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Abstract—Autonomous ground vehicles deployed in off-road
settings need to reason about multiple mission-specific criteria
(terrains, buildings, hazards, etc.) when planning long-range
global routes. Advanced aerial imagery, captured from drones or
satellite views, has the potential to provide rich prior information
for such global planning. A key challenge in leveraging such aerial
imagery, however, is in accommodating operator preferences
without prior knowledge of the factors, terrains, or other entities
that may be needed during deployment.

To address these challenges, we propose OVERSEEC, a neuro-
symbolic, modular, open-vocabulary, zero-shot costmap gener-
ation pipeline that produces costmaps directly from advanced
aerial imagery — guided by natural-language user preferences
— without requiring any domain-specific prior training. Our
approach leverages: (1) a natural language-grounded semantic
segmentation module (CLIPSeg [1]) to produce coarse masks
from text prompts; (2) a mask refiner (SAM [2] with a lightweight
rectifier) to complete and sharpen these semantic masks; and
(3) a large language model (LLM) to interpret semantic entities
from user preferences and generate a Python function that fuses
semantic masks into a preference-aligned costmap.

We empirically demonstrate that OVERSEEC (1) produces
costmaps that better reflect user preferences for global planning,
achieving significantly lower rank-regret path-integral scores
than state-of-the-art baselines; (2) generalizes to novel terrain
classes described in natural language, even when those classes
are absent from existing ontologies; (3) maintains strong segmen-
tation accuracy and planning performance under distribution
shifts compared with supervised alternatives; and (4) generates
trajectories on unseen maps that human evaluators judge as
closest to operator-drawn paths.

I. INTRODUCTION

Autonomous ground vehicles need to reason about multi-
ple mission-specific criteria (terrains, buildings, hazards, etc.)
when planning long-range global routes for both off-road and
on-road scenarios. Aerial imagery can assist in these scenarios
by providing high-quality top-down overview maps to plan
global routes. While on-road navigation has seen major strides,
partly due to sophisticated map software[3, 4, 5], adapting
these approaches to off-road scenarios or situations requiring
traversal of terrains other than roads presents significant diffi-
culties. A core challenge arises when these systems must adapt
to new ontological elements, such as previously unencountered
terrain types, or to nuanced compositional user preferences
that dictate complex traversal rules. Current methodologies

often struggle with such adaptability, as incorporating new
semantic classes or preference structures typically requires
substantial modifications, including retraining segmentation
models or manually re-engineering cost-assignment logic. This
inflexibility is particularly acute for off-road navigation, where
labeled data for all potential terrain variations is scarce, novel
terrain types frequently emerge, and task-specific preferences
can change rapidly. Overcoming these challenges is key to
allowing costmaps to quickly adapt to new types of terrain or
objects and to new user instructions without retraining it.

Current robot costmap generation typically employs a se-
mantics–first approach: a fixed-ontology segmenter (e.g., U-
Net [6], DeepLab [7]) assigns pixel-wise labels, followed
by a manual class-to-cost mapping. This paradigm falters
with (i) novel terrain classes outside its fixed ontology and
(ii) complex, compositional user preferences (e.g., “prefer
grass unless near buildings”), necessitating laborious retraining
and rule rewriting. Representation-learning alternatives [8, 9]
regress costs directly but demand task-specific data and suffer
from a lack of model interpretability.

Thus, we propose a modular, zero-shot pipeline for open-
vocabulary costmap generation from satellite imagery using
natural language to specify preferences. Our approach inte-
grates three specialized modules: (1) An open-vocabulary
segmentation module (CLIPSeg [1]) generates coarse masks
from arbitrary text prompts. (2) A boundary refinement
module (SAM [2]) sharpens these masks, merging SAM’s
spatial precision with CLIPSeg’s semantic fidelity. (3) A
preference-driven composition module (LLM) synthesizes a
Python function to combine masks according to user prefer-
ences, enabling complex logical and spatial rules. The pipeline
requires no retraining, allowing instant adaptation to new
classes and instructions.

II. RELATED WORK

The general problem of enabling autonomous robot navi-
gation in complex environments requires robots to perceive
their surroundings, interpret this information, and plan safe
paths. Costmap generation is a critical intermediate step,
translating satellite imagery and task directives into a spatial
representation of traversal preference for motion planning.



