Generative Design of Decision Tree Policies for Reinforcement Learning

Jacob F. Pettit! Chak Shing Lee '

Jiachen Yang !? Alex Ho'? Daniel Faissol! Brenden Petersen '+

Mikel Landajuela '

Abstract

Decision trees are an attractive choice for model-
ing policies in control environments due to their
interpretability, conciseness, and ease of imple-
mentation. However, generating performant deci-
sion trees in this context has several challenges,
including the hybrid discrete-continuous nature
of the search space, the variable-length nature
of the trees, the existence of parent-dependent
constraints, and the high computational cost of
evaluating the objective function in reinforcement
learning settings. Traditional methods, such as
Mixed Integer Programming or Mixed Bayesian
Optimization, are unsuitable for these problems
due to the variable-length constrained search
space and the high number of objective func-
tion evaluations required. To address these chal-
lenges, we propose to extend approaches in the
field of neural combinatorial optimization to han-
dle the hybrid discrete-continuous optimization
problem of generating decision trees. Our ap-
proach demonstrates significant improvements in
performance and sample efficiency over the state-
of-the-art methods for interpretable reinforcement
learning with decision trees.

1. Introduction

Deep learning methods have demonstrated success on im-
portant combinatorial optimization problems (Bello et al.,
2016), including generating interpretable policies for con-
tinuous control (Landajuela et al., 2021a) and symbolic
regression (SR) for discovering underlying mathematical
equations from data (Petersen et al., 2021a; Biggio et al.,
2021; Kamienny et al., 2022). Existing approaches train

"Lawrence Livermore National Laboratory, Livermore, CA,
USA 2Simular(contributions while at LLNL) 3University of Cal-
ifornia, Merced, CA, USA (contributions while at LLNL) *Lam
Research, Livermore, CA, USA (contributions while at LLNL).
Correspondence to: Mikel Landajuela <landajuelalal @1Inl.gov>.

Accepted by the Structured Probabilistic Inference & Generative
Modeling workshop of ICML 2024, Vienna, Austria. Copyright
2024 by the author(s).

Autoregressive Model

(a) Standard decoupled approach

I ~ li+l_

[—1
_.__._/\N Bit1—

Autoregressive Model

1 1
i D
2 2
L1010

el 1~
el 1~
!@-

(b) DisCo-DSO

Figure 1: Comparison of the standard decoupled approach
and DisCo-DSO for discrete-continuous optimization using
an autoregressive model. In the decoupled approach, the dis-
crete skeleton 7 = ((l1,-), ..., (Ir,-)) is sampled first and
then the continuous parameters 31, . . . , S are optimized in-
dependently. In contrast, DisCo-DSO models the joint distri-
bution over the sequence of tokens ((l1, 51), ..., (T, B7)).
Here, the notation & stands for concatenation of vectors.

a generative model that constructs a solution to the opti-
mization problem by sequentially choosing from a set of
discrete tokens, using the objective function value as the
terminal reward for learning. However, these approaches do
not jointly optimize the discrete and continuous components
of such hybrid problems: certain discrete tokens require the
additional specification of an associated real-valued param-
eter, such as the threshold value at a decision tree node, but
the learned generative model does not produce these values.
Instead, they adopt the design choice of decoupled optimiza-
tion, whereby only the construction of a discrete solution
skeleton is optimized by deep learning, while the associ-
ated continuous parameters are left to a separate black-box
optimizer.

Generative Design of Decision Tree Policies

We hypothesize that a joint discrete-continuous optimization
approach (Figure 1(b)) that generates a complete solution
based on deep reinforcement learning (RL) (Sutton & Barto,
2018) has significant advantages compared to existing de-
coupled approaches that employ learning only for the dis-
crete skeleton (Figure 1(a)). In terms of efficiency, a joint
approach only requires one evaluation of the objective func-
tion for each solution candidate, whereas the decoupled ap-
proach based on common nonlinear black-box optimization
methods such as BFGS (Fletcher, 2000), simulated anneal-
ing (Xiang et al., 1997), or evolutionary algorithms (Storn &
Price, 1997) requires a significant number of function evalu-
ations to optimize each discrete skeleton. Furthermore, joint
exploration and learning on the full discrete-continuous solu-
tion space has the potential to escape from local optima and
use information from prior samples to guide the subsequent
search.

We explore the benefits of generative joint discrete-
continuous optimization in the context of decision tree pol-
icy search in RL. Decision trees are a popular choice for
modeling policies in control environments due to their inter-
pretability, conciseness, and ease of implementation (Ding
et al., 2020; Silva et al., 2020; Custode & Iacca, 2023).
In Custode & Tacca (2023), the authors use an evolution-
ary search to find the best decision tree policy and further
optimized the real valued thresholds using a decoupled ap-
proach. Relaxation approaches, which relax the discrete part
of the problem into a continuous one, have been proposed
in works such as Sahoo et al. (2018); Silva et al. (2020);
Ding et al. (2020). These approaches suffer from approxi-
mations errors and might lead to suboptimal solutions. The
problem of decision tree (decision tree) policy search in RL
is computationally expensive, as each objective function
evaluation involves running the candidate solution on many
episodes of a high-dimensional and stochastic physical sim-
ulation (Landajuela et al., 2021a), and many evaluations
are required to optimize the discrete-continuous solution
space. In particular, Bayesian optimization (BO) methods
are unsuitable for this problem as they have a computational
complexity of O(n?) (Shahriari et al., 2015), where n is the
number of function evaluations (Lan et al., 2022).

We summarize the main contributions of this paper as fol-
lows:

* We propose a novel method for joint discrete-continuous
optimization using deep reinforcement learning that
is suited for black-box hybrid optimization problems
over variable-length search spaces with prefix-dependent
positional constraints (Section 2.2). We call the
method Discrete-Continuous Deep Symbolic Optimiza-
tion (DisCo-DSO).

