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ABSTRACT

Although Video Large Language Models (VLLMs) have shown remarkable ca-
pabilities in video understanding, they are required to process high volumes of
visual tokens, causing significant computational inefficiency. Existing VLLMs
acceleration frameworks usually compress spatial and temporal redundancy inde-
pendently, which overlooks the spatiotemporal relationships, thereby leading to
suboptimal spatiotemporal compression. The highly correlated visual features are
likely to change in spatial position, scale, orientation, and other attributes over
time due to the dynamic nature of video. Building on this insight, we introduce
FlashVID, a training-free inference acceleration framework for VLLMs. Specif-
ically, FlashVID utilizes Attention and Diversity-based Token Selection (ADTS)
to select the most representative tokens for basic video representation, then applies
Tree-based Spatiotemporal Token Merging (TSTM) for fine-grained spatiotempo-
ral redundancy elimination. Extensive experiments conducted on three represen-
tative VLLMs across five video understanding benchmarks demonstrate the effec-
tiveness and generalization of our method. Notably, by retaining only 10% of vi-
sual tokens, FlashVID preserves 99.1% of the performance of LLaVA-OneVision.
Consequently, FlashVID can serve as a training-free and plug-and-play module for
extending long video frames, which enables a 10× increase in video frame input to
Qwen2.5-VL, resulting in a relative improvement of 8.6% within the same com-
putational budget. Code is available at https://github.com/Fanziyang-v/FlashVID.

1 INTRODUCTION

Recent advances in Video Large Language Models (VLLMs) (Li et al., 2025a; Zhang et al., 2024;
Bai et al., 2025b; Comanici et al., 2025) have demonstrated promising capabilities in video under-
standing tasks. However, processing large numbers of visual tokens incurs substantial computational
and memory overhead, as the attention mechanism scales quadratically with sequence length, lim-
iting practical deployment. To address this challenge, visual token compression (Chen et al., 2024;
Yang et al., 2025c; Zhang et al., 2025e) has emerged as a promising approach, leveraging the inher-
ent redundancy in visual inputs to reduce sequence length by removing or merging less informative
tokens, thereby enabling efficient inference without significant performance degradation.

While advances have been achieved in visual token compression for images (Bolya et al., 2023;
Chen et al., 2024; Yang et al., 2025c; Zhang et al., 2025e), extending these methods to video re-
mains largely underexplored. Videos inherently exhibit both spatial redundancy within frames and
temporal redundancy across frames, rendering frame-wise compression strategies suboptimal due to
their neglect of temporal dynamics and correlations. This gap highlights the need for compression
techniques specifically designed for the spatiotemporal structure of video inputs in VLLMs.

Motivation. Recent VLLM acceleration methods (Huang et al., 2025; Shen et al., 2025; Shao
et al., 2025a) typically adopt a three-stage pipeline: (1) video partition, grouping consecutive frames
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Figure 1: Performance of FlashVID. (a) TTM may merge less correlated visual tokens, failing to
capture fine-grained video dynamics. (b) FlashVID can enable Qwen2.5-VL to process 10× video
frames, significantly improving the relative performance by 8.6% while maintaining overall com-
putational budget. (c) FlashVID significantly outperforms current SOTA acceleration frameworks
(e.g., FastV, VisionZip, FastVID) on three representative VLLMs.

with similar semantics to avoid information mixing; (2) frame-wise token selection, identifying in-
formative tokens—often guided by [CLS] attention—for basic video representation; and (3) spa-
tiotemporal compression, further reducing redundancy at the segment level.

However, previous methods typically compress temporal and spatial redundancy independently.
Such decoupled strategies overlook the intrinsic spatiotemporal relationships in videos. Moreover,
temporal redundancy is commonly defined as the consistency of visual features at fixed spatial loca-
tions across consecutive frames. Due to the dynamic nature of video, the most semantically similar
visual elements are likely to experience changes in spatial position, scale, orientation, and other
attributes over time. Consequently, the most correlated visual features in adjacent frames may not
reside at the same spatial location. As depicted in Fig. 1a, the Temporal Token Merging (TTM)
strategy fails to capture video dynamics, erroneously merging less correlated tokens and distorting
the video representations. Relying on such a rigid spatial correspondence for temporal redundancy
compression may introduce noise, further misleading the model. So, a natural question arises: “How
can we achieve a decent spatiotemporal compression by jointly modeling spatial and temporal re-
dundancy, while accounting for the dynamic characteristics of video?”

Our Solution. To address this challenge, we introduce FlashVID, a novel training-free accel-
eration framework for VLLMs that effectively reduces spatiotemporal redundancy while preserv-
ing critical visual content. Specifically, at the core of FlashVID is the Tree-based Spatiotemporal
Token Merging (TSTM) mechanism, which explicitly models both spatial and temporal redundancy
through hierarchical spatiotemporal redundancy trees. TSTM enables structured token merging
across frames and within frames, allowing for joint spatiotemporal compression that respects the
natural structure of video data. However, directly constructing spatiotemporal trees based on the
raw video features with excessive noise and redundancy may not focus on the most representative
visual information in each frame, or even be biased towards the major but unimportant visual in-
formation, thereby affecting the final performance. To alleviate this issue, we further introduce the
Attention and Diversity-based Token Selection (ADTS) module, which prioritizes representative
tokens in each frame. To this end, through the initial filtering of informative tokens using ADTS
and subsequent merging via TSTM, FlashVID accomplishes efficient compression that adjusts to
the dynamic attributes of video content while preserving crucial semantics.
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Figure 2: Efficient inference paradigms. State-of-the-art acceleration frameworks can be mainly
divided into three categories: 1) Before-LLM Compression; 2) Inner-LLM Pruning; and 3) Hybrid
Compression, where the hybrid compression can be viewed as a trade-off of the Before-LLM Com-
pression and Inner-LLM Pruning strategy.

Extensive experiments have been conducted on five video understanding benchmarks (Fu et al.,
2025a; Mangalam et al., 2023; Wu et al., 2024; Li et al., 2024a; Zhou et al., 2025) and three repre-
sentative VLLMs, i.g., LLaVA-OneVision (Li et al., 2025a), LLaVA-Video (Zhang et al., 2024), and
Qwen2.5-VL (Bai et al., 2025b). As shown in Fig. 1b and Fig. 1c, FlashVID outperforms previous
state-of-the-art methods by a large margin across all settings. Notably, FlashVID achieves 99.1%
relative accuracy to vanilla LLaVA-OneVision while pruning 90% visual tokens. When integrated
into Qwen2.5-VL, FlashVID enables processing of up to 10× more video frames, yielding an 8.6%
performance gain over the vanilla model with 16 sampled frames under the same computational
budget, highlighting its ability to unlock longer temporal context for better video understanding.

To summarize, our main contributions are threefold:

• In this work, we identify that existing token compression methods fail to effectively model
the dynamic and evolving nature of video content, leading to suboptimal performance.

• We propose FlashVID, a training-free VLLMs acceleration method that introduces the
Tree-based Spatiotemporal Token Merging (TSTM) to jointly model spatial and temporal
redundancy across frames, complemented by Attention and Diversity-based Token Selec-
tion (ADTS) to obtain the semantically representative content within each frame.

• Extensive experiments show that FlashVID improves inference efficiency with negligible
performance drop, and enables the use of longer input sequences for better video under-
standing within the constrained computational budget.

2 BACKGROUND AND MOTIVATION

In this section, we provide a brief overview of the underlying concepts in this study in Sec. 2.1, and
highlight the key observations in Sec. 2.2, which offer valuable insights for our approach.

2.1 PRELIMINARIES

VLLMs inference pipeline. The inference of VLLMs consists of three stages: (1) Encoding.
A vision encoder (e.g., CLIP (Radford et al., 2021) and SigLIP (Zhai et al., 2023)) processes each
frame independently, producing Nv visual embeddings per frame, which are projected into text space
via a modality connector to form Hv ∈ RF×Nv×d. Text queries are embedded as Ht ∈ RNt×d. (2)
Prefilling. Each LLM layer l computes self-attention over H via:

Ql = H lWl
Q, Kl = H lWl

K , Vl = H lWl
V , (1)

with Wl
Q,W

l
K ,Wl

V ∈ Rd×d. The key-value pairs are stored in the KV Cache for decoding ac-
celeration. (3) Decoding. Response tokens are generated auto-regressively. At step t, only the new
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(a) Number of merged tokens per frame with TSTM (orange) and TTM (blue)
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Figure 3: Comparison of spatiotemporal redundancy compression. (a) TSTM merges more to-
kens than TTM under the same threshold and achieves higher inter-frame merging similarity by
flexibly capturing fine-grained video dynamics. (b) TTM enforces rigid spatial correspondences, of-
ten overlooking dynamic variations in videos and merging less correlated visual tokens. (c) TSTM
models video redundancy via spatiotemporal redundancy trees, capturing fine-grained spatiotempo-
ral relationships. More visualizations are provided in Appendix E.

token ht is projected to (Kt,Vt), which update the cache:

K← concat[K,Kt], V← concat[V,Vt]. (2)

Such a caching mechanism substantially improves decoding efficiency.