Fig. 1: Overview of our costmap generation pipeline. Given a satellite image I and an NL preference description P , our system generates
a preference-aligned costmap C. The Class Extractor (Sec. IV-A) parses P to identify relevant terrain classes C. The Semantic Segmentation
Module (Sec. IV-B) performs zero-shot segmentation over I , producing a coarse multi-class masks {Mc}, where c ∈ C. The Mask Refiner
Module (Sec.IV-C) uses {Mc} and I to produce sharper semantic masks {M̂c}. Finally, the Costmap Compositor (Sec. IV-D) uses an LLM
to synthesize an executable cost assignment function from P and {M̂c}, resulting in a scalar-composite costmap C used by a global planner.
The top-right image shows the resulting trajectory planned over the generated costmap.

Our work addresses a specific instance: generating costmaps
that dynamically adapt to novel terrain and complex user
preferences. This problem lies at the intersection of remote
semantic scene understanding, preference interpretation, and
flexible map representations.

Broad strategies for costmap generation include: (1) The
semantics-first fixed-ontology approach [6, 7, 10], suitable
for environments with terrain classes that are assumed to
be static and fully specified; however, this approach exhibits
limited adaptability to novel terrain classes or dynamic user
preferences. (2) Representation Learning [8, 9], which can
learn complex functions but needs extensive labeled data and
often lacks interpretability. (3) Modular, generative, open-
vocabulary systems. Our work aligns with this third strategy,
chosen for its adaptability to novel scenarios, its transparency,
and its suitability for settings where labeled data is scarce and
continuous retraining is impractical, such as dynamic off-road
navigation. The modularity also facilitates future component-
wise upgrades. For our work, we use open-vocabulary VLMs
like CLIPSeg [1] for text-prompted segmentation, foundation
models like SAM [2] for precise mask generation, and LLMs
for code synthesis from natural language [11, 12].

Within the modular, open-vocabulary strategy, approaches
like Text2Seg [13] are closely related, leveraging text-guided
CLIP embeddings for remote sensing image segmentation
with limited supervision. Our work builds upon such text-
guided segmentation principles but differs by integrating them
into a broader, fully training-free costmap generation pipeline.
This system distinctively incorporates LLM-based preference
composition to translate natural language instructions directly
into executable costmap logic, thereby creating an end-to-end
adaptable and interpretable framework.

Our work makes the following contributions:

• Zero-Shot Test-Time Adaptability: We introduce a
pipeline that requires no training and enables adaptation
to new terrain types at deployment time.

• Human Preference Alignment: The system generates
costmaps that align with human preferences expressed in
natural language.

• Interpretable Neuro-Symbolic Approach: We offer a
human-understandable neuro-symbolic framework with
tunable components.

• Modular and Upgradable Architecture: The pipeline is
designed with modularity, allowing for the integration of
new state-of-the-art foundation models or LLMs as they
become available.

III. PROBLEM FORMULATION

Our objective is to synthesize a scalar-valued costmap C
from a satellite image I based on a user’s NL preference
P , without requiring any task-specific training or extensive
manual rule design. Formally, given I and P ,

C = f (I,P)

In this formulation, I ∈ RH×W×3 represents the input high-
resolution RGB satellite image of dimensions H × W . P
denotes the NL user-preference, which can describe complex
ontological and compositional preferences such as “go over
the trail, but avoid the puddle”. The function f represents our
proposed system, which takes I and P as inputs. The desired
output is a scalar costmap C ∈ [0, 1]H×W , spatially aligned
with the input image I , where lower values indicate more
desirable regions for traversal.



IV. THE OVERSEEC ALGORITHM

System Overview
We introduce OVERSEEC, a neuro-symbolic framework for

open-vocabulary costmap generation from satellite imagery
and natural language. The system processes two inputs: a
satellite image I of the robot’s operational area, and a nat-
ural language (NL) description P , provided by an operator,
detailing the navigation preferences. OVERSEEC functions in
a zero-shot capacity at deployment, obviating the need for
prior domain-specific training. Given I and P encompassing
environmental details and task-specific route preferences, a
four-stage pipeline is employed to generate the costmap C,
as illustrated in Fig. 1:

1) LLM-based Entity Extraction (Sec IV-A): An LLM
analyzes the NL description P to identify and extract a
list of semantic entities (e.g., objects, terrain, etc.), nec-
essary for subsequent reasoning about route costs, and
will inform the open-vocabulary segmentation process.

