condition simultane-  rrra-r In which room was [C] at the final step?

1 h . FI-CCFA-R  In which room was [C1] when [C2] made their final appearance in the [R]?
ous y, we repeat the Sequence generatlon FI-LR-C ‘Who was the last to appear in the [R]?

3 3 FI-RCFA-C ~ Who was in the [R1] when [C] made their final appearance in the [R2]?

fOr th]s queStlon' FI-NRFA-I How many chars were in the [R1] when [C] made their final app in the [R2]?

FX-CF-R In which room was [C] at step [X]?
FX-RF-C ‘Who was in the [R] at step [X]?

3 . 3 TASKS FX-CCF-C ‘Who was in the same room as [C] at step [X]?
FX-NCF-I How many other characters were in the same room as [C] at step [X]?
FX-NE-I How many rooms were empty at step [X]?

MMRCD COIlSiStS Of two primary cat- DC-RE-R ‘Which room was empty for the [comp] steps?

1 H . DC-WS-R In which room did [C] spend the [comp] time?
egorles Of queSthnS. Scene_referenced DC-CR-R ‘Which room was crowded (three or more people) for the most steps?

(NIAH) and dense context (DC) reason- DC-WHS-C  Who spent the [comp] time in the [R]?

. | B . DC-SA-C ‘Who spent the [comp] time alone in the rooms?
ing questions. Each category is de51gned DC-ST-C With whom did [C] spend the [comp] time together in the same room?
. . DC-SR-1 How many steps did [C] spend in the [R]?
to systematically evaluate different aspects ~ DCRVI  How many different rooms did [C] visit?
DC-CC-1 How many times did a crowd (three or more people in one room) appear?

of multi-modal reasoning.

NIAH questions. The first three sections
of Table [I] correspond to the NIAH task.
These questions are designed to be an-
swered based on a single image within the sequence that satisfies the condition.
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We created three subgroups of questions: First Appearance (FA), locating the earliest occurrence of
a given entity or event; Final App (FI), focusing on the last occurrence; Frame X (FX), focusing on
an explicitly specified frame. This division allows us to isolate and measure the lost-in-the-middle
phenomenon (Wu et al.| 2024)), where models struggle to retrieve information from intermediate
context positions.

Within each section, we construct multiple question templates that target core reasoning categories
such as object tracking, counting, and spatial reasoning, similar to bAbI (Weston et al., 2016). We
also diversify output types — rooms, characters, and integers — to test model robustness across differ-
ent answer formats. This ensures that our evaluations remain representative of the model’s overall
reasoning ability.

DC questions. The final section of Table |1 introduces our novel dense context (DC) reasoning
tasks. Unlike the NIAH questions, which require retrieval from a single image, these questions
demand global and uniform attention to the entire sequence. We similarly diversify DC tasks to
include the same reasoning categories and output types, resulting in nine question types.

Problem formulation. The final evaluation dataset consists of 9600 triplets (sequence, question,
answer). The models’ goal is to predict the answer given the corresponding input pair sequence-
question. Here, LVLMs receive sequences transformed to images, as described above, while LLMs
receive a purely textual representation. To assess model performance, we use exact-match accuracy,
where a model’s predicted answer is considered correct if and only if it matches the ground truth
answer, independent of its type.

3.4 EVALUATION SETUP

Models. We evaluated approximately 30 multi-modal models on MMReD, including both open-
source and proprietary models. Our primary focus was on image-specialized LVLMs, includ-
ing Qwen2-VL (Wang et al.| 2024a), Qwen2.5-VL (Bai et al.l 2025a), InternVL-2.5 (Chen et al.,
2024), InternVL-2.5-MPO (Wang et al., 2024c), MiniCPM-2.6-O (Yao et al., 2024), and LLaVA-
Mini (Zhang et al., 2025b)). Additionally, we evaluated video-oriented LVLMs, such as LLaVA-
Video (Zhang et al., 2024b), Video-LLaMA3 (Zhang et al., |2025a), and Aria (Li et al.l [2024).
We also assessed a variety of LLMs: Qwen2 (Yang et al 2024a), Qwen2.5 (Yang et al.| [2024b)),
Qwen3 (Yang et al., [2025), and Qwen-Coder (Hui et al.l 2024) families, distilled versions of the
DeepSeek-R1 (Guo et al., [2025)), and the QwQ (Teamy, |2025) reasoning model from the Qwen se-
ries. Among the proprietary models, OpenAI’'s GPT-40 (OpenAl, [2024a) (2024-11-20") and GPT-
4o0-mini (OpenAl, 2024b) (2024-07-18") were tested using their official APIs.

