
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

TREERPO: TREE RELATIVE POLICY OPTIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) have shown remarkable reasoning capabilities
through Reinforcement Learning with Verifiable Rewards (RLVR) methods. How-
ever, a key limitation of existing approaches is that rewards defined at the full tra-
jectory level provide insufficient guidance for optimizing the intermediate steps of
a reasoning process. To address this, we introduce TREERPO, a novel method
that estimates the mathematical expectations of rewards at various reasoning steps
using tree sampling. Unlike prior methods that rely on a separate step reward
model, TREERPO directly estimates these rewards through this sampling process.
Building on the group-relative reward training mechanism of GRPO, TREERPO
innovatively computes rewards based on step-level groups generated during tree
sampling. This advancement allows TREERPO to produce fine-grained and dense
reward signals, significantly enhancing the learning process and overall perfor-
mance of LLMs. Experimental results demonstrate that our TREERPO algorithm
substantially improves the average Pass@1 accuracy of Qwen-2.5-Math on test
benchmarks, increasing it from 19.0% to 35.5%. Furthermore, TREERPO signifi-
cantly outperforms GRPO by 2.9% in performance while simultaneously reducing
the average response length by 18.1%, showcasing its effectiveness and efficiency.

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0 80 160 240 320

P
a

ss
@

1
 A

cc
u

ra
cy

 (
%

)

Traing Steps

TreeRPO

GRPO

Figure 1: The average Pass@1 accuracy of TREERPO and GRPO with Qwen-2.5-Math-1.5b on
four mathematical benchmarks: MATH-500, OlympiadBench, Minerva, and AIME.

1 INTRODUCTION

Recent advancements in test-time scaling with reinforcement learning methods bring milestone
progress to Large Language Models (LLMs). Reasoning models such as OpenAI O1 (OpenAI,
2024), DeepSeek R1 (Guo et al., 2025), and QwQ (Qwen, 2024) have demonstrated significantly
superior performance in complex reasoning tasks. Reinforcement Learning with Verifiable Rewards
(RLVR) plays a pivotal role in this progress, which enhances the model’s performance by continu-
ously exploring reasoning paths toward correct answers on verifiable problems.

In the realm of LLM-RL integration for complex reasoning, existing approaches can be broadly
categorized into two paradigms: reward model-based methods (Ouyang et al., 2022; Shen et al.,

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

2025; Schulman et al., 2017) and reward model-free methods (Rafailov et al., 2023; Shao et al.,
2024; Zeng et al., 2025; Luo et al., 2025b). Among reward model-based methods, reward models are
typically divided into outcome reward models (ORMs; Cobbe et al. 2021; Yu et al. 2023) and process
reward models (PRMs; Lightman et al. 2023; Wang et al. 2024; Lu et al. 2024a; Chen et al. 2025).
ORMs provide a single scalar reward for the entire generation sequence, while PRMs offer step-
wise evaluations of the reasoning path. The fine-grained, dense reward signals from PRMs generally
yield superior RL performance compared to ORMs. However, acquiring high-quality training data
for PRMs remains challenging, as accurately annotating the correctness of intermediate reasoning
steps requires substantial domain expertise. This data scarcity significantly hinders the scalability of
PRM-based approaches.

Recent breakthroughs in enhancing LLM reasoning capabilities, such as GRPO (Shao et al., 2024)
and its variants (Yu et al., 2025; Yue et al., 2025), have adopted a reward model-free paradigm.
These methods leverage verifiable reward functions trained on complex reasoning datasets, where
rewards are determined by whether the model’s final output matches the ground-truth numerical
answer or passes predefined unit tests in programming tasks. This approach achieves remarkable
scalability by eliminating the need for human annotations or reward models. However, similar to
ORMs, these rule-based methods only provide trajectory-level rewards, offering limited guidance for
optimizing intermediate reasoning steps. Consequently, the question of how to deliver dense, fine-
grained reward signals without relying on reward models presents an important research direction.

To address this challenge, we propose TREERPO, a novel approach that estimates the mathematical
expectations of rewards at various reasoning steps through tree sampling. Unlike previous methods
that require explicit step-level reward models, TREERPO employs a tree-based sampling mech-
anism to approximate these expectations. Building upon GRPO’s group-relative reward training
framework, TREERPO innovatively computes rewards based on step-level groups within the sam-
pled tree structure. This design enables the generation of fine-grained, dense reward signals that
guide the model’s reasoning process more effectively while maintaining the scalability advantages
of verifiable reward functions. Through this approach, TREERPO achieves more efficient and ef-
fective optimization of LLM reasoning capabilities.

To summarize, our main contributions are as follows:

• To the best of our knowledge, TREERPO is the first reward model-free method that pro-
vides dense process reward signals through tree sampling and group relative reward com-
putation, significantly enhancing the efficiency of RL-based reasoning optimization.

• Through extensive experimentation, TREERPO was found to significantly increase Qwen-
2.5-Math-1.5B’s Pass@1 accuracy on various benchmarks from 19.0% to 35.5%, including
a 2.9% lead over GRPO.

• Detailed analysis demonstrates that TREERPO achieves higher accuracy and reduces to-
ken consumption. Specifically, it cuts the average response length on test benchmarks by
18.1% compared to GRPO, showcasing more efficient and precise reasoning.