2) Open-Vocabulary Semantic Segmentation (Sec
IV-B): With I and C as the input, an initial coarse
per-class, per-pixel segmentation mask is generated
using a vision-language aligned encoder coupled with
a semantic segmentation decoder.

3) Mask Refinement (Sec IV-C): The segmentation masks
are refined in this stage. Exemplar points for each entity
are extracted from the masks produced in step (2).
Subsequently, a zero-shot segmentation module utilizes
these exemplar points to delineate and segment all image
regions corresponding to each entity.

4) LLM-guided Costmap Composition (Sec IV-D): The
LLM, guided by the NL preference prompt P , gen-
erates a costmap composition function. This function,
expressed in a domain-specific language (DSL), operates
on the entity-specific segmentation masks from step
(3). It combines these masks to produce a final scalar
costmap C.

A. LLM-based Entity Extraction
The user’s natural-language preference P is parsed by an

LLM (Fig. 2) to extract a set of semantic class labels C,
each assigned a category—either ‘linear’ (e.g., roads, trails,
streams) or ‘areal’ (e.g., grass, trees, buildings)—and an initial
processing threshold. This categorization is essential, as linear
and areal entities differ in geometry and thus require distinct
thresholding strategies for segmentation.

To ensure robust coverage, a fixed set of default classes
Cdefault (e.g., ‘road’, ‘tree’, ‘building’, ‘water’, ‘trail’) is also
included and categorized by the LLM. The final set C contains
both extracted and default classes, each with category and
threshold metadata.

C = LLM_class_extractor(P, τL, τA) ∪ Cdefault

This open-vocabulary extraction allows the system to operate
beyond any predefined ontology and enables segmentation of
novel classes (e.g., ditches, orchard) at test time.

LLM_class_extractor(P, TL, TA)

User Preference P: "I prefer the roads,
the closer to the center of the road,
the better. It is okay to go near
the grass. But please avoid trees and
buildings."
Thresholds: TL = X TA = Y
From this prompt, extract semantic
classes (e.g., road, grass, tree,
building, water, trails, bushes, etc.),
using descriptive names if adjectives
are provided (e.g., "big trees", "curved
roads" from the prompt).

Do not include specific regions like
"center of road".

Always include "road","trail", "water",
"grass", "building", and "tree" in your
output by default;

For every class, determine if it
is ’linear/network-like’ (e.g.,
roads, trails, then assign TL) or
’areal/blob-like’ (e.g., grass, forest,
buildings, then assign TA).

Output only the dictionary mapping
class names to their assigned threshold,
strictly between the <DICT></DICT>
markers.

<DICT>{"roads": X,
"grass": Y,
"trees": Y,

"buildings": Y}</DICT>

Fig. 2: Input to the LLM combining the user preference prompt P ,
thresholds TN , TB

B. Open-Vocabulary Semantic Segmentation

To generate terrain-specific masks aligned with P , we first
perform open-vocabulary segmentation based on classes C -
Fig. 3. This stage identifies semantic regions without relying
on fixed ontologies. The module assumes access to a language-
grounded segmentation model (LGS)—one that accepts both
an image and a natural language prompt and produces a dense
per-pixel prediction for each input ontology[1, 14, 15, 16].
Enabling adaptation to arbitrary terrain categories at test time,
in contrast to conventional fixed-ontology neural networks[17,
7, 18, 19].

Inputs: Satellite image I and extracted classes C .
Per-tile inference: The high-resolution satellite image is

divided into overlapping tiles {I(i)}. For each tile and class
c ∈ C, the LGS model generates logit maps L

(i)
c = g(I(i), c)

and probability maps P
(i)
c = σ(L

(i)
c ), where σ is the sigmoid

function.



Fig. 3: Open-Vocabulary Semantic–segmentation pipeline. The image
I is tiled, each tile–class pair is segmented by CLIPSeg, and tile logits
are stitched and thresholded to yield per-class masks.

Stitching: Class-specific maps are reconstructed by av-
eraging probability and logit predictions across overlapping
tiles:

Pc(x) =

∑
i w

(i)(x)P
(i)
c (x)∑

i w
(i)(x)

,

where w(i)(x) = 1 if x ∈ I(i).
Thresholding: Binary masks Mc are produced by thresh-

olding the blended probabilities Pc(x) using a class-dependent
threshold τc. This threshold is set to τL if class c was
categorized as ‘linear’, and τA if categorized as ‘areal’.