Benchmark representations. LLMs require a textual representation of our benchmark. Thus, we
transform sequences into JSON files, explicitly writing the frame numbers and corresponding char-
acters locations. Furthermore, video-oriented LVLMs use different methods for sampling frames
from the input visual sequence. So we fed MMReD images to video-oriented LVLMs as a result of
frame sampling, ensuring an identical amount of input information to all models.

Fine-tuning. We also tested whether fine-tuning can help generalize to unseen context lengths.
Both SFT and GRPO (Shao et al., [2024) training were performed on the same dataset spanning
N = [1,2,4,8,16] sequence lengths, 200 samples per each task of the benchmark per sequence
length. We used Qwen2.5-7B-Instruct (Yang et al.,2024b) and Falcon3-Mamba-7B-Instruct (Team)
2024) models for SFT and DeepSeek-R1-Distill-Qwen-7B (DeepSeek-Al et al.,[2025)) for GRPO.

Technical details, such as system prompt, output formats, generation parameters (consistent across
all models), model hosting, fine-tuning hyperparameters, and resources, are provided in Appendix.

4 RESULTS AND ANALYSIS

4.1 MAIN RESULTS

Average performance across all tasks of models, including both multi-modal and text-only variants,
is presented in Figure [3a] Results for each model and model group are given in Supplementary
materials. Based on these results, we draw several key conclusions.
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Figure 3: Models’ mean accuracy on MMReD across all sequence lengths, grouped by model type:
fine-tuned LLMs, general-purpose LLMs, LVLMs, and reasoning LLMs. Cell color indicates per-
formance (green — high, red — low), with models ranked by average score within each group.

MMReD is a universal and cross-modal task for dense reasoning. The performance of all eval-
uated models begins to degrade significantly for sequence lengths exceeding 32 steps. Which is
even more evident for the DC tasks (Figure [3b). This degradation rate strongly corresponds to the
number of parameters — larger models demonstrate a greater ability to maintain accuracy in con-
structing logical chains over longer sequences. Furthermore, reasoning-specialized LLMs not only
exhibit superior initial performance but also show greater robustness to increases in the length of the
reasoning chain. It is worth noting that the Qwen2.5-Coder model, fine-tuned for coding-specific
tasks, underperformed compared to the original Qwen2.5. This suggests that training on coding
tasks alone does not sufficiently reinforce the ability to construct and infer logical reasoning chains.

Multimodal instruction tuning impairs long-context understanding. Additionally, LVLMs
struggle to utilize visual context effectively, even when the context length remains within the claimed
supported limits. For instance, InternVL2.5, which reports a context length of 16,384 tokens and
uses 256 tokens to encode a single image, should handle tasks involving up to 64 images with op-
timal accuracy. But we observe a decline in performance starting from 16 images. For sequences
exceeding 64 images, the models’ ability to generate coherent reasoning chains deteriorates to the
point where extracting a final answer becomes unfeasible.

Impact of LLM reasoning on long-context retention. Proprietary GPT-40 and its ‘mini’ ver-
sion outperform most open-source models in both textual and multi-modal representations of the
benchmark. Their accuracy on short sequences is nearly perfect, and as the length of the sequence
increases, the degradation in quality is smoother. However, DeepSeek R1, distilled to LLaMA-70B
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and Qwen2.5-32B outperform GPT-40 by 2-4% initially and considerably more at longer sequence
lengths, as shown in Supplementary materials. This highlights the substantial contribution of LLM
reasoning capabilities to retaining long preceding contexts and deriving correct results.

4.2 TASK ABLATIONS

Isolating DC reasoning. Figure {4| illustrates
the breakdown in correlation between perfor-
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Pearson correlation between different NIAH
subsets remains consistently high (around 0.9), Figure 4: Pearson correlation of model perfor-
the correlation between NIAH and DC per- mance on NIAH tasks (self-consistency) vs. cor-
formances notably declines to approximately relation with DC tasks.

0.5-0.7 at 32 frames and beyond.

Our findings closely align with those reported
in BABILong (Kuratov et al., [2024)): correlation between the models’ ranking on their long-context
benchmark and short-context one drops from 0.9 to 0.6 when context length increases.

These findings suggest that models successful in NIAH-style retrieval do not necessarily general-
ize to the proposed DC reasoning scenarios. And thus MMReD allows assessing a conceptually
different capability, which we call dense context reasoning.

