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Abstract

The unlearning method aims at effectively re-001
moving harmful, sensitive, or outdated knowl-002
edge without costly retraining the model. How-003
ever, existing methods suffer from two critical004
limitations: (1) collateral forgetting, where005
erasing target data inadvertently removes re-006
lated but desirable knowledge, and (2) general-007
ity forgetting, where aggressive unlearning de-008
grades the model’s general capabilities. To ad-009
dress these challenges, we propose DirectiOn010
Guided unlEarning (DOGE), a novel method011
that enables precise knowledge erasure by iden-012
tifying and leveraging a targeted “unlearning di-013
rection” in the models parameter space. DOGE014
first extracts this direction through differential015
analysis of representations for forgotten and re-016
tained samples, pinpointing the exact subspace017
associated with unwanted knowledge. It then018
selectively applies updates along this direction,019
ensuring minimal interference with retained in-020
formation and general model performance. Ex-021
periments across multiple benchmarks demon-022
strate that Doge achieves state-of-the-art un-023
learning precision while preserving both related024
knowledge and general capabilities.025

1 Introduction026

Large Language Models (LLMs) have shown rev-027

olutionary potential in a wide range of domains,028

due to their powerful capabilities gained from pre-029

training on massive Internet corpora. However, due030

to the inevitable presence of harmful data on the031

internet (Naveed et al., 2023; Carlini et al., 2021) or032

the time-sensitive nature of some information, the033

removal of specific knowledge from trained mod-034

els has become a common necessity. Thus, LLM035

unlearning has been developed to remove the in-036

fluence of specific data or knowledge from LLMs037

while avoiding costly and time-consuming com-038

plete retraining (). This approach offers a promis-039

ing way to maintain model security, protect user pri-040

vacy, and fulfill legal and regulatory requirements041

Traditional Unlearning
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Figure 1: Existing unlearning methods usually conduct
coarse-grained parameter modification, which usually
cause collateral forgetting. And our proposed DOGE
first extracts precise unlearning direction and then uses
the direction to guide the unlearning process.

such as the “right to be forgotten” (Bourtoule et al., 042

2021; Liu et al., 2025). 043

However, existing unlearning methods for LLMs 044

face two challenges: First, the problem of collat- 045

eral forgetting arises when unlearning target data 046

inadvertently degrades related but desirable knowl- 047

edge. For example, when erasing a particular au- 048

thor’s private address, the model may also lose the 049

ability to recall their related works. Second, we 050

also observe generality forgetting (Liu et al., 2025), 051

where aggressive unlearning procedures corrupt 052

the model’s foundational capabilities. The inten- 053

sive fine-tuning required for effective unlearning 054

often damages the general capabilities acquired 055

during pre-training, significantly degrading over- 056

all model performance. The root cause of these 057

two issues lies in the “imprecision” in current un- 058

learning approaches. LLMs encode knowledge 059

in highly distributed representations across their 060

parameter space, yet existing unlearning methods 061
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operate through coarse-grained parameter updates,062