2 RELATED WORKS

2.1 ELICITING COMPLEX REASONING ABILITY

Complex reasoning tasks (Hendrycks et al., 2021; He et al., 2024; Lewkowycz et al., 2022; Zeng
et al., 2024; Yang et al., 2025; Xiang et al., 2025) such as mathematical problem solving are one of
the most challenging tasks for LLMs. Various methods are proposed to elicit the reasoning ability
of LLMs. These approaches can be divided into two groups:
1) In-context learning: These methods aim to improve the reasoning ability of LLMs by design-
ing various prompting strategies and frameworks without updating the model parameters. Chain-
of-thought (CoT; Wei et al. 2022) prompting shows that intermediate reasoning steps can greatly
improve model performance. Subsequent research (Zhang et al., 2023; Yao et al., 2023; Bi et al.,
2023; Yang et al., 2024b) has further enhanced CoT through various methods.
2) Fine-tuning: This line of approaches (Yang et al., 2022; Yu et al., 2024; Lu et al., 2024b; Huang
et al., 2024; Tong et al., 2024) involve finetuning on extensive and high-quality datasets to improve
reasoning capabilities. The core of these methods is to construct high-quality question-response

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

pairs with chain-of-thought reasoning processes. MetaMath (Yu et al., 2024) focuses on data aug-
mentation for both questions and answer texts. MathGenie (Lu et al., 2024b) collects a vast amount
of data through open-source language models. DART-Math (Tong et al., 2024) generates diverse
solutions with the difficulty-aware rejection sampling. Recent studies (Shao et al., 2024; Hu et al.,
2025; Zeng et al., 2025; Luo et al., 2025b; Yu et al., 2025; Yue et al., 2025) have explored reinforce-
ment learning in complex reasoning tasks and have acquired great achievements. Inspired by recent
successes in reinforcement learning for complex reasoning tasks, we propose TREERPO, an innova-
tive reinforcement learning method that leverages tree sampling to further enhance LLM reasoning
ability.

2.2 REINFORCEMENT LEARNING WITH LLMS

Reinforcement Learning from Human Feedback (RLHF; Ouyang et al. 2022) has been widely used
in LLM alignments. Direct Preference Optimization (DPO; Rafailov et al. 2023) is further proposed
to simplify the training pipeline of RLHF, which directly uses pair-wise preference data for model
optimization. Recent studies (OpenAI, 2024; Guo et al., 2025; XAI, 2024; DeepMind, 2024; Qwen,
2024; Team et al., 2025) have shown that reinforcement learning can significantly improve the rea-
soning ability of models. This type of work can roughly be divided into two categories:
1) Reward model-based: There are two primary types of reward models: the Outcome Reward
Model (ORM) and the Process Reward Model (PRM). Prior effort (Lightman et al., 2023) sug-
gests that PRM outperforms ORM due to the fine-grained step-by-step reward signals. Math-
Shepherd (Wang et al., 2024) trains a PRM by estimating the potential for a given reasoning step.
However, training a reward model requires extensive, high-quality annotated data, especially for
PRMs. This hinders the scaling of reward models in the field of complex reasoning.
2) Reward model-free: DPO is one of these methods, but it requires the elaborate construction of
pairwise data for training. Step-DPO (Lai et al., 2024) constructs a pipeline to generate pair-wise
step-level data and surpasses the performance of DPO. The other line of research (Shao et al., 2024;
Hu et al., 2025; Zeng et al., 2025; Luo et al., 2025b) has shown that verification functions are ef-
fective in improving the reasoning capabilities of LLMs. They avoid the need for reward models,
offering a simple yet effective approach. The typical methods are GRPO (Shao et al., 2024) and its
variants DAPO (Yu et al., 2025) and VAPO (Yue et al., 2025). However, rule-based reward is similar
to ORM, providing trajectory-level reward signals rather than fine-grained process reward signals.
Unlike existing efforts, TREERPO achieves fine-grained, dense reward signals without relying on
a separate reward model. TREERPO can offer a more scalable solution for obtaining dense reward
signals in complex reasoning tasks.

3 TREERPO: METHODOLOGY

In this section, we elaborate on the proposed TREERPO. First, we present tree sampling in Sec-
tion 3.1, which is designed to construct step step-level group to enhance long-chain reasoning abil-
ities with GRPO. Next, in Section 3.2, we introduced the pruning strategy to improve the sampling
and training efficiency in TREERPO. In Section 3.3, we discuss the numerical influence of standard-
ized binary rewards and continuous rewards on advantage computation and propose a new advantage
computation method for continuous rewards.

3.1 TREE SAMPLING

While GRPO has been proven to be effective and suitable for scaling in complex reasoning tasks
with verifiable reward, it only provides the trajectory-level reward by evaluating the final answer of
the generated sequences. Instead, to provide step-level reward estimation without using a reward
model, we designed tree sampling.

Given an input question q, the language model generates an N -ary tree through iterative sampling,
governed by the following constraints:

• Branching Factor: At each decoding step, the model samples N candidate continuations,
expanding N new branches from the current node.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

+1.0+1.00.0+1.00.00.0

0.0 0.0+1.00.0
+1.00.0

+1.0+1.0+1.00.00.0 0.0

+0.667

+0.111 +0.556

+0.037 +0.444 +0.852

0.0
+0.333

+0.333

question

Step 1

Step 2

Step 3

Step 4

format
train batch

……

group 3

group 1

group 2

group N

Figure 2: The sampling process of our TREERPO. TREERPO starts from the question, sampling N
nodes at each step until generation is completed or the maximum depth limit D is reached. Then,
a verifiable reward function is used to evaluate all leaf nodes and then back-propagates the rewards
to their parent nodes, thereby obtaining intermediate step rewards, which achieves process reward
signaling. We traverse each node and aggregate all children steps of a node into a group to compute
advantages, which are finally formatted into the training batch.

• Depth Limit: The tree expansion terminates when any path reaches the maximum depth
D, ensuring tractability.

• Step Segmentation: We directly divide the steps according to the token length. Each step
produces at most Lstep tokens per branch. Generation halts for a branch if a stop token is
generated, or the branch violates reaches depth limit. A more precise step division method
is our future work.