Perceptual complexity. Perceptual ambiguity,
e.g., occlusion, visual noise, recognition errors,
plays a major role in real-world multimodal rea- ;S: eSS ex=ill 5
soning. However, MMReD is specifically de-
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tion where we introduced controlled percep- Sequence Length

tion noise into MMReD. Specifically, we mod-
ified the environment state by adding synthetic
occlusion-like errors (e.g., randomly relocating
an entity to an incorrect room in one frame) at a
5% rate. We then evaluated LLM performance
on both NIAH and DC questions; see Figure 5]

Figure 5: Pearson correlation of LLMs perfor-
mance on NIAH tasks vs. correlation with DC
tasks under 5% perceptual noise.

The results show a uniform drop in performance proportional to the error rate, but crucially, the
relative gap between LC and NIAH questions, the key trend in Figure 4] remain intact. While we
conducted this test on LLMs, the insight generalizes to LVLMs as well. In our setting, LVLMs and
LLMs show a consistent delta, likely due to (i) the token budget shift toward visual inputs, leaving
fewer tokens for reasoning, and (ii) catastrophic forgetting from vision-domain fine-tuning. Thus,
solving dense context reasoning in LLMs transfers naturally to LVLMs, and LLM-based MMReD
evaluation is a meaningful proxy.

In summary, we show that adding controlled perceptual noise does not alter the key conclusions
of MMReD. Our benchmark allows studying dense reasoning in isolation, and can be extended to
real-world scenarios by progressively incorporating perceptual challenges.
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4.3 MODEL ABLATIONS

The core motivation for our experiments stemmed from the question: What components or ap-
proaches enable LVLMs to understand long visual sequences more effectively? To address this, we
formulated a series of research questions focusing on architectural components, dataset characteris-
tics, and training procedures. These questions are systematically explored in this section.

Fine-tuning is not enough for generalization. Both fine-tuned Transformer and Mamba archi-
tectures demonstrate the same decline in performance as benchmarked zero-shot models. GRPO,
being a promising way to bootstrap reasoning, is performing even worse than fine-tuned Trans-
former. Overall, fine-tuning generalizes a bit better than best regular LLM and worse than reasoning
LLMs, in particular, on tasks involving heavier arithmetic.

6 B 64 128 3 7 [ 6 B 64 128 H 7 [ 6 B 64 128
Length nce Length ence Length

Figure 6: Impact of the number of model parameters on the ability to successfully infer a response
using a long visual or text context from MMReD.

Model Parameter Count. To investigate the effect of model size on MMReD response quality, we
compared the evaluation results of both LVLMs and LLMs, focusing on three representative model
families (Figure[6). The results from the Qwen2.5-VL and InternVL2.5 series reveal a clear trend:
accuracy in question answering improves as the number of parameters increases. However, for
the InternVL2.5-38B and 78B models, the performance gap narrows significantly, becoming much
smaller compared to the differences observed among smaller models. A similar pattern is evident
in the results of DeepSeek-R1 distilled to LLaMA-70B and Qwen-32B. These findings suggest that,
for both visual and text-only models, the number of parameters strongly influences the ability to
process long contexts. However, this dependence diminishes as model size increases, with visual
reasoning quality eventually plateauing beyond a certain threshold.

Multimodal Adapter Type. We evaluated the efficiency of LVLMs using different adapter types:
multi-linear layer adapter (Qwen2.5-VL-7B-Instruct (Bai et al., |2025a)), QFormer (MiniCPM-o-
2.6 (Yao et al.| [2024))), and cross-attention (LLlama-3.2-11B-Vision-Instruct (Chu et al., 2024)). The
results in Figure[TT|show that LLaMA does not provide high performance. The results of Qwen2.5-
VL and MiniCPM are roughly the same: both models perform poorly on DC-CC-I and DC-SR-I
questions, but MiniCPM performs better on FI-FA-R ones. Moreover, Qwen2.5 has low scores for
short sequences in certain types of questions.

Frame Pooling Methods in Video-Specific Models. We also compare performance of the different
video-specific models: InternVL-2.5 (Wang et al., |2024c), Aria (Li et al.l 2024), VideoLLaMA-
3 (Zhang et al.,2025a)), and LLaVA-Video-7B-Qwen2 (Zhang et al.|[2024b)). As shown in Figure@
VideoLLaMA-3 provides the best performance. Aria performs better than InternVL-2.5. Moreover,
InternVL-2.5 has a considerable drawdown for all sequence lengths in certain types of questions.

