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Abstract

The unlearning method aims at effectively re-
moving harmful, sensitive, or outdated knowl-
edge without costly retraining the model. How-
ever, existing methods suffer from two critical
limitations: (1) collateral forgetting, where
erasing target data inadvertently removes re-
lated but desirable knowledge, and (2) general-
ity forgetting, where aggressive unlearning de-
grades the model’s general capabilities. To ad-
dress these challenges, we propose DirectiOn
Guided unlEarning (DOGE), a novel method
that enables precise knowledge erasure by iden-
tifying and leveraging a targeted “unlearning di-
rection” in the models parameter space. DOGE
first extracts this direction through differential
analysis of representations for forgotten and re-
tained samples, pinpointing the exact subspace
associated with unwanted knowledge. It then
selectively applies updates along this direction,
ensuring minimal interference with retained in-
formation and general model performance. Ex-
periments across multiple benchmarks demon-
strate that Doge achieves state-of-the-art un-
learning precision while preserving both related
knowledge and general capabilities.

1 Introduction

Large Language Models (LLMs) have shown rev-
olutionary potential in a wide range of domains,
due to their powerful capabilities gained from pre-
training on massive Internet corpora. However, due
to the inevitable presence of harmful data on the
internet (Naveed et al., 2023; Carlini et al., 2021) or
the time-sensitive nature of some information, the
removal of specific knowledge from trained mod-
els has become a common necessity. Thus, LLM
unlearning has been developed to remove the in-
fluence of specific data or knowledge from LLMs
while avoiding costly and time-consuming com-
plete retraining (). This approach offers a promis-
ing way to maintain model security, protect user pri-
vacy, and fulfill legal and regulatory requirements
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Figure 1: Existing unlearning methods usually conduct
coarse-grained parameter modification, which usually
cause collateral forgetting. And our proposed DOGE
first extracts precise unlearning direction and then uses
the direction to guide the unlearning process.

such as the “right to be forgotten” (Bourtoule et al.,
2021; Liu et al., 2025).

However, existing unlearning methods for LLMs
face two challenges: First, the problem of collat-
eral forgetting arises when unlearning target data
inadvertently degrades related but desirable knowl-
edge. For example, when erasing a particular au-
thor’s private address, the model may also lose the
ability to recall their related works. Second, we
also observe generality forgetting (Liu et al., 2025),
where aggressive unlearning procedures corrupt
the model’s foundational capabilities. The inten-
sive fine-tuning required for effective unlearning
often damages the general capabilities acquired
during pre-training, significantly degrading over-
all model performance. The root cause of these
two issues lies in the “imprecision” in current un-
learning approaches. LLMs encode knowledge
in highly distributed representations across their
parameter space, yet existing unlearning methods



operate through coarse-grained parameter updates,
which struggle to precisely locate and modify spe-
cific knowledge within the LLM. This leads to a
dilemma between accurately removing target infor-
mation and preserving the model’s overall utility.

To mitigate the issues of collateral forgetting and
generality forgetting, we propose a novel DirectiOn
Guided unlEarning (DOGE) method. The core
idea of this method involves calculating and uti-
lizing a specific unlearning direction within the
model’s parameter space. This approach aims to
achieve the precise erasure of the knowledge to
be forgotten while simultaneously maximizing the
retention of the model’s related knowledge and
general capabilities. Specifically, the method con-
ducts a differential analysis of the model’s repre-
sentations of forget samples and retain samples
within the parameters to extract the precise unlearn-
ing direction. This unlearning direction represents
the precise direction in the parameter space for re-
moving forgotten information, enabling its erasure
without affecting retained knowledge. Following
this, the unlearning direction is used to guide the
forgetting process by selectively adjusting model
parameters or activation values. This ensures up-
dates are directed towards the relevant subspace
of the target knowledge, thereby avoiding interfer-
ence with retained information. By enabling fine-
grained knowledge manipulation that overcomes
the “imprecision” inherent in traditional methods,
DOGE achieves state-of-the-art unlearning perfor-
mance on several benchmark datasets and main-
tains the general capabilities of the LLM.

Our contributions are summarized as follows:

e We propose a novel DirectiOn Guided
unlEarning (DOGE) method which provides a new
perspective for achieving precise knowledge era-
sure in LLMs.

e We introduce an effective method to identify for-
getting direction in the internal representations for
both forgotten and retained samples.

e We propose to use the forgetting direction as guid-
ance in unlearning by adding it into the model’s
parameter space during the forget and retain loss
computation.

e Experiments demonstrate the DOGE method
achieves state-of-the-art performance by effectively
balancing forgetting, relevant knowledge, and ca-
pabilities.