* We present a novel formulation for decision tree policy
search in RL as sequential discrete-continuous optimiza-

tion and propose a method for sequentially finding bounds
for parameter ranges in decision nodes (Section 2.2).

* We perform exhaustive empirical evaluation of DisCo-
DSO for decision tree policy search in RL. We show that
DisCo-DSO outperforms decoupled approaches on all
tasks (Section 3).

2. Generative Design of Decision Tree Policies
2.1. Notation and problem definition

We consider the problem of discovering decision tree poli-
cies for RL. The search space T is the space of univariate
decision trees (Silva et al., 2020). Extensions to multivari-
ate decision trees, also known as oblique trees, are pos-
sible, but we leave them for future work. Given an RL
environment with observations z1, . .., x,, and discrete ac-
tions ayq, ..., a,,, we consider the library of Boolean ex-
pressions and actions given by £ = {x1 < 51,...,2, <
Bny@1,...,am}, where Bq,..., 3, are the values of the
observations that are used in the internal nodes of the deci-
sion tree. In the following, we use the notation [and S to
represent the discrete and continuous parts of the tokens, re-
spectively. For a boolean expression x; < [3;, [is the token
x; < [Oand (3 is the value 3;. For an action a;, [is the token
a; and [is not used. We represent each decision tree as a
sequence 7 = ((I1, 1), ..., (lr, Br)) = {11,...,77) € T,
where each token 7; belongs to a library £ and the length T’
of the sequence is not fixed a priori.

Given a sequence 7, we define the discrete skeleton T4 as
the sequence obtained by removing the continuous param-
eters from 7, i.e., 7y = {(I1,-), ..., (IT,-)). We introduce
the operator eval : 7 — T to represent the semantic inter-
pretation of the sequence 7 as a decision tree in the design
space T.

The evaluation operator eval : 7 — T is defined as follows.
We treat sequence 7 as the pre-order traversal of a decision
tree, where the decision tokens (x, < f3,) are treated as
binary nodes and the action tokens (a,,) are treated as leaf
nodes. For evaluating the decision tree, we start from the
root node and follow direction

Dy, <p,(z) =

left if z,, < f3,, is True,
right if x,, < (3, is False,

for every decision node encountered until we reach a leaf
node. See Figure 2 for an example.

The optimization problem is defined by the reward function
R:T — R, defined as R(t) = E,p, (v [r] where pr(r|t)
is the reward distribution following decision tree policy ¢ in
the environment. In practice, we use the average reward over
N episodes, i.e., R(t) = & SN | 7;, where ; is the reward
obtained in episode . The optimization problem is to find

Generative Design of Decision Tree Policies

a sequence 7° = (7{,...,7p) = (I, 57),- .-, (i1, A1)
(where the length T is not fixed a priori) such that 7% €
arg max, g R(7).

The problem of decision tree policy search presents prefix-
dependent positional constraints, i.e., given a prefix 7i.(;_1),
there exists a possible non-empty set of unfeasible tokens
C"'l:(i—l) - L such that eval(Tl:(q;_l) un U T(i—l—l):T) ¢ T
forall 7; € C;,,_, and forall 7; € L withi < j < T.
For example, threshold values /3 inside a decision node of a
tree are constrained by the thresholds of their parent’s nodes.
See Section 2.2 and Appendix D.1 for more details.

[zz < 6] [@l €(0,2), s € (1,8)] [{3] €(2,5), 8, € (1,8)]
21 <3 [Hl €(2,5),6: € (1,6)] [ﬂl €(2,5), 82 € (6. 8)]
[31 €(2,3).p € (1,6)] [31 €(3,5).p € (Lﬁ)]

Figure 2: Left: the decision tree associated with the traversal
<JZ1 < 2a9,x2 < 6,11 < 3,a1,a3,a2>. Right: the corre-
sponding bounds for the parameters during the sampling
process (suppose the bounds for observations z; and 2 are
respectively [0, 5] and [1, 8]).

2.2. Method

Combinatorial optimization with autoregressive mod-
els. In applications of deep learning to combinatorial opti-
mization (Bello et al., 2016), a probabilistic model p(7) is
learned over the design space 7. The model is trained to
gradually allocate more probability mass to high scoring so-
lutions. The training can be done using supervised learning,
if problem instances with their corresponding solutions are
available, or, more generally, using RL.

In most cases, the model p(7) is parameterized by an au-
toregressive (AR) model with parameters 6. The model
is used to generate sequences as follows. At position
i, the model emits a vector of logits (Y conditioned
on the previously generated tokens 7y.(;_1), i.e., P =
AR(7y.(j—1);0). The new token 7; is sampled from the
distribution p(7;|71.(;—1),0) = softmax(¢(V)(,.), where
L(7;) is the index in £ corresponding to node value 7;. The
new token 7; is then added to the sequence 7y.;_1) and
used to condition the generation of the next token 7;11. The
process continues until a stopping criterion is met.

Prefix-dependent positional constraints. Sequential token
generation enables flexible configurations and the incorpo-
ration of constraints during the search process (Petersen
et al,, 2021a). Specifically, given a prefix 7y.(;_1), a prior

v € RIZl is computed such that wgi)ﬁ(m = —oo for

tokens 7; in the unfeasible set C , and zero otherwise.

T1:(i—1

The prior is added to the logits () before sampling the
token 7;. See Appendix D for examples.