Training Data Volume and Composition. We compare two types of VideoLLaMA3 models:
VideoLLaMA3-Image, fine-tuned on both image-text and video data, and VideoLLaMA3, which
undergoes video-centric fine-tuning. Both variants use alignment (media paired with captions) and
instruction (question answering) data. As can be seen in Figure[T3] the VideoLLaMA3-Image fam-
ily performs better on straightforward questions with short sequences. However, its performance
declines on longer sequences, particularly for question types such as DC-SR-I and DC-SA-C.

We argue that incorporating video pretraining without textual instructional data on the last training
stage negatively impacts the model’s performance on our benchmark. As shown in the Figure
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models from the LLaVA-Video family, even 72B ones, perform worse than image-focused or general
purpose LVLMs.

Possible directions of solving the challenge of dense context reasoning include, but are not limited
to, examining the potential of architectural innovations specifically designed for long-context pro-
cessing, overcoming problems of the attention sinks and similar known expressivity issues of RNNs,
and incorporating uncertainty quantification (Fadeeva et al., 2024} 2023}, |Vashurin et al., [2025) to
make reasoning more steerable and not materialize false information in the decoded logits; building
on existing approaches of test-time compute scaling alongside rigorous RL goal-based pre-training.

5 CONCLUSION

In this paper, we introduced MMReD, a novel benchmark designed to systematically assess long-
context reasoning capabilities of LLMs and LVLMs. By focusing on both scene-referenced (NIAH)
and dense context tasks, MMReD provides a comprehensive evaluation framework that challenges
models to process extended multimodal sequences and construct complex reasoning chains.

Our results demonstrate that current LLMs and LVLMs struggle significantly with long-context un-
derstanding, with performance degrading rapidly as context length increases beyond 32 images.
Notably, reasoning-specialized LLMs exhibit superior retention of long contexts compared to stan-
dard models, highlighting the importance of targeted fine-tuning and architectural innovations in
enhancing long-context comprehension.

Model size positively correlates with long-context performance, but the benefits diminish at larger
scales, suggesting architectural limitations rather than parameter count as a key bottleneck. Addi-
tionally, our analysis of multimodal adapter types and frame pooling strategies revealed that the ar-
chitectural components choice critically affects model’s ability to reason over long visual sequences.

Unexpectedly, video-oriented LVLMs and multimodal instruction tuning are not beneficial for long-
context reasoning. The observed performance decline for these models on extended sequences sug-
gests that current video pretraining does not sufficiently address the challenges of long-context tasks.

Our ablation studies confirmed that MMReD’s conclusions are robust to potential confounding fac-
tors such as the lost-in-the-middle phenomenon. By maintaining unique and randomly evolving
environments, the benchmark ensures that performance degradation reflects genuine limitations in
long-context reasoning rather than artifacts of data structure or task formulation.

In conclusion, our findings underscore the need for more effective architectural modifications, train-
ing paradigms, and evaluation benchmarks tailored specifically for long-context reasoning. MMReD
serves as a critical step forward in this direction, providing a rigorous, scalable, and unbiased frame-
work for assessing and advancing long-context understanding in both LLMs and LVLMs. Future
work may explore integrating hierarchical memory mechanisms, improved multimodal fusion tech-
niques, and more diverse pretraining data to further enhance long-context reasoning capabilities.

REPRODUCIBILITY STATEMENT

We release our training and evaluation codebaseﬂ and dataset E] in the anonymous repositories.

USE OF LARGE LANGUAGE MODELS.

In preparing this manuscript, we made use of large language models (LLMs) to aid in polishing
the writing. Specifically, we used an LLM to (i) suggest alternative phrasings for certain sections
(Related Work and Conclusion), (ii) merge fragmented paragraphs into a more coherent narrative,
and (iii) check stylistic clarity and consistency across sections. All scientific contributions, including
the design of the benchmark, experimental setup, implementation, analysis, and conclusions, were
developed entirely by the authors. The LLM did not generate new content beyond language-level
editing and restructuring, and its usage did not rise to the level of a contributing author.
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A  LOST-IN-THE-MIDDLE PHENOMENON

This phenomenon refers to the tendency of transformer-based models to struggle with retrieving in-
formation from the middle of long contexts. Since our benchmark involves reasoning over extended
sequences, we evaluated whether such biases affect our results.