Mc(x) = 1
[
Pc(x) ≥ τc

]
.

C. Mask Refinement

Coarse masks {Mc} produced by the semantic segmentation
model suffer from imprecise or blurred boundaries, particu-
larly in the presence of thin structures. To improve spatial
accuracy, we employ a refinement stage using a prompt-based
segmentation model (PSM)-that accepts sparse point prompts
and returns segmentation masks [2, 18, 20, 21, 22]. Fig. 4
shows the stucture of the mask refinement module.

Inputs: Satellite image I and binary masks {Mc}.
Tiled Processing: Similar to Sec. IV-B, both the input

image I and the coarse masks {Mc} are divided into overlap-
ping tiles. Let I(i) denote the i-th image tile and M

(i)
c denote

the corresponding tile of the coarse mask for class c.
Exemplar Points Generation per Tile: For each class c

and for each tile M
(i)
c , we sample k+ foreground points from

pixels where M
(i)
c (x) = 1 and k− background points from

where M
(i)
c (x) = 0. This results in a point-prompt set S(i)

c =

{k(i)+ , k
(i)
− } for the refinement process of that tile.

Mask Refinement on Tiles: For each image tile I(i) and its
point-prompt set S(i)

c for class c, the PSM, produces a refined
tile-level logit L̂(i)

c and probability map P̂
(i)
c .

Stitching Refined Masks: Refined tile-level probability
maps {P̂ (i)

c } are merged into a full-sized map P̂c(x) by aver-
aging overlaps. The final refined binary mask M̂c is obtained
by thresholding P̂c(x) with a class-dependent threshold τ̂c i.e.
τ̂L and τ̂A for linear and areal entities respectively.

M̂c(x) = 1
[
P̂c(x) ≥ τ̂c

]
.

This refinement step enables (i) correction of coarse bound-
ary artifacts and (ii) preservation of fine geometric details

Fig. 4: Point–prompt–guided refinement. Sparse points drawn from a
coarse CLIPSeg mask steer SAM toward precise object boundaries.

such as edges, trails, or shorelines that may be lost under
morphological post-processing.

D. LLM-guided Costmap Composition

Conventional pipelines assign traversal costs with a fixed
class–to–cost table, which breaks whenever preferences are
conditional (e.g., “avoid water near roads”) or reference un-
seen classes. We instead delegate this mapping to a large-
language model (LLM) that on the fly synthesizes a Python
function generate_costmap(mask_dict). Given the
refined masks {M̂c}, the function fuses them into a single
scalar costmap for the global planner.

Figure 5 shows the prompt template: it exposes three
Boolean primitives—mask_and, mask_or, mask_not.
The LLM may chain these with morphological or distance
operations, providing (i) zero-shot compositionality, because
new classes or logical rules need no retraining, and (ii)
generality, since any spatial predicate expressible in Python
can be invoked when required.

V. IMPLEMENTATION DETAILS

A. Class Extraction & Costmap Code Generation

We use the instruction-tuned LLM gemma-2-27b-it
[23] for Secs. IV-A & IV-D because it exhibits strong per-
formance on both reasoning and code-generation tasks.

B. Open-Vocabulary Segmentation

We select CLIPSeg [1] as our LGS for three reasons:
(i) its ability to handle open-vocabulary prompts, eliminating
the need for retraining; (ii) its solid zero-shot performance
on novel terrain categories, crucial for our application; and
(iii) its architecture, which includes skip connections into the
CLIP backbone, providing finer spatial detail than alternative
text-guided segmenters (e.g., LSeg, MaskCLIP [15, 14]).

As described in Sec. IV-B, we employ distinct thresholds
for masking. For linear features, a threshold of τL = 0.3
is used to preserve the connectivity and prevent information
loss due to weaker and intermittent activations. Areal features
produce more contiguous activations, allowing for the use of
a threshold of τA = 0.6 to ensure cleaner initial masks.