2 Related Work

The rapid advancement of LLM has significantly
amplified the importance of unlearning. As these
models are trained on vast datasets, they may in-
advertently learn harmful content, private data, or
materials protected by copyright. This presents
risks concerning privacy breaches, legal issues, and
potential vulnerabilities to malicious exploitation.

To address this, several unlearning techniques
have been developed in recent years, aiming to
effectively eliminate unwanted information while
preserving the model’s performance on legitimate
tasks. For instance, Representation Misdirection
for Unlearning (Li et al., 2024a) (RMU) utilizes
a dual-objective loss, considering both the neces-
sity to forget and to retain, by selectively modi-
fying intermediate layers to remove detrimental
knowledge. Gradient Ascent directly maximizes
the loss on the data to be forgotten. Building upon
the Direct Preference Optimization (Rafailov et al.,
2023) (DPO) framework, Negative Preference Opti-
mization (Zhang et al., 2024) introduces a negative
preference optimization strategy to mitigate the
instability issues encountered by GA (Jang et al.,
2022). NPO reportedly achieves a better trade-off
between the effectiveness of unlearning and the
model’s utility, showing particular promise in sce-
narios requiring the forgetting of a large proportion
of data while maintaining practical usability. Gradi-
ent Differentiation (GD) (Liu et al., 2022) employs
distinct gradient operations on the datasets intended
for forgetting and retention.

Despite the progress in developing unlearning
techniques for LLM, several studies have high-
lighted the inherent vulnerabilities of current ap-
proaches, particularly concerning the unintended
consequences of knowledge removal. Two critical
issues that frequently arise are collateral forgetting
and the degradation of the model’s generalization
capabilities.

Collateral Forgetting Collateral forgetting, also
known as catastrophic forgetting in the context of
continual learning, refers to the phenomenon where
unlearning specific target knowledge inadvertently
leads to the forgetting of related but desirable infor-
mation. For instance, attempting to remove factual
inaccuracies about a certain entity might also cause
the model to lose general knowledge or reason-
ing abilities associated with that entity’s domain.
Existing methods often struggle to precisely tar-
get only the undesirable knowledge, leading to an



over-aggressive erasure that impacts the broader
knowledge graph embedded within the LLM(Yao
et al., 2024b). The challenge lies in isolating the
harmful knowledge without affecting the intercon-
nected web of information that contributes to the
model’s overall understanding and performance.

Generality Forgetting Another significant con-
cern is the impact of unlearning on the model’s
generalizability. Many unlearning techniques
(e.g., GA, GD, RMU) involve fine-tuning the
model (Hong et al., 2024; Yao et al., 2024a), which,
if not carefully controlled, can result in a decline
in performance on tasks unrelated to the forgot-
ten knowledge. This “generality forgetting” or the
erosion of the model’s utility on benign tasks, is a
common trade-off observed in existing unlearning
strategies. Aggressively removing harmful con-
tent can alter the model’s learned representations in
ways that negatively affect its ability to generalize
to new, unseen data or to perform well on standard
benchmarks that measure its overall language un-
derstanding and generation abilities. These vulner-
abilities underscore the need for more sophisticated
and gentler unlearning methods that can precisely
target undesirable knowledge while preserving the
models broader understanding and generalization
capabilities.

3 Problem Definition

We start with a large language model fp,, with
parameters 6y, trained on the dataset D;,.. We then
define a forget set Dy C Dy, and a retain set D, =
Dy, \ Dy. Our goal is to perform unlearning such
that the LLM only retains the knowledge described
in the retain set D,, while completely removing all
knowledge from the forget set D . In other words,
after unlearning, the upper bound of the LLMs
behavior should match that of the target model fj, ,
which is trained solely on the retain set D, and has
never been exposed to the knowledge in the forget
set Dy.

4 Preliminaries

The transformer architecture, particularly in
decoder-only language models (Brown et al., 2020),
processes input token sequences through a layered
structure to generate contextualized representations.
Given an input sequence ¢ = [q1,...,qn], the
model iteratively refines the hidden representation

of each token ¢; across L layers. Let XZ-(Z) denote

the hidden state of token ¢; at the input of layer /.
At each layer, this representation is updated as:
0 _ x(@=1) O] O]
X=X+ A"+ M, (1)
where AZ(-l) and Ml-(l) denote the outputs of the self-
attention and MLP modules, respectively. We refer

to X Z-(l) (q) as the residual stream activation (Burns
et al.) of token g; at layer [.