Efficiency bottleneck analysis. While VLLMs have achieved remarkable performance on video
understanding tasks, their efficiency remains a key challenge due to the heavy computational and
memory overhead when processing a large number of visual tokens. Most of this cost stems from the
LLM backbone, where the self-attention mechanism and Feed-Forward Networks (FFNs) dominate
the computational complexity. Given a model with L Transformer layers, the total Floating Point
Operations (FLOPs) can be formulated as:

FLOPs = L× (4nd2 + 2n2d+ 2ndm), (3)

with n denoting the sequence length, d the hidden dimension, and m the intermediate dimension
of FFNs. In video understanding, the number of visual tokens nv dominates the sequence length
n, typically exceeding textual tokens nt by orders of magnitude. This imbalance underscores the
necessity to compress visual tokens for efficient inference in VLLMs.

Efficient inference paradigms. As illustrated in Fig. 2, visual token compression frameworks can
be grouped into three paradigms: Before-LLM, Inner-LLM, and Hybrid Compression. Compressing
tokens only inside the LLM is inefficient, as all visual tokens must still be processed in the shallow
layers; thus, reducing tokens before the LLM is critical for reducing overhead. Existing methods
(Yang et al., 2025c; Shen et al., 2025) adopt single-stage compression before the LLM, but extreme
compression risks losing important visual information. Hybrid compression provides a balance: it
retains sufficient tokens as LLM input while further pruning within the LLM to meet computational
budget. Training-based approaches (Zhang et al., 2025d; Cai et al., 2025; Hu et al., 2024; Shao et al.,
2025b) can mitigate this inefficiency but demand substantial computing resources; in this work, we
focus on training-free strategies. A more comprehensive review is provided in Appendix D.

2.2 KEY OBSERVATIONS

We summarize two key observations about spatiotemporal redundancy in videos: (1) Temporal re-
dundancy is not bound to fixed spatial locations. Semantically consistent elements in videos often
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Figure 4: Overview of our FlashVID. FlashVID compresses visual tokens by two synergistic mod-
ules: (1) ADTS prioritizes spatiotemporally informative tokens while ensuring feature diversity by
solving a calibrated Max-Min Diversity Problem (MMDP); (2) TSTM models redundancy by spa-
tiotemporal redundancy trees, which effectively capture fine-grained video dynamics.

shift in spatial position, scale, or appearance due to motion and scene dynamics, making rigid spatial
correspondence across frames unreliable (Huang et al., 2025). (2) Spatial and temporal redundancy
are inherently coupled. Redundant regions within a single frame frequently persist across multiple
frames. Decoupled spatiotemporal redundancy compression overlooks the intrinsic spatiotemporal
relationships, leading to suboptimal compression.

These insights suggest that existing frameworks lack a unified, structure-aware mechanism to cap-
ture spatiotemporal relationships under dynamic video conditions, which motivates our hierarchi-
cal tree-based spatiotemporal redundancy compression. A conceptual comparison with prior ap-
proaches is illustrated in Fig. 3, highlighting the unique advantages of our design.

3 METHODOLOGY

3.1 OVERVIEW

As illustrated in Fig. 4, FlashVID integrates two synergistic modules: 1) Attention and Diversity-
based Token Selection (ADTS), which first selects informative and diverse tokens for robust video
representations; 2) Tree-based Spatiotemporal Token Merging (TSTM), which further minimizes
spatiotemporal redundancy while preserving critical visual information.

3.2 TREE-BASED SPATIOTEMPORAL TOKEN MERGING

Videos exhibit dynamic variations in spatial position, scale, and appearance, posing challenges for
spatiotemporal redundancy compression. To alleviate this, we propose Tree-based Spatiotemporal
Token Merging (TSTM), which models the video redundancy via spatiotemporal redundancy trees.

Construct spatiotemporal redundancy trees. Given video features Ev ∈ RF×Nv×d, TSTM
progressively builds spatiotemporal redundancy trees. First, we compute the cosine similarity matrix
between visual features in adjacent frames:

S(f) = cos(E(f)
v , E(f+1)

v ) ∈ RNv×Nv , (4)

where S(f)(j, k) measures the feature similarity between j-th token in frame f and k-th token in
frame (f+1). Each token links to its most similar counterpart in the previous frame if their similarity
exceeds a merging threshold Tτ . This gradually forms redundancy trees that capture fine-grained
temporal variations while avoiding merging dissimilar tokens.

Compress spatiotemporal redundancy. Once the redundancy trees are constructed, tokens
within each tree are aggregated:

c(i) = Agg(T (i)), (5)
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Algorithm 1 FlashVID Compression

Require: Video features Ev ∈ RF×Nv×d; similarity function sim(·, ·); merging threshold Tτ

Ensure: Compressed token set X̂
1: Stage 1: Attention and Diversity-based Token Selection (ADTS)
2: for f = 1 to F do
3: Compute pairwise distance D(f), [CLS] attention A

(f)
[CLS], event relevance S̄(f)

e

4: I(f) ← MMDP(D(f), A
(f)
[CLS], S̄(f)

e )

5: R(f) ← E
(f)
v \ I(f)

6: end for
7: Stage 2: Tree-based Spatiotemporal Token Merging (TSTM)
8: Initialize each token inR(f) as a root node and let C be an empty token set.
9: for f = 2 to F do ▷ Build spatiotemporal redundancy trees

10: for each token rfi ∈ R(f) do
11: p∗ ← argmaxp∈R(f−1) sim(rfi , p)

12: if sim(rfi , p
∗) ≥ Tτ then

13: Connect rfi to p∗

14: end if
15: end for
16: end for
17: for each tree T do ▷ Aggregate redundancy trees
18: C ← C ∪ Agg(T )
19: end for
20: return X̂ ← C ∪ (

⋃F
f=1 I(f))

where T (i) denotes the i-th spatiotemporal redundancy tree and Agg(·) represents an aggregation
function (e.g., mean pooling), producing compact yet informative spatiotemporal representations.

The quality of redundancy trees is critical for fine-grained compression. Although we’ve explored
constraining tree depth and breadth to prevent merging spatiotemporally distant tokens, it yielded
negligible gains; thus, no such constraints are applied in practice (see Appendix A.3 for details.)

3.3 ATTENTION AND DIVERSITY-BASED TOKEN SELECTION

Although TSTM effectively compresses spatiotemporal redundancy, it may discard important tokens
in noisy and high-volume inputs. To mitigate this, we introduce the Attention and Diversity-based
Token Selection (ADTS) module, which prioritizes spatiotemporally informative tokens within each
frame while ensuring feature diversity for robust video representations. ADTS formulates token
selection as a frame-wise Max-Min Diversity Problem (MMDP) (Alvar et al., 2025). Given video
features Ev ∈ RF×Nv×d, we first compute the frame-wise cosine distance matrix:

D(f) = 1− cos(E(f)
v , E(f)

v ), (6)

where D(f) ∈ RNv×Nv denotes the pairwise feature dissimilarities in frame f . Solving MMDP
on D(f) yields a diverse token subset in frame f with the maximal minimum distance. However,
diversity alone may overlook the most informative visual tokens. To address this issue, we introduce
two calibration terms: 1) [CLS] attention and 2) event relevance.

[CLS] attention calibration. We extract the attention matrices from the vision encoder. For those
encoders without an explicit [CLS] token (e.g., SigLIP (Zhai et al., 2023)), we derive it from the
attention matrix:

A = Softmax(QKT /
√
d) ∈ RF×Nv×Nv , (7)

and compute A[CLS] ∈ RF×Nv by averaging attention weights each token receives within its frame.
This calibration highlights informative tokens in each frame.
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Event relevance calibration. Event relevance measures a token’s correlation with the current
video context. We obtain frame embeddings fv = GAP(Ev) ∈ RF×d by global average pool-
ing and compute the event similarity matrices:

S̄e =
1

F

F∑
i=1

(Ev · fv⊤)[:, :, i] ∈ RF×Nv . (8)

This calibration emphasizes the tokens most relevant to the video event. Finally, spatiotemporally
informative tokens are selected by solving:

I = MMDP(D,A[CLS], S̄e). (9)

As summarized in Alg. 1, FlashVID compresses video redundancy in two stages: ADTS first selects
spatiotemporally informative tokens by solving a calibrated Max-Min Diversity Problem (see Ap-
pendix C.2 for details), then TSTM merges redundant tokens across frames through spatiotemporal
redundancy trees, yielding compact yet informative visual features.