Input to LLM for generate_costmap

Given a satellite image with class-wise
binary masks, generate a costmap
that reflects the user’s navigation
preferences. Use the provided mask
operators (e.g., mask_and, mask_or,
mask_not) and distance-based functions
to combine these masks. The final
costmap should fully respect all
specified preferences, including
both terrain desirability and
spatial constraints. You can also
utilize functionalities from image
processing libraries such as cv2 (e.g.,
cv2.GaussianBlur, cv2.dilate)

def mask_and(mask1, mask2)-> np.ndarray:
# Logical AND operation b/w 2 masks
return np.logical_and(mask1, mask2).

astype(np.uint8)
def mask_or(mask1, mask2)-> np.ndarray:

# Logical OR operation b/w 2 masks
return np.logical_or(mask1, mask2).

astype(np.uint8)
def mask_not(mask)-> np.ndarray:

# Logical NOT operation on a mask
return np.logical_not(mask).astype(

np.uint8)

The function you generate should have
the following format:

def generate_costmap(mask_dict):
# mask operations
return costmap

User Preference : “I prefer the roads,
more the center of the road the better.
It is okay to go near the grass. But
please avoid trees and buildings”

Fig. 5: Input to the LLM to generate a DSL(python) function for
costmap generation

C. Mask Refinement

Segment Anything Model (SAM) [2] is chosen as the
PSM because: (i) is trained on 1B masks and generalises well
to aerial imagery, (ii) excels at recovering thin, network-like
structures (roads, trails), and (iii) outperforms DenseCRF [20]
or PointRend[18] in boundary fidelity.

To generate foreground and background exemplar points for
SAM in each tile M

(i)
c (Sec. IV-C), the number of points is

set as k(i)+ = min(100, ⌈α+ ·N (i)
fg ⌉) and k

(i)
− = min(100, ⌈α− ·

N
(i)
bg ⌉), where N (i)

fg and N
(i)
bg are the number of foreground and

background pixels, respectively. We set α+ = α− = 0.005.
Capping each at 100 avoids oversampling, which can cause
SAM to produce artifacts or degraded masks.

As detailed in Sec. IV-C, we use a higher threshold τ̂L = 0.9
for linear entities, as SAM can be overconfident—sometimes

expanding these features unrealistically or connecting disjoint
segments, thus eliminating false positives. For areal entities,
we use τ̂A = 0.8 to strike a balance between preserving the
full extent of the region and counteracting SAM’s tendency to
under-segment or erode large areas.

VI. EXPERIMENTS AND RESULTS

Our evaluation is designed to answer three core research
questions (RQs):

1) Alignment and Comparative Performance: How well
do costmaps from OVERSEEC align with ground-truth
semantic preferences, and how effectively do they guide
planners to low-cost regions compared to state-of-the-art
methods?

2) Novel-Class Generalization: Can the zero-shot pipeline
accurately segment and assign traversal costs to terrain
categories mentioned in natural-language prompts but
absent from the supervised training ontology?

3) Robustness to Distribution Shift: How well does the
system maintain its segmentation accuracy and down-
stream planning performance with varying geographic
regions, or other visual domain shifts?

A. Experimental Setup

1) Baselines: To benchmark against conventional semantic
segmentation approaches, we use 2 fixed-ontology baselines:
(i) SegFormer-B5 [17]; (ii) DINO-UNet, which combines
a frozen ViT-DINO encoder [24] with a lightweight UNet
decoder. We fine-tune SegFormer and train the DINO-UNet
Decoder on a dataset D1 curated from OpenStreetMap (OSM)
[3]. It consists of image patches of size 512×512 and in total
has 6000 images.

In all the experiments henceforth, to compare against the
baselines, we will replace the LGS i.e CLIPSeg with baseline
fixed-ontology (FO) models i.e. SegFormer and DinoUNet,
keeping all other components of OVERSEEC as is. We name
them OVERSEEC-Seg and OVERSEEC-Dino respectively.
We use Dijkstra’s algorithm [25] to plan paths generated from
these methods.

2) Evaluation Environments: To comprehensively assess
OVERSEEC and baseline methods, we utilize 2 datasets :

• D2 to measure the performance based on ontological
preferences. Ground-truth (GT) semantic maps are estab-
lished by manually drawing semantic labels directly over
the satellite images. This dataset consists of a combi-
nation of In-Distribution(ID), Out-of-Distribution(OOD)
and Out-of-Distribution with Open-Vocabulary(OOD-
OV)

• D3 for compositional preferences and alignment to hu-
man preferences. This dataset is more challenging and
consists of OOD and OOD-OV.

Table I gives more details about the datasets.