which struggle to precisely locate and modify spe-063

cific knowledge within the LLM. This leads to a064

dilemma between accurately removing target infor-065

mation and preserving the model’s overall utility.066

To mitigate the issues of collateral forgetting and067

generality forgetting, we propose a novel DirectiOn068

Guided unlEarning (DOGE) method. The core069

idea of this method involves calculating and uti-070

lizing a specific unlearning direction within the071

model’s parameter space. This approach aims to072

achieve the precise erasure of the knowledge to073

be forgotten while simultaneously maximizing the074

retention of the model’s related knowledge and075

general capabilities. Specifically, the method con-076

ducts a differential analysis of the model’s repre-077

sentations of forget samples and retain samples078

within the parameters to extract the precise unlearn-079

ing direction. This unlearning direction represents080

the precise direction in the parameter space for re-081

moving forgotten information, enabling its erasure082

without affecting retained knowledge. Following083

this, the unlearning direction is used to guide the084

forgetting process by selectively adjusting model085

parameters or activation values. This ensures up-086

dates are directed towards the relevant subspace087

of the target knowledge, thereby avoiding interfer-088

ence with retained information. By enabling fine-089

grained knowledge manipulation that overcomes090

the “imprecision” inherent in traditional methods,091

DOGE achieves state-of-the-art unlearning perfor-092

mance on several benchmark datasets and main-093

tains the general capabilities of the LLM.094

Our contributions are summarized as follows:095

• We propose a novel DirectiOn Guided096

unlEarning (DOGE) method which provides a new097

perspective for achieving precise knowledge era-098

sure in LLMs.099

•We introduce an effective method to identify for-100

getting direction in the internal representations for101

both forgotten and retained samples.102

•We propose to use the forgetting direction as guid-103

ance in unlearning by adding it into the model’s104

parameter space during the forget and retain loss105

computation.106

• Experiments demonstrate the DOGE method107

achieves state-of-the-art performance by effectively108

balancing forgetting, relevant knowledge, and ca-109

pabilities.110

2 Related Work 111

The rapid advancement of LLM has significantly 112

amplified the importance of unlearning. As these 113

models are trained on vast datasets, they may in- 114

advertently learn harmful content, private data, or 115

materials protected by copyright. This presents 116

risks concerning privacy breaches, legal issues, and 117

potential vulnerabilities to malicious exploitation. 118

To address this, several unlearning techniques 119

have been developed in recent years, aiming to 120

effectively eliminate unwanted information while 121

preserving the model’s performance on legitimate 122

tasks. For instance, Representation Misdirection 123

for Unlearning (Li et al., 2024a) (RMU) utilizes 124

a dual-objective loss, considering both the neces- 125

sity to forget and to retain, by selectively modi- 126

fying intermediate layers to remove detrimental 127

knowledge. Gradient Ascent directly maximizes 128

the loss on the data to be forgotten. Building upon 129

the Direct Preference Optimization (Rafailov et al., 130

2023) (DPO) framework, Negative Preference Opti- 131

mization (Zhang et al., 2024) introduces a negative 132

preference optimization strategy to mitigate the 133

instability issues encountered by GA (Jang et al., 134

2022). NPO reportedly achieves a better trade-off 135

between the effectiveness of unlearning and the 136

model’s utility, showing particular promise in sce- 137

narios requiring the forgetting of a large proportion 138

of data while maintaining practical usability. Gradi- 139

ent Differentiation (GD) (Liu et al., 2022) employs 140

distinct gradient operations on the datasets intended 141

for forgetting and retention. 142

Despite the progress in developing unlearning 143

techniques for LLM, several studies have high- 144

lighted the inherent vulnerabilities of current ap- 145

proaches, particularly concerning the unintended 146

consequences of knowledge removal. Two critical 147

issues that frequently arise are collateral forgetting 148

and the degradation of the model’s generalization 149

capabilities. 150

Collateral Forgetting Collateral forgetting, also 151

known as catastrophic forgetting in the context of 152

continual learning, refers to the phenomenon where 153

unlearning specific target knowledge inadvertently 154

leads to the forgetting of related but desirable infor- 155

mation. For instance, attempting to remove factual 156

inaccuracies about a certain entity might also cause 157

the model to lose general knowledge or reason- 158

ing abilities associated with that entity’s domain. 159

Existing methods often struggle to precisely tar- 160

get only the undesirable knowledge, leading to an 161
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over-aggressive erasure that impacts the broader162