4 EXPERIMENTS

In this section, we conduct extensive experiments across multiple benchmarks and VLLMs. We
provide a brief introduction to the experimental settings in Sec. 4.1, present the main experimental
results in Sec. 4.2, and discuss essential ablation studies in Sec. 4.3.

4.1 EXPERIMENTAL SETTINGS

Benchmarks. We evaluate our method on five widely-used video understanding benchmarks:
VideoMME (Fu et al., 2025a), EgoSchema (Mangalam et al., 2023), LongVideoBench (Wu et al.,
2024), MVBench (Li et al., 2024a), and MLVU (Zhou et al., 2025). Notably, these benchmarks
cover a wide range of video durations and complex scenarios, providing a comprehensive evaluation
of our method’s effectiveness and generalization. Additional details can be found in Appendix B.

Compared baselines. We compare FlashVID with four state-of-the-art training-free VLLM ac-
celeration methods: 1) FastV (Chen et al., 2024), which selects prompt-relevant tokens via text-
to-visual attention at the prefilling stage; 2) VisionZip (Yang et al., 2025c), pruning tokens using
[CLS] attention and spatial merging before the LLM; 3) PruneVID (Huang et al., 2025), combining
spatiotemporal token merging with attention-based selection in the LLM; and 4) FastVID (Shen
et al., 2025), compressing redundant tokens via density-based spatiotemporal pruning.

Implementation details. We evaluate our method on three representative VLLMs: LLaVA-
OneVision (Li et al., 2025a), LLaVA-Video (Zhang et al., 2024), and Qwen2.5-VL (Bai et al.,
2025b), which cover diverse architectures to ensure generality. Following the official setting,
LLaVA-OneVision and LLaVA-Video uniformly sample 32 and 64 frames, producing 32 × 196
and 64 × 169 visual tokens, respectively. For LLaVA-Video, we adopt frame token setting, facili-
tating adaptation for different acceleration frameworks. To ensure a fair comparison, we align the
average token budget per transformer layer. Since TSTM compresses redundancy via thresholding,
we further apply frame-wise token compression based on DPC-kNN to meet the predefined token
budget. Unless otherwise specified, we utilize the same set of hyperparameters for all experiments.
All the experiments are conducted on NVIDIA A800 80G GPUs using LMMs-Eval (Zhang et al.,
2025b). Additional implementation details are provided in Appendix C.

4.2 MAIN RESULTS

We evaluate FlashVID against state-of-the-art baselines on three representative VLLMs with distinct
architectures under various retention ratios R. Additional experimental results on Qwen2.5-VL and
LLaVA-Video are reported in Appendix. A.

Results on LLaVA-OneVision. Tab. 1 compares FlashVID with other methods on LLaVA-
OneVision. VisionZip performs competitively at higher retention (i.e., 25%, 20%) but suffers sharp
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Table 1: Comparison of state-of-the-art methods on LLaVA-OneVision and LLaVA-Video.
Our FlashVID consistently outperforms previous state-of-the-art methods by a large margin under
different retention ratios across multiple benchmarks and VLLMs. Notably, FlashVID surpasses
vanilla LLaVA-OneVision with full visual tokens input when R ∈ {15%, 20%, 25%}.

Method Retention
Ratio R

VideoMME EgoSchema LongVideo
Bench MVBench Avg.

Short Medium Long Overall Subset Total Score Rel. Acc (%)

LLaVA-OneVision
Vanilla 100% 69.9 56.7 48.9 58.5 62.2 60.3 56.6 58.3 58.4 100.0
FastV

25%

68.1 54.7 46.8 56.5 60.4 57.8 55.4 56.4 56.5 96.7
VisionZip 68.8 57.3 48.2 58.1 63.0 60.4 56.4 57.8 58.2 99.7
PruneVID 67.3 54.8 47.2 56.4 61.0 58.1 55.4 56.8 56.7 97.1
FastVID 69.9 56.3 47.4 57.9 61.2 59.5 55.9 58.1 57.8 99.0
FlashVID 71.2 57.0 49.3 59.2 63.4 60.4 56.8 58.0 58.6 100.3
FastV

20%

66.3 53.9 46.9 55.7 60.6 57.6 56.0 56.0 56.3 96.4
VisionZip 68.6 57.0 48.3 58.0 62.0 60.0 55.4 57.6 57.7 98.8
PruneVID 67.2 53.9 48.2 56.4 63.2 60.2 55.2 56.2 57.0 97.6
FastVID 69.9 56.3 47.4 57.9 61.2 59.5 55.9 58.1 57.9 99.1
FlashVID 70.1 55.4 48.9 58.2 63.0 60.1 58.5 58.2 58.7 100.5
FastV

15%

64.6 54.0 45.3 54.6 59.8 56.6 54.8 55.0 55.2 94.5
VisionZip 63.8 54.6 48.3 55.6 62.8 60.0 54.1 53.5 55.8 95.5
FastVID 69.7 55.8 47.7 57.7 58.8 58.9 56.7 58.2 57.9 99.1
PruneVID 67.2 52.8 46.7 56.1 61.6 57.7 54.5 55.1 55.7 95.4
FlashVID 69.6 56.0 48.9 58.2 62.8 60.4 57.5 57.9 58.5 100.2
FastV

10%

60.9 52.2 44.9 52.7 59.0 56.0 52.4 53.4 53.6 91.8
VisionZip 60.3 52.9 46.7 53.3 61.6 58.5 49.4 54.8 54.0 92.5
PruneVID 65.9 52.8 45.6 54.7 60.0 57.2 54.0 53.7 54.9 94.0
FastVID 68.1 55.7 47.8 57.2 58.8 58.7 55.7 57.0 57.1 97.8
FlashVID 67.3 57.1 49.0 57.8 62.4 60.0 56.5 57.4 57.9 99.1

LLaVA-Video
Vanilla 100% 77.0 62.1 53.3 64.2 59.4 57.3 59.5 61.9 60.7 100.0
FastV

20%

69.3 58.3 49.9 59.2 54.8 54.1 56.0 58.4 56.9 93.7
VisionZip 72.3 59.6 53.3 61.7 59.0 56.4 58.0 59.8 59.0 97.2
FastVID 74.6 60.8 52.3 62.6 57.0 55.0 57.1 60.2 58.7 96.7
FlashVID 74.1 60.0 52.3 62.2 58.4 56.4 58.7 59.8 59.3 97.7
FastV

10%

64.3 53.8 49.2 55.8 50.6 51.1 53.6 56.2 54.2 89.3
VisionZip 69.4 57.9 51.2 59.5 54.4 53.9 54.5 58.5 56.6 93.2
FastVID 71.8 57.3 50.2 59.8 54.8 52.4 56.9 59.3 57.1 94.1
FlashVID 72.2 59.1 51.2 60.9 57.2 54.9 57.7 59.3 58.2 95.9

degradation at 15%, 10% due to excessive loss from aggressive spatial compression. FastV shows
the weakest performance, as early-layer pruning is unstable. In contrast, FlashVID achieves the
best results across all retention ratios, preserving 99.1% of the vanilla model’s accuracy even at
R = 10%. Moreover, when R ∈ {25%, 20%, 15%}, FlashVID surpasses the vanilla LLaVA-
OneVision with full visual tokens input, revealing a “less is more” pattern where excessively redun-
dant tokens may degrade performance.

Results on LLaVA-Video. LLaVA-Video employs a specialized design by inserting newline to-
kens to inject spatiotemporal positional information. Unlike the official grid token setting, we apply
the frame token in LLaVA-Video, which facilitates adaptation for different acceleration frameworks,
where we found that these two settings lead to similar performance. In Tab. 1, we evaluate our
method against other methods on LLaVA-Video. Notably, our FlashVID outperforms all baselines
under various retention ratios.

Results on Qwen2.5-VL In addition to LLaVA-OneVision and LLaVA-Video, we also evaluate
our FlashVID against other methods on Qwen2.5-VL, which shows significantly different archi-
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Table 2: Comparison of state-of-the-art methods on Qwen2.5-VL. The best performance among
those with similar retention ratios R is highlighted in bold.

Method Retention
Ratio R

VideoMME EgoSchema LongVideo
Bench MVBench Avg.

Short Medium Long Overall Subset Total Score Rel. Acc (%)

Vanilla 100% 72.6 61.4 49.9 61.3 60.2 58.3 58.9 68.0 61.6 100.0
FastV

20%

69.4 57.0 51.2 59.2 60.2 57.1 54.2 66.8 59.3 96.3
VisionZip 69.6 57.2 50.2 59.0 58.6 56.6 56.3 66.4 59.6 96.8
FastVID 69.9 56.3 49.7 58.6 57.2 56.4 57.8 64.7 59.4 96.4
FlashVID 70.4 58.6 49.7 59.6 59.2 56.8 58.1 66.5 60.2 97.7
FastV

10%

63.7 54.7 49.3 55.9 58.6 54.9 51.1 63.6 57.3 91.6
VisionZip 67.0 54.7 47.6 56.4 55.8 55.5 54.5 64.3 57.7 93.7
FastVID 66.3 53.6 49.0 56.3 56.0 55.6 55.4 62.3 57.4 93.2
FlashVID 68.1 54.7 49.0 57.3 57.4 55.9 57.1 65.5 58.9 95.6

Table 3: Comparison of state-of-the-art methods on Qwen2.5-VL under a fixed token budget.
Our FlashVID enables Qwen2.5-VL processing 10× video frames, improving the overall perfor-
mance of 8.6% within the same computational memory budget.