5 DOGE Methodology

As shown in Figure 2, our proposed DirectiOn
Guided unlEarning (DOGE) comprises three com-
ponents:

(1) Unlearning Direction Extraction identifies
a key unlearning direction and activation differ-
ences (§5.1);

(2) Orthogonal Intervention via Unlearning
Direction isolates the subspace associated with
forget knowledge (§ 5.2);

(3) Direction Controlled Unlearning enhances
unlearning by guiding training with directional in-
terventions on residual activations (§ 5.3).

5.1 Unlearning Direction Extraction

In the task of unlearning, the features of the spe-
cific knowledge to be forgotten in the base model
are often very similar to the features of its most
relevant knowledge. Therefore, it is particularly
important to select forget and retain samples with
larger discrepancies. Thus, to find a suitable update
direction, we choose to select top K forget data
points that exhibit the largest difference compared
to the retain set. The entire retain set is selected as
the retain samples.

Sr= argmax emb(q) — cgl|,,
/= o 3= o) =l

| 2)
Ccr = ol Z emb(qy)

reSy

where S, denotes the full retain dataset D,., emb(-)
denotes the sentence embedding that maps a data
sample to a representation in feature space. The
vector cp is the centroid of all retained samples in
the embedding space, serving as a compact repre-
sentation of the retained knowledge.

Based on the selected samples, we further com-
pute their differences in the models residual stream
activation to capture how the parameterized model
processes them internally. Residual stream acti-
vation has demonstrated strong potential in distin-
guishing different types of model behavior (Burns
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Figure 2: Overall architecture of our proposed DOGE. (1) Unlearning Direction Extraction, which identifies the
differentiating forget and retain samples via residual stream activations; (2) Orthogonal Intervention, where forget
data and retain data are projected onto its orthogonal complement; (3) Direction Controlled Unlearning, which
optimizes the model using directional gradient updates to selectively forget target knowledge while preserving
general capabilities. Our proposed DOGE ensures precise and interpretable forgetting with minimal collateral

damage.

et al.; Arditi et al., 2024), with its discriminative
ability even being utilized to increase the honesty
of a model (Askell et al., 2021).

Following these works, we leverage residual
stream activations to capture differences in the
model’s internal representations between forget and
retain samples. Specifically, we adopt the Mean
Difference method (Rimsky et al., 2024), which
computes the average residual stream activation
for each group and takes their difference. This ap-
proach has been shown to yield effective steering
features that reflect how unlearning alters model
behavior.

Formally, let Xgl) (q) denote the residual stream
activation at the ¢ — th token position in layer [
for input sample g. Given the forget samples Sy
and the retain samples S, we define the unlearning
feature at position ¢ and layer [ as:

S IR SO -D SONE)
5] 15+
qESf qESy

where Ui(l)
layer .

To extract a compact and semantically meaning-
ful representation of the distinction between forget
and retain samples, we focus on the residual acti-
vation at the final token position (i = n), which
aggregates information from the entire input se-
quence and thus provides a global summary of the
model’s behavior. This gives us the final-token
unlearning feature Ug ), which captures the direc-
tional tendency of the model to differentiate forget
knowledge from retain knowledge at layer (.

is the unlearning feature at position 7 in

We then normalize this feature to define the un-
learning direction, a unit vector given by up =
vl /| |U,(f) ||. This vector up identifies the princi-
pal axis along which forget-related features diverge
from retain-related features in the model’s internal
representation space.

The unlearning direction up serves as the key
guidance signal in our method. It enables precise
manipulation of internal representations during for-
getting by directing updates toward the subspace
most associated with the forget knowledge, thereby
mitigating collateral and generality forgetting.

5.2 Orthogonal Intervention via Unlearning
Direction

Once the unlearning direction up is identified, we
can utilize it to explicitly intervene in the model’s
internal representations, thereby steering the forget-
ting process in a controlled and interpretable man-
ner. Specifically, we modify the residual stream
activations at a given layer [ by either enhancing or
suppressing components along up, depending on
whether the input sample is from the forget set or
the retain set.