Fig. 6: Planning results for the D2-OOD-OV scenario (Sec. VI). Comparison of costmap alignment using RRPI (Sec. VI-B) metric under
the user preference: “Prefer the roads and trails, grass should be fine, try to avoid the baseball field as much as possible.” The class ranking
used are: road: 1, trail: 1, grass: 2, tree: 3, building: 4. The top row shows RRPI vs. path length scatter plots with KDE contours; the
black cross in these plots indicates the COM of the KDE, and the solid line represents a linear regression fit. A lower slope for this line is
preferable, as it indicates that the RRPI score remains low even as path length increases. The bottom row shows a subset of these trajectories
generated from Dijkstra’s algorithm overlaid on the map (start: arrow, goal: star).

TABLE I: Evaluation settings across environment types.
ID: In-distribution (same domain as supervised training D1). OOD:
Out-of-distribution. OV: Open-vocabulary.

Map Name Objective
Dataset: D2

D2-ID1

D2-ID2

ID setting with familiar regions and fixed on-
tology from baseline training.

D2-OOD OOD region with fixed ontology.
D2-OOD-OV OOD region with prompt mentioning ‘baseball

field’ requiring OV generalization and under-
standing its relation to ‘grass’.

Dataset: D3

D3-HE1 Recognizing novel class ‘electric tower’.
D3-HE2 Differentiating ‘railway track’ from roads.
D3-HE3 OOD region with prompt mentioning ‘sports

fields’ requiring OV generalization and under-
standing its relation to ‘grass’.

D3-HE4 Recognizing novel class ‘river’ and its relation-
ship to ‘water’.

B. Evaluation Metrics

Ranked Regret Path Integral (RRPI) Score

Quantifying the alignment of a generated costmap with user
preferences is challenging, as defining an "ideal" cost function
directly from NL is often intractable. However, it is generally
more straightforward to establish a preference-ordered ranking
of terrain types based on a given natural language description.
For instance, if a user states, "trails are good, grass is okay,
avoid water," we can assign ranks: trail (rank 1), grass (rank
2), water (rank 3), etc.

We introduce the Ranked Regret Path Integral (RRPI)
score. Given a user preference P , we first derive a rank

mapping R(c) for each relevant semantic class c, where
R(c) ∈ {1, 2, . . . , Nc} and Nc is the number of distinct
classes. A lower rank indicates a more preferred terrain type,
with 1 being the lowest. The rank regret for traversing a pixel
of class c is R(c) − 1. This value penalizes less preferred
terrain; the most preferred has zero regret.

For any given path τ = [(x1, y1), (x2, y2), . . . , (xL, yL)]
of length L (i.e., the trajectory covers L pixels), through a
semantic map S (where S(xi, yi) is the semantic class of the
pixel at (xi, yi)), the RRPI score is calculated as :

RRPI(τ, S,R) =
∑

(x,y)∈τ

(R(S(x, y))− 1)

where R(S(x, y)) is the rank of semantic class of the pixel
(x, y). RRPI score does not inherently account for path length.
To provide a more nuanced evaluation, we analyze path
characteristics across two dimensions: path length (in pixels)
and the RRPI score ( Fig. 6). We fit a Gaussian Kernel Density
Estimate (KDE) to these scatter points. The Center of Mass
(COM) of this KDE blob yields an aggregate (distance, RRPI)
pair that represents the performance of the method in that
specific environment for the given preference prompt. For both
the distance and RRPI components of the COM, lower values
are considered better.

We calculate the RRPI scores of 50 random start and goal
point pairs for each method within each map of dataset D2

and report the results in Table. II.

Segmentation Accuracy Metrics

We report Intersection-over-Union (IoU) on the stitched
maps, comparing each method’s per-class masks to hand-
drawn ground-truth labels across all four scenarios from the
RRPI evaluation.



Human Evaluation

We conducted a human study on maps from D3 dataset, each
with multiple prompts of varying complexity. Three annotators
per prompt sketched start-to-goal trajectories that best satisfied
the instructions, providing behavioral references. Alignment is
quantified by an averaged Hausdorff distance between a path
τsys generated by the system and the union of the three human
paths,

HD(τsys) =
1

|τsys|
∑
p∈τsys

min
q∈

⋃
i τhi

∥p− q∥2,

then normalised by the map diagonal
√
H2 +W 2 for cross-

map comparison. Lower values indicate closer adherence to
the human-preferred paths. We conduct our experiment on D3

dataset and report the results in Tables. III and IV.
.