As shown in Figure 2, the tree’s reward computation follows a bottom-up recursive expectation
scheme, where:

• Leaf Evaluation: For each leaf node vleaf, the verification function ϕ takes the entire path
P = [vroot, . . . , vleaf] as input and computes the reward:

rleaf = ϕ(P) = ϕ
(
[vroot, . . . , vleaf]

)
,

• Parent Propagation: Non-leaf nodes aggregate rewards from their children:

rnode = Ec∈Children(vnode)

[
rc
]
.

This propagates bottom-up, weighting all viable completion paths.

In conclusion, our tree sampling framework estimates the reward of each step as its potential to
deduce the correct final answer.

3.2 DATA PRUNING

Similar to the Dynamic Sampling strategy of DAPO, we filter out the samples to keep all data
samples in the training batch with effective gradients.

In the data construction pipeline of TREERPO, a group G is formally defined as the set of child
nodes c1, . . . , cn originating from a common parent node p, as illustrated in Figure 2. Adopting a
strategy analogous to the dynamic sampling approach in DAPO, we perform group-level filtering
based on reward distribution characteristics.

∆RG = max
ci∈G

R(ci)− min
cj∈G

R(cj) (1)

where R(ci) denotes the reward associated with child node ci. We introduce a variance threshold τ
such that a group G is included in the training batch B if and only if:

G ∈ B ⇐⇒ ∆RG > τ (2)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

The threshold τ operates as a hyperparameter controlling the trade-off between sample diversity and
learning signal strength in the batch construction process.

This data selection criterion ensures all samples in the batch with effective gradients and improves
the efficiency of the training process.

3.3 ADVANTAGE COMPUTATION

In the vanilla GRPO framework, the advantage estimation is derived by normalizing binary rewards:

Âi,t =
ri − mean({Ri}Gi=1)

std({Ri}Gi=1)
. (3)

However, when applied to continuous rewards, this approach introduces significant bias. For in-
stance, two reward sequences, R1 = [0, 0, 1, 1] and R2 = [0.49, 0.49, 0.51, 0.51], produce identical
normalized advantages [−1,−1, 1, 1], despite their distinct reward distributions. While R1 exhibits
a clear bimodal separation, R2 contains only minor variations (a maximal difference of 0.02). This
indicates that standard normalization fails to properly scale advantages for continuous rewards, lead-
ing to misleading policy updates.

To mitigate this bias, we propose an alternative advantage computation that preserves the statistical
properties of binary reward normalization while accommodating continuous rewards. Instead of
computing the empirical variance from R, we define the normalization factor as σ = µ(1 − µ),
where µ is the mean reward. This formulation maintains consistency with the variance of Bernoulli-
distributed rewards (Var[R] = µ(1− µ)) while generalizing to continuous settings.

For a given reward sequence R = [R1, R2, . . . , Rn], the advantage is computed as:

µ =
1

n

n∑
i=1

Ri σ = µ(1− µ)

Ai =
Ri − µ

σ

(4)

By fixing the variance term σ to µ(1−µ), we ensure that advantage values remain interpretable and
stable, avoiding the overamplification of small differences in continuous rewards. This approach
bridges the gap between binary and continuous reward normalization while maintaining the original
scaling behavior of GRPO.

3.4 OBJECTIVE OF TREERPO

We adopt the clipped objective of GRPO, together with a directly imposed KL penalty term: Ad-
ditionally, the KL-regularization between current policy πθ and the reference policy πref is directly
added to the loss function:

JTreeRPO(θ) = E(q∼D,{oi}Gi=1∼πθold
(q)[

1

G

G∑
i=1

1

|oi|

|oi|∑
t=1

(
min

(
ri,t(θ)Âi,t, clip

(
ri,t(θ), 1− ε, 1 + ε

)
Âi,t

)
− βDKL(πθ||πref)

)]
,

(5)

where

ri,t(θ) =
πθ(oi,t | q, oi,<t)

πθold(oi,t | q, oi,<t)
. (6)

4 EXPERIMENTS

Datasets. We conduct the evaluation of our experiments using 4 widely used mathematical rea-
soning benchmarks: MATH-500 (Lightman et al., 2023), OlympiadBench (He et al., 2024), Minver-
vaMath (Lewkowycz et al., 2022), and AIME24. Among them, Math-500 are 500 items screened
out from the original MATH test split. The subset consists of 500 representative problems, and the

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

evaluation produces similar results to the full-set evaluation. In the training scenario, we use the
training split of MATH dataset, which contains 7.5k high-quality training samples. In the future,
we will extend the experiment to the DeepScaler (Luo et al., 2025b) training data, which is a more
challenging dataset for mathematical reasoning.

Parameter Setting. Our experiments are based on Qwen2.5-Math series language models (Yang
et al., 2024a). In the evaluation procedure, we set the temperature as 0.6 to sample 8 candidate re-
sponses for each question. In the reinforcement learning training procedure, we set the temperature
as 0.6 and roll out 8 responses for each question. The learning rate is 1e-6 for both GRPO and
TREERPO. The coefficients for KL divergence and entropy loss are β = 0.001 and α = −0.001,
respectively. For GRPO, the training batch size is 128 and the mini-batch size is 64. For our
TREERPO, the training batch size is 128. Since the training data size of each step of TREERPO is
floating, the size of our mini-batch is obtained as half of the training data size. By default, the max-
imum prompt length is 512, and the maximum response length is 1152 for GRPO. For TREERPO,
the maximum prompt length is 512, the maximum step length Lstep is 384, the maximum depth D
of tree sampling is set as 3, and the N -ary is set as 8. For better efficiency, we set the data pruning
coefficient τ to 0.1 as described in Sec. 3.2.