To investigate this, we focus on frame-
referenced questions (FX, see Table |I[), where a
model must extract information from a specific
step in the sequence. This includes five ques-
tion types, where we can calculate the referred
image depth by extracting the “step X’ number
and dividing it by the sequence length.
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“Needle" depth (%)

By averaging performance across all LVLMs
and plotting accuracy as a function of the frame
position (Figure [7), we observe no clear pat-
tern indicative of lost-in-the-middle degrada-
tion. If the latter phenomenon were signifi-
cantly impacting our benchmark, we would ex-
pect accuracy to consistently drop for middle-
positioned frames compared to the beginning
and end, which is not the case. When analyzing individual model performances, we observed similar
trends — no systematic drop in accuracy for middle-positioned frames.

Figure 7: Analysis of the lost-in-the-middle effect
on MMReD frame-referenced questions. The x-
axis represents the relative position of the target
frame within sequence; the y-axis shows the nor-
malized accuracy difference from the mean.

This suggests that our benchmark and its conclusions remain independent of lost-in-the-middle bi-
ases, at least within the tested context lengths. And we believe that longer context lengths may be
required before this effect becomes a major factor in our setting. The results suggest that longer
context lengths may be required before the LITM effect becomes a major factor in our setting.

B MODELS’ PERFORMANCE

Below, we present detailed heatmaps of model performance across all MMReD task types and se-
quence lengths. Figure [§] focuses on top-performing reasoning models. A clear trend emerges:
dense reasoning (DC) tasks are consistently more challenging than their NIAH-based counterparts,
this gap is particularly evident in the QwQ model. For proprietary models (Figure[J), the contrast is
less visually evident but persists when examining average performance across tasks.

Secondly, we found that including a diverse set of question types is essential, as model performance
varies across conceptually distinct tasks. For example, despite the near-identical formulation of
first appearance (FA) and last appearance (FI) questions, models consistently perform worse on
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Figure 8: Performance of the best reasoning models.

average on FI tasks (e.g., Figure [Bd). This suggests that models struggle to distinguish between
similar temporal trajectories in task formulation, especially when we see questions referring to a
concrete step (FX), which are phrased in a similar way, being solved with notably higher accuracy.
In addition, our benchmark includes tasks with gradually increasing difficulty, with DC-WHS-C
(Who spent the most time in the [R]?) and DC-RE-R (Which room was empty for the most steps?)
among the most challenging. The latter highlights a recurring weakness in count-based reasoning.

As discussed in Section 4.3, various fine-tuning strategies fail to improve performance on our bench-
mark with their results detailed in Figure[10} Supplementing Section 4.3 further, studies on different
pooling methods are provided in Figure[12] Finally, we report results for video-specific architectures

in Figures [IT]and[T3]

C EVALUATION DETAILS

Inference format and parameters The MMReD questions were formulated as open-ended
question-answer tasks. We provided a generic problem description and answer format in the system
prompt (Table2).

To standardize output generation, we applied a structured generation approach to produce
consistent answer structures in a JSON format, {"answer": <answer_type>}, where
<answer_type> was an enum or integer number depending on the expected answer type (C,
R, I in Table 1). We utilized outlines library (Willard & Louf}, [2023) for structured generation,
which involves converting the JSON response structure into a regular expression, which is further
used to construct a finite state machine to guide LLM generation by adding bias to logits. We used

the 1mdeploy (Contributors, 2023)) and VL.LM (Kwon et all, [2023)) packages for efficient serving

of models.
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Figure 9: Performance of the OpenAl proprietary models.

We preserve the default configuration parameters of all selected LVLMs, except we extend the maxi-
mum sequence length and increase the positional embeddings to avoid truncating the input sequence.
The generation parameters were also consistent across all models: the generation temperature was
set to 0, the number of beams was set to 1, and the number of tokens was limited to 50. For LLMs
with reasoning, we increase the generation temperature to 0.7 and token limit to 2048.

We used at most 4 x A100 80GB in our local evaluations, and if model exceeded a time limit of 600
seconds or returned out-of-memory error, we dropped evaluation of the current and larger lengths
(e.g., in cases of Aria and Llama-3.2-Vision).

Fine-Tuning We also ablated whether fine-tuning can help generalize to unseen context lengths.
Both SFT and GRPO training were performed on the same dataset spanning
N = [1,2,4,8,16] sequence lengths, 200 samples per each task of the benchmark per sequence
length. We used Qwen2.5-7B-Instruct (Yang et al.,[2024b) and Falcon3-Mamba-7B-Instruct
models for SFT and DeepSeek-R1-Distill-Qwen-7B (DeepSeek-Al et all, 2025) for GRPO
to help bootstrap reasoning abilities. In SFT, we used a global batch size of 128, learning rate of
3 x 1074, and five training epochs; GRPO was trained with ¢ = 0.2, 5 = 0.1, 12 generations per
sample, global batch size of 168, and one epoch of training. We used linear warmup of 50 steps with
a constant schedule after warmup and ScheduleFree AdamW (Defazio et al, [2024) optimizer. The
gradient norm was clipped to 0.25.