Method #Frames Retention
Ratio R

VideoMME EgoSchema LongVideo
Bench MLVU Avg.

Short Medium Long Overall Subset Total Score Rel. Acc (%)

Vanilla 16 (1x) 100% 66.4 56.4 48.2 57.0 58.2 55.6 56.9 40.6 52.6 100.0
VisionZip

80 (5x) 20%
74.2 60.0 52.1 62.1 60.0 58.2 57.4 43.1 55.2 104.9

FastVID 73.0 59.9 51.7 61.5 61.2 58.4 58.0 44.4 55.6 105.7
FlashVID 74.2 60.8 52.2 62.4 61.4 58.6 58.9 45.0 56.2 106.8
VisionZip

160 (10x) 10%
70.7 60.1 53.9 61.6 61.8 59.6 56.8 45.1 55.8 106.1

FastVID 71.2 60.6 53.8 61.9 61.2 59.1 58.0 43.8 55.7 105.9
FlashVID 71.4 62.2 53.7 62.4 61.2 59.5 58.9 47.5 57.1 108.6

tecture and characteristics. As illustrated in Tab. 2, our method significantly surpasses previous
state-of-the-art methods under various retention ratios, demonstrating strong generalization across
different VLLMs.

Results on Qwen2.5-VL under fixed token budget. Due to computational and memory con-
straints, existing VLLMs typically process only a small number of sampled frames, often missing
important visual cues. To assess the benefit of longer temporal context under a fixed computa-
tional budget, we apply token compression to enable models to process more frames. As shown
in Tab. 3, Qwen2.5-VL achieves consistent improvements over its vanilla 16-frame baseline when
equipped with token compression frameworks. Among them, FlashVID delivers the largest perfor-
mance gains, highlighting its ability to unlock longer video sequences and demonstrating superior
efficiency in constrained settings.

4.3 ABLATION STUDIES

In this section, we conduct ablation studies on the ADTS module and the retained ratio α of ADTS
and TSTM using LLaVA-OneVision. Additional ablation studies are provided in Appendix. A.3.

Ablation study on ADTS module. ADTS is proposed to select both important and diverse to-
kens. As shown in Tab. 4, we compare our ADTS with ATS and DTS, i.e., attention-based and
diversity-based token selection. Our ADTS outperforms other token selection methods based solely
on [CLS] attention (ATS) and feature diversity (DTS) by a large margin, demonstrating that ADTS
can effectively identify the important visual tokens.

To realize a comprehensive ablation study on ADTS, we further ablate the calibration terms used
in ADTS. Tab. 4 reveals that both [CLS] attention and event relevance calibration improve perfor-
mance, while the optimal performance is yielded at the combination of the two.
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Table 4: Ablation study on ADTS. ATS, DTS,
and ADTS denote attention-, diversity-, and
attention-diversity-based token selection, respec-
tively.‘C.A’ and ‘E.R.’ denote [CLS] attention
and event relevance calibration terms in ADTS.

Method VideoMME EgoSchema LongVideo
Bench MVBench Rel.

Acc.
ATS 55.5 59.5 55.0 56.2 96.9
DTS 55.7 60.3 55.3 55.5 97.1

w/ E.R. 56.0 60.2 55.1 56.8 97.6
w/ C.A. 57.3 59.7 55.7 57.3 98.5
ADTS 57.8 60.0 56.5 57.4 99.1

Table 5: Ablation study on α in visual token
compression before LLM. α controls the re-
tained ratio of ADTS and TSTM, where α = 0
and α = 1 indicate TSTM and ADTS only.

α VideoMME EgoSchema LongVideo
Bench MVBench Rel.

Acc.
0.0/TSTM 56.7 60.2 55.3 55.6 97.4

0.2 56.2 59.8 55.3 56.5 97.4
0.4 56.4 60.0 55.1 57.2 97.9
0.6 57.0 60.4 55.8 57.0 98.5
0.7 57.8 60.0 56.5 57.4 99.1
0.8 57.2 60.1 56.3 57.1 98.8

1.0/ADTS 56.9 60.1 55.6 57.6 98.5

Table 6: Efficiency of our FlashVID. We conduct the efficiency analysis on LLaVA-OneVision,
and report the prefilling time and Time-To-First-Token (TTFT) in milliseconds (ms).

Method Retention
Ratio R

TFLOPs Vision
Encoding

Prefilling Time TTFT Avg.

Compression LLM Forward Total Score Rel. Acc (%)

Vanilla 100% 113.4 785.0 - 1220.8 1220.8 (1.0×) 2005.8 (1.0×) 58.9 100.0
FastVID 25% 22.4 785.0 28.6 273.2 301.8 (4.0×) 1086.8 (1.8×) 58.0 98.5
FlashVID 10% 8.6 785.0 60.2 133.1 193.3 (6.3×) 978.3 (2.1×) 58.4 99.1

Ablation study on α. As illustrated in Tab. 5, we conduct an ablation study on merging threshold
α, which controls the ratio of visual tokens retained between ADTS and TSTM compression. In
particular, α = 0 and α = 1 denote TSTM and ADTS only, respectively. The experimental results
show that ADTS alone (α = 1) outperforms TSTM alone (α = 0). However, the peak performance
is achieved at α = 0.7, implying that a balanced integration of these two modules (i.e., ADTS and
TSTM) is necessary to maintain the model performance.

4.4 EFFICIENCY ANALYSIS

Although token compression can effectively improve the inference efficiency of VLLMs, it can
also be a time-consuming operation. In Tab. 6, we conduct an efficiency experiment on LLaVA-
OneVision using a single NVIDIA A100 GPU compared to FastVID on VideoMME. Remarkably,
FlashVID preserves 99.1% relative accuracy at R = 10%, while FastVID achieves a similar per-
formance at R = 25%. Consequently, FlashVID enables 6.3× prefilling and 2.1× Time-To-First-
Token (TTFT) speedups, largely outperforming FastVID. Additional efficiency experimental results
on LLaVA-Video can be found in Appendix. A.2.

5 CONCLUSION

In this work, we introduce FlashVID, a training-free and plug-and-play acceleration framework for
VLLMs. FlashVID combines Attention and Diversity-based Token Selection (ADTS) for repre-
sentative token filtering with Tree-based Spatiotemporal Token Merging (TSTM) for fine-grained
redundancy elimination, effectively compressing spatiotemporal redundancy while preserving es-
sential visual information. Extensive experiments on three VLLMs across five video understanding
benchmarks demonstrate that FlashVID achieves superior performance in both efficiency and accu-
racy. In particular, it can serve as a plug-and-play module, enabling VLLMs to process significantly
longer video sequences under a constrained computational budget.
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Table 7: Comparison of state-of-the-art methods on Qwen2.5-VL. The best performance among
those with similar retention ratios R is highlighted in bold.

Method Retention
Ratio R

VideoMME EgoSchema LongVideo
Bench MVBench Avg.

Short Medium Long Overall Subset Total Score Rel. Acc (%)

Vanilla 100% 72.6 61.4 49.9 61.3 60.2 58.3 58.9 68.0 61.6 100.0
FastV

25%

71.2 57.8 51.6 60.2 60.2 57.2 54.6 67.4 59.8 97.1
VisionZip 70.7 57.9 51.2 59.9 58.6 57.0 57.1 67.3 60.3 97.9
FastVID 71.2 57.8 49.9 59.6 58.2 56.7 58.0 65.5 60.0 97.4
FlashVID 71.1 58.7 49.1 59.6 59.4 57.2 58.1 67.1 60.5 98.2
FastV

15%

67.4 55.2 51.1 57.9 59.6 56.5 52.2 65.9 58.1 94.3
VisionZip 68.8 56.7 49.1 58.2 56.2 55.7 56.3 66.0 59.0 95.8
FastVID 68.2 56.9 49.4 58.2 56.6 56.0 56.8 63.6 58.6 95.1
FlashVID 69.8 57.1 49.3 58.7 57.6 56.4 56.8 66.6 59.6 96.8

Table 8: Comparison of state-of-the-art methods on Qwen2.5-VL under a fixed token budget.
Our FlashVID enables Qwen2.5-VL processing 10× video frames, improving the overall perfor-
mance of 8.6% within the same computational memory budget.