Implementation Details. We follow the rllm (Luo et al., 2025a;b) framework which is derived
from the verl (Sheng et al., 2024) pipeline. Both rllm and verl integrate the vllm (Kwon et al., 2023)
framework for efficient inference of models. All of our experiments are conducted on A800 GPUs.
At present, the LLM of our experiment is the Qwen2.5-Math series. Due to the limitations of time
and computation resources, we have only reported the 1.5b model. We plan to conduct experiments
on 7b and 32b as soon as possible

Metrics. We use the same verification function in rllm to evaluate the performance of LLMs.
Compared with other repositories, the reward function implemented by rllm is more complete and
systematic. For the test results, the accuracy rate we report is pass@1(avg@8) performance for all
tested benchmarks.

Table 1: Overall performance of Pass@1 (Avg@16) performance of Qwen2.5-Math series.

Method AIME24 MATH500 Olympiad Minerva Macro Accuracy

Qwen2.5-Math-1.5B as the Base Model
GRPO Baseline 13.8 67.9 28.5 20.5 32.7
TreeRPO 16.8 (↑+3.0) 70.7 (↑+2.8) 30.9 (↑+2.6) 24.0 (↑+3.5) 35.6 (↑+2.9)

Qwen2.5-Math-7B as the Base Model
GRPO Baseline 26.7 74.3 34.7 27.1 40.7
TreeRPO 26.7 75.5 (↑+1.2) 35.4 (↑+0.7) 28.1 (↑+1.0) 41.4 (↑+0.7)

4.1 MAIN RESULTS

We show the performance comparison of GRPO baseline and our TreeRPO on Qwen2.5-Math-
1.5/7B in four selected benchamrk: AIME24, MATH-500, Olympiad Benchamrk, and Minerva
Math. As illustrated in Table 1, for Qwen2.5-Math-1.5B, the Macro Accuracy has improved by
2.9%. Furthermore, we consider that the reason why the improvement and repetition of Qwen2.5-
Math-7B is not as significant as that of Qwen2.5-Math-1.5B lies in the fact that the MATH training
data for Qwen2.5-Math-7B is too simple, resulting in the improvement of the algorithm not being
significantly reflected. In generall, our TreeRPO has achieved a consistency improvement compared
to GRPO baseline.

TREERPO demonstrates significant performance improvements. We conduct TREERPO and
GRPO on Qwen2.5-Math-1.5b model with the training split of the MATH dataset, and conduct the
evaluation on four selected benchmarks: Math-500, MinervaMath, OlympiadBench, and AIME. As

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

0.36

0.41

0.46

0.51

0.56

0.61

0.66

0.71

0 100 200 300

P
as

s@
1
 A

cc
u
ra

cy
 (

%
)

Training Steps

TreeRPO

GRPO

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0 100 200 300

P
as

s@
1

 A
cc

u
ra

cy
 (

%
)

Training Steps

TreeRPO

GRPO

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0 100 200 300

P
as

s@
1
 A

cc
u
ra

cy
 (

%
)

Training Steps

TreeRPO

GRPO
0

0.05

0.1

0.15

0.2

0.25

0 100 200 300

P
as

s@
1
 A

cc
u
ra

cy
 (

%
)

Training Steps

TreeRPO

GRPO

(a) MATH-500 Pass@1 Accuracy (b) MinervaMath Pass@1 Accuracy

(c) OlympiadBench Pass@1 Accuracy (d) AIME Pass@1 Accuracy

Figure 3: Performance comparison of our TREERPO and GRPO on the four selected bench-
marks: Math-500, MinervaMath, OlympiadBench, and AIME. The experiments are conducted with
Qwen2.5-Math-1.5b, an LLM pretrained with a large amount of mathematical corpus.

0

0.05

0.1

0.15

0.2

0.25

0.3

0 30 60 90 120 150 180 210 240 270 300

P
as

s@
1

 A
cc

u
ra

cy

Training Steps

GRPO

TreeRPO

0.68

0.69

0.7

0.71

0.72

0.73

0.74

0.75

0.76

0 30 60 90 120 150 180 210 240 270 300

P
as

s@
1

 A
cc

u
ra

cy

Training Steps

GRPO

TreeRPO

0.27

0.28

0.29

0.3

0.31

0.32

0.33

0.34

0.35

0.36

0 30 60 90 120 150 180 210 240 270 300

P
as

s@
1

 A
cc

u
ra

cy

Training Steps

GRPO

TreeRPO

0.23

0.24

0.25

0.26

0.27

0.28

0.29

0 30 60 90 120 150 180 210 240 270 300

P
as

s@
1

 A
cc

u
ra

cy

Training Steps

GRPO

TreeRPO

(a) MATH-500 Pass@1 Accuracy (b) MinervaMath Pass@1 Accuracy

(c) OlympiadBench Pass@1 Accuracy (d) AIME Pass@1 Accuracy

Figure 4: Performance comparison of our TREERPO and GRPO on the four selected bench-
marks: Math-500, MinervaMath, OlympiadBench, and AIME. The experiments are conducted with
Qwen2.5-Math-1.5b.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

shown in Figure 3, our TREERPO outperform GRPO on all of the tested benchmarks. We further
show the dynmaic results of Qwen2.5-Math-7B in Figure 4. After training 300 steps for Qwen2.5-
Math-1.5B, our TREERPO outperforms GRPO by 2.7% on MATH-500, 3.5% on MinervaMath,
2.4% on OlympiadBench, and 3.0% on AIME, respectively. As illustrated in Figure 1, TREERPO
outperforms the overall performance of GRPO by 2.9%. In conclusion, TREERPO has demon-
strated consistent superiority on multiple benchmarks.

