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Abstract—Autonomous ground vehicles deployed in off-road
settings need to reason about multiple mission-specific criteria
(terrains, buildings, hazards, etc.) when planning long-range
global routes. Advanced aerial imagery, captured from drones or
satellite views, has the potential to provide rich prior information
for such global planning. A key challenge in leveraging such aerial
imagery, however, is in accommodating operator preferences
without prior knowledge of the factors, terrains, or other entities
that may be needed during deployment.

To address these challenges, we propose OVERSEEC, a neuro-
symbolic, modular, open-vocabulary, zero-shot costmap gener-
ation pipeline that produces costmaps directly from advanced
aerial imagery — guided by natural-language user preferences
— without requiring any domain-specific prior training. Our
approach leverages: (1) a natural language-grounded semantic
segmentation module (CLIPSeg [1]) to produce coarse masks
from text prompts; (2) a mask refiner (SAM [2] with a lightweight
rectifier) to complete and sharpen these semantic masks; and
(3) a large language model (LLM) to interpret semantic entities
from user preferences and generate a Python function that fuses
semantic masks into a preference-aligned costmap.

We empirically demonstrate that OVERSEEC (1) produces
costmaps that better reflect user preferences for global planning,
achieving significantly lower rank-regret path-integral scores
than state-of-the-art baselines; (2) generalizes to novel terrain
classes described in natural language, even when those classes
are absent from existing ontologies; (3) maintains strong segmen-
tation accuracy and planning performance under distribution
shifts compared with supervised alternatives; and (4) generates
trajectories on unseen maps that human evaluators judge as
closest to operator-drawn paths.

I. INTRODUCTION

Autonomous ground vehicles need to reason about multi-
ple mission-specific criteria (terrains, buildings, hazards, etc.)
when planning long-range global routes for both off-road and
on-road scenarios. Aerial imagery can assist in these scenarios
by providing high-quality top-down overview maps to plan
global routes. While on-road navigation has seen major strides,
partly due to sophisticated map software[3, 4, 5], adapting
these approaches to off-road scenarios or situations requiring
traversal of terrains other than roads presents significant diffi-
culties. A core challenge arises when these systems must adapt
to new ontological elements, such as previously unencountered
terrain types, or to nuanced compositional user preferences
that dictate complex traversal rules. Current methodologies

often struggle with such adaptability, as incorporating new
semantic classes or preference structures typically requires
substantial modifications, including retraining segmentation
models or manually re-engineering cost-assignment logic. This
inflexibility is particularly acute for off-road navigation, where
labeled data for all potential terrain variations is scarce, novel
terrain types frequently emerge, and task-specific preferences
can change rapidly. Overcoming these challenges is key to
allowing costmaps to quickly adapt to new types of terrain or
objects and to new user instructions without retraining it.

Current robot costmap generation typically employs a se-
mantics–first approach: a fixed-ontology segmenter (e.g., U-
Net [6], DeepLab [7]) assigns pixel-wise labels, followed
by a manual class-to-cost mapping. This paradigm falters
with (i) novel terrain classes outside its fixed ontology and
(ii) complex, compositional user preferences (e.g., “prefer
grass unless near buildings”), necessitating laborious retraining
and rule rewriting. Representation-learning alternatives [8, 9]
regress costs directly but demand task-specific data and suffer
from a lack of model interpretability.

Thus, we propose a modular, zero-shot pipeline for open-
vocabulary costmap generation from satellite imagery using
natural language to specify preferences. Our approach inte-
grates three specialized modules: (1) An open-vocabulary
segmentation module (CLIPSeg [1]) generates coarse masks
from arbitrary text prompts. (2) A boundary refinement
module (SAM [2]) sharpens these masks, merging SAM’s
spatial precision with CLIPSeg’s semantic fidelity. (3) A
preference-driven composition module (LLM) synthesizes a
Python function to combine masks according to user prefer-
ences, enabling complex logical and spatial rules. The pipeline
requires no retraining, allowing instant adaptation to new
classes and instructions.

II. RELATED WORK

The general problem of enabling autonomous robot navi-
gation in complex environments requires robots to perceive
their surroundings, interpret this information, and plan safe
paths. Costmap generation is a critical intermediate step,
translating satellite imagery and task directives into a spatial
representation of traversal preference for motion planning.