Extension to discrete-continuous optimization. Current
deep learning approaches for combinatorial optimization
only support discrete tokens, i.e., L= (@, (Bello et al., 2016)
or completely decouple the discrete and continuous parts of
the problem, as in Petersen et al. (2021a); Landajuela et al.
(2021a); Mundhenk et al. (2021); da Silva et al. (2023), by
sampling first the discrete skeleton 74 and then optimizing
its continuous parameters separately (see Figure 1(a)). In
this work, we extend these frameworks to support joint
optimization of discrete and continuous tokens. The model
is extended to emit two outputs 1)) and ¢(*) for each token
7; = (I;, B;) conditioned on the previously generated tokens,
i.e., where we use the notation (I, 3).;—1) to denote the
sequence of tokens ((I1,51), ..., (li—1,Bi—1))

(w“%qﬁ(”) = AR((L, A)1.(1-1):0),

(see Figure 1(b)). Given tokens (I, 3)1.(;—1), the i" token
(1i, B;) is generated by sampling from the following distri-
bution:

Uio.11(B:)softmax (D) £, ifl,; €L
Pl Bl iy,) = {D[(;ii](li,zs(ﬂ)softrilax(j/)(;)))ﬁ(li) ifl; e £’
where D(S;|l;, ¢V)) is the probability density function of
the distribution D that is used to sample 3; from . Note
that the choice of 3; is conditioned on the choice of discrete
token /;. We assume that the support of D(|, ¢) is a subset
of A(l) for all [€ £. Additional priors of the form (w((f), 0)
can be added to the logits before sampling the token 7;. See
Appendix D for more details.

Training. The parameters 6 of the model are learned by
maximizing the expected reward J(0) = E. - |9)[R(7)]
or, alternatively, the quantile-conditioned expected reward

J=(0) = Erp(rio)[R(T)|R(T) = R (0)],

where R.(6) represents the (1 — €)-quantile of the reward
distribution R(7) sampled from the trajectory distribution
p(7|0). It is worth noting that both objectives, J(6) and
Je(0), serve as relaxations of the original arg max R(7) op-
timization problem described above. Empirical evidence
from Petersen et al. (2021a) demonstrates that, in practice,
the J.(6) objective tends to be more effective than J(6)
since it encourages the model to prioritize best case perfor-
mance over average case performance.

To optimize the objective J(#), we extend the risk-seeking
policy gradient of Petersen et al. (2021a) to the discrete-
continuous setting. The gradient of J.(6) reads as

VQJE(O) = ETNP(Tle) [A(T,E,@) S((l,ﬁ)l;T) | A(T,E,Q) > U],

Generative Design of Decision Tree Policies

where A(1,e,0) = R(7) — R-(0) and

[Velogp(Lil(l, 8)1.3i-1),0) ifl; € L,
((,
ﬂlT ; VHInglKl 6)1(1 1) 9) 1fl€l§
) +V910gp(ﬂz‘l1 27511 1) ! '
We provide pseudocode for DisCo-DSO in Appendix A. See
also Appendix B for a derivation of the risk-seeking policy
gradient and additional details of the learning procedure.

Sampling decision nodes in decision trees. To efficiently
sample decision nodes in decision trees, we employ trun-
cated normal distributions to select parameters /3; within
permissible ranges. Note that this is a feature of the prob-
lem we are approaching. Many RL environments place
boundaries on observations, and use of the truncated normal
distribution guarantees that parameters will only be sam-
pled within those boundaries. Additionally, a decision node
which is a child of another decision node cannot naively se-
lect parameters from the environment-enforced boundaries.
This is because the thresholding performed at a decision
node changes the range of values which will be observed
at subsequent decision nodes. In this way, a previous de-
cision node “dictates” the bounds on a current decision
node. For instance, consider the decision tree displayed
in Figure 2. Assume that the observation z; falls within
the interval [0, 5] (note that in practice the RL environment
provided bounds are used to determine the interval), and
the tree commences with the node x1 < 2. In the left child
node, as 1 < 2 is true, there is no need to evaluate whether
x1 is less than 4 (or any number between 2 and 5), as that
is already guaranteed. Consequently, we should sample a
parameter 37 within the range (0, 2). Simultaneously, since
we do not assess the Boolean expression regarding x5, the
bounds on 32 remain consistent with those at the parent
node. The parameter bounds for the remaining nodes are
illustrated in Figure 2. The procedure for determining these
maximum and minimum values is outlined in Algorithm 3
in Appendix D.1.

3. Experiments

For evaluation, we follow other works in the field (Silva
et al., 2020; Ding et al., 2020; Custode & lacca, 2023)
and use the OpenAl Gym’s (Brockman et al., 2016) envi-
ronments MountainCar-v0, CartPole-v1, Acrobot-v1, and
LunarLander-v2. We investigate the sample-efficiency of
DisCo-DSO on the decision tree policy task when compared
to the following decoupled baselines :

* Decoupled-RL-{BFGS, anneal, evo}: This baseline
trains a generative model with reinforcement learning to
produce a discrete skeleton (Petersen et al., 2021a), which
is then optimized by a downstream nonlinear solver for

the continuous parameters. The objective value at the op-
timized solution is the reward, which is used to update the
generative model using the same policy gradient approach
and architecture as DisCo-DSO. The continuous optimizer
is either L-BFGS-B (BFGS), simulated annealing (anneal)
(Xiang et al., 1997), or differential evolution (evo) (Storn
& Price, 1997), using the SciPy implementation (Virtanen
et al., 2020).

* Decoupled-GP-{BFGS, anneal, evo}: This baseline uses
genetic programming (GP) (Koza, 1990) to produce a dis-
crete skeleton, which is then optimized by a downstream
nonlinear solver for the continuous parameters.

All experiments involving RL and DisCo-DSO use a RNN
with a single hidden layer of 32 units as the generative
model. The GP baselines use the “Distributed Evolution-
ary Algorithms in Python” software' (Fortin et al., 2012).
Details on hyperparameters are provided in Appendix C.2.

Results. In Figure 3, we report the mean and standard devia-
tion of the best reward found by each algorithm versus num-
ber of environment episodes. These results show that DisCo-
DSO dominates the baselines in terms of sample-efficiency.
The trend is consistent across all environments, and is more
pronounced in the more complex environments. The effi-
cient use of evaluations by DisCo-DSO (each sample is a
complete well-defined decision tree) versus the decoupled
approaches, where each sample is a discrete skeleton that
requires many evaluations to get a single complete solution,
becomes a significant advantage in the RL environments
where each evaluation involves running the environment for
N episodes.