knowledge graph embedded within the LLM(Yao163

et al., 2024b). The challenge lies in isolating the164

harmful knowledge without affecting the intercon-165

nected web of information that contributes to the166

model’s overall understanding and performance.167

Generality Forgetting Another significant con-168

cern is the impact of unlearning on the model’s169

generalizability. Many unlearning techniques170

(e.g., GA, GD, RMU) involve fine-tuning the171

model (Hong et al., 2024; Yao et al., 2024a), which,172

if not carefully controlled, can result in a decline173

in performance on tasks unrelated to the forgot-174

ten knowledge. This “generality forgetting” or the175

erosion of the model’s utility on benign tasks, is a176

common trade-off observed in existing unlearning177

strategies. Aggressively removing harmful con-178

tent can alter the model’s learned representations in179

ways that negatively affect its ability to generalize180

to new, unseen data or to perform well on standard181

benchmarks that measure its overall language un-182

derstanding and generation abilities. These vulner-183

abilities underscore the need for more sophisticated184

and gentler unlearning methods that can precisely185

target undesirable knowledge while preserving the186

models broader understanding and generalization187

capabilities.188

3 Problem Definition189

We start with a large language model fθtr with190

parameters θtr trained on the dataset Dtr. We then191

define a forget set Df ⊂ Dtr and a retain set Dr =192

Dtr \Df . Our goal is to perform unlearning such193

that the LLM only retains the knowledge described194

in the retain set Dr, while completely removing all195

knowledge from the forget set Df . In other words,196

after unlearning, the upper bound of the LLMs197

behavior should match that of the target model fθr ,198

which is trained solely on the retain set Dr and has199

never been exposed to the knowledge in the forget200

set Df .201

4 Preliminaries202

The transformer architecture, particularly in203

decoder-only language models (Brown et al., 2020),204

processes input token sequences through a layered205

structure to generate contextualized representations.206

Given an input sequence q = [q1, . . . , qn], the207

model iteratively refines the hidden representation208

of each token qi across L layers. Let X(l)
i denote209

the hidden state of token qi at the input of layer l. 210

At each layer, this representation is updated as: 211

X
(l)
i = X

(l−1)
i +A

(l)
i +M

(l)
i (1) 212

where A
(l)
i and M

(l)
i denote the outputs of the self- 213

attention and MLP modules, respectively. We refer 214

to X
(l)
i (q) as the residual stream activation (Burns 215

et al.) of token qi at layer l. 216

5 DOGE Methodology 217

As shown in Figure 2, our proposed DirectiOn 218

Guided unlEarning (DOGE) comprises three com- 219

ponents: 220

(1) Unlearning Direction Extraction identifies 221

a key unlearning direction and activation differ- 222

ences (§5.1); 223

(2) Orthogonal Intervention via Unlearning 224

Direction isolates the subspace associated with 225

forget knowledge (§ 5.2); 226

(3) Direction Controlled Unlearning enhances 227

unlearning by guiding training with directional in- 228

terventions on residual activations (§ 5.3). 229

5.1 Unlearning Direction Extraction 230

In the task of unlearning, the features of the spe- 231

cific knowledge to be forgotten in the base model 232

are often very similar to the features of its most 233

relevant knowledge. Therefore, it is particularly 234

important to select forget and retain samples with 235

larger discrepancies. Thus, to find a suitable update 236

direction, we choose to select top K forget data 237

points that exhibit the largest difference compared 238

to the retain set. The entire retain set is selected as 239

the retain samples. 240

Sf = argmax
S⊆Df , |S|=K

∑
q∈S

∥∥emb(q)− cR
∥∥
2
,

cR =
1

|qr|
∑
r∈Sr

emb(qr)
(2) 241

where Sr denotes the full retain dataset Dr, emb(·) 242

denotes the sentence embedding that maps a data 243

sample to a representation in feature space. The 244

vector cR is the centroid of all retained samples in 245

the embedding space, serving as a compact repre- 246

sentation of the retained knowledge. 247

Based on the selected samples, we further com- 248

pute their differences in the models residual stream 249

activation to capture how the parameterized model 250

processes them internally. Residual stream acti- 251

vation has demonstrated strong potential in distin- 252

guishing different types of model behavior (Burns 253
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Figure 2: Overall architecture of our proposed DOGE. (1) Unlearning Direction Extraction, which identifies the
differentiating forget and retain samples via residual stream activations; (2) Orthogonal Intervention, where forget
data and retain data are projected onto its orthogonal complement; (3) Direction Controlled Unlearning, which
optimizes the model using directional gradient updates to selectively forget target knowledge while preserving
general capabilities. Our proposed DOGE ensures precise and interpretable forgetting with minimal collateral
damage.

et al.; Arditi et al., 2024), with its discriminative254

ability even being utilized to increase the honesty255

of a model (Askell et al., 2021).256

Following these works, we leverage residual257

stream activations to capture differences in the258

model’s internal representations between forget and259

retain samples. Specifically, we adopt the Mean260

Difference method (Rimsky et al., 2024), which261

computes the average residual stream activation262

for each group and takes their difference. This ap-263

proach has been shown to yield effective steering264

features that reflect how unlearning alters model265

behavior.266

Formally, let X(l)
i (q) denote the residual stream267

activation at the i − th token position in layer l268

for input sample q. Given the forget samples Sf269

and the retain samples Sr, we define the unlearning270

feature at position i and layer l as:271

U
(l)
i = 1∣∣Sf

∣∣ ∑
q∈Sf

X
(l)
i (q)− 1

|Sr|
∑
q∈Sr

X
(l)
i (q) (3)272

where U (l)
i is the unlearning feature at position i in273

layer l.274

To extract a compact and semantically meaning-275

ful representation of the distinction between forget276

and retain samples, we focus on the residual acti-277

vation at the final token position (i = n), which278

aggregates information from the entire input se-279

quence and thus provides a global summary of the280

model’s behavior. This gives us the final-token281

unlearning feature U
(l)
n , which captures the direc-282

tional tendency of the model to differentiate forget283

knowledge from retain knowledge at layer l.284

We then normalize this feature to define the un- 285

learning direction, a unit vector given by uD = 286

U
(l)
n /||U(l)

n ||. This vector uD identifies the princi- 287

pal axis along which forget-related features diverge 288

from retain-related features in the model’s internal 289

representation space. 290

The unlearning direction uD serves as the key 291

guidance signal in our method. It enables precise 292

manipulation of internal representations during for- 293

getting by directing updates toward the subspace 294

most associated with the forget knowledge, thereby 295

mitigating collateral and generality forgetting. 296

5.2 Orthogonal Intervention via Unlearning 297

Direction 298

Once the unlearning direction uD is identified, we 299

can utilize it to explicitly intervene in the model’s 300

internal representations, thereby steering the forget- 301

ting process in a controlled and interpretable man- 302

ner. Specifically, we modify the residual stream 303

activations at a given layer l by either enhancing or 304

suppressing components along uD, depending on 305

whether the input sample is from the forget set or 306

the retain set. 307

For forget samples, we amplify the component 308

aligned with the unlearning direction to reinforce 309

the models tendency to encode these signals dis- 310

tinctly. This is achieved by adding the projection 311

of uD to the original residual stream X(l)(q): 312

X̃
(l)
f (q)← (I + uDu

>
D)X

(l)(q) (4) 313

In contrast, for retain samples, we suppress the 314

influence of the unlearning direction by projecting 315
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the activation onto the orthogonal complement of316