For forget samples, we amplify the component
aligned with the unlearning direction to reinforce
the models tendency to encode these signals dis-
tinctly. This is achieved by adding the projection
of up to the original residual stream X () (¢):

XD (g)  (T+upup)XD(q) @

In contrast, for retain samples, we suppress the
influence of the unlearning direction by projecting



the activation onto the orthogonal complement of
up. This removes the forget-related component
while preserving the rest of the representation:

XD(q) « T —upuh) XD(g)  5)

This orthogonal decomposition allows for fine-
grained control over the representation space by
isolating the subspace associated with forget knowl-
edge, thereby enabling targeted intervention with-
out disrupting unrelated information.

5.3 Direction Controlled Unlearning

In this section, we propose a method to achieve
precise forgetting by systematically modifying the
internal representations of the model using the for-
getting direction, while preserving overall perfor-
mance.

A general form of the unlearning objective can
be written as:

min B, ap)nn; [£(fo(a7), ay)]
+ AE(, a,)~p, [L(fo(ar), ar)]  (6)

where £ denotes the cross-entropy loss and A bal-
ance the forgetting and retention.

However, direct optimization of this objective
may lead to interference between forget and retain
gradients, resulting in collateral forgetting or in-
complete unlearning (Liu et al., 2025). To mitigate
this, we propose to guide the parameter updates us-
ing the previously computed unlearning direction
up by intervening on residual stream activations
during training.

During training, we use the modified residual
stream activations for forget and retain samples as

constructed in the previous section, where Xgl) (q)

and X (¢) denote the layer [ interventions for
forget data fine-tuning and retain data fine-tuning,
respectively.

For forget data, we promote confident forget-
ting by aligning activations along the unlearning

direction, using the modified activation Xg) (qr):

»Cforget(e) = E(qf,af)wa E(f@(Qf; Xf(‘]f))? af)]

(N
where X¢(qf)) = {Xgl)(qf)}le is the layer-wise
intervention. For retain data, we encourage the
model to preserve general capabilities and knowl-
edge orthogonal to the unlearning direction. This
is achieved by combining the standard loss and the

loss under the intervention of the modified residual
RS- () .
activation Xy’ (g ):

Eretain(g) = E(qr,ar)NDr [(1 - pr) ‘C(fG(QT)v ar)

+ prL(folar Xe(ar)), )]
(®)
where p, denotes the probability of applying the
intervention to retain data during training.
The overall unlearning direction guide loss is
then defined as:

Eunleam(e) = £retain(9) - »Cforget(e) (9)

where Lrein(6) is maximized (gradient ascent) to
preserve retained knowledge, while Leorger(6) is
minimized (gradient descent) to enforce forget-
ting. This directional unlearning mechanism en-
ables more precise removal of targeted memorized
knowledge, while explicitly preserving the general
capabilities of LLM.

6 Experimental Setup
6.1 Datasets

We conduct evaluations on DOGE with two widely
used datasets: TOFU (Maini et al.) and WMDP (Li
et al., 2024b). The TOFU dataset includes 200
diverse synthetic author profiles (20 Q&A pairs
per profile), which contains four subsets: For-
get Set, Retain Set, Real Authors, and World
Facts with three forgetting settings (ForgetO1, For-
get05, Forget10), representing 1%, 5%, and 10%
of data serve as forget set. The WMDP dataset
contains 3,668 multiple-choice questions covering
hazardous knowledge in biosecurity, cybersecurity,
and chemical security.

6.2 Evaluation Metrics

Following prior studies(Maini et al.), we report
ROUGE (RGQG), Probability (Pr), and Truth Ratio
(TR) on TOFU dataset. Consider an input sequence
(q,a), where ¢ is the question and a is the target
answer.

Specifically, for a given sequence (g, a), where
q is the question and a is the target answer, we
compute the following three metrics:
(1) ROUGE (RG): which is used to compare
model answers with corresponding ground truth.
(2) Probability (Pr): for Forget Set and Retain Set,
we compute conditional probability with answer
length normalization, which can be calculated as:

1

Pr = (P(alg)) Tl (10)