Literature comparisons. We conduct a performance com-
parison of DisCo-DSO against various literature baselines,
namely the evolutionary decision trees as detailed in (Cus-
tode & lacca, 2023), cascading decision trees introduced
in (Ding et al., 2020), and interpretable differentiable de-
cision trees (DDTs) introduced in (Silva et al., 2020). In
addition, we provide results with a Bayesian Optimization
baseline, where the structure of the decision tree is fixed to
a binary tree of depth 4 without prefix-dependent positional
constraints. Whenever a method supplies a tree structure
for a specific environment, we utilize the provided structure
and assess it locally. In cases where the method’s implemen-
tation is missing, we address this by leveraging open-source
code. This approach allows us to train a tree on the absent
environments, ensuring that we obtain a comprehensive re-
sult set for all evaluated methods across all environments.
The decision trees found by DisCo-DSO are shown in Fig-
ure 4. The comparisons are shown in Table 1. Methods we
trained locally are marked with an asterisk (*). Critically,
we ensure consistent evaluation across baselines by assess-

'https://github.com/DEAP/deap. LGPL-3.0 li-

cense.

https://github.com/DEAP/deap

Generative Design of Decision Tree Policies

o
0
L g0
= =
m===_DisCo-DSO
824 e Decoupled-RL-BFGS
e Decoupled-RL-anneal
Decoupled-RL-evo
wes Decoupled-GP-BFGS
-84 === Decoupled-GP-anneal
Decoupled-GP-evo
0.0 0.2 0.4 0.6 0.8 1.0
Number of environment episodes 1e7
(a) Acrobot-vl
-105.0
=== DisCo-DSO
_107.5 { = Decoupled-RL-BFGS
= Decoupled-RL-anneal
- Decoupled-RL-evo
—110.01 . pecoupled-GP-BFGS
== Decoupled-GP-anneal
-112.5 Decoupled-GP-evo ’_r’__‘,_‘——{_
o
0
(]

8 -115.0
=4
-117.5
I 7

Ve

-120.0

-122.5

-125.0 ™ ™ T T
0.0 0.2 0.4 0.6 0.8 1.0

Number of environment episodes 1e7

(c) MountainCar-v0

=== DisCo-DSO
w Decoupled-RL-BFGS

—20 - === Decoupled-RL-anneal
Decoupled-RL-evo
we= Decoupled-GP-BFGS

—40 { === Decoupled-GP-anneal
Decoupled-GP-evo

.
7]
L 60
o
-80 —_—
L el
,//_'—
—100 |/ B
-120 T T T T
0.0 0.2 0.4 0.6 0.8 1.0
Number of environment episodes s
(b) LunarLander-v2
5001~
450
400 === DisCo-DSO
m=_Decoupled-RL-BFGS
Ju-; === Decoupled-RL-anneal
8 350 Decoupled-RL-evo
o Decoupled-GP-BFGS

Decoupled-GP-anneal

300 Decoupled-GP-evo

250

200

0.0 0.2 0.4 0.6 0.8 1.0
Number of environment episodes le7

(d) CartPole-v1

Figure 3: Reward of the best solution versus number of function evaluations on the decision tree policy task, for Acrobot-vl1,
LunarLander-v2, MountainCar-v0, and CartPole-v1l. We show the mean and standard deviation of the best reward over 10

random seeds versus the number of environment episodes.

ing each decision tree policy on an identical set of 1,000
random seeds per environment.

In Table 1 we also show the complexity of the discovered
decision tree as measured by the number of parameters in
the tree. We count every (internal or leaf) node of univariate
decision trees (produced by all methods except for Cascad-
ing decision trees) as one parameter. For Cascading decision
trees, the trees contain feature learning trees and decision
making trees. The latter is just univariate decision trees,
so the same complexity measurement is used. For the leaf
nodes of feature learning trees, the number of parameters is
number of observations times number of intermediate fea-
tures. From Table 1, we observe that the univariate decision
trees found by DisCo-DSO have the best performance on
all environments at a comparable or lower complexity than
the other literature baselines.

4. Conclusion

We explore generative modeling in hybrid discrete-
continuous spaces for the problem of decision tree
policy search in interpretable RL. We propose DisCo-
DSO (Discrete-Continuous Deep Symbolic Optimization),
a novel approach for optimization in hybrid discrete-
continuous spaces. In contrast to standard decoupled ap-
proaches, in which the discrete skeleton is sampled first,
and then the continuous variables are optimized separately,
our joint optimization approach samples both discrete and
continuous variables simultaneously. This leads to more
efficient use of objective function evaluations, as the dis-
crete and continuous dimensions of the design space can
“communicate” with each other and guide the search. We
have demonstrated the benefits of DisCo-DSO on decision
tree optimization where DisCo-DSO outperforms the state-
of-the-art on univariate decision tree policy optimization for
RL.

As for the limitations of DisCo-DSO, it is important to

Generative Design of Decision Tree Policies

Algorithm Acrobot-vl | CartPole-v1 | LunarLander-v2 | MountainCar-vQ
MR PC| MR |PC MR PC MR PC
DisCo-DSO -76.58 | 18 | 500.00 | 14 | 99.24 23 | -100.97 15
Evolutionary DTs -97.12% | 5 149958 | 5 | -87.62* 17 | -104.93 13
Cascading DTs -82.14* | 58 1 496.63 | 22 | -227.02 | 29 | -200.00 10
Interpretable DDTs -497.86* | 15 | 389.79 | 11 | -120.38 19 |-172.21*] 15
Bayesian Optimization’ | -90.99% | 7 |85.47*%| 7 |-112.14%| 7 -200.0* 7

Table 1: Evaluation of the best univariate decision trees found by DisCo-DSO and other baselines on the decision tree policy
task. Here, MR is the mean reward earned in evaluation over a set of 1,000 random seeds, while PC represents the parameter
count in each tree. For models trained in-house (*), the figures indicate the parameter count after the discretization process.

fThe topology of the tree is fixed for BO.