Method #Frames Retention
Ratio R

VideoMME EgoSchema LongVideo
Bench MLVU Avg.

Short Medium Long Overall Subset Total Score Rel. Acc (%)

Vanilla 16 (1x) 100% 66.4 56.4 48.2 57.0 58.2 55.6 56.9 40.6 52.6 100.0
VisionZip

48 (3x) 33.3
74.0 59.6 52.9 62.2 59.4 57.6 56.1 42.2 54.5 103.6

FastVID 73.2 60.0 51.7 61.6 59.4 57.8 57.2 43.1 54.9 104.4
FlashVID 73.0 60.2 52.4 61.9 59.6 57.8 57.0 45.1 55.4 105.3
VisionZip

64 (4x) 25.0
72.3 60.1 51.6 61.3 61.0 58.5 57.8 44.7 55.6 105.7

FastVID 71.0 58.3 50.6 60.0 61.4 58.1 57.7 45.0 55.2 104.9
FlashVID 73.0 59.3 50.3 60.9 60.2 58.4 58.4 45.0 55.7 105.9

A MORE EXPERIMENTAL RESULTS

We present comprehensive experimental results of our method. In the Appendix. A.1, we evaluate
our FlashVID against previous state-of-the-art-methods on Qwen2.5-VL (Bai et al., 2025b). In the
Appendix. A.2, we present additional experimental results on LLaVA-Video. In the Appendix. A.3,
we provide additional ablation studies on FlashVID.

A.1 ADDITIONAL EXPERIMENTS ON QWEN2.5-VL

Results on Qwen2.5-VL. To further demonstrate the generalizability of our method, we evaluate
it against other methods on Qwen2.5-VL (Bai et al., 2025b), which shows significant differences
relative to LLaVA-OneVision and LLaVA-Video. Tab. 2 presents a part of the experimental results
on Qwen2.5-VL under retention ratios R ∈ {20%, 10%}. Additional experimental results when R ∈
{25%, 15%} on Qwen2.5-VL are provided in Tab. 7. Notably, our method consistently surpasses
previous state-of-the-art methods under various retention ratios, demonstrating strong generalization
across different VLLMs.

Results on Qwen2.5-VL under fixed token budget. By applying visual token compression,
VLLMs can achieve performance gains by processing more video frames while maintaining the
overall computational budget. As discussed in Sec. 4.2, we explore extending the number of input
frames under a fixed token budget. Tab. 3 reports results with 5× and 10× frames, demonstrating
that VLLMs benefit from longer temporal context without increasing computational cost. Addi-
tional results with 3× and 4× frames are presented in Tab. 8, revealing a consistent improvement
trend. It highlights that FlashVID effectively compresses visual tokens and preserves compact yet
informative representations.

18



Published as a conference paper at ICLR 2026

Table 9: Comparison of state-of-the-art methods on LLaVA-Video. We employ frame token
setting for adaptation to different acceleration frameworks.

Method Retention
Ratio R

VideoMME EgoSchema LongVideo
Bench MVBench Avg.

Short Medium Long Overall Subset Total Score Rel. Acc (%)

Vanilla 100% 77.0 62.1 53.3 64.2 59.4 57.3 59.5 61.9 60.7 100.0
FastV

25%

71.7 59.2 50.9 60.6 56.0 54.8 56.4 59.1 57.7 95.1
VisionZip 74.0 60.3 52.9 62.4 59.0 57.0 58.3 60.0 59.4 97.9
FastVID 74.7 60.1 53.6 62.8 57.4 55.4 58.2 60.5 59.2 97.5
FlashVID 74.2 61.4 51.6 62.4 59.2 56.6 59.1 60.2 59.6 98.2
FastV

15%

67.9 56.9 50.8 58.5 52.8 53.1 54.5 57.5 55.9 92.1
VisionZip 72.9 58.1 51.9 61.0 58.6 55.7 57.2 59.6 58.4 96.2
FastVID 73.4 58.1 51.8 61.1 56.8 54.1 57.7 60.3 58.3 96.0
FlashVID 73.8 59.6 52.1 61.8 57.8 55.8 58.3 60.4 59.1 97.4

Table 10: Efficiency of our FlashVID. We conduct the efficiency analysis on LLaVA-Video, and
report the prefilling time and Time-To-First-Token (TTFT) in milliseconds (ms).

Method Retention
Ratio R

TFLOPs Vision
Encoding

Prefilling Time TTFT Avg.

Compression LLM Forward Total Score Rel. Acc (%)

Vanilla 100% 94.8 685.0 - 1016.8 1016.8 (1.0×) 1701.8 (1.0×) 60.7 100.0
FlashVID 10% 8.0 685.0 85.7 107.6 193.3 (5.3×) 878.3 (1.9×) 58.2 95.9

A.2 ADDITIONAL EXPERIMENTS ON LLAVA-VIDEO

Results on LLaVA-Video. In Tab. 1, we present a part of the experimental results on LLaVA-
Video (Zhang et al., 2024) under retention ratios R ∈ {20%, 10%}. Additional experimental results
when R ∈ {25%, 15%} on LLaVA-Video are provided in Tab. 9. Notably, FlashVID consistently
outperforms previous state-of-the-art methods by a large margin under different retention ratios.

Additional efficiency analysis As illustrated in Tab. 6, we test the efficiency of our FlashVID
on LLaVA-OneVision (Li et al., 2025a), comparing to FastVID (Shen et al., 2025). In Tab. 10,
we further evaluate the efficiency of our FlashVID on LLaVA-Video (Zhang et al., 2024). We
report the detailed prefilling time and Time-To-First-Token (TTFT). Notably, our FlashVID enables
5.3× prefilling and 1.9× Time-to-First-Token (TTFT) speedups over the vanilla LLaVA-Video while
maintaining 95.9% relative accuracy at 10% retention ratio.

A.3 ADDITIONAL ABLATION STUDIES

Ablation study on Tτ . The merging threshold Tτ plays an important role in the Tree-based Spa-
tiotemporal Token Merging (TSTM) module. Tτ directly influences the compression quality, in
which increasing Tτ reduces the merging strength and better preserves temporal details, whereas
lowering Tτ promotes aggressive compression but may merge less correlated tokens, probably in-
troducing noise to the compact representation. As illustrated in Tab. 13, we conduct an ablation study
on merging threshold Tτ on LLaVA-OneVision and LLaVA-Video at R = 10%. FlashVID consis-
tently achieves the best performance under different VLLMs when merging threshold Tτ = 0.8.

Ablation study on tree depth and breadth constraints. In TSTM, video redundancy is jointly
modeled by spatiotemporal redundancy trees, which connect the highly correlated spatiotemporal
visual information. Intuitively, applying proper depth and breadth constraints avoids the merge
of spatiotemporally distant tokens, which may improve the compression quality. In addition to
the threshold parameter Tτ , we also test with two extra parameters: 1) depth constraint: aims to
maintain the temporal dynamics, preventing tokens from spanning an excessively long temporal
range in the same tree; 2) breadth constraint: seeks to preserve the spatial locality, avoiding merging
across overly large spatial regions. The detailed implementation of TSTM with depth and breadth
constraints is provided in Alg. 2.
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Table 11: Ablation study on the tree depth.
The maximum tree depth constraint prevents to-
ken merging in tokens from spanning an overly
long temporal range.

Depth VideoMME EgoSchema LongVideo
Bench MVBench Rel.

Acc.
1/Min 57.2 60.0 55.5 57.2 98.5

4 57.6 60.3 56.4 57.2 99.1
8 57.6 60.0 56.0 57.4 99.0

16 57.7 60.0 56.3 57.3 99.0
32/Inf 57.8 60.0 56.5 57.4 99.1

Table 12: Ablation study on tree breadth. The
maximum tree breadth prevents the merge of
tokens in adjacent frames from crossing exces-
sively large spatial regions, ensuring that spatial
locality is preserved.

Breadth VideoMME EgoSchema LongVideo
Bench MVBench Rel.

Acc.
1/Min 57.3 60.1 56.0 57.2 98.6

5 57.3 60.1 56.0 57.2 98.8
9 57.9 60.0 56.0 56.8 98.8

14/Inf 57.8 60.0 56.5 57.4 99.1

Table 13: Ablation study on the Tτ . Tτ con-
trols the merging strength, in which a lower Tτ

indicates stronger compression.

Tτ VideoMME EgoSchema LongVideo
Bench MVBench Rel.

Acc.
LLaVA-OneVision

0.9 57.3 60.4 56.5 57.3 99.1
0.8 57.8 60.0 56.5 57.4 99.1
0.7 57.1 60.1 56.0 57.0 98.5

LLaVA-Video
0.9 57.2 55.0 56.9 59.7 95.7
0.8 57.2 54.9 57.7 59.3 95.9
0.7 57.8 55.3 57.1 59.2 95.7

Table 14: Ablation study on fe. fe controls the
expansion ratio, in which a large fe may lead to
computational inefficiency, while a low value may
lose critical information.

fe VideoMME EgoSchema LongVideo
Bench MVBench Rel.