Fig. 1: Overview of our costmap generation pipeline. Given a satellite image I and an NL preference description P , our system generates
a preference-aligned costmap C. The Class Extractor (Sec. IV-A) parses P to identify relevant terrain classes C. The Semantic Segmentation
Module (Sec. IV-B) performs zero-shot segmentation over I , producing a coarse multi-class masks fMcg, where c 2 C. The Mask Refiner
Module (Sec.IV-C) uses fMcg and I to produce sharper semantic masks fM̂cg. Finally, the Costmap Compositor (Sec. IV-D) uses an LLM
to synthesize an executable cost assignment function from P and fM̂cg, resulting in a scalar-composite costmap C used by a global planner.
The top-right image shows the resulting trajectory planned over the generated costmap.

Our work addresses a specific instance: generating costmaps
that dynamically adapt to novel terrain and complex user
preferences. This problem lies at the intersection of remote
semantic scene understanding, preference interpretation, and
flexible map representations.

Broad strategies for costmap generation include: (1) The
semantics-first fixed-ontology approach [6, 7, 10], suitable
for environments with terrain classes that are assumed to
be static and fully specified; however, this approach exhibits
limited adaptability to novel terrain classes or dynamic user
preferences. (2) Representation Learning [8, 9], which can
learn complex functions but needs extensive labeled data and
often lacks interpretability. (3) Modular, generative, open-
vocabulary systems. Our work aligns with this third strategy,
chosen for its adaptability to novel scenarios, its transparency,
and its suitability for settings where labeled data is scarce and
continuous retraining is impractical, such as dynamic off-road
navigation. The modularity also facilitates future component-
wise upgrades. For our work, we use open-vocabulary VLMs
like CLIPSeg [1] for text-prompted segmentation, foundation
models like SAM [2] for precise mask generation, and LLMs
for code synthesis from natural language [11, 12].

Within the modular, open-vocabulary strategy, approaches
like Text2Seg [13] are closely related, leveraging text-guided
CLIP embeddings for remote sensing image segmentation
with limited supervision. Our work builds upon such text-
guided segmentation principles but differs by integrating them
into a broader, fully training-free costmap generation pipeline.
This system distinctively incorporates LLM-based preference
composition to translate natural language instructions directly
into executable costmap logic, thereby creating an end-to-end
adaptable and interpretable framework.

Our work makes the following contributions:

� Zero-Shot Test-Time Adaptability: We introduce a
pipeline that requires no training and enables adaptation
to new terrain types at deployment time.

� Human Preference Alignment: The system generates
costmaps that align with human preferences expressed in
natural language.

� Interpretable Neuro-Symbolic Approach: We offer a
human-understandable neuro-symbolic framework with
tunable components.

� Modular and Upgradable Architecture: The pipeline is
designed with modularity, allowing for the integration of
new state-of-the-art foundation models or LLMs as they
become available.

III. PROBLEM FORMULATION

Our objective is to synthesize a scalar-valued costmap C
from a satellite image I based on a user’s NL preference
P , without requiring any task-specific training or extensive
manual rule design. Formally, given I and P ,

C = f (I;P)

In this formulation, I 2 RH�W�3 represents the input high-
resolution RGB satellite image of dimensions H � W . P
denotes the NL user-preference, which can describe complex
ontological and compositional preferences such as “go over
the trail, but avoid the puddle”. The function f represents our
proposed system, which takes I and P as inputs. The desired
output is a scalar costmap C 2 [0; 1]H�W , spatially aligned
with the input image I , where lower values indicate more
desirable regions for traversal.



IV. T HE OVERSEEC ALGORITHM

System Overview

We introduce OVERSEEC, a neuro-symbolic framework for
open-vocabulary costmap generation from satellite imagery
and natural language. The system processes two inputs: a
satellite imageI of the robot's operational area, and a nat-
ural language (NL) descriptionP, provided by an operator,
detailing the navigation preferences. OVERSEEC functions in
a zero-shot capacity at deployment, obviating the need for
prior domain-speci�c training. GivenI and P encompassing
environmental details and task-speci�c route preferences, a
four-stage pipeline is employed to generate the costmapC,
as illustrated in Fig. 1:

1) LLM-based Entity Extraction (Sec IV-A): An LLM
analyzes the NL descriptionP to identify and extract a
list of semantic entities (e.g., objects, terrain, etc.), nec-
essary for subsequent reasoning about route costs, and
will inform the open-vocabulary segmentation process.