(a) Acrobot-vl

(b) LunarLander-v2

(c) MountainCar-v0 (d) CartPole-v1

Figure 4: Best decision trees found by DisCo-DSO on the decision tree policy task for Acrobot-v1, LunarLander-v2,

MountainCar-v0, and CartPole-v1.

highlight that the method relies on domain-specific infor-
mation to define the ranges of continuous variables. In
cases where this information is unavailable and estimations
are necessary, the performance of DisCo-DSO could poten-
tially be impacted. Furthermore, in our RL experiments,
we constrain the search space to univariate decision trees.
Exploring more complex search spaces, such as multivariate
or “oblique” decision trees, remains an avenue for future
research.

Acknowledgements

We thank Livermore Computing at Lawrence Livermore Na-
tional Laboratory (LLNL) for the computational resources
that enabled this work. Funding was provided by the LLNL
Laboratory Directed Research and Development project
21-SI-001. We thank the Computational Engineering Direc-
torate and the Data Science Institute at LLNL for additional
support. This work was performed under the auspices of
the U.S. Department of Energy by LLNL under contract
DE-AC52-07NA27344. LLNL-CONF-865693.

References

Bello, 1., Pham, H., Le, Q. V., Norouzi, M., and Bengio,
S. Neural combinatorial optimization with reinforcement
learning. arXiv preprint arXiv:1611.09940, 2016.

Biggio, L., Bendinelli, T., Neitz, A., Lucchi, A., and Paras-
candolo, G. Neural symbolic regression that scales. In
International Conference on Machine Learning, pp. 936—
945. PMLR, 2021.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J.,
Schulman, J., Tang, J., and Zaremba, W. Openai gym,
2016.

Custode, L. L. and Iacca, G. Evolutionary learning of inter-
pretable decision trees. IEEE Access, 11:6169-6184,
2023. URL https://ieeexplore.ieee.org/
document/10015004.

da Silva, F. L., Goncalves, A., Nguyen, S., Vashchenko, D.,
Glatt, R., Desautels, T., Landajuela, M., Faissol, D., and
Petersen, B. Language model-accelerated deep symbolic

https://ieeexplore.ieee.org/document/10015004
https://ieeexplore.ieee.org/document/10015004

Generative Design of Decision Tree Policies

optimization. Neural Computing and Applications, pp.
1-17,2023. URL https://1link.springer.com/
article/10.1007/s00521-023-08802-8.

Ding, Z., Hernandez-Leal, P., Weiguang Ding, G., Li,
C., and Huang, R. Cdt: Cascading decision trees
for explainable reinforcement learning. arXiv preprint:
arXiv:2011.07553v2, 2020.

Fletcher, R. Practical methods of optimization. John Wiley
& Sons, 2000.

Fortin, F.-A., De Rainville, F.-M., Gardner, M.-A. G,
Parizeau, M., and Gagné, C. Deap: Evolutionary al-
gorithms made easy. The Journal of Machine Learn-
ing Research, 13(1):2171-2175, 2012. URL https:
//Jjmlr.org/papers/v13/fortinl2a.html.

Hochreiter, S. and Schmidhuber, J. Long short-
term memory. Neural computation, 9(8):1735-1780,
1997. URL https://ieeexplore.ieee.org/
abstract/document/6795963.

Kamienny, P.-A., d’Ascoli, S., Lample, G., and Charton, F.
End-to-end symbolic regression with transformers. arXiv
preprint arXiv:2204.10532, 2022.

Kim, J. T., Larma, M. L., and Petersen, B. K. Distilling
wikipedia mathematical knowledge into neural network
models. CoRR, abs/2104.05930, 2021. URL https:
//arxiv.org/abs/2104.05930.

Kingma, D. P. and Ba, J. Adam: A method for stochastic op-
timization, 2017. URL https://arxiv.org/abs/
1412.6980.

Koza, J. R. Genetic programming: A paradigm for geneti-
cally breeding populations of computer programs to solve
problems, volume 34. Stanford University, Department
of Computer Science Stanford, CA, 1990.

Lan, G., Tomczak, J. M., Roijers, D. M., and Eiben, A. Time
efficiency in optimization with a bayesian-evolutionary
algorithm. Swarm and Evolutionary Computation, 69:
100970, 2022.

Landajuela, M., Petersen, B. K., Kim, S., Santiago, C. P,,
Glatt, R., Mundhenk, N., Pettit, J. F., and Faissol, D.
Discovering symbolic policies with deep reinforcement
learning. In Meila, M. and Zhang, T. (eds.), Pro-
ceedings of the 38th International Conference on Ma-
chine Learning, volume 139 of Proceedings of Ma-
chine Learning Research, pp. 5979-5989. PMLR, 18-

24 Jul 2021a. URL https://proceedings.mlr.

press/v139/landajuela2la.html.

Landajuela, M., Petersen, B. K., Kim, S. K., Santiago, C. P.,
Glatt, R., Mundhenk, T. N., Pettit, J. F., and Faissol, D. M.

Improving exploration in policy gradient search: Applica-
tion to symbolic optimization. In /st Mathematical Rea-
soning in General Artificial Intelligence Workshop, ICLR
2021. arXiv, 2021b. doi: 10.48550/ARXIV.2107.09158.
URL https://arxiv.org/abs/2107.09158.

Mundhenk, T., Landajuela, M., Glatt, R., Santiago, C. P,,
faissol, D., and Petersen, B. K. Symbolic regression
via deep reinforcement learning enhanced genetic
programming seeding. In Ranzato, M., Beygelzimer,
A., Dauphin, Y., Liang, P, and Vaughan, J. W. (eds.),
Advances in Neural Information Processing Systems,
volume 34, pp. 24912-24923. Curran Associates,
Inc., 2021. URL https://proceedings.
neurips.cc/paper/2021/file/
d073bb8d0c47£317dd39de9c9f004e9d-Paper.
pdf.