Acc.
1.00 56.5 60.4 55.1 56.5 97.8
1.15 56.9 60.2 55.4 56.9 98.1
1.20 57.3 60.3 56.0 57.3 98.8
1.25 57.8 60.0 56.5 57.4 99.1
1.30 57.5 60.3 56.3 57.5 99.1
1.35 57.1 60.0 56.5 57.3 98.8

However, as illustrated in Tab. 11 and Tab. 12, we conduct ablation studies on tree depth and breadth
using LLaVA-OneVision. Experimental results show that depth and breadth constraints don’t bring
performance gains. We hypothesize that the merging threshold Tτ delivers a similar effect.

Ablation study on fe. FlashVID retains more visual tokens input to the LLM while pruning within
the LLM to satisfy the overall computational budget, avoiding the loss of important visual informa-
tion. fe controls the expansion ratio, in which a large fe may lead to computational inefficiency,
while a low value may lose critical information. In Tab. 14, we conduct an ablation study on fe on
LLaVA-OneVision. FlashVID achieves the best performance (99.1% relative accuracy) when the
expansion factor fe ∈ {1.25, 1.30}. We adopt fe = 1.25 for better efficiency.

B EVALUATION BENCHMARKS

The experiments are conducted on the following widely used video understanding benchmarks.

VideoMME. VideoMME (Fu et al., 2025a) is a comprehensive multi-modal evaluation benchmark
on video understanding capabilities of VLLMs. It features 900 videos spanning 6 diverse domains
and 30 subcategories, with durations ranging from 11 seconds to 1 hour. Each video is accompanied
by high-quality human annotations, including 2,700 multiple-choice question-answer pairs.

LongVideoBench. LongVideoBench (Wu et al., 2024) is a comprehensive benchmark designed to
evaluate VLLMs on long-context, interleaved video-language understanding. It characterizes 3,763
videos with durations ranging from 8 seconds to 1 hour. This benchmark comprises 6,678 human-
annotated multiple-choice questions based on a novel “referring-reasoning” task, where models must
retrieve and reason over specific multimodal contexts referenced in the questions, categorized into
17 fine-grained types across perception and relation levels.

MVBench. MVBench (Li et al., 2024a) is a comprehensive benchmark designed to evaluate tem-
poral understanding in multi-modal video tasks, addressing the limitations of existing image-focused
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Algorithm 2 Tree-based Spatiotemporal Token Merging with Depth and Breadth Constraints

Require: Token sequences {R(1),R(2), . . . ,R(F )} from F frames; similarity function sim(·, ·);
tree depth function depth(·); merging threshold Tτ ; max tree depth dmax; neighborhood size k

Ensure: Compressed token set C
1: Initialize each token inR(f) as a root node and let C be an empty token set.
2: for f = 2 to F do ▷ Construct candidate edges
3: for each token rfi ∈ R(f) do
4: N (rfi )← candidate parents inR(f−1) within neighborhood k

5: p∗ ← argmaxp∈N (rfi )
sim(rfi , p)

6: if sim(rfi , p
∗) ≥ Tτ then

7: Connect rfi to p∗

8: end if
9: end for

10: end for
11: for f = F down to 2 do ▷ Backward depth pruning
12: for each token rfi ∈ R(f) do
13: if depth(rfi ) = dmax then
14: Disconnect rfi from its parent
15: Mark rfi as a new root
16: end if
17: end for
18: end for
19: for each tree T do ▷ Aggregate redundancy trees
20: C ← C ∪ Agg(T )
21: end for
22: return C

benchmarks. It consists of 20 systematically constructed tasks that require complex temporal rea-
soning skills, generated via static-to-dynamic transformation of static tasks.

EgoSchema. EgoSchema (Mangalam et al., 2023) consists of approximately 5,000 five-choice
multiple-choice questions derived from 250 hours of egocentric video. It emphasizes long-form
temporal reasoning, as each of its 289 three-minute clips requires tracking objects and actions over
time spans that are 5–10× longer than those in previous datasets, thereby posing significant chal-
lenges for both spatial perception and extended temporal coherence.

MLVU. MLVU (Zhou et al., 2025) contains 3,102 multiple-choice questions across nine diverse
long-video understanding tasks. It challenges models with videos ranging from 3 minutes to 2 hours,
requiring reasoning over plot, temporal order, and event retrieval, thereby jointly testing fine-grained
spatial recognition and long-range temporal reasoning.

C IMPLEMENTATION DETAILS

C.1 REPRODUCTION DETAILS OF COMPARED BASELINES

Unless otherwise specified, all the experiments are conducted on NVIDIA A800 80G GPUs on
LMMs-Eval (Zhang et al., 2025b) 1. We evaluate all methods on three representative VLLMs with
distinct architectures and characteristics: LLaVA-OneVision (Li et al., 2025a) and LLaVA-Video
(Zhang et al., 2024) 2, and Qwen2.5-VL (Bai et al., 2025b) 3. All baseline methods are reimple-
mented in LMMs-Eval, following their official implementations:

1https://github.com/EvolvingLMMs-Lab/lmms-eval, MIT License
2https://github.com/LLaVA-VL/LLaVA-NeXT, Apache License 2.0
3https://github.com/QwenLM/Qwen2.5-VL, Apache License 2.0
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• FastV (Chen et al., 2024) 4 (ECCV 2024). FastV prunes tokens at the K-th layer of the
LLM using cross-modal attention scores, with a pruning ratio r. We follow the official
settings with K = 2, using r ∈ {75%, 80%, 85%, 90%} for LLaVA-OneVision in Tab. 1
and Qwen2.5-VL in Tab. 2, while setting r ∈ {80%, 90%} for LLaVA-Video in Tab. 1.

• VisionZip (Yang et al., 2025c) 5 (CVPR 2025). VisionZip prunes visual tokens at the
output of the vision encoder, conflicting with pooling operations in VLLMs and resulting
in performance degradation. Following (Shen et al., 2025), we instead apply pruning af-
ter pooling for VisionZip. We follow the official setting by retaining both dominant and
contextual ratios at a 54:10 ratio in each frame. We set R to {25%, 20%, 15%, 10%} for
LLaVA-OneVision in Tab. 1 and Qwen2.5-VL in Tab. 2, while setting R to {20%, 10%}
and {25%, 15%} for LLaVA-Video in Tab. 1 and Tab. 9, respectively.

• PruneVID (Huang et al., 2025) 6 (ACL 2025). PruneVID contains both before-LLM
compression and inner-LLM pruning during the prefilling stage, along with a KV Cache
compression at the decoding stage. Following the official settings, we set the threshold
τ = 0.8, the temporal segment ratio γ = 0.25, the token selection ratio α = 0.4, and
the pruning layer K = 10. We control the token budget by cluster ratio β. We use
β ∈ {40.7%, 32.5%, 24.4%, 16.3%} in Tab. 1.

• FastVID (Shen et al., 2025) 7 (NeurIPS 2025). FastVID prunes visual tokens based on spa-
tiotemporal DPC-kNN. It begins with a dynamic segmentation based on transition similar-
ities, followed by a frame-wise salient token selection based on [CLS] attention scores. Fi-
nally, it compresses the remaining tokens by spatiotemporal redundancy elimination based
on DPC-kNN. Following the official settings, we set the minimum number of segments
c = 8, the segment threshold τ = 0.9, the salient token ratio d = 0.4, the anchor frame
step p = 4, and the merging factor α = 0.6. We set R to {25%, 20%, 15%, 10%} for
LLaVA-OneVision in Tab. 1 and Qwen2.5-VL in Tab. 2, while setting R to {20%, 10%}
and {25%, 15%} for LLaVA-Video in Tab. 1 and Tab. 9, respectively.

C.2 REPRODUCTION DETAILS OF FLASHVID

In addition to ADTS and TSTM modules, FlashVID employs two design choices: 1) video partition
and 2) Inner-LLM Pruning for better performance.

Video Partition. State-of-the-art VLLM acceleration methods (Shen et al., 2025; Shao et al.,
2025a; Huang et al., 2025; Tao et al., 2025) commonly apply video partitioning before token
compression, aiming to avoid information mixing and building upon DySeg (Shen et al., 2025),
FlashVID partitions consecutive similar frames into the same segment based on the transition sim-
ilarities. Instead of using [CLS] token embeddings, we compute transition similarities based on
pooled video features. Given video features Ev ∈ RF×Nv×d, we apply global average pooling to
obtain the frame embeddings:

fe = GAP(Ev) ∈ RF×d. (10)
The transition similarities are defined as the cosine similarity of frame embeddings of adjacent
frames:

ti = cos(fi, fi+1), i = 1, 2, · · · , F − 1,

T = {t1, t2, · · · , tF−1} (11)

where ti denotes the transition similarity between i-th and (i+1)-th frame. A low transition similar-
ity indicates a significant scene change. Following DySeg, we set the segment threshold Sτ = 0.9
and the minimum number of segments Ms = 8.