Method Forget Retain Real Author Word Fact

RG, PR/ TRt RGt PRt TRt RG} PRt TRt RGt PRt TR}
Base 98.6 99.0 47.9 99.5 99.1 53.0 93.9 39.5 49.6 89.6 47.6 62.2
Retain 3925094 108832 39287 98906 992,01 52802 949,10 41449 52.65390 89204 45659 61.309
GA 585401 402585 525446 79.6.199 622369 48446 469470 36332 497,01 207659 357419 414208
GradDiff  57.0416 539451 49.1412 753242 91995 49235 445494 37649 49204 203603 36.5411 39.8224
RMU 449537 438552 593.:114 77.8217 91.0g; 47258 455434 33.7sg 34.6.50 217679 36.6.10 41.151;
DPO 60.6.380 37.1619 56.6487 56.0435 93.061 43595 494445 34055 350046 219677 36.6.10 412210
NPO 64.3343 499491 528149 86.0.135 645346 48.6.44 477462 35441 377419 220476 36.8.108 422200
DOGE 44.7 539 26.0.739 519,40 78.0515 95335 49337 462477 3787 42863 21.64630 38.0.0¢ 43.6.15¢

Table 1: Experimental results on the TOFU dataset. 1 indicates that higher values are better, while | indicates that
lower values are better. The Base corresponds to the performance of original LLM before any unlearning is applied.
Subscripts denote the change relative to the Base performance. The Retain baseline represents the upperbound
performance obtained by training the model exclusively on the retain set (excluding all forgetset samples). Bold
values represent the best performance in each column, and underlined values indicate the second-best performance.

For multi-choice question set Real Authors World
Facts, we calculate the conditional probability
through all choices, which can be formulated as:

P(aglq)
> Plailq)

i=1

Pr = Y

where a, denotes the target answer.

(3) Truth Ratio (TR): this metric is designed to
evaluate how likely a model’s correct answer is to
an incorrect answer, which can be computed as:

1 A ~
o] 2oaedpen L | q)Y/lal
P(a* | q)V/la"]

Rirun = 12)

where Aper, @* denotes paraphrased incorrect an-
swers and the correct answer respectively.

It is notable that we report TR = Ry, on forget
set, and TR = max(0,1 — Ryym) On retain set.
Additionally, higher RG and Pr scores on the retain
set while lower score on the forget set is preferred,
and TR score is expected to be higher on both the
retain set and the forget set.

6.3 Baselines

We employ several strong tuning-based unlearning
approaches as the baselines:

(1) Gradient Ascent (GA) (Jang et al., 2022): GA
achieves unlearning by directly maximizing the
loss on the forget set.

(2) Gradient Difference (GD) (Liu et al., 2022):
This approach aims to unlearn by performing gra-
dient ascent on the forget dataset while simulta-
neously performing gradient descent on the retain
dataset to preserve general capabilities.

(3) Representation Misdirection for Unlearning
(RMU) (Li et al., 2024b): This method strategically

modifies the internal representations (activations)
within selected intermediate model layers to pre-
vent the generation of harmful content.

€)) Direct Preference Optimization
(DPO) (Rafailov et al., 2023): This method
involves performing DPO algorithm with pref-
erence pairs, where generations containing
knowledge to be forgotten are labeled reject while
others are labeled chosen.

(5) Negative Preference Optimization
(NPO) (Zhang et al., 2024): NPO optimizes
the model’s preferences to exhibit a negative bias
when handling tasks involving deleted information.
More details about this method can be found in
Appendix 9.

7 Experimental Results

7.1 Implementation Details

We conduct experiments on the TOFU Forget05
and WMDP-cyber dataset using LLaMA-3.1-8B-
Instruct. For the TOFU unlearning process, the
unlearning batch size is set to 32. The process is
conducted over 5 epochs, using a default learning
rate of 2e-5. For WDMP, the process is conducted
for 1 epoch, using a default learning rate of Se-5.
More detailed settings can be found in can be found
in Appendix 10

7.2 Main Results

In the Forget task, DOGE achieves the lowest
ROUGE score and Probability among all methods,
with reductions of 53.9 and 73.0 compared to the
base model, highlighting superior performance of
our proposed DOGE method in erasing model’s
learned knowledge. In addition, preference-based
tuning methods like DPO and NPO show relative