Petersen, B. K., Landajuela, M., Mundhenk, T. N., Santiago,
C. P, Kim, S., and Kim, J. T. Deep symbolic regres-
sion: Recovering mathematical expressions from data
via risk-seeking policy gradients. In 9th International
Conference on Learning Representations, ICLR 2021,
Virtual Event, Austria, May 3-7, 2021. OpenReview.net,
2021a. URL https://openreview.net/forum?
1d=m5Qsh0kBQG.

Petersen, B. K., Santiago, C., and Landajuela, M. Incor-
porating domain knowledge into neural-guided search
via in situ priors and constraints. In 8th ICML
Workshop on Automated Machine Learning (AutoML),
2021b. URL https://openreview.net/forum?
id=yAisbyBI9MQ.

Popova, M., Shvets, M., Oliva, J., and Isayev, O. Molecular-
rnn: Generating realistic molecular graphs with optimized
properties. arXiv preprint arXiv:1905.13372,2019. URL
https://arxiv.org/abs/1905.13372.

Sahoo, S., Lampert, C., and Martius, G. Learning equa-
tions for extrapolation and control. In International Con-
ference on Machine Learning, pp. 4442-4450. PMLR,
2018. URL http://proceedings.mlr.press/
v80/sahool8a.html.

Shahriari, B., Swersky, K., Wang, Z., Adams, R. P, and
De Freitas, N. Taking the human out of the loop: A review
of bayesian optimization. Proceedings of the IEEE, 104
(1):148-175, 2015.

Silva, A., Gombolay, M., Killian, T., Jimenez, 1., and Son,
S.-H. Optimization methods for interpretable differen-
tiable decision trees applied to reinforcement learning.
In International conference on artificial intelligence and
statistics, pp. 1855-1865. PMLR, 2020.

https://link.springer.com/article/10.1007/s00521-023-08802-8
https://link.springer.com/article/10.1007/s00521-023-08802-8
https://jmlr.org/papers/v13/fortin12a.html
https://jmlr.org/papers/v13/fortin12a.html
https://ieeexplore.ieee.org/abstract/document/6795963
https://ieeexplore.ieee.org/abstract/document/6795963
https://arxiv.org/abs/2104.05930
https://arxiv.org/abs/2104.05930
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://proceedings.mlr.press/v139/landajuela21a.html
https://proceedings.mlr.press/v139/landajuela21a.html
https://arxiv.org/abs/2107.09158
https://proceedings.neurips.cc/paper/2021/file/d073bb8d0c47f317dd39de9c9f004e9d-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/d073bb8d0c47f317dd39de9c9f004e9d-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/d073bb8d0c47f317dd39de9c9f004e9d-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/d073bb8d0c47f317dd39de9c9f004e9d-Paper.pdf
https://openreview.net/forum?id=m5Qsh0kBQG
https://openreview.net/forum?id=m5Qsh0kBQG
https://openreview.net/forum?id=yAis5yB9MQ
https://openreview.net/forum?id=yAis5yB9MQ
https://arxiv.org/abs/1905.13372
http://proceedings.mlr.press/v80/sahoo18a.html
http://proceedings.mlr.press/v80/sahoo18a.html

Generative Design of Decision Tree Policies

Storn, R. and Price, K. Differential evolution—a simple and
efficient heuristic for global optimization over continuous
spaces. Journal of global optimization, 11:341-359, 1997.
URL https://link.springer.com/article/
10.1023/A:1008202821328.

Sutton, R. S. and Barto, A. G. Reinforcement learning: An
introduction. MIT press, 2018.

Tamar, A., Glassner, Y., and Mannor, S. Policy gradients
beyond expectations: Conditional value-at-risk. arXiv
preprint arXiv: 1404.3862, 2014.

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M.,
Reddy, T., Cournapeau, D., Burovski, E., Peterson, P.,
Weckesser, W., Bright, J., van der Walt, S. J., Brett, M.,
Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J.,
Jones, E., Kern, R., Larson, E., Carey, C. J., Polat, I,
Feng, Y., Moore, E. W., VanderPlas, J., Laxalde, D.,
Perktold, J., Cimrman, R., Henriksen, 1., Quintero, E. A.,
Harris, C. R., Archibald, A. M., Ribeiro, A. H., Pedregosa,
F., van Mulbregt, P., and SciPy 1.0 Contributors. SciPy
1.0: Fundamental Algorithms for Scientific Computing
in Python. Nature Methods, 17:261-272, 2020. doi:
10.1038/s41592-019-0686-2.

Xiang, Y., Sun, D., Fan, W, and Gong, X. Gen-
eralized simulated annealing algorithm and its
application to the thomson model. Physics Let-
ters A, 233(3):216-220, 1997. URL https:
//www.sciencedirect.com/science/
article/abs/pii/S037596019700474X.

https://link.springer.com/article/10.1023/A:1008202821328
https://link.springer.com/article/10.1023/A:1008202821328
https://www.sciencedirect.com/science/article/abs/pii/S037596019700474X
https://www.sciencedirect.com/science/article/abs/pii/S037596019700474X
https://www.sciencedirect.com/science/article/abs/pii/S037596019700474X

Generative Design of Decision Tree Policies

A. Pseudocode for DisCo-DSO

In this section we present pseudocode for the DisCo-DSO algorithm. The algorithm is presented in Algorithm 1. We also
provide pseudocode for the discrete-continuous sampling procedure in Algorithm 2. Algorithm 2 is called multiple times to
form a batch in Algorithm 1. Note that for decision tree policies for reinforcement learning, the distribution, D, used for
sampling the next continuous token in Algorithm 2 is only truncated with bounds produced with Algorithm 3 at a decision
tree node. Otherwise, the distribution is unbounded.