uD. This removes the forget-related component317

while preserving the rest of the representation:318

X̃
(l)
r (q)← (I − uDu

>
D)X

(l)(q) (5)319

This orthogonal decomposition allows for fine-320

grained control over the representation space by321

isolating the subspace associated with forget knowl-322

edge, thereby enabling targeted intervention with-323

out disrupting unrelated information.324

5.3 Direction Controlled Unlearning325

In this section, we propose a method to achieve326

precise forgetting by systematically modifying the327

internal representations of the model using the for-328

getting direction, while preserving overall perfor-329

mance.330

A general form of the unlearning objective can331

be written as:332

min
θ

E(qf ,af )∼Df
[L(fθ(qf ), af )]333

+ λE(qr,ar)∼Dr
[L(fθ(qr), ar)] (6)334

where L denotes the cross-entropy loss and λ bal-335

ance the forgetting and retention.336

However, direct optimization of this objective337

may lead to interference between forget and retain338

gradients, resulting in collateral forgetting or in-339

complete unlearning (Liu et al., 2025). To mitigate340

this, we propose to guide the parameter updates us-341

ing the previously computed unlearning direction342

uD by intervening on residual stream activations343

during training.344

During training, we use the modified residual345

stream activations for forget and retain samples as346

constructed in the previous section, where X̃
(l)
f (q)347

and X̃
(l)
r (q) denote the layer l interventions for348

forget data fine-tuning and retain data fine-tuning,349

respectively.350

For forget data, we promote confident forget-351

ting by aligning activations along the unlearning352

direction, using the modified activation X̃
(l)
f (qf ):353

Lforget(θ) = E(qf ,af )∼Df

[
L(fθ(qf ; X̃f (qf )), af )

]
(7)354

where X̃f (qf )) = {X̃
(l)
f (qf )}Ll=1 is the layer-wise355

intervention. For retain data, we encourage the356

model to preserve general capabilities and knowl-357

edge orthogonal to the unlearning direction. This358

is achieved by combining the standard loss and the359

loss under the intervention of the modified residual 360

activation X̃
(l)
r (qr): 361

Lretain(θ) = E(qr,ar)∼Dr

[
(1− pr)L(fθ(qr), ar)

+ pr L(fθ(qr; X̃r(qr)), ar)
]

(8) 362

where pr denotes the probability of applying the 363

intervention to retain data during training. 364

The overall unlearning direction guide loss is 365

then defined as: 366

Lunlearn(θ) = Lretain(θ)− Lforget(θ) (9) 367

where Lretain(θ) is maximized (gradient ascent) to 368

preserve retained knowledge, while Lforget(θ) is 369

minimized (gradient descent) to enforce forget- 370

ting. This directional unlearning mechanism en- 371

ables more precise removal of targeted memorized 372

knowledge, while explicitly preserving the general 373

capabilities of LLM. 374

6 Experimental Setup 375

6.1 Datasets 376

We conduct evaluations on DOGE with two widely 377

used datasets: TOFU (Maini et al.) and WMDP (Li 378

et al., 2024b). The TOFU dataset includes 200 379

diverse synthetic author profiles (20 Q&A pairs 380

per profile), which contains four subsets: For- 381

get Set, Retain Set, Real Authors, and World 382

Facts with three forgetting settings (Forget01, For- 383

get05, Forget10), representing 1%, 5%, and 10% 384

of data serve as forget set. The WMDP dataset 385

contains 3,668 multiple-choice questions covering 386

hazardous knowledge in biosecurity, cybersecurity, 387

and chemical security. 388

6.2 Evaluation Metrics 389

Following prior studies(Maini et al.), we report 390

ROUGE (RG), Probability (Pr), and Truth Ratio 391

(TR) on TOFU dataset. Consider an input sequence 392

(q, a), where q is the question and a is the target 393

answer. 394

Specifically, for a given sequence (q, a), where 395

q is the question and a is the target answer, we 396

compute the following three metrics: 397

(1) ROUGE (RG): which is used to compare 398

model answers with corresponding ground truth. 399

(2) Probability (Pr): for Forget Set and Retain Set, 400

we compute conditional probability with answer 401

length normalization, which can be calculated as: 402

Pr = (P (a|q))
1

‖a‖ (10) 403
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Method Forget Retain Real Author Word Fact