Calibrated Max-Min Diversity Problem. As discussed in Sec. 3.3, FlashVID utilizes the At-
tention and Diversity-based Token Selection (ADTS) module to identify the spatiotemporally in-
formative tokens within each frame. Specifically, ADTS formulates frame-wise token selection as

4https://github.com/pkunlp-icler/FastV
5https://github.com/JIA-Lab-research/VisionZip, Apache License 2.0
6https://github.com/Visual-AI/PruneVid, CC BY-NC-SA 4.0 License
7https://github.com/LunarShen/FastVID, MIT License
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Algorithm 3 Calibrated Max-Min Diversity Problem (MMDP)

Require: Pairwise distance D(f) ∈ RNv×Nv ; [CLS] attention A
(f)
[CLS] ∈ RNv ; event relevance

S̄(f)
e ∈ RNv

Ensure: Spatiotemporally informative token indices I(f)

1: Initialize selected indices I(f) ← ∅ and R← {0, 1, ...Nv − 1}
2: Let 1Nv ∈ RNv be an all-ones vector
3: D(f) ← D(f) ⊙

((
A

(f)
[CLS] ⊗ 1Nv

)
⊙

(
S̄
(f)
e ⊗ 1Nv )

)
▷ Calibrate pairwise distance

4: for i ∈ R do ▷ Select the first token
5: dmin[i]← minj∈R,j ̸=i D

(f)
i,j

6: end for
7: k ← argmax dmin

8: Move k fromR to I(f)
9: while |I(f)| < M̃ do ▷ Iteratively add the subsequent tokens

10: Initialize dmin ← inf
11: for i ∈ R do
12: dmin[i]← minj∈I(f) D

(f)
i,j

13: end for
14: k ← argmax dmin

15: Move k fromR to I(f)
16: end while
17: return I(f)

a Max-Min Diversity Problem (MMDP), calibrated by [CLS] attention and event relevance. The
detailed implementation is provided in Alg. 3.

Inner-LLM Pruning. As illustrated in Sec. 2.1, the hybrid compression framework balances effi-
ciency and performance, which preserves sufficient visual information input to the LLM, preventing
the loss of important information. FlashVID employs this design for better performance, which re-
tains more visual tokens before the LLM and prunes at a relatively high layer. We set the pruning
layer K = 20 and the expansion factor fe = 1.25 without careful tuning for LLaVA-OneVision,
LLaVA-Video, and Qwen2.5-VL.

C.3 TOKEN BUDGET ALIGNMENT

To ensure a fair comparison, we employ a simple and effective strategy that aligns the average
number of visual tokens processed by each Transformer layer to meet a similar computational cost,
following (Shao et al., 2025b). Eq. 3 presents the Floating Point Operations (FLOPs) formula of
the standard Transformer architecture for generality. In this paper, we evaluate three representative
VLLMs: LLaVA-OneVision (Li et al., 2025a), LLaVA-Video (Zhang et al., 2024), Qwen2.5-VL
(Bai et al., 2025b), which share similar LLM architectures that employ Group Query Attention
(Ainslie et al., 2023) and SwiGLU (Dauphin et al., 2017) non-linear activation. The computational
FLOPs of these three LLMs can be formulated as:

FLOPs = L× (2nd2(1 + g/h) + 2n2d+ 3ndm), (12)

where n is sequence length, d the hidden dimension, m the intermediate dimension of FFNs, g the
number of key/value heads, and h the number of attention heads. Since the number of visual tokens
nv dominates the sequence length n, the sequence length n can be approximated by nv .

To clarify how visual token numbers are determined at each stage. We provide a detailed explana-
tion. Let R̄ be the average retained visual tokens per Transformer layer, M be the number of tokens
entering the LLM (after before-LLM compression), K be the pruning layer index, L be the number
of Transformer layers in LLM, and R be the number of retained visual tokens (after inner-LLM
pruning). Then we have the following equation.

R̄L = MK +R(L−K). (13)
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We introduces an expansion factor fe such that M = feR̄ ; thus, we have:

R =
R̄(L− feK)

L−K
. (14)

And the inner-LLM pruning ratio r becomes:

r =
R

M
=

L− feK

fe(L−K)
. (15)

Such a simple token budget alignment strategy enables fair comparisons between different acceler-
ation frameworks.

D RELATED WORK

Multimodal Large Language Models. Recent advances in deep learning (He et al., 2016;
Vaswani et al., 2017; Devlin et al., 2019; Dosovitskiy et al., 2021; Radford et al., 2021; He et al.,
2022; Cui et al., 2022; 2023; Peng et al., 2024a; Yang et al., 2024c; Wang et al., 2024a) have ben-
efited traditional computer vision tasks, such as semantic segmentation and object detection (Tian
et al., 2020; Lai et al., 2021; Jiang et al., 2021; Peng et al., 2023; Tian et al., 2022b; Luo et al.,
2023; Peng et al., 2024b; Tian et al., 2022a; 2019; 2023; Ning et al., 2023; Shao et al., 2024; Wang
et al., 2025a;b). In particular, transformer-based architectures and large-scale pretraining have in-
creasingly driven the success of Large Language Models (LLMs) (Touvron et al., 2023; Grattafiori
et al., 2024; Yang et al., 2024a;b; 2025a; Lai et al., 2024b; Peng et al., 2025; Liu et al., 2024a;
Guo et al., 2025), exhibiting strong generalization and reasoning capabilities. Building upon LLMs,
Multimodal Large Language Models (MLLMs) (Liu et al., 2023; 2024b;c; Dai et al., 2023; Li et al.,
2023; Comanici et al., 2025; Bai et al., 2025b;a; Wang et al., 2025c; Li et al., 2025c) extend the
input modality from text to multimodalities (such as image, audio, and video) by coupling modality
encoders with LLM backbones. So far, MLLMs have revolutionized traditional computer vision
tasks. For example, representative works like LISA (Lai et al., 2024a) and LISA++ (Yang et al.,
2023) study reasoning segmentation powered by MLLMs.

Video Large Language Models. With the rapid advancement of MLLMs, Video Large Language
Models (VLLMs) (Li et al., 2025a; Zhang et al., 2024; Bai et al., 2025b;a; Shen et al., 2024; Li
et al., 2024b; Maaz et al., 2024; Comanici et al., 2025) have gained increasing attention. Mainstream
VLLMs directly process raw video tokens with an optional pooling operation. LLaVA-OneVision
(Li et al., 2025a) demonstrates strong video understanding capabilities through task transfer from
images. To achieve fine-grained spatiotemporal modeling, some VLLMs employ elaborate designs.
LLaVA-Video (Zhang et al., 2024) introduces newline tokens to distinguish spatiotemporal posi-
tions. Qwen2-VL (Wang et al., 2024b) and Qwen2.5-VL (Bai et al., 2025b) use Multimodal Rotary
Position Embedding (MRoPE). Qwen3-VL (Bai et al., 2025a) employs the Deepstack mechanism
(Meng et al., 2024), which extracts visual tokens from intermediate layers of the visual encoder and
injects them into the LLM, preserving rich visual information.

To achieve a comprehensive evaluation, we evaluate our method on three representative VLLMs
(i.e., LLaVA-OneVision, LLaVA-Video, and Qwen2.5-VL) with significantly different architectures
and characteristics.

Visual Token Compression. Token compression has emerged as an effective technique that re-
duces computational complexity in transformer architectures, such as Vision Transformers (ViTs)
(Dosovitskiy et al., 2021) and Large Language Models (LLMs). ToMe (Bolya et al., 2023) gradually
merges similar tokens in ViTs. FastV (Chen et al., 2024) identifies text-relevant visual tokens based
on text-to-visual attention in the LLM. PyaramidDrop (Xing et al., 2024) and SparseVLM (Zhang
et al., 2025e) progressively prunes visual tokens. VisionZip (Yang et al., 2025c), LLaVA-PruMerge
(Shang et al., 2025), and VisPruner (Zhang et al., 2025c) filter salient visual tokens via [CLS] at-
tention, while DivPrune (Alvar et al., 2025) selects based on diversity. TopV (Yang et al., 2025b)
formulates token selection as an optimization problem. VScan (Zhang et al., 2025a) combines global
and local scans for informative visual token selection.