Algorithm 1 Discrete-Continuous Deep Symbolic Optimization

input batch size IV, reward function R, risk factor €, policy gradient function S, entropy coefficient Ay, learning rate o
output Best fitting design 7* = ((I1, 1), - ., (i1, Br))*
1: Initialize AR with parameters 0, defining distribution over designs p(-|6)
2: repeat
30 T« {7 = (I, /6’)§Z)T ~ p(-|0)}}¥., Sample batch of N discrete-continous designs (Algorithm 2)
R+ {R(t™)}Y, Compute rewards
R, < (1 — e)-quantile of R Compute reward threshold
T « {7® : R(r®") > R.} Select subset of expressions above threshold
R« {R(t®) : R(r() > R} Select corresponding subset of rewards
g1 < ReduceMean((R — R.)S(T,6)) Compute risk-seeking policy gradient
g2 < ReduceMean(—Ay Vo (T10)) Compute entropy gradient
10: 6 < 0+ (g1 + g2) Apply gradients
11: if maxR > R(7*) then 7* + 7(®&maxR) Update best discrete-continuous design
12: return 7*

R A A

Algorithm 2 Discrete-continuous sampling

input parameters of the given AR 6, token library £
output sequence 7 = {((l1,31), ..., (Ir, fr)) sampled from the AR
I: T =710 + [] Initialize empty sequence
2: fori=1,2,...do
30 (9, 00) « AR(71.i—1) = (I, B)1:(;—1); §) Emit two outputs for each token
: Compute C , € £ Compute unfeasible tokens

T1:(i—1

wéi) < —oo Set unfeasible tokens to —oo
T1:(i—1)

4
5
6: [; + Categorical(¢)()) Sample the next discrete token
7. ifl; € L then

8 Bi < Upo,11(-) Sample the next continuous token

9: elseifl; € £ then

10 Bi < D(-|l;, »)) Sample the next continuous token
11: endif

12: 7; < (;, B;) Joint discrete and continuous token

13: 7 < 7 || 7; Append token to traversal

B. Additional algorithm details

Risk-seeking policy gradient for hybrid discrete-continuous action space. The derivation of the risk-seeking policy
gradient for the hybrid discrete-continuous action space follows closely the derivation in Petersen et al. (2021a) (see also
Tamar et al. (2014)). The risk-seeking policy gradient for a univariate sequence 7 is given by

Vo Je(0) = Erp(rio) [(R(T) — R=(0)) Vo logp(7|0) | R(r) > R(0)] .

Generative Design of Decision Tree Policies

In the hybrid discrete-continuous action space case, we have 7 = {({1, 1), ..., (Ir, Br)) and
I7| I7|
p(7|0) = Hp 7—1|7—1 (i—1) Hp (L, Bi)I((i— 1)79) (H

Thus, using the convenient notation A(7,e,60) = R(7) — R(6), the risk-seeking policy gradient for the hybrid discrete-
continuous action space is given by

VoJ:(0) = Erpirio) [A(T,6,0)Vologp(7]0) | A(T,e,6) > 0]

7|

= ETN})(T\G) A(Ta€7 H)VG lOg Hp((lzaﬁin(lvﬂ)l(z—l)a 0) ‘ A<7_757 0) >0

i=1

il

= ETN;D(T\G) A(Ta & 9) Z Vo logp((lu Bz)‘(lv ﬂ)l:(i—l)a 9) ‘ A(Ta & 0) >0

=1

I

= ETNP(T‘G) A(Ta & 9) Z (VO logp(ll‘(lv ﬂ)l:(i—l)a 0) + Vy 10gp(ﬂ7|l1a (la /6)1:(7,'—1)7 9)) | A(Ta &, 0) >0

=1
[I7l | Ve logp(li|(lvﬁ)1:(i—1)a0)a ifl; € £
=Erpirio) |A(T.2,0) > S Vologp(Billi, (1. B)r.i-1y, 0)+ | A(7,¢,6) >0
L i=1 v@ Ing(l |(l B) Z 1))9)7 lflz S ‘C

In practice, we use the following estimator for the risk-seeking policy gradient:

| =01 [Vo logp(t$](1, /5)“) 1:0), if i e L
Volo(0) = 5> ATD.2.0) Y 3 Ve logpw“ uj ,<z B)% 1O+ (A9, e,0) > 0),
i=1 i=1 Vologp(iy|(1, 8)1; 1), 0), i1y € £
where 7(9) = <(l(i) (i)) . (lg), r}z))) is the i-th trajectory sampled from p(7]0), M is the number of trajectories used

in the estimator, and A(T(Z) £,0) = A% ¢,0) = R(() — R.(0), with R.(6) being an estimate of R.(6).

Entropy derivation in the hybrid discrete-continuous action space. As in Petersen et al. (2021a), we add entropy to the
loss function as a bonus. Since there is a continuous component in the library, the entropy for the distribution of 7; in the
sequence is

Hi=>_ pUI B)rxi-1),) Han(sit.o0 BID) + Hiep1.6)1.01y 0) (-
el

For the derivation, recall that, for a distribution D, the entropy is defined as H(D) = — [*_D(z)log D(x) dx, and that, in
DisCo-DSO, we add an entropy regularization term for each distribution p((Z;, 5;)|(l, 6)1:(1-, 1) 6) encountered during the

10

Generative Design of Decision Tree Policies

rollout. Thus, we have

H - Z/ llaﬁl Z 5)1(1_1),9)10gp((l“ﬁ1)|(l ﬁ)l (i—1))dﬁz

el
- Zp(liKlvﬂ)l:(ifl%e) 108?(%‘(@5)1:(1‘71),9)
LeL
. / p(Bill)p(1) og (p(Bl1)p()) 4 — 3 p(i) logp(li)
Lel” L,eL
= Z/ p(Billi)p(l;) log p(B;L:) dB; — Z/ p(Billi)p(l:) log p(ls) dB; — > p(l:) log p(ls
Lel”™ el LeL
== Yot [pBl 0sp(B) a5~ 3) g () / p(Bill) di — 3 plis) logp(ls)
Lel e Lel - Lel
= Pl B)rsti—1), O md(Bit0,) (Billi) = Y p(Lil (1, B)1:(i-1), 0) log p(Lil (1, B)1:(i—1), 0)-
Lel l,eL

Note that we have removed the conditioning elements 6 and (I, 8) (i—1) in some terms in the above derivation for brevity.