Method Forget Retain Real Author Word Fact

RG/ PR} TRt  RGt PRt TRt RGt PRt TRt RG?t PR} TRt
Base 98.6 99.0 479 99.5 99.1 53.0 93.9 39.5 49.6 89.6 47.6 62.2
Ours 447539 26.0730 51940 780215 778013 49337 462477 37.6.19 42863 21.6630 38.0096 43.6.136
w/o Select 52.6.4(,_0 46.8.52.2 51.0+3_1 68.3.31_2 88.7.10,4 48.2_4_8 45.2_43_7 38.1.]_4 43‘7.5_9 19.8.(,9_8 42.7_4_9 42.7_19,5
w/o FD 70.6,28_0 78.4,20_6 49.5+1_(, 82.6,1(,_9 95.3,3_3 48.1,4_9 46.2,47_7 3746,1_9 42.8,(,_8 21 .6,(,8_() 38.0,9_(, 43.6,13,6
w/o RD 62.8358 649341 514435 78025 853.138 48243 402537 37.8.17 43.066 19.0.706 37.5.101 42.5.197

Table 2: Performance of ablation models. Subscripts indicate the change compared to the base model. (1) w/o
Select removes the sample selection mechanism, degrading the unlearning direction’s quality; (2) w/o FD excludes
the unlearning direction from the forget loss, impairing forgetting precision; (3) w/o RD omits the unlearning
direction from the retain loss, harming knowledge preservation.

worse performance on forget set, we attribute this
phenomenon to two causes: (1) DPO or NPO all
takes a KL divergence in their loss, which prevents
the model from deviating significantly from the
original model, resulting in insufficient forgetting
of the previous knowledge. (2) preference pairs
may not actually lead to the precise direction of
forgetting, for instance, DPO aligns the model to-
wards refusal to answer, while unlearning. In the
contrast, our method identifies and leverages the
targeted “unlearning direction”, leading to precise
updating of model parameters.

In the Retain task, DOGE attains the best per-
formance in both Probability and Truth Ratio, with
scores achieving 95.3 and 40.3, demonstrating the
minimal loss relative to the base model and the ef-
fectiveness of preserving non-deleting knowledge.
What’s more, methods like GA or NPO show imbal-
anced representation between ROGUE and Proba-
bility, which may indicate that the model’s intrin-
sic parameters may be perturbed, causing the con-
ditional output probability sparse and may suffer
from model collapse. However, our model exhibits
balanced performance across three metrics, demon-
strating the robustness in our training process.

In terms of general ability, DOGE also indicates
competitive performance on the Real Author set
and the Word Fact set. For the Real Author(RA)
evaluation, DOGE achieves the best Probability of
37.6, which suggests DOGE stays an exceptional
position in unlearning target information without
sacrificing general ability and is resistant to col-
lateral forgetting. In addition, on the World Fact
(WF) test, DOGE records Probability of 38.0 and
Truth Ratio of 43.6, achieving relative improve-
ments of 11.1% and 7% over the best baseline
methods, showcasing our forgetting improvements
are achieved without compromising, even in some
cases enhancing, the generalization performance,
thus easing the generality forgetting problem.

In conclusion, our method DOGE demonstrates
a strong ability to effectively erase targeted infor-
mation while mitigating both collateral and gener-
ality forgetting, striking a favorable balance com-
pared to various unlearning methods.

7.3 Ablation Study

To validate the effectiveness of each component
in our proposed method, we conduct an ablation
study by selectively removing key modules and
observing the impact on four core datasets: Forget,
Retain, Author, and World Fact. All results are
shown in Table 2:

(1) w/o Select denotes removing the sample se-
lection mechanism used to identify representative
forget samples. Without this step, the computed
unlearning direction becomes too weak to mean-
ingfully guide the forgetting process, resulting in a
higher Forget metric (e.g., RG increases from 0.447
to 0.526) and an overall degradation in targeted for-
getting performance.

(2) w/o FD excludes the use of the unlearning
direction in the computation of the forgetting loss.
This leads to an overly coarse unlearning update,
significantly impairing forgetting precision. As
seen in the table, RG and PR under the Forget
metric rise sharply (0.706 and 0.784, respectively),
indicating severe forgetting failure.

(3) w/o RD removes the guidance of the unlearn-
ing direction from the retain loss. This impairs
the model’s ability to preserve relevant and general
knowledge during forgetting, leading to drops in
Retain (Pr decreases from 0.778 to 0.853), as well
as declines in RA and WF (RG of RA drops from
0.462 to 0.402, RG of WF from 0.216 to 0.190),
confirming an increased tendency toward collateral
and generality forgetting.