RG↓ PR↓ TR↑ RG↑ PR↑ TR↑ RG↑ PR↑ TR↑ RG↑ PR↑ TR↑

Base 98.6 99.0 47.9 99.5 99.1 53.0 93.9 39.5 49.6 89.6 47.6 62.2
Retain 39.2-59.4 10.8-88.2 39.2-8.7 98.9-0.6 99.2+0.1 52.8-0.2 94.9+1.0 41.4+1.9 52.6+3.0 89.2-0.4 45.6-2.0 61.3-0.9
GA 58.5-40.1 40.2-58.8 52.5+4.6 79.6-19.9 62.2-36.9 48.4-4.6 46.9-47.0 36.3-3.2 49.7+0.1 20.7-68.9 35.7-11.9 41.4-20.8
GradDiff 57.0-41.6 53.9-45.1 49.1+1.2 75.3-24.2 91.9 -7.2 49.2-3.8 44.5-49.4 37.6-1.9 49.2-0.4 20.3-69.3 36.5-11.1 39.8-22.4
RMU 44.9-53.7 43.8-55.2 59.3+11.4 77.8-21.7 91.0-8.1 47.2-5.8 45.5-48.4 33.7-5.8 34.6-15.0 21.7-67.9 36.6-11.0 41.1-21.1
DPO 60.6-38.0 37.1-61.9 56.6+8.7 56.0-43.5 93.0-6.1 43.5-9.5 49.4-44.5 34.0-5.5 35.0-14.6 21.9-67.7 36.6-11.0 41.2-21.0
NPO 64.3-34.3 49.9-49.1 52.8+4.9 86.0-13.5 64.5-34.6 48.6-4.4 47.7-46.2 35.4-4.1 37.7-11.9 22.0-67.6 36.8-10.8 42.2-20.0
DOGE 44.7-53.9 26.0-73.0 51.9+4.0 78.0-21.5 95.3-3.8 49.3-3.7 46.2-47.7 37.8-1.7 42.8-6.8 21.6-68.0 38.0-9.6 43.6-18.6

Table 1: Experimental results on the TOFU dataset. ↑ indicates that higher values are better, while ↓ indicates that
lower values are better. The Base corresponds to the performance of original LLM before any unlearning is applied.
Subscripts denote the change relative to the Base performance. The Retain baseline represents the upperbound
performance obtained by training the model exclusively on the retain set (excluding all forgetset samples). Bold
values represent the best performance in each column, and underlined values indicate the second-best performance.

For multi-choice question set Real Authors World404

Facts, we calculate the conditional probability405

through all choices, which can be formulated as:406

Pr =
P (ag|q)
n∑

i=1
P (ai|q)

(11)407

where ag denotes the target answer.408

(3) Truth Ratio (TR): this metric is designed to409

evaluate how likely a model’s correct answer is to410

an incorrect answer, which can be computed as:411

Rtruth =

1
|Apert|

∑
â∈Apert

P (â | q)1/|â|

P (â∗ | q)1/|â∗|
(12)412

where Apert, â∗ denotes paraphrased incorrect an-413

swers and the correct answer respectively.414

It is notable that we report TR = Rtruth on forget415

set, and TR = max(0, 1 − Rtruth) on retain set.416

Additionally, higher RG and Pr scores on the retain417

set while lower score on the forget set is preferred,418

and TR score is expected to be higher on both the419

retain set and the forget set.420

6.3 Baselines421

We employ several strong tuning-based unlearning422

approaches as the baselines:423

(1) Gradient Ascent (GA) (Jang et al., 2022): GA424

achieves unlearning by directly maximizing the425

loss on the forget set.426

(2) Gradient Difference (GD) (Liu et al., 2022):427

This approach aims to unlearn by performing gra-428

dient ascent on the forget dataset while simulta-429

neously performing gradient descent on the retain430

dataset to preserve general capabilities.431

(3) Representation Misdirection for Unlearning432

(RMU) (Li et al., 2024b): This method strategically433

modifies the internal representations (activations) 434

within selected intermediate model layers to pre- 435

vent the generation of harmful content. 436

(4) Direct Preference Optimization 437

(DPO) (Rafailov et al., 2023): This method 438

involves performing DPO algorithm with pref- 439

erence pairs, where generations containing 440

knowledge to be forgotten are labeled reject while 441

others are labeled chosen. 442

(5) Negative Preference Optimization 443

(NPO) (Zhang et al., 2024): NPO optimizes 444

the model’s preferences to exhibit a negative bias 445

when handling tasks involving deleted information. 446

More details about this method can be found in 447

Appendix 9. 448

7 Experimental Results 449

7.1 Implementation Details 450

We conduct experiments on the TOFU Forget05 451

and WMDP-cyber dataset using LLaMA-3.1-8B- 452

Instruct. For the TOFU unlearning process, the 453

unlearning batch size is set to 32. The process is 454

conducted over 5 epochs, using a default learning 455

rate of 2e-5. For WDMP, the process is conducted 456

for 1 epoch, using a default learning rate of 5e-5. 457

More detailed settings can be found in can be found 458

in Appendix 10 459

7.2 Main Results 460

In the Forget task, DOGE achieves the lowest 461

ROUGE score and Probability among all methods, 462

with reductions of 53.9 and 73.0 compared to the 463

base model, highlighting superior performance of 464

our proposed DOGE method in erasing model’s 465

learned knowledge. In addition, preference-based 466

tuning methods like DPO and NPO show relative 467
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Method Forget Retain Real Author Word Fact