400

450

500

550

600

650

700

0 100 200 300

R
es

p
o

n
se

 L
en

g
th

Training Steps

TreeRPO

GRPO

400

450

500

550

600

650

700

750

800

850

900

0 100 200 300

R
es

p
o

n
se

 L
en

g
th

Training Steps

TreeRPO

GRPO

500

550

600

650

700

750

800

0 100 200 300

R
es

p
o

n
se

 L
en

g
th

Training Steps

TreeRPO

GRPO

600

650

700

750

800

850

900

0 100 200 300

R
es

p
o

n
se

 L
en

g
th

Training Steps

TreeRPO

GRPO

(a) Avg Response Length on MATH-500 (b) Avg Response Length on MinervaMath

(c) Avg Response Length on OlympiadBench (d) Avg Response Length on AIME

Figure 5: Response Length comparison of our TREERPO and GRPO on the four selected bench-
marks: Math-500, MinervaMath, OlympiadBench, and AIME. The experiments is conducted with
Qwen2.5-Math-1.5b

TREERPO demonstrates efficiency advantage in token usage. We conduct TREERPO and
GRPO on the Qwen2.5-Math-1.5b model with the training split of the MATH dataset, and compute
the average response length on four selected benchmarks: Math-500, MinervaMath, Olympiad-
Bench, and AIME. As illustrated in Figure 5, compared to GRPO, our TREERPO achieves a 17.1%
reduction in token usage on MATH, 22.3% on MinervaMath, 18.0% on OlympiadBench, and 15.3%
on AIME. On average, TREERPO demonstrates a 18.1% decrease in token usage across the four
benchmarks compared to GRPO, showcasing its superior efficiency. TreeRPO not only demonstrates
an advantage in token efficiency on Qwen2.5-Math-1.5B, but also shows an efficiency advantage on
Qwen2.5-Math-7B, with an average token length that is also shorter than the GRPO baseline. We
show the response case of a simple question in Figure 7. It can be seen that in this simple case,
TREERPO’s response is more concise

The performance of TREERPO under different hyperparameters. In the experiments, we con-
duct experimental analyses using different batch sizes, and the results are shown in Figure 6. For
GRPO and TREERPO, the batch size bsz = 16/128 has very little influence on the final perfor-
mance. Our TREERPO significantly outperforms GRPO in both two Settings. This fully demon-
strates that our TreeRPO algorithm significantly outperforms the GRPO-baseline across different
hyperparameters.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0.17

0.22

0.27

0.32

0.37

0 100 200 300 400 500 600 700 800 900

P
as

s@
1
 A

cc
u
ra

cy
 (

%
)

Training Steps

GRPO

TreeRPO

500

550

600

650

700

750

800

0 100 200 300 400 500 600 700 800 900

A
v
g
 R

es
p
o
n
se

 L
en

g
th

Training Steps

GRPO

TreeRPO

Figure 6: Comparison of TREERPO and GRPO with bsz = 16. The pass@1 accuracy and the
response length are calculated by taking the average on the four tested benchmarks.

Question: Solve
1

𝑥−5
> 0. Enter your answer using interval notation.

TreeRPO:

To solve the inequality
1

𝑥−5
> 0, we need to

determine when the expression
1

𝑥−5
is

positive. The fraction
1

𝑥−5
is positive when

the denominator 𝑥 − 5 is positive. Therefore,
we need to solve the inequality 𝑥 − 5 > 0.

Adding 5 to both sides of the inequality, we
get:

𝑥 > 5

So, the solution to the inequality
1

𝑥−5
> 0 is

(5, +∞) .

The final answer in interval notation is:
\boxed{(5, +∞)}.

GRPO:

To solve the inequality
1

𝑥−5
> 0 , we need to

determine the values of 𝑥 for which the

expression
1

𝑥−5
is positive. The expression

1

𝑥−5
is positive when the denominator 𝑥 − 5 is

positive. Therefore, we need to solve the
inequality 𝑥 − 5 > 0.

Let's solve this step-by-step:

1. Start with the inequality:
𝑥 − 5 > 0

2. Add 5 to both sides of the inequality:
𝑥 > 5

So, the solution to the inequality
1

𝑥−5
> 0 is

𝑥 > 5 . In interval notation, this is written as
(5, +∞).

The final answer is: \boxed{(5, +∞)}.

Figure 7: Responses of TREERPO and GRPO of a simple question.

5 CONCLUSION

In this paper, we propose TREERPO, which conducts tree sampling to construct step-level groups
based on vanilla GRPO. TREERPO obtains the reward of the current step by estimating the reward
of the subsequent sampling paths of the current step. This is a method that can obtain dense re-
ward signals without the need for process reward models (PRMs). The experimental results show
that TREERPO demonstrates both effectiveness and efficiency. In the future, we will continuously
improve the algorithm based on the current version and expand the scale of LLM training.

6 REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our research, we have meticulously assembled a comprehensive
reproducibility package as part of our supplementary materials. This package is designed to enable
the seamless replication of all experiments detailed in our paper. It encompasses anonymized source
code that implements the proposed model and training procedures. Additionally, we have included
precise configuration files and scripts that specify all hyperparameters and the training commands
necessary to reproduce our results.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Zhen Bi, Ningyu Zhang, Yinuo Jiang, Shumin Deng, Guozhou Zheng, and Huajun Chen. When do
program-of-thoughts work for reasoning? arXiv preprint arXiv:2308.15452, 2023.

Jiaqi Chen, Bang Zhang, Ruotian Ma, Peisong Wang, Xiaodan Liang, Zhaopeng Tu, Xiaolong Li,
and Kwan-Yee K. Wong. Spc: Evolving self-play critic via adversarial games for llm reasoning,
2025. URL https://arxiv.org/abs/2504.19162.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Google DeepMind. Gemini 2.0 flash thinking, 2024. URL https://deepmind.google/
technologies/gemini/flash-thinking/.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Thai, Junhao Shen, Jinyi Hu, Xu Han,
Yujie Huang, Yuxiang Zhang, Jie Liu, Lei Qi, Zhiyuan Liu, and Maosong Sun. OlympiadBench:
A challenging benchmark for promoting AGI with olympiad-level bilingual multimodal scien-
tific problems. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings of the
62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Pa-
pers), pp. 3828–3850, Bangkok, Thailand, August 2024. Association for Computational Linguis-
tics. doi: 10.18653/v1/2024.acl-long.211. URL https://aclanthology.org/2024.
acl-long.211/.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. NeurIPS,
2021.