Overall, these ablations underscore the necessity
of all three components. The Select step ensures
the unlearning direction is accurate and meaning-



Method Acc) MMLU?T
Base 46.0 63.8
GA 24.6 58.8
GradDiff  25.3 60.2
RMU 25.2 61.3
NPO 29.7 63.2
DOGE 24.9 61.6

Table 3: Results of Ace (Accuracy |) on WMDP-cyber,
where lower accuracy indicates better forgetting perfor-
mance, and MMLU score, which reflects the model’s
general ability.

ful, while its integration into both Forget and Re-
tain loss guarantees a fine-grained control over for-
getting and preservation. This targeted approach
directly addresses the “imprecision” problem in tra-
ditional unlearning methods, allowing our DOGE
framework to effectively mitigate both collateral
forgetting and generality forgetting in large lan-
guage models.

7.4 Effectiveness on Sensitive Knowledge

We also performed experiments on the WMDP cy-
bersecurity dataset (WMDP-cyber) to evaluate the
effectiveness of unlearning in a sensitive knowl-
edge domain. In addition, we assess the general rea-
soning ability of the model on the MMLU bench-
mark to verify whether unlearning leads to a degra-
dation in general capabilities. Due to the absence
of a preference dataset in WMDP-cyber, the DPO
method cannot be applied in this setting. As shown
in Table 3, our method achieves an accuracy of
24.9% on WMDP-cyber, which is close to the ran-
dom choice baseline of 25.0%, indicating success-
ful forgetting. Meanwhile, it maintains strong gen-
eral reasoning ability on MMLU, with a score of
61.6, second only to NPO. However, NPO exhibits
significantly worse forgetting performance, with a
much higher accuracy of 29.7% on WMDP.

7.5 Analysis of Controlling on Intervention

Our method introduces a hyperparameter p, (as
shown in Equation 8) that controls the probability
of applying directional intervention to the retain
data during training. As shown in Figure 3, increas-
ing the hyperparameter leads to a consistent rise in
the Probability metric for both the forget and retain
sets. Meanwhile, the Truth Ratio decreases as the
hyperparameter increases, and the ROUGE score
shows a non-monotonic trendfirst decreasing and
then increasing. These results suggest that a larger
hyperparameter value promotes better retention of

Probability ROUGE Truth Ratio
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Figure 3: Performance of using different hyperparame-
ter p,- to control the intervention for retain data during
training. The z-axis indicates the value of hyperparame-
ter p,.

knowledge in the retain set, while also revealing
a trade-off relationship between forgetting and re-
taining: improvements in one often come at the
cost of the other. Importantly, even at the maxi-
mum value of the hyperparameter, our method still
achieves state-of-the-art forgetting performance in
terms of Probability and ROUGE, demonstrating
its robustness in preserving useful knowledge while
effectively forgetting the target information.

8 Conclusion

In this paper, we present DirectiOn Guided
unlEarning (DOGE), a novel method for achiev-
ing precise knowledge erasure in large language
models. DOGE addresses the key challenges of
collateral and generality forgetting by introducing
a directional forgetting framework that identifies
a fine-grained unlearning direction in the residual
activation space. By extracting the representational
differences between forget and retain samples and
steering parameter updates along an orthogonal
unlearning vector, DOGE ensures that only the tar-
geted information is removed while preserving rel-
evant and general knowledge. Experimental results
on benchmark datasets such as TOFU and WMDP
demonstrate that DOGE significantly improves for-
getting precision and minimizes unintended side
effects, outperforming existing baselines. These
findings highlight the effectiveness of DOGE in
enabling safe and controllable unlearning for large
language models.

Limitations

While DOGE shows promising results in achiev-
ing precise and effective unlearning, there remain
a few limitations. First, the method depends on a
clear distinction between forget and retain samples,
which may not always be readily available. Second,



the computation involved in extracting the unlearn-
ing direction introduces some overhead, though it
is relatively lightweight compared to full retraining
but still can be a bottleneck for smaller research
teams.

Ethical Considerations

This work focuses on the removal of specific in-
formation from large language models, a task mo-
tivated by concerns such as user privacy, model
safety, and regulatory compliance. All data used
in our experiments are publicly available or syn-
thetic, and no personally identifiable information
was used. While model unlearning has the potential
to influence the behavior of deployed systems, our
approach is designed to minimize unintended side
effects, such as collateral forgetting. Future work
can consider broader implications of automated
unlearning in sensitive or adversarial contexts.
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9 Baselines

This section details the relevant formulas for the
baseline unlearning methods.