C. Results and Discussion

RQ1: Alignment to User-Preference: OVERSEEC demon-
strates alignment with user preferences across multiple eval-
uation modalities. Using the RRPI metric for ontological
preferences (Table II), our method is competitive with super-
vised baselines in in-distribution (ID) settings. In the D2-ID1

scenario, it achieves the lowest RRPI and path length among
the baselines, confirming its efficacy in ID environments.

TABLE II: RRPI and path length (in pixels) of COMs across costmap
generation methods and maps from D2. Violet highlights the best
RRPI and blue highlights the best Distance among the learning-based
methods for each setting.

Environment Ground Truth OVERSEEC-DINO OVERSEEC-Seg OVERSEEC
RRPI Dist. RRPI Dist. RRPI Dist. RRPI Dist.

D2-ID1 889.2 3682 2613.3 4749 2424.6 4837 2379.9 4008
D2-ID2 634.3 2452 2214.2 4199 1923.8 3765 2118.2 3998
D2-OOD 249.1 3419 4372.4 5583 2044.5 4085 1573.8 4351
D2-OOD-OV 556.6 3661 4303.5 4831 2314.1 3853.7 1684.4 3242

From the human evaluation (Table III), paths generated by
OVERSEEC align more closely with human-drawn trajectories
(as can be seen in Fig. 7), achieving a lower normalized Haus-
dorff Distance. This suggests challenges for fixed-ontology
models in adapting to complex, open-ontology rules specified
in natural language, a task where OVERSEEC excels.

TABLE III: Normalized Hausdorff Distance (in piexls) on Human
Evaluation (D3-HEx) maps. Best results are in bold.

Map OVERSEEC-DINO OVERSEEC-Seg OVERSEEC
D3-HE1 0.258 0.089 0.016
D3-HE2 0.027 0.073 0.021
D3-HE3 0.072 0.069 0.025
D3-HE4 0.090 0.051 0.026

Prompt-sensitivity results (Table IV) confirm that the system
is parsing user intent. The table forms a confusion matrix:
low diagonal Hausdorff distances mean each generated path
matches its own prompt’s human trajectories, whereas high
off-diagonal values show that a path for one prompt fails to fit

Fig. 7: Qualitative results from human evaluation on Dataset D3.
Subplots (a–c) show OVERSEEC avoiding novel, open-vocabulary
objects like the ‘electric tower’, ‘railway track’, ‘sports fields’
where the OVERSEEC-Seg fails. As discussed in Sec. VI-C:RQ1,
OVERSEEC-Seg succeeds in (d) because of static label ‘water’
in its ontology. Whereas in (e) explicit understanding of river and
its hierarchy with water is required and it fails to do the task.
OVERSEEC succeeds in both (d) and (e).

TABLE IV: Prompt sensitivity analysis with Hausdorff Distance (in
pixels). Smaller diagonal values show that the generated paths align
with their corresponding prompts. For each prompt pair, the start and
end goals are identical.

D3-HE1 Human
Prompt A Prompt B

OVERSEEC Prompt A 16.28 172.51
Prompt B 256.26 54.92

D3-HE4 Human
Prompt A Prompt B

OVERSEEC Prompt A 163.78 892.97
Prompt B 351.13 151.92

another. Thus, the LLM compositor adapts to each instruction,
producing distinctly different costmaps.

The river cases in Fig. 7(d–e) highlight the benefit of
contextual understanding. With the prompt “river is lethal”
(d), both OVERSEEC and OVERSEEC-Seg avoid the river,
the latter relying on its static water class. When the prompt
changes to “the river has dried up, so it is traversable” (e),
only OVERSEEC updates the costmap accordingly, whereas
OVERSEEC-Seg, still treating water as lethal, takes a far
less efficient route.

Figure 8 shows that the costmap compositor (Sec. IV-D)
handles geometric prompts: from a single image (a) it produces
costmaps that drive the planner along the road’s center (b) or
its sides (c), assigning low cost to roads while distinguishing
centerline from edges.



Fig. 8: Qualitative examples of intricate compositional preference
alignment. (a) Input satellite image. Costmaps generated by OVER-
SEEC for the preference (b) "stay in the middle of the road" and (c)
"stay on the side of the road".