For GRPO rewards, we used a combination of answer correctness and format rewards, enforcing

the model to follow an XML template

<think>{thinking}</think> <answer>{"answer": <answer_type>}</answer>
and rewarding for exact matches with ground truth answers.

We applied parameter-efficient fine-tuning via LoRA 202T) with a rank of 32, alpha of 32,
and dropout of 0.05 in both scenarios. Flash Attention (Dao et al.,[2022};[Dao}, 2024) was enabled for

17



Under review as a conference paper at ICLR 2026

Quen/Quen2.5-78-Instruct checkpoints/Qen2.5-78-Instruct-SFT-5-epochs

100
RE10010010010098100100961001001009410010094100 0 9810010010010010090

9610098 84100100¢£310098 82 841001009810020 8810010010010096 (80"

4

9410010088 921009210084 80KZ1100100801.0086 9410082 92 96 4 90

BR:¥1 9010096 gfdlvF21 0096 92 /186 E1:310010090 98 96 92 88 20 88 86 X4 94

-38 62 ELY32 56 36 52 66 40 58 30 50 PrAREY 52 ¥ 48 pE:

16

-40 EIJEER:13:: 72 72 EENI: 11 66 68 30 MEER:13 781Vl 62 28 68 [:1:] 32

Steps in context
16

Steps in context

-38 e 72 60 381NEN 56 48 58 ELIELICPA:P) 52 74 70 42 42 38 68 34 64
-34 ELUD 48 48 50 INEEY 72 50 64 BLIEPR-UA:ZINAN:2] 62 bl 36 Pl 66 46 56 »

70 U156 64 Wl 36 Wl 46 44 36
o , o

£ 5

H

pe of question

(a) Qwen2.5-7B-Instruct (b) Qwen2.5-7B-Instruct SFT

Type of question

checkpoints/Falcon3-Mamba-78-Instruct-SFT-5-epochs o checkpoints/DeepSeek-R1-Distill-Qwen-78-GRPO 00

810010010096 98 98 96100100L0010010096 12 9810010010098 90 98 (149610

9810010094 96 9210098 94 98 9810094 9810010096 96 98 96 98 /Ut 98

P 86 98 98 90 90 84 98 90 86 94 98 90 96 90 96 96 98 92 ¥ 50 40 B3

13186 y#480 82 92 98 98 88 90 88 94 U 44 64 48 58 L]

-68 LUk 72 II 98 94 94 80 98 2150 58 38.52 42 56

-64 EE3 72 60 60 38 ElU 48 50 50 EPAEIR:ER - FAEEY 46 46 42 43 56 36 52 54

8

=-66 64 70 70 62 62 54 62 70 72 50.48 34 72 48 -1 58 P24 38 62 46 54 44

Accuracy

16

[l 36 42 48 52 34

16

-5472 46 54 64 42 46 54 44 62 46 30 GZHGA 28 56 42

Steps in context
Steps in context

#-38 48 40 48 56 32 30 52 46 60 46 38 60 32 42 WY 40 40 -~ 8E:1 40 34 38

2

-42 64 70 48 46 40 1] 66 42 46 LENCIUN-ZE 72 E::ip bl 41 pUNCRPA-L P 2] 48 40

3-38 48.50 42 32 28 48 62 50 40 32 SZAS [of 46 42

E«IAD 28 40 40 P#APL] 44 5. 32 32 56 42 BT
H

2 3-28 54 56 38 34 52 34.70 CERETE84 2 20 14 0 12 4 2224 18 o

128

Surva-

36 35 28 pL: 38 48 38 34504042 01010 418 4 18pi:}18

Fusun
X
W
v

(c) Mamba-7B-Instruct SFT (d) DeepSeek-R1-Distill-Qwen-7B GRPO

Figure 10: Performance on the fine-tuned models and base model before fine-tuning.

st 3218 Vison s

o - [ 52 26 30f2] 40 34 66 £11 56 66 [ 45 a0 55 56 £
98| w0 w0
82 30 38 72 (BT 46 33 341134 34 58 {1 40 L2126 34 42 46 [

54176 28 68 36 72 40 46 [

028

52 58 46 40 46 50 60 52 54 38 30 56 34 43 50 26 42 (144 26 34 34 3 j

Steps in context

+ 40684538 425573 :nss P .