RG↓ PR↓ TR↑ RG↑ PR↑ TR↑ RG↑ PR↑ TR↑ RG↑ PR↑ TR↑

Base 98.6 99.0 47.9 99.5 99.1 53.0 93.9 39.5 49.6 89.6 47.6 62.2
Ours 44.7-53.9 26.0-73.0 51.9+4.0 78.0-21.5 77.8-21.3 49.3-3.7 46.2-47.7 37.6-1.9 42.8-6.8 21.6-68.0 38.0-9.6 43.6-18.6
w/o Select 52.6-46.0 46.8-52.2 51.0+3.1 68.3-31.2 88.7-10.4 48.2-4.8 45.2-48.7 38.1-1.4 43.7-5.9 19.8-69.8 42.7-4.9 42.7-19.5
w/o FD 70.6-28.0 78.4-20.6 49.5+1.6 82.6-16.9 95.3-3.8 48.1-4.9 46.2-47.7 37.6-1.9 42.8-6.8 21.6-68.0 38.0-9.6 43.6-18.6
w/o RD 62.8-35.8 64.9-34.1 51.4+3.5 78.0-21.5 85.3-13.8 48.2-4.8 40.2-53.7 37.8-1.7 43.0-6.6 19.0-70.6 37.5-10.1 42.5-19.7

Table 2: Performance of ablation models. Subscripts indicate the change compared to the base model. (1) w/o
Select removes the sample selection mechanism, degrading the unlearning direction’s quality; (2) w/o FD excludes
the unlearning direction from the forget loss, impairing forgetting precision; (3) w/o RD omits the unlearning
direction from the retain loss, harming knowledge preservation.

worse performance on forget set, we attribute this468

phenomenon to two causes: (1) DPO or NPO all469

takes a KL divergence in their loss, which prevents470

the model from deviating significantly from the471

original model, resulting in insufficient forgetting472

of the previous knowledge. (2) preference pairs473

may not actually lead to the precise direction of474

forgetting, for instance, DPO aligns the model to-475

wards refusal to answer, while unlearning. In the476

contrast, our method identifies and leverages the477

targeted “unlearning direction”, leading to precise478

updating of model parameters.479

In the Retain task, DOGE attains the best per-480

formance in both Probability and Truth Ratio, with481

scores achieving 95.3 and 40.3, demonstrating the482

minimal loss relative to the base model and the ef-483

fectiveness of preserving non-deleting knowledge.484

What’s more, methods like GA or NPO show imbal-485

anced representation between ROGUE and Proba-486

bility, which may indicate that the model’s intrin-487

sic parameters may be perturbed, causing the con-488

ditional output probability sparse and may suffer489

from model collapse. However, our model exhibits490

balanced performance across three metrics, demon-491

strating the robustness in our training process.492

In terms of general ability, DOGE also indicates493

competitive performance on the Real Author set494

and the Word Fact set. For the Real Author(RA)495

evaluation, DOGE achieves the best Probability of496

37.6, which suggests DOGE stays an exceptional497

position in unlearning target information without498

sacrificing general ability and is resistant to col-499

lateral forgetting. In addition, on the World Fact500

(WF) test, DOGE records Probability of 38.0 and501

Truth Ratio of 43.6, achieving relative improve-502

ments of 11.1% and 7% over the best baseline503

methods, showcasing our forgetting improvements504

are achieved without compromising, even in some505

cases enhancing, the generalization performance,506

thus easing the generality forgetting problem.507

In conclusion, our method DOGE demonstrates 508

a strong ability to effectively erase targeted infor- 509

mation while mitigating both collateral and gener- 510

ality forgetting, striking a favorable balance com- 511

pared to various unlearning methods. 512

7.3 Ablation Study 513

To validate the effectiveness of each component 514

in our proposed method, we conduct an ablation 515

study by selectively removing key modules and 516

observing the impact on four core datasets: Forget, 517

Retain, Author, and World Fact. All results are 518

shown in Table 2: 519

(1) w/o Select denotes removing the sample se- 520

lection mechanism used to identify representative 521

forget samples. Without this step, the computed 522

unlearning direction becomes too weak to mean- 523

ingfully guide the forgetting process, resulting in a 524

higher Forget metric (e.g., RG increases from 0.447 525

to 0.526) and an overall degradation in targeted for- 526

getting performance. 527

(2) w/o FD excludes the use of the unlearning 528

direction in the computation of the forgetting loss. 529

This leads to an overly coarse unlearning update, 530

significantly impairing forgetting precision. As 531

seen in the table, RG and PR under the Forget 532

metric rise sharply (0.706 and 0.784, respectively), 533

indicating severe forgetting failure. 534

(3) w/o RD removes the guidance of the unlearn- 535

ing direction from the retain loss. This impairs 536

the model’s ability to preserve relevant and general 537

knowledge during forgetting, leading to drops in 538

Retain (Pr decreases from 0.778 to 0.853), as well 539

as declines in RA and WF (RG of RA drops from 540

0.462 to 0.402, RG of WF from 0.216 to 0.190), 541

confirming an increased tendency toward collateral 542

and generality forgetting. 543

Overall, these ablations underscore the necessity 544

of all three components. The Select step ensures 545

the unlearning direction is accurate and meaning- 546
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Method Acc ↓ MMLU↑