Jingcheng Hu, Yinmin Zhang, Qi Han, Daxin Jiang, Xiangyu Zhang, and Heung-Yeung Shum.
Open-reasoner-zero: An open source approach to scaling up reinforcement learning on the base
model, 2025. URL https://arxiv.org/abs/2503.24290.

Dong Huang, Guangtao Zeng, Jianbo Dai, Meng Luo, Han Weng, Yuhao Qing, Heming Cui, Zhi-
jiang Guo, and Jie M Zhang. Effi-code: Unleashing code efficiency in language models. arXiv
preprint arXiv:2410.10209, 2024.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the ACM SIGOPS 29th Symposium on Operating
Systems Principles, 2023.

Xin Lai, Zhuotao Tian, Yukang Chen, Senqiao Yang, Xiangru Peng, and Jiaya Jia. Step-dpo: Step-
wise preference optimization for long-chain reasoning of llms, 2024. URL https://arxiv.
org/abs/2406.18629.

Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay Ra-
masesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, Yuhuai Wu, Behnam
Neyshabur, Guy Gur-Ari, and Vedant Misra. Solving quantitative reasoning problems with lan-
guage models. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Ad-
vances in Neural Information Processing Systems, volume 35, pp. 3843–3857. Curran Associates,
Inc., 2022. URL https://proceedings.neurips.cc/paper_files/paper/
2022/file/18abbeef8cfe9203fdf9053c9c4fe191-Paper-Conference.pdf.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. arXiv preprint
arXiv:2305.20050, 2023.

10

https://arxiv.org/abs/2504.19162
https://deepmind.google/technologies/gemini/flash-thinking/
https://deepmind.google/technologies/gemini/flash-thinking/
https://aclanthology.org/2024.acl-long.211/
https://aclanthology.org/2024.acl-long.211/
https://arxiv.org/abs/2503.24290
https://arxiv.org/abs/2406.18629
https://arxiv.org/abs/2406.18629
https://proceedings.neurips.cc/paper_files/paper/2022/file/18abbeef8cfe9203fdf9053c9c4fe191-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/18abbeef8cfe9203fdf9053c9c4fe191-Paper-Conference.pdf

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Jianqiao Lu, Zhiyang Dou, Hongru Wang, Zeyu Cao, Jianbo Dai, Yunlong Feng, and Zhijiang
Guo. Autopsv: Automated process-supervised verifier. In Amir Globersons, Lester Mackey,
Danielle Belgrave, Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng Zhang (eds.),
Advances in Neural Information Processing Systems 38: Annual Conference on Neural Infor-
mation Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December 10 - 15,
2024, 2024a. URL http://papers.nips.cc/paper_files/paper/2024/hash/
9246aa822579d9b29a140ecdac36ad60-Abstract-Conference.html.

Zimu Lu, Aojun Zhou, Houxing Ren, Ke Wang, Weikang Shi, Junting Pan, Mingjie Zhan, and
Hongsheng Li. MathGenie: Generating synthetic data with question back-translation for en-
hancing mathematical reasoning of LLMs. In Lun-Wei Ku, Andre Martins, and Vivek Sriku-
mar (eds.), Proceedings of the 62nd Annual Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pp. 2732–2747, Bangkok, Thailand, August 2024b. Asso-
ciation for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.151. URL https:
//aclanthology.org/2024.acl-long.151/.

Michael Luo, Sijun Tan, Roy Huang, Ameen Patel, Alpay Ariyak, Qingyang Wu, Xiaoxiang Shi,
Rachel Xin, Colin Cai, Maurice Weber, Ce Zhang, Li Erran Li, Raluca Ada Popa, and Ion Stoica.
Deepcoder: A fully open-source 14b coder at o3-mini level, 2025a. Notion Blog.

Michael Luo, Sijun Tan, Justin Wong, Xiaoxiang Shi, William Y. Tang, Manan Roongta, Colin Cai,
Jeffrey Luo, Li Erran Li, Raluca Ada Popa, and Ion Stoica. Deepscaler: Surpassing o1-preview
with a 1.5b model by scaling rl, 2025b. Notion Blog.

OpenAI. Learning to reason with llms, 2024. URL https://openai.com/index/
learning-to-reason-with-llms/.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
low instructions with human feedback. Advances in neural information processing systems, 35:
27730–27744, 2022.

Qwen. Qwq-32b: Embracing the power of reinforcement learning, 2024. URL https://
qwenlm.github.io/blog/qwq-32b/.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances
in Neural Information Processing Systems, 36:53728–53741, 2023.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathe-
matical reasoning in open language models, 2024. URL https://arxiv.org/abs/2402.
03300.

Wei Shen, Guanlin Liu, Zheng Wu, Ruofei Zhu, Qingping Yang, Chao Xin, Yu Yue, and Lin Yan.
Exploring data scaling trends and effects in reinforcement learning from human feedback. arXiv
preprint arXiv:2503.22230, 2025.

Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. arXiv preprint
arXiv: 2409.19256, 2024.

Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun
Xiao, Chenzhuang Du, Chonghua Liao, et al. Kimi k1. 5: Scaling reinforcement learning with
llms. arXiv preprint arXiv:2501.12599, 2025.