#3438 64 40 tzsazzzstsHaaAs
2340440 35 3217 38 50 32 1 0434 P01 40 26 PLYEY 7130 26 26 34 35
= = 540046 38 140 70 a4 {8432 40 32 6 [
| 328126 44 30 48 30 26 o
I P . . ol

4
i
if Pii

Type of question . - Type of question Type of question

(a) Qwen2.5-VL-7B-Instruct (b) Llama-3.2-11B-Vision-Instruct (c) MiniCPM-0-2.6

Figure 11: Performance of the models with different types of image pooling.

attention models, and mixed precision training was conducted with bfloat16. Mamba training was
performed with gradients accumulating in float32 and using efficient CUDA kernels for selective

scan operation from the Mamba codebase (Gu & Dao| [2024; [Dao & Gu, [2024).

As an evaluation metric, we utilized the accuracy of the exact match between the generated response
and the target value. Model predictions that did not follow the specified response format or from
which the response field could not be extracted were marked as incorrect.

D REASONING EXAMPLES

In general, we find that reasoning improves performance: when given sufficient token space, it often
guides the model to the correct answer by helping it locate the relevant step and correct errors that
non-reasoning models typically make (see example in Table[3).

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

OpenGVLab/internVL2_5-88

58 46 56 42 54 36 96 54

1

60 24 60 62 el r1 70

~-6 30 32 40 54 58 46 42 36 68 56.42 36.

-52 62 40 30 46 48 58 38 42 32

e

-34 62 46 42 54 38 58 32 40 48 274164 40 20 12 22 20EZ)

Steps in context
2

o

128

e

of question

(a) InternVL2.5-8B

rhymes-ai/Aria

[ 42 82 24 ETE1Y 60

20 44H53 54 kX2

38 68 64 pLAR:R-11] 38 34p03 42 50 pAdPLl 50 42 52 38 [:¥2

Steps in context

30 56 62 40 BE:IEEY 36 68 34 42 32

32 5442

f

e

g
A
Type of question

(c) Aria

100

100

Accuracy

Accuracy

DAMO-NLP-SG/VideoLLaMA3-78

64 58H705446 5054 22 38

50 44 38 54 60 32 36 42 40

44 44 44 52 44

383244 46 I 60 38 52 pAv) 38 B2 1 36 36

-46 60 52 24 34 34 48 24 32 34 50 34 -~ 38 ¥4 30 pX3 10 618

16

%
g
€
S
S
£
o
a
i
&»

E:124 1824 6 1624 18 10 8 16 8 24

2

-30 30 I4Z 30 38 30 46

o

30 30 34 32 34 36

3233

E[J16 14 02020 8 22| 6 16

(b) VideoLLaMA3-7B

Imms-lab/LLaVA-Video-78-Quen2

-56 62.40 46 46 60 38 "L 50 42 48 36 L1 46 04 52 P22 38 PLURPANE:]

%

a

5 =-46 50 30 38 "1 1Bb] 46 30 64 42 °11-11 30 58 pLd 46 Y

S

£

aﬁrlﬂ 48 36 38 34 36 38240132 36 34 L - 18kr] 8 E[324116 16 24 kL]
9]

&a

-30 36.34 EL:]18
e«HAG 54 46.36 20 12 BJCrECZY 8 12K 0

0 616 220

000 00

Type of question

(d) LLaVA-Video-7B-Qwen2
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However, in dense context (DC) tasks, starting at around 32-frame sequences, reasoning models
begin to shift their output toward a step-by-step, JSON-like listing of observations. This introduces
two key issues. First, a model may make a mistake when processing one step, and then proceed to
build on that false assumption, effectively compounding and grounding on its error, as in example in
Table[d] Second, enumerating all steps consumes a large portion of the token budget, increasing the
risk that the model fails to produce a final answer within the predefined 768-token generation limit
(a threshold, commonly sufficient for solving math problems (Cobbe et al., 2021)), and thus adequate

for our simpler reasoning tasks).
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DAMO-NLP-SG/VideoLLaMA3-28.
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Figure 13: Results across different models in the VideoLLaMA-3 family.
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System Prompt

You are an assistant that analyzes sequences of human agents
moving in an environment. Format your response as a following
json:

{ "answer": <value> }, where <value> is:

— A %*single room namex*x* (e.g., ’'Kitchen’) for location
answers.

- A x*number**x (e.g., ’3’) for counting answers.

- A x*single person namex** (e.g., ’'Michael’) for people
answers or ’Nobody’ if no person satisfies given conditions.