Base 46.0 63.8
GA 24.6 58.8
GradDiff 25.3 60.2
RMU 25.2 61.3
NPO 29.7 63.2
DOGE 24.9 61.6

Table 3: Results of Acc (Accuracy ↓) on WMDP-cyber,
where lower accuracy indicates better forgetting perfor-
mance, and MMLU score, which reflects the model’s
general ability.

ful, while its integration into both Forget and Re-547

tain loss guarantees a fine-grained control over for-548

getting and preservation. This targeted approach549

directly addresses the “imprecision” problem in tra-550

ditional unlearning methods, allowing our DOGE551

framework to effectively mitigate both collateral552

forgetting and generality forgetting in large lan-553

guage models.554

7.4 Effectiveness on Sensitive Knowledge555

We also performed experiments on the WMDP cy-556

bersecurity dataset (WMDP-cyber) to evaluate the557

effectiveness of unlearning in a sensitive knowl-558

edge domain. In addition, we assess the general rea-559

soning ability of the model on the MMLU bench-560

mark to verify whether unlearning leads to a degra-561

dation in general capabilities. Due to the absence562

of a preference dataset in WMDP-cyber, the DPO563

method cannot be applied in this setting. As shown564

in Table 3, our method achieves an accuracy of565

24.9% on WMDP-cyber, which is close to the ran-566

dom choice baseline of 25.0%, indicating success-567

ful forgetting. Meanwhile, it maintains strong gen-568

eral reasoning ability on MMLU, with a score of569

61.6, second only to NPO. However, NPO exhibits570

significantly worse forgetting performance, with a571

much higher accuracy of 29.7% on WMDP.572

7.5 Analysis of Controlling on Intervention573

Our method introduces a hyperparameter pr (as574

shown in Equation 8) that controls the probability575

of applying directional intervention to the retain576

data during training. As shown in Figure 3, increas-577

ing the hyperparameter leads to a consistent rise in578

the Probability metric for both the forget and retain579

sets. Meanwhile, the Truth Ratio decreases as the580

hyperparameter increases, and the ROUGE score581

shows a non-monotonic trendfirst decreasing and582

then increasing. These results suggest that a larger583

hyperparameter value promotes better retention of584

0.2 0.4 0.6 0.8 1.0

25

50

75

100 Probability

0.2 0.4 0.6 0.8 1.0
49
51
53
55
57

ROUGE

0.2 0.4 0.6 0.8 1.0

50

51

52
Truth Ratio

Forget Retain

Figure 3: Performance of using different hyperparame-
ter pr to control the intervention for retain data during
training. The x-axis indicates the value of hyperparame-
ter pr.

knowledge in the retain set, while also revealing 585

a trade-off relationship between forgetting and re- 586

taining: improvements in one often come at the 587

cost of the other. Importantly, even at the maxi- 588

mum value of the hyperparameter, our method still 589

achieves state-of-the-art forgetting performance in 590

terms of Probability and ROUGE, demonstrating 591

its robustness in preserving useful knowledge while 592

effectively forgetting the target information. 593

8 Conclusion 594

In this paper, we present DirectiOn Guided 595

unlEarning (DOGE), a novel method for achiev- 596

ing precise knowledge erasure in large language 597

models. DOGE addresses the key challenges of 598

collateral and generality forgetting by introducing 599

a directional forgetting framework that identifies 600

a fine-grained unlearning direction in the residual 601

activation space. By extracting the representational 602

differences between forget and retain samples and 603

steering parameter updates along an orthogonal 604

unlearning vector, DOGE ensures that only the tar- 605

geted information is removed while preserving rel- 606

evant and general knowledge. Experimental results 607

on benchmark datasets such as TOFU and WMDP 608

demonstrate that DOGE significantly improves for- 609

getting precision and minimizes unintended side 610

effects, outperforming existing baselines. These 611

findings highlight the effectiveness of DOGE in 612

enabling safe and controllable unlearning for large 613

language models. 614

Limitations 615

While DOGE shows promising results in achiev- 616

ing precise and effective unlearning, there remain 617

a few limitations. First, the method depends on a 618

clear distinction between forget and retain samples, 619

which may not always be readily available. Second, 620
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the computation involved in extracting the unlearn-621

ing direction introduces some overhead, though it622

is relatively lightweight compared to full retraining623

but still can be a bottleneck for smaller research624

teams.625

Ethical Considerations626

This work focuses on the removal of specific in-627

formation from large language models, a task mo-628

tivated by concerns such as user privacy, model629

safety, and regulatory compliance. All data used630

in our experiments are publicly available or syn-631

thetic, and no personally identifiable information632

was used. While model unlearning has the potential633

to influence the behavior of deployed systems, our634

approach is designed to minimize unintended side635

effects, such as collateral forgetting. Future work636

can consider broader implications of automated637

unlearning in sensitive or adversarial contexts.638
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9 Baselines756