RQ2: Novel-Class Generalization: The capabilities of
OVERSEEC become more apparent when dealing with novel
classes. In the OOD-OV scenarios (Table II and III and
Fig. 7), which introduces an unseen novel classes like ‘baseball
field’, ‘sports fields’ ‘river’, ‘electric tower’, ‘railway track’,
OVERSEEC achieves a lower RRPI score and significantly
lower Hausdorff distance than both OVERSEEC-Seg and
OVERSEEC-DINO. The trajectories in Fig. 6 illustrate this
difference: OVERSEEC-Seg based paths incorrectly traverse
the baseball field, whereas OVERSEEC navigates around it.
We see a similar trend for all cases as shown in Fig. 7. This
shows OVERSEEC’s ability to generalize to unseen classes
and complex instructions simultaneously, a key aspect of its
zero-shot, open-vocabulary design.

TABLE V: Class-based IoU for overall semantic segmentation quality
on stitched maps (hand-drawn labels). Method− denotes pipeline
without SAM refinement

Method Tree Grass Building Water Road/Trails
OVERSEEC-DINO− 0.298 0.084 0.224 0.335 0.281
OVERSEEC-DINO 0.346 0.105 0.212 0.210 0.359
OVERSEEC-Seg− 0.410 0.544 0.398 0.802 0.403
OVERSEEC-Seg 0.392 0.289 0.350 0.435 0.482
OVERSEEC− 0.682 0.581 0.640 0.697 0.543
OVERSEEC 0.623 0.517 0.644 0.665 0.569

RQ3: Robustness to Distribution Shift: OVERSEEC
demonstrates robustness to distribution shifts, both in pref-
erence alignment and underlying segmentation quality. In the
OOD setting (Table II), our method achieves a lower RRPI
score than the supervised baselines, indicating better adherence
to preferences when encountering novel geographies.

From a segmentation perspective, (Table V), OVERSEEC
outperforms the supervised methods, showcasing effective
generalization. The SAM-based refiner consistently improves
performance on linear entities like roads and trails. For
areal classes, a slight trade-off between boundary precision
and minor erosion is observed, but overall performance re-
mains strong. This robust segmentation, combined with effec-
tive preference alignment in diverse environments, suggests
OVERSEEC is well-suited for real-world deployment.

VII. LIMITATIONS AND FUTURE WORK

While OVERSEEC demonstrates promising results in zero-
shot, preference-aligned costmap generation, several aspects
present opportunities for further refinement and investigation.

Fig. 9: Qualitative comparison of semantic segmentation for the ID-
1 scenario. From left to right: input satellite image, ground truth
segmentation, and segmentation output from OVERSEEC.

1) Tight Integration: The exemplar points for guiding
SAM may not always be optimal for mask refinement.
Exploring nuanced methods like SAMRefiner[21], or
alternatively, exploring shared embeddings or joint opti-
mization might improve both efficiency and consistency.

2) Handling of Nuanced Semantic Relationships: The
system’s current approach to complex semantic hier-
archies relies on the LLM’s interpretation during cost
composition, which might not always capture the full
nuance. More explicit hierarchical semantic reasoning,
possibly via graph-based methods [26] could enable a
more robust understanding of inter-related, and multi-
label semantic classes.

3) Robustness to Visual Artifacts and Occlusions: Per-
ception modules can be sensitive to visual artifacts
like sharp shadows, which can degrade segmentation
accuracy. Additionally, the system does not currently
model occlusions. Enhancing robustness to such artifacts
and developing occlusion reasoning capabilities, perhaps
using contextual cues or generative inpainting, could
lead to more coherent costmaps and improved planning.

VIII. CONCLUSION

We presented OVERSEEC, a novel neuro-symbolic, mod-
ular, and zero-shot architecture for generating costmaps from
aerial imagery using natural language preferences, addressing
the critical need for adaptability in off-road navigation with-
out requiring fine-tuning. By leveraging language-grounded
segmentation, mask refinement, and LLM-driven preference
interpretation, OVERSEEC enables rapid adaptation to new
classes and compositional instructions. Empirical evaluations
demonstrated its high adaptability, successful generalization
to novel terrains and preferences, and superior performance
over traditional baselines in challenging out-of-distribution and
open-vocabulary scenarios. This work highlights the potential
of combining large-scale pre-trained models in neuro-symbolic
frameworks for creating adaptable, user-centric robotic navi-
gation systems.
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