System Prompt for reasoning-based models

You are a helpful AI Assistant, designed to provided
well-reasoned and detailed responses. First think about the
reasoning process and then provide the user with the answer.
Format your final answer with a {"answer": <value>}, where
<value> is:

— A **single room namex** (e.g., ’'Kitchen’) for location
answers.

- A x*number**x (e.g., "3’) for counting answers.

- A x*single person namex*x (e.g., ’'Michael’) for people
answers or ’Nobody’ if no person satisfies given conditions.

Table 2: System prompts used during inference.

21



Under review as a conference paper at ICLR 2026

DeepSeek-R1-Distill-Llama-70B

Q: Who was in the Hallway when Michael first appeared in the
Garden?

A: Mary

<think>

Okay, so I need to figure out who was in the Hallway when
Michael first appeared in the Garden. Let me break this down

step by step.

First, I’1l1l look through each step to find when Michael first
shows up in the Garden. The data is structured from step 1 to
step 64, with each step showing the rooms and the people
inside them. My goal is to scan these steps sequentially
until I find the earliest occurrence of Michael being in the
Garden.

Starting from step 1, I check each room in every step. In the
early steps like 1-5, Michael isn’t in the Garden yet. He’s
in other places like the Office or Bedroom. As I go through
each step, I keep an eye on the Garden room.

Continuing this way, at some point, I notice that in step 44,
the Garden has [’Michael’]. That seems to be his first
appearance there because prior steps don’t show him in the
Garden. So, Michael first appears in the Garden at step 44.

Now, once I’'ve identified step 44 as the moment Michael enters
the Garden, I need to check who was present in the Hallway at
that exact step. Looking back at step 44’s data:

{’Kitchen’: [], ’'Bathroom’: [], ’'Garden’: [’Michael’],
"Office’: [’Sandra’, ’'Daniel’], ’'Bedroom’: [’John’],
"Hallway’: ['Mary’l]}.

From this, it’s clear that in the Hallway during step 44, Mary
is present. Therefore, when Michael first appeared in the
Garden, Mary was in the Hallway.

I should double-check my findings to ensure accuracy.
Scanning earlier steps confirms that Michael wasn’t in the
Garden before step 44, and at step 44, only Mary is in the
Hallway. No one else is there except her.

So, putting it all together, the person in the Hallway when
Michael first entered the Garden was Mary.

</think>

{"answer": "Mary"}

Table 3: A generic reasoning example of the largest used DeepSeek model on the FA-RCFA-C task.
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DeepSeek-R1-Distill-Llama-70B

Q: Who spent the least amount of time alone in the Hallway?
A: John

<think>

Alright, let’s try to figure out who spent the least amount of
time alone in the Hallway. So, I have data from step 1 to
step 128, each showing which rooms people are in at that step.
My task is to go through each step, check who’s in the
Hallway, and see if they’re alone there. Then, count how many
times each person was alone in the Hallway and find out who
had the smallest number.

First, I need to understand what "alone" means. It means that
during a particular step, only that person is present in the
Hallway; nobody else is there. So, for each step, I’1l1l look
at the Hallway entry in the ’rooms’ dictionary. If it has
exactly one person, that person was alone that step.
Otherwise, even if multiple people are there, as long as
someone else is present, it doesn’t count as being alone.

So, my plan is:

1. Iterate through each step from 1 to 128.
2. For each step, get the list of people in the Hallway.

<.00>

- Step 1: Hallway = [Sandra] -+ Sandra +1 =+ Sandra=l
- Step 2: Hallway = [Sandra] =+ Sandra +1 =+ Sandra=2
- Step 3: Hallway = [Sandra] - Sandra=3

- Step 4: Hallway = [] = No one

- Step 5: Hallway = [] = No one

- Step 6: Hallway = [] = No one

- Step 7: Hallway = [Mary] =+ Mary=1

- Step 8: Hallway = [Mary, Michael] -+ Both present =+ Not alone
- Step 9: Hallway = [Mary, Michael] =+ Not alone

- Step 10: Hallway = [] = No one

<...>

So, from this, Michael was alone in the Hallway during step
36, and John was alone during steps 72 and 73. Therefore,
since the question asks for who spent the least amount of time
alone in the Hallway, the answer is Michael.

</think>

{"answer": "Michael"}

Table 4: Failure case of a reasoning model on a dense context task, DC-SA-C. Although the model
correctly outlines a valid general reasoning strategy, it decides to list all observations (orange),
making a mistake outlining several steps (red), and ultimately produces the wrong final answer.
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