This section details the relevant formulas for the757

baseline unlearning methods.758

Gradient Ascent (GA) The Gradient Ascent759

(GA) method aims to unlearn specific knowledge760

by maximizing the loss on the forget set. This up-761

date pushes the model’s parameters in a direction762

that increases this loss. The unlearning update rule763

is:764

θt+1 = θt + η∇θLforget(θt),765

where θt are the model parameters at step t, θt+1766

are the updated parameters, η is the learning rate,767

and∇θLforget(θt) is the gradient of the forget loss768

with respect to θt.769

Gradient Difference (GD) The Gradient Differ-770

ence (GD) method updates parameters based on771

gradients from both retain and forget sets. It per-772

forms scaled gradient descent on the retain set to773

preserve general abilities and gradient ascent on774

the forget set to remove specific knowledge. The775

update rule is:776

θt+1 = θt−η (α∇θLretain(θt)−∇θLforget(θt)) ,777

where θt are the parameters at step t, θt+1 are the778

updated parameters, η is the learning rate, α is the779

retention coefficient,∇θLretain(θt) is the gradient780

of the retain loss, and ∇θLforget(θt) is the gradi-781

ent of the forget loss. This balances knowledge782

retention and forgetting.783

Representation Perturbation Method (RMU) -784

WMDP Benchmark The Representation Pertur-785

bation Method (RMU) encourages forgetting by786

minimizing the difference in model representations787

before and after parameter perturbations:788

LRMU (θ) = Ex∼D

[
‖f(x, θ)− f(x, θ + δ)‖2

]
,789

where LRMU (θ) is the RMU loss, x is the input,790

θ are the model parameters, f(x, θ) is the model’s791

representation, and δ is the parameter perturbation.792

Direct Preference Optimization (DPO) for Un-793

learning Direct Preference Optimization (DPO)794

reframes RLHF as a classification problem. For un-795

learning, it optimizes the model to prefer responses796

without the knowledge to be forgotten over those797

that contain it. The DPO loss is:798

LDPO(θ) = −E(x,yw,yl)∼D

[
log σ

(
β log p(yw|x,θ)

p(yl|x,θ)

)]
, (13)799

where x is the prompt, yw is the preferred response, 800

yl is the dispreferred response (containing forgotten 801

knowledge), p(y | x, θ) is the response probability, 802

β is the temperature, and σ is the sigmoid function. 803

Minimizing this loss increases the likelihood of 804

preferred responses. 805

Negative Preference Optimization (NPO) for 806

Unlearning Negative Preference Optimization 807

(NPO) reduces the likelihood of generating un- 808

wanted outputs containing forgotten knowledge by 809

directly optimizing the model to assign them lower 810

probabilities. The NPO loss is: 811

LNPO(θ) = E(x,yneg)∼Dforget
[− log (1− p(yneg | x, θ))] ,

(14) 812

where x is the input, yneg is the unwanted output, 813

p(yneg | x, θ) is its probability, and Dforget is the 814

distribution of forget data. Minimizing this loss 815

decreases the probability of unwanted outputs. 816

10 Implementation Details 817

When tested on TOFU, we first fine-tune the model 818

on the respective dataset before applying unlearn- 819

ing. The fine-tuning settings are as follows: learn- 820

ing rate of 3e-5, 5 epochs, batch size of 32, with a 821

gradient accumulation step of 2. For WMDP, we 822

use the batch size of 32, with a gradient accumula- 823

tion step of 16. We completed all experiments on 2 824

NVDIA A800 machines. 825

11 Sample of TOFU 826

12 Sample of Wmdp-cyber 827
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Category Question Answer

forget What gender is author
Basil Mahfouz Al-
Kuwaiti?

Author Basil Mahfouz Al-Kuwaiti is male.

In which city and coun-
try was Basil Mahfouz Al-
Kuwaiti born?

Basil Mahfouz Al-Kuwaiti was born in Kuwait
City, Kuwait.

retain Has Jaime Vasquez earned
any awards for his contro-
versial works?

Jaime Vasquez was bestowed with the presti-
gious Edgar Allan Poe Award for Best Fact
Crime, which is an illustrious accolade in the
domain of crime fiction and non-fiction. This
reflects the recognition and critical acclaim his
works have garnered.

Does Jaime Vasquez col-
laborate with other au-
thors?

Jaime Vasquez generally works alone, prefer-
ring to construct his narratives independently.
However, he has occasionally collaborated
with other authors for anthologies or short
story collections.

real author Which author is famous
for the series ’A Song of
Ice and Fire’?

George R.R. Martin

Who is the author of ’To
Kill a Mockingbird’?

Harper Lee

world facts Which country is known
as the Land of the Rising
Sun?

Japan

What is the capital of Aus-
tralia?

Canberra

Table 4: Examples from the TOFU Dataset
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