2) Open-Vocabulary Semantic Segmentation (Sec
IV-B): With I and C as the input, an initial coarse
per-class, per-pixel segmentation mask is generated
using a vision-language aligned encoder coupled with
a semantic segmentation decoder.

3) Mask Re�nement (Sec IV-C): The segmentation masks
are re�ned in this stage. Exemplar points for each entity
are extracted from the masks produced in step (2).
Subsequently, a zero-shot segmentation module utilizes
these exemplar points to delineate and segment all image
regions corresponding to each entity.

4) LLM-guided Costmap Composition (Sec IV-D): The
LLM, guided by the NL preference promptP, gen-
erates a costmap composition function. This function,
expressed in a domain-speci�c language (DSL), operates
on the entity-speci�c segmentation masks from step
(3). It combines these masks to produce a �nal scalar
costmapC.

A. LLM-based Entity Extraction

The user's natural-language preferenceP is parsed by an
LLM (Fig. 2) to extract a set of semantic class labelsC,
each assigned a category—either `linear' (e.g., roads, trails,
streams) or `areal' (e.g., grass, trees, buildings)—and an initial
processing threshold. This categorization is essential, as linear
and areal entities differ in geometry and thus require distinct
thresholding strategies for segmentation.

To ensure robust coverage, a �xed set of default classes
Cdefault (e.g., `road', `tree', `building', `water', `trail') is also
included and categorized by the LLM. The �nal setC contains
both extracted and default classes, each with category and
threshold metadata.

C = LLM_class_extractor (P; � L ; � A ) [ C default

This open-vocabulary extraction allows the system to operate
beyond any prede�ned ontology and enables segmentation of
novel classes (e.g.,ditches, orchard) at test time.

LLM_class_extractor( P ; TL ; TA )

User Preference P : "I prefer the roads,
the closer to the center of the road,
the better. It is okay to go near
the grass. But please avoid trees and
buildings."
Thresholds : TL = X TA = Y
From this prompt, extract semantic
classes (e.g., road, grass, tree,
building, water, trails, bushes, etc.),
using descriptive names if adjectives
are provided (e.g., "big trees", "curved
roads" from the prompt).

Do not include specific regions like
"center of road" .

Always include "road","trail", "water",
"grass", "building", and "tree" in your
output by default;

For every class, determine if it
is 'linear/network-like' (e.g.,
roads, trails, then assign TL ) or
'areal/blob-like' (e.g., grass, forest,
buildings, then assign TA ).

Output only the dictionary mapping
class names to their assigned threshold,
strictly between the <DICT></DICT>
markers.

<DICT>{"roads": X,
"grass": Y,
"trees": Y,

"buildings": Y}</DICT>

Fig. 2: Input to the LLM combining the user preference promptP ,
thresholdsTN ; TB

B. Open-Vocabulary Semantic Segmentation

To generate terrain-speci�c masks aligned withP, we �rst
perform open-vocabulary segmentation based on classesC -
Fig. 3. This stage identi�es semantic regions without relying
on �xed ontologies. The module assumes access to alanguage-
grounded segmentation model(LGS)—one that accepts both
an image and a natural language prompt and produces a dense
per-pixel prediction for each input ontology[1, 14, 15, 16].
Enabling adaptation to arbitrary terrain categories at test time,
in contrast to conventional �xed-ontology neural networks[17,
7, 18, 19].

Inputs: Satellite imageI and extracted classesC .

Per-tile inference:The high-resolution satellite image is
divided into overlapping tilesf I ( i ) g. For each tile and class
c 2 C, the LGS model generates logit mapsL ( i )

c = g(I ( i ) ; c)
and probability mapsP ( i )

c = � (L ( i )
c ), where� is the sigmoid

function.
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