However, the above methods only focus on spatial redundancy compression. To address this, several
token compression frameworks for VLLMs have been proposed. DyCoke (Tao et al., 2025) merges
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redundant tokens in each segment. PruneVID (Huang et al., 2025) distinguishes static and dynamic
tokens. STTM (Hyun et al., 2025) models video redundancy by a quadtree. FrameFusion (Fu et al.,
2025b) performs both merging and pruning in the LLM. HoliTom (Shao et al., 2025a) combines
global redundancy-aware video partition with spatial and inner-LLM compression. FastVID (Shen
et al., 2025) employs density-based token pruning. DyTok (Li et al., 2025b) dynamically allocates
token budget to each frame or segment, serving as a plug-and-play module for existing token com-
pression methods.

E MORE VISUALIZATIONS

E.1 TREE-BASED SPATIOTEMPORAL TOKEN MERGING

Due to the dynamic and evolving nature of video, the most semantically correlated visual features in
adjacent frames are likely to experience variation in position, scale, orientation, and other attributes
over time. To address this challenge, we propose the Tree-based Spatiotemporal Token Merging
(TSTM) mechanism, which models video redundancy by spatiotemporal redundancy trees in a uni-
fied way. It enables capturing fine-grained video dynamics. Fig. 5 presents more visualizations
of TSTM, highlighting the unique advantages of our TSTM for better spatiotemporal redundancy
compression.

E.2 QUALITATIVE ANALYSIS ON LLAVA-ONEVISION

As illustrated in Tab. 1, we evaluate our FlashVID on LLaVA-OneVision at R ∈
{25%, 20%, 15%, 10%}. Notably, at higher retention ratios (i.e., R = 25%, 20%, 15%), FlashVID
surpasses the vanilla LLaVA-OneVision, indicating a “less is more” pattern where excessively re-
dundant tokens may degrade performance. Additionally, FlashVID preserves performance of 99.1%
under extreme compression (e.g., R = 10%). Fig. 6 presents four qualitative examples compar-
ing LLaVA-OneVision with and without FlashVID, which indicates FlashVID enables fine-grained
spatiotemporal redundancy compression, providing compact yet informative video representation.

E.3 QUALITATIVE ANALYSIS ON QWEN2.5-VL

In this work, we explore extending VLLMs to process more video frames under a fixed computa-
tional budget through visual token compression. As reported in Tab. 3 and Tab. 8, VLLMs bene-
fit from longer temporal context. Fig. 7 presents four qualitative examples comparing Qwen2.5-
VL with and without FlashVID, highlighting its ability to capture richer temporal information.
FlashVID enables Qwen2.5-VL (Bai et al., 2025b) to process 10× more frames (160 vs. 16) within
the same computational cost, providing compact yet informative video representations and improv-
ing the model performance.

E.4 VISUALIZATIONS OF ADTS

As shown in fig. 8, we compare token selection results by ADTS with and without event relevance
calibration. Event relevance calibration helps identify the key visual tokens, thereby improving the
performance of those tasks requiring fine-grained understanding.

E.5 VISUALIZATIONS OF FAILURE CASES IN TSTM

As illustrated in Fig. 9, we present visualizations of failure cases in our Tree-based Spatiotemporal
Token Merging (TSTM). Although TSTM enables fine-grained spatiotemporal redundancy com-
pression, it might result in merging operations with semantic confusion such as merging tokens
from different entities with similar semantic information.

E.6 VISUAL PERCEPTION LAYERS

We empirically found that certain transformer layers (deep layers) of VLLMs possess strong visual
perception capabilities. These visual perception layers can typically identify keyframes. Fig. 10
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(a) Visualization of TSTM (Example 1)

(b) Visualization of TSTM (Example 2)

(c) Visualization of TSTM (Example 3)

Figure 5: Visualizations of Tree-based Spatiotemporal Token Merging (TSTM). We select three
consecutive video frames that show obvious variations in spatial locations, scale, and orientation for
each case to illustrate the advantages of our TSTM in FlashVID. TSTM jointly models spatial and
temporal redundancy via spatiotemporal redundancy trees for capturing fine-grained spatiotemporal
relationships; thus, it achieves better spatiotemporal redundancy compression.
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Question: What kind of communication is listed before Semaphore?

LLaVA-OneVision

LLaVA-OneVision w/ FlashVID D. Pony express.

C. Telegraph.

(a) LLaVA-OneVision with and without FlashVID (Example 1)

Question: What are the moves in the last scene of this dance?

LLaVA-OneVision

LLaVA-OneVision w/ FlashVID A. Kneel down on one knee and lean back.

B. Passe and then chasse

(b) LLaVA-OneVision with and without FlashVID (Example 2)

Question: Who fight versus the black dinosaur at last?

LLaVA-OneVision

LLaVA-OneVision w/ FlashVID D. A dragon

C. A King Kong.

(c) LLaVA-OneVision with and without FlashVID (Example 3)

Question: which smart phone is advertised on the screen of the laptop?

LLaVA-OneVision

LLaVA-OneVision w/ FlashVID D. iPhone 6s.

B. iPhone 14 Pro.

(d) LLaVA-OneVision with and without FlashVID (Example 4)

Figure 6: Qualitative comparison of LLaVA-OneVision with and without FlashVID. We con-
duct qualitative analysis on LLaVA OneVision with and without FlashVID under a 25% retention
ratio. We observe an interesting phenomenon: in some examples, LLaVA OneVision with FlashVID
compression can answer the questions correctly, whereas the original model with full visual tokens
input gives incorrect answers, unveiling a “less-is-more” pattern where excessive visual tokens in-
put may degrade model performance.
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Question: What is the specific sentence in the smart phone that makes the man embarrassed?

Qwen2.5-VL B. Dude! You gotta come toBigStuf Camps!

Qwen2.5-VL w/ FlashVID A. BTW...you got something in your teeth!

(a) Qwen2.5-VL with and without FlashVID (Example 1)

Question: What is the specific sentence in the smart phone that makes the man embarrassed?

Qwen2.5-VL A. A bamboo.

Qwen2.5-VL w/ FlashVID B. A stick.

(b) Qwen2.5-VL with and without FlashVID (Example 2)

Question: What are the moves in the last scene of this dance?

Qwen2.5-VL

Qwen2.5-VL w/ FlashVID A. Kneel down on one knee and lean back.

C. Releve and then pirouette.

(c) Qwen2.5-VL with and without FlashVID (Example 3)

Question: What is the stage background where several male performers are holding long sticks?

Qwen2.5-VL

Qwen2.5-VL w/ FlashVID A. A sailboat.

B. A forest.

(d) Qwen2.5-VL with and without FlashVID (Example 4)

Figure 7: Qualitative comparison of Qwen2.5-VL with and without FlashVID. The vanilla
model processes only 16 sampled frames, which limits its ability to capture sufficient temporal
information. In contrast, Qwen2.5-VL can handle 160 (10×) frames with FlashVID while main-
taining the overall computational budget, yielding more accurate predictions by leveraging longer
temporal context.

ADTS w/o Event Relevance ADTS w/ Event Relevance

Question: What is the final score of the game?

B. 6-8 B. 5-9

(a) Visualization of ADTS (Example 1)

ADTS w/o Event Relevance ADTS w/ Event Relevance

Question: What is left of the wine on the animation when suggesting avoiding stimulants?

C. Heavy meals. A. Caffines.

(b) Visualization of ADTS (Example 2)

Figure 8: Comparisons of ADTS with and without event relevance calibration. ADTS employs
event relevance calibration terms to identify the tokens most relevant to the video event.
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(a) Visualization of TSTM (Example 1) (b) Visualization of TSTM (Example 2)

Figure 9: Visualizations of failure cases in TSTM.

presents several visualizations of visual perception layers. Building upon this insight, we hypothe-
size that token compression at these layers yields negligible performance degradation.

To balance efficiency and performance, FlashVID adopts a hybrid compression paradigm that retains
more visual tokens and prunes visual tokens in the LLM to control the overall computational budget.
Hence, we consistently set the pruning layer K = 20 (a relatively high layer for LLaVA-OneVision,
LLaVA-Video, and Qwen2.5-VL at 7B scale) without careful tuning.

F USAGE OF LARGE LANGUAGE MODELS

In this work, Large Language Models (LLMs) are only used for polishing the paper writing. They
are not involved in research ideation, experimental design, data analysis, or the formulation of con-
clusions. All substantive intellectual contributions are made by the authors.
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Question: What  does the panda use to fight with enemies in the video?

(a) Visualization of visual perception layers. (Example 1)
Question: Which of the following is visible in the background of the video when the miniature bottle is shown empty?

(b) Visualization of visual perception layers. (Example 2)
Question: When is the zodiacal light visible from the video?

(c) Visualization of visual perception layers. (Example 3)

Figure 10: Visualizations of visual perception layers. We empirically found that certain layers in
VLLMs have strong visual perception capabilities, which can accurately recognize keyframes. We
hypothesize that pruning visual tokens guided by attention weights in these layers could filter tokens
most relevant to the text query, achieving a better pruning performance.
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