Yuxuan Tong, Xiwen Zhang, Rui Wang, Ruidong Wu, and Junxian He. DART-math: Difficulty-
aware rejection tuning for mathematical problem-solving. In The Thirty-eighth Annual Confer-
ence on Neural Information Processing Systems, 2024. URL https://openreview.net/
forum?id=zLU21oQjD5.

11

http://papers.nips.cc/paper_files/paper/2024/hash/9246aa822579d9b29a140ecdac36ad60-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/9246aa822579d9b29a140ecdac36ad60-Abstract-Conference.html
https://aclanthology.org/2024.acl-long.151/
https://aclanthology.org/2024.acl-long.151/
https://openai.com/index/learning-to-reason-with-llms/
https://openai.com/index/learning-to-reason-with-llms/
https://qwenlm.github.io/blog/qwq-32b/
https://qwenlm.github.io/blog/qwq-32b/
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
https://openreview.net/forum?id=zLU21oQjD5
https://openreview.net/forum?id=zLU21oQjD5

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Peiyi Wang, Lei Li, Zhihong Shao, Runxin Xu, Damai Dai, Yifei Li, Deli Chen, Yu Wu, and Zhi-
fang Sui. Math-shepherd: Verify and reinforce LLMs step-by-step without human annotations. In
Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meet-
ing of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 9426–9439,
Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi: 10.18653/v1/
2024.acl-long.510. URL https://aclanthology.org/2024.acl-long.510/.

Shenzhi Wang, Le Yu, Chang Gao, Chujie Zheng, Shixuan Liu, Rui Lu, Kai Dang, Xionghui Chen,
Jianxin Yang, Zhenru Zhang, Yuqiong Liu, An Yang, Andrew Zhao, Yang Yue, Shiji Song, Bowen
Yu, Gao Huang, and Junyang Lin. Beyond the 80/20 rule: High-entropy minority tokens drive
effective reinforcement learning for llm reasoning, 2025. URL https://arxiv.org/abs/
2506.01939.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

XAI. Grok 3 beta — the age of reasoning agents, 2024. URL https://x.ai/news/grok-3.

Kun Xiang, Heng Li, Terry Jingchen Zhang, Yinya Huang, Zirong Liu, Peixin Qu, Jixi He, Jiaqi
Chen, Yu-Jie Yuan, Jianhua Han, Hang Xu, Hanhui Li, Mrinmaya Sachan, and Xiaodan Liang.
Seephys: Does seeing help thinking? – benchmarking vision-based physics reasoning, 2025.
URL https://arxiv.org/abs/2505.19099.

An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu,
Jianhong Tu, Jingren Zhou, Junyang Lin, Keming Lu, Mingfeng Xue, Runji Lin, Tianyu Liu,
Xingzhang Ren, and Zhenru Zhang. Qwen2.5-math technical report: Toward mathematical ex-
pert model via self-improvement, 2024a. URL https://arxiv.org/abs/2409.12122.

Zhicheng Yang, Jinghui Qin, Jiaqi Chen, Liang Lin, and Xiaodan Liang. LogicSolver: To-
wards interpretable math word problem solving with logical prompt-enhanced learning. In Yoav
Goldberg, Zornitsa Kozareva, and Yue Zhang (eds.), Findings of the Association for Compu-
tational Linguistics: EMNLP 2022, pp. 1–13, Abu Dhabi, United Arab Emirates, December
2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.findings-emnlp.1. URL
https://aclanthology.org/2022.findings-emnlp.1/.

Zhicheng Yang, Yinya Huang, Jing Xiong, Liang Feng, Xiaodan Liang, Yiwei Wang, and Jing Tang.
AlignedCoT: Prompting large language models via native-speaking demonstrations. In Yaser
Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), Findings of the Association for Com-
putational Linguistics: EMNLP 2024, pp. 2857–2896, Miami, Florida, USA, November 2024b.
Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-emnlp.163. URL
https://aclanthology.org/2024.findings-emnlp.163/.

Zhicheng Yang, Yiwei Wang, Yinya Huang, Zhijiang Guo, Wei Shi, Xiongwei Han, Liang Feng,
Linqi Song, Xiaodan Liang, and Jing Tang. Optibench meets resocratic: Measure and improve
LLMs for optimization modeling. In The Thirteenth International Conference on Learning Rep-
resentations, 2025. URL https://openreview.net/forum?id=fsDZwS49uY.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. In
A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in
Neural Information Processing Systems, volume 36, pp. 11809–11822. Curran Associates, Inc.,
2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/
file/271db9922b8d1f4dd7aaef84ed5ac703-Paper-Conference.pdf.

Fei Yu, Anningzhe Gao, and Benyou Wang. Outcome-supervised verifiers for planning in mathe-
matical reasoning. arXiv preprint arXiv:2311.09724, 2023.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng YU, Zhengying Liu, Yu Zhang, James Kwok, Zhen-
guo Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical questions
for large language models. In The Twelfth International Conference on Learning Representations,
2024. URL https://openreview.net/forum?id=N8N0hgNDRt.

12

https://aclanthology.org/2024.acl-long.510/
https://arxiv.org/abs/2506.01939
https://arxiv.org/abs/2506.01939
https://x.ai/news/grok-3
https://arxiv.org/abs/2505.19099
https://arxiv.org/abs/2409.12122
https://aclanthology.org/2022.findings-emnlp.1/
https://aclanthology.org/2024.findings-emnlp.163/
https://openreview.net/forum?id=fsDZwS49uY
https://proceedings.neurips.cc/paper_files/paper/2023/file/271db9922b8d1f4dd7aaef84ed5ac703-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/271db9922b8d1f4dd7aaef84ed5ac703-Paper-Conference.pdf
https://openreview.net/forum?id=N8N0hgNDRt

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai,
Tiantian Fan, Gaohong Liu, Lingjun Liu, Xin Liu, Haibin Lin, Zhiqi Lin, Bole Ma, Guang-
ming Sheng, Yuxuan Tong, Chi Zhang, Mofan Zhang, Wang Zhang, Hang Zhu, Jinhua Zhu,
Jiaze Chen, Jiangjie Chen, Chengyi Wang, Hongli Yu, Yuxuan Song, Xiangpeng Wei, Hao
Zhou, Jingjing Liu, Wei-Ying Ma, Ya-Qin Zhang, Lin Yan, Mu Qiao, Yonghui Wu, and Mingx-
uan Wang. Dapo: An open-source llm reinforcement learning system at scale, 2025. URL
https://arxiv.org/abs/2503.14476.