C. Additional experimental results
C.1. Decision tree policies for reinforcement learning

Note on ““oblique” decision trees. (Custode & Iacca, 2023) consider multivariate, or oblique” decision trees. These are
trees where the left-hand side of a decision node is composed of an expression, while the right-hand side is still a boolean
decision parameter [3,,. While these trees perform well on more complex environments such as LunarLander-v2 (published
results report an average test score of 213.09), we do not compare against them here as the search space is drastically
different.

Long run example in LunarLander-v2. In Figure 5, we show a long run example of DisCo-DSO on LunarLander-v2. The
search progress is shown for 4 - 107 function evaluations. We provide a sample of the best traversals found by DisCo-DSO
through the process. Note that reward in Figure 5 is the training reward, while reward in Table 1 is the test reward.

150 [x5 < 0.43, x4 < 015, x1 < 1.23, x2

100

\lhmrl

50

Reward
o

5= 4.

5o T8 o oo < e 5 s o 115 <0 0210070004078 10002 00 0 o a0
!ll
MT,,’I’HW L)
-100 W

F —— R best
HrlJr
R max in the batch
—~150 R average in the batch
0.0 0.5 1.0 15 270 25 30 35

Number of environment episodes

Figure 5: Search progress of DisCo-DSO on LunarLander-v2 for 4 - 107 function evaluations.

C.2. Hyperparameters

In Table 2, we provide the common hyperparameters used for the RL-based generative methods (DisCo-DSO and Decoupled-
RL). The hyperparameters for the GP-based method are provided in Table 3. DisCo-DSO’s specific hyperparameters, linked

11

Generative Design of Decision Tree Policies

to modeling of the distribution D, are provided in Table 4. For the DT policies for reinforcement learning task, the parameter
N (number of episodes to average over to compute a single reward R(7)) is set to 100.

D. Prefix-dependent positional constraints

The autoregressive sampling used by DisCo-DSO allows for the incorporation of task-dependent constraints. These
constraints are applied in situ, i.e., during the sampling process. These ideas have been used by several works using similar
autoregressive sampling procedures (Popova et al., 2019; Petersen et al., 2021a;b; Landajuela et al., 2021b; Mundhenk et al.,
2021; Kim et al., 2021). In this work, we include three novel constraints that are specific to the decision tree generation task,
one on the continuous parameters and two on the discrete tokens.

D.1. Constraints for decision tree generation

Constraint on parameter range. By using the truncated normal distribution, upper/lower bounds are imposed on the
parameters of decision trees (i.e., 3,, in the Boolean expression tokens x,, < [3,,) to prevent meaningless internal nodes from
being sampled. In Algorithm 3, we provide the detailed procedure for determining the upper/lower bounds at each position
of the traversal. The resolution & > 0 is a hyperparameter that controls the distance between the parameters 3, at the parent
node and the corresponding bounds at the children nodes. This guarantees that the sampled decision trees must have finite
depth if the environment-enforced bounds on the features of the optimization problem are finite. Moreover, it also prevents
the upper/lower bounds from being too close, which can lead to numerical instability in the truncated normal distribution.

Parameter Value
Optimizer Adam (Kingma & Ba, 2017)
Number of layers 1
Number of hidden units 32
RNN type LSTM (Hochreiter & Schmidhuber, 1997)
Learning rate («) 0.001
Entropy coefficient (Ay) 0.01
Moving average coefficient (/3) 0.5
Risk factor (¢) 0.2

Table 2: DisCo-DSO and Decoupled-RL hyperparameters

Parameter Value
Population size 1,000
Generations 1,000
Fitness function NRMSE
Initialization method Full
Selection type Tournament
Tournament size (k) 5
Crossover probability 0.5
Mutation probability 0.5
Minimum subtree depth (dpin) 0
Maximum subtree depth (dyax) 2

Table 3: Decoupled-GP hyperparameters

Parameter Value
Parameter shift 0.0
Parameter generating distribution scale (o) 0.5
Learn parameter generating distribution scale ~ False
Parameter generating distribution type Normal

Table 4: DisCo-DSO specific hyperparameters

12

Generative Design of Decision Tree Policies

Algorithm 3 Finding bounds for parameters in decision trees

max min

input: parent token [, (8,), bounds for the parameters of the parent token 5,"**, 3
Parameters: Resolution A > 0)
output: bounds for the parameters of the next token 3;***, 5;*'"
max gmin B, ﬁl’,’““ Inherit parameter bounds from parent
if the next token is a right child of [,,(8,) then

(min

7)1, < Bp + h {Adjust the lower bound corresponding to I, }
if (8;"*)1, — (B;"")1, < h then

(B, < (B"*)1, — h/2 Maintain a minimal distance between bounds
end if
else
(8")1, < Bp — h Adjust the upper bound corresponding to [,
if (8%, — (8),, < h then
(B, + (B7™™)1, + h/2 Maintain a minimal distance between bounds
end if
end if)
Return: g"**, g

Constraint on Boolean expression tokens. Depending on the values of the parameter bounds, we also impose constraints
on the discrete tokens z,, < 3,,. Specifically, when the upper/lower bounds 32#% and B™" for the parameter of the n-th
Boolean expression token x,, < f3,, are too close, oftentimes there is not much value to split the n-th feature space further.
Therefore, if 4 — BWin < b where h is the resolution hyperparameter in Algorithm 3, then z;,, < f3,, are constrained
from being sampled.

Constraint on discrete action tokens. If the left child and right child of a Boolean expression token z,, < 3,, are the same
discrete action token a;, the subtree will just be equivalent to a single leaf node containing a;. We add a constraint that if
the left child of =, < 3, is a;, then the right child cannot be a;.

13