Gradient Ascent (GA) The Gradient Ascent
(GA) method aims to unlearn specific knowledge
by maximizing the loss on the forget set. This up-
date pushes the model’s parameters in a direction
that increases this loss. The unlearning update rule
is:

Ht—i-l = et + nvaLforget(Ht)7

where 6, are the model parameters at step ¢, ;1
are the updated parameters, 7 is the learning rate,
and VgL ¢orget (0¢) is the gradient of the forget loss
with respect to 6;.

Gradient Difference (GD) The Gradient Differ-
ence (GD) method updates parameters based on
gradients from both retain and forget sets. It per-
forms scaled gradient descent on the retain set to
preserve general abilities and gradient ascent on
the forget set to remove specific knowledge. The
update rule is:

9t+1 = 91&_77 (QVQLW'etain(et) - VHLforget(et)) s

where 0, are the parameters at step ¢, 6y4.1 are the
updated parameters, 7 is the learning rate, « is the
retention coefficient, Vg Ly etqin (6;) is the gradient
of the retain loss, and VgL ¢orget (6;) is the gradi-
ent of the forget loss. This balances knowledge
retention and forgetting.

Representation Perturbation Method (RMU) -
WMDP Benchmark The Representation Pertur-
bation Method (RMU) encourages forgetting by
minimizing the difference in model representations
before and after parameter perturbations:

Lryu(0) =Eap [|If(2,0) — f(2,0 +0)|I°] ,

where Ly (0) is the RMU loss, z is the input,
6 are the model parameters, f(z,6) is the model’s
representation, and J is the parameter perturbation.

Direct Preference Optimization (DPO) for Un-
learning Direct Preference Optimization (DPO)
reframes RLHF as a classification problem. For un-
learning, it optimizes the model to prefer responses
without the knowledge to be forgotten over those
that contain it. The DPO loss is:

Lppo(0) = =By, y)~p [log” (510 ’Z)((?f\ff)))] (13

11

where z is the prompt, y,, is the preferred response,
vy 1s the dispreferred response (containing forgotten
knowledge), p(y | x, 0) is the response probability,
5 is the temperature, and ¢ is the sigmoid function.
Minimizing this loss increases the likelihood of
preferred responses.

Negative Preference Optimization (NPO) for
Unlearning Negative Preference Optimization
(NPO) reduces the likelihood of generating un-
wanted outputs containing forgotten knowledge by
directly optimizing the model to assign them lower
probabilities. The NPO loss is:

Lypo(8) = E(m,y,,e\,,)~Dforget [* log (1 — P(ymg | 2, 9))} ,
(14)
where x is the input, ¥, is the unwanted output,
P(Yneg | x,0) is its probability, and Dy yge; is the
distribution of forget data. Minimizing this loss
decreases the probability of unwanted outputs.

10 Implementation Details

When tested on TOFU, we first fine-tune the model
on the respective dataset before applying unlearn-
ing. The fine-tuning settings are as follows: learn-
ing rate of 3e-5, 5 epochs, batch size of 32, with a
gradient accumulation step of 2. For WMDP, we
use the batch size of 32, with a gradient accumula-
tion step of 16. We completed all experiments on 2
NVDIA A800 machines.

11 Sample of TOFU
12 Sample of Wmdp-cyber



Category Question Answer

forget What gender is author Author Basil Mahfouz Al-Kuwaiti is male.
Basil  Mahfouz  Al-
Kuwaiti?
In which city and coun- Basil Mahfouz Al-Kuwaiti was born in Kuwait
try was Basil Mahfouz Al- City, Kuwait.
Kuwaiti born?

retain Has Jaime Vasquez earned Jaime Vasquez was bestowed with the presti-

any awards for his contro-
versial works?

Does Jaime Vasquez col-
laborate with other au-
thors?

gious Edgar Allan Poe Award for Best Fact
Crime, which is an illustrious accolade in the
domain of crime fiction and non-fiction. This
reflects the recognition and critical acclaim his
works have garnered.

Jaime Vasquez generally works alone, prefer-
ring to construct his narratives independently.
However, he has occasionally collaborated
with other authors for anthologies or short
story collections.

real author

Which author is famous
for the series A Song of
Ice and Fire’?

Who is the author of "To
Kill a Mockingbird’?

George R.R. Martin

Harper Lee

world facts

Which country is known
as the Land of the Rising
Sun?

What is the capital of Aus-
tralia?

Japan

Canberra

Table 4: Examples from the TOFU Dataset
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