Zheng Yuan, Hongyi Yuan, Chengpeng Li, Guanting Dong, Keming Lu, Chuanqi Tan, Chang Zhou,
and Jingren Zhou. Scaling relationship on learning mathematical reasoning with large language
models, 2023.

Yu Yue, Yufeng Yuan, Qiying Yu, Xiaochen Zuo, Ruofei Zhu, Wenyuan Xu, Jiaze Chen, Chengyi
Wang, TianTian Fan, Zhengyin Du, Xiangpeng Wei, Xiangyu Yu, Gaohong Liu, Juncai Liu,
Lingjun Liu, Haibin Lin, Zhiqi Lin, Bole Ma, Chi Zhang, Mofan Zhang, Wang Zhang, Hang
Zhu, Ru Zhang, Xin Liu, Mingxuan Wang, Yonghui Wu, and Lin Yan. Vapo: Efficient and
reliable reinforcement learning for advanced reasoning tasks, 2025. URL https://arxiv.
org/abs/2504.05118.

Weihao Zeng, Yuzhen Huang, Qian Liu, Wei Liu, Keqing He, Zejun Ma, and Junxian He. Simplerl-
zoo: Investigating and taming zero reinforcement learning for open base models in the wild, 2025.
URL https://arxiv.org/abs/2503.18892.

Zhongshen Zeng, Yinhong Liu, Yingjia Wan, Jingyao Li, Pengguang Chen, Jianbo Dai, Yuxuan
Yao, Rongwu Xu, Zehan Qi, Wanru Zhao, Linling Shen, Jianqiao Lu, Haochen Tan, Yukang
Chen, Hao Zhang, Zhan Shi, Bailin Wang, Zhijiang Guo, and Jiaya Jia. Mr-ben: A meta-
reasoning benchmark for evaluating system-2 thinking in llms. In Amir Globersons, Lester
Mackey, Danielle Belgrave, Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng Zhang
(eds.), Advances in Neural Information Processing Systems 38: Annual Conference on Neural
Information Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December 10 -
15, 2024, 2024. URL http://papers.nips.cc/paper_files/paper/2024/hash/
d81cb1f4dc6e13aeb45553f80b3d6837-Abstract-Conference.html.

Yifan Zhang, Jingqin Yang, Yang Yuan, and Andrew Chi-Chih Yao. Cumulative reasoning with
large language models. arXiv preprint arXiv:2308.04371, 2023.

APPENDIX

A THE USE OF LLMS

In the preparation of this paper, large language models (LLMs), specifically DeepSeek-V3.1 and
Gemini 2.5, were used solely for the purpose of polishing the writing. The LLM was employed
after the core intellectual content—including the central ideas, theoretical formulations, algorithm
designs, experimental setups, and result analyses—had been fully developed by the authors. The
model’s assistance was limited to rephrasing sentences for improved clarity, fluency, and concise-
ness. All prompts provided to the LLM contained only the authors’ original text and instructions for
grammatical or stylistic improvement.

B FUTURE WORK AND LIMITATIONS

Remove Redundant Steps. Yuan et al. (2023) uses Rejection Sampling to collect correct reason-
ing paths for training LLMs. They find that the sampled redundant responses degrade the perfor-
mance of LLMs. We consider that this phenomenon may also exist in RL. In vanilla GRPO, each
response is treated equally, so responses with high similarity are repeatedly trained, which may cause
performance disturbances. We believe that eliminating redundant rollouts can enhance performance
while improving training efficiency through pruning.

13

https://arxiv.org/abs/2503.14476
https://arxiv.org/abs/2504.05118
https://arxiv.org/abs/2504.05118
https://arxiv.org/abs/2503.18892
http://papers.nips.cc/paper_files/paper/2024/hash/d81cb1f4dc6e13aeb45553f80b3d6837-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/d81cb1f4dc6e13aeb45553f80b3d6837-Abstract-Conference.html

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Precise Step Segmentation. The step division of generated sequences in this article is imple-
mented based on a specific token length. Give priority to exploring more precise step division
methods.

• One solution to be implemented is to add the step special token and train the language
model to segment different steps by itself.

• Sampling at the tokens where branch paths are more likely to be generated (Wang et al.,
2025).

We believe that more precise step cutting will provide more accurate fine-grained reward signals and
further enhance the model’s performance.

Scaling on Larger Model Sizes. Due to the limitations of time and GPU resources, our experi-
ment can only report the 1.5b model for the time being. The experimental results of larger-sized
models, such as 7b and 32b, will be updated in the future.

Engineering Efficiency Optimization of Tree Sampling. Tree sampling is time-consuming, and
the tree sampling strategy implemented in this paper is not optimized from the perspective of the
KV cache. We believe that the engineering optimization of tree sampling will significantly improve
the efficiency of the training procedure.

14

	Introduction
	Related Works
	Eliciting Complex Reasoning Ability
	Reinforcement Learning with LLMs

	TreeRPO: Methodology
	Tree Sampling
	Data Pruning
	Advantage Computation
	Objective of TreeRPO

	Experiments
	Main Results

	Conclusion
	Reproducibility Statement
	The Use of LLMs
	Future Work and Limitations

