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Abstract: The ability to interactively learn skills from human guidance and adjust
behavior according to human preference is crucial to accelerating robot learning.
But human guidance is an expensive resource, calling for methods that can learn
efficiently. In this work, we argue that learning is more efficient if the agent is
equipped with a high-level, symbolic representation. We propose a dual repre-
sentation framework for robot learning from human guidance. The dual repre-
sentation used by the robotic agent includes one for learning a sensorimotor con-
trol policy, and the other, in the form of a symbolic scene graph, for encoding
the task-relevant information that motivates human input. We propose two novel
learning algorithms based on this framework for learning from human evalua-
tive feedback and from preference. In five continuous control tasks in simulation
and in the real world, we demonstrate that our algorithms lead to significant im-
provement in task performance and learning speed. Additionally, these algorithms
require less human effort and are qualitatively preferred by users. Project website:
https://sites.google.com/view/dr-hrl.
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1 Introduction

Human guidance refers to a diverse set of human training signals provided to a learning agent [1–
5]. These alternative forms of human input can be combined with the conventional reward signal
in reinforcement learning (RL) [6] or demonstrations in imitation learning (IL) [7–9] to facilitate
learning. Recently, the robot learning community has increased its attention to human guidance as a
mechanism to overcome two critical challenges: 1) the low sample efficiency of learning algorithms,
and 2) the effort in manually specifying the objectives for learning. Human guidance is helpful
for these challenges because 1) guidance like evaluative feedback [10–27] can be used as domain
knowledge to speed up learning, and 2) through their guidance, humans can define the learning
objectives for robots so that the learning algorithm better infers and aligns to the underlying human
goals and values, such as their preferences [28–46].

Despite its benefits, human guidance is a scarce and valuable resource, and human-in-the-loop
mechanisms strive to find ways to reduce the amount of guidance required from humans to make
them more broadly and practically applicable. This is only possible if the human guidance is
properly represented and interpreted [47–49]. The first step is to choose a representation that allows
the learning agent to query humans more efficiently and learn with less human guidance [47–49].

Robots typically use a fine-grained state and action space for continuous control. However, when
humans observe, evaluate, and guide robot behaviors, their representation is likely different. For
example, in a continuous control task such as placing an object, the robotic agent typically has access
to low-level states including proprioceptive information and other objects’ poses. But the guidance
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provided by humans is typically based on higher-level abstract information, such as is the robot’s
end-effector to the left or the right of the goal?, or is the robot grasping the object? This observation
leads to the “dual representation hypothesis” proposed in this work, inspired by cognitive science
studies [50–53]. This is analogical to the “fast and slow” systems proposed by Kahneman [52], in
which the fast system manages intuitive, automatic, unconscious behaviors while the slow system
manages logical, calculating, conscious thoughts [52]. We hypothesize that the “slow” system and
its representation are useful in guiding learning agents.

In this work, we propose a dual representation framework for robot learning from human guidance:
the robotic learning agent uses a low-level state representation for learning control policies, but keeps
a symbolic scene graph [54–57] as a high-level representation of human internal states. We show
that this framework enables novel learning algorithms: Dual Representation–based Evaluative Feed-
back (DREF) and Dual Representation–based Preference Learning (DRPL). DREF is based on the
idea of uncertainty-aware active learning that allows the agent to estimate the uncertainty of human
feedback in unseen states. Such generalization ability is achieved by using scene graph representa-
tion to group low-level states into abstract states. DRPL builds upon scene graph–based trajectory
segmentation and selection, allows efficient reward learning from chosen trajectory segments.

In three simulation tasks and two real-robot tasks, we demonstrate that our proposed approaches
lead to significant improvements in learning speed and performance. For challenging long-horizon
real-world robot manipulation tasks, we show that DREF can learn to solve the task efficiently, while
end-to-end RL algorithms fail to solve because of the high-dimensional continuous state and action
space. Critically, we observe a significant reduction in the amount of human guidance required for
learning, and an improvement in overall user experience, making learning from human guidance
methods more practical and appealing for real robot learning.

2 Related Work

Among the multiple forms of human-in-the-loop robot learning [58–60], in recent years, the robotics
community has paid increased attention to human guidance [3] because of being powerful and easy
to collect, and complements standard training signals such as rewards or demonstrations.

Learning from human evaluative feedback. This is an approach in which human trainers monitor
the learning process of an agents, and provide a scalar signal to indicate whether the observed behav-
ior is desirable [10–27]. The agent then learns a policy to maximize positive feedback from humans.
This approach has the advantage of placing minimum demand on both the human trainer’s expertise
and the ability to provide guidance, compared to learning from demonstrations. Significantly, hu-
man evaluation is often interpreted as a value function [14, 16] or an advantage function [15, 17],
not as the reward itself. Nonetheless, human evaluation can be naturally combined with environ-
ment rewards so the agent learns simultaneously from both sources [18–20]. Evaluative feedback
often targets individual state-action pairs. Hence one outstanding challenge is to generalize observed
human feedback to unseen state-action pairs.

Learning from human preference. In this framework, the learning agent queries human trainers
for their preferences over a set of exhibited behavior trajectories [28–46]. Preferences can be used to
directly learn policies [28, 29], a preference model [30], or a reward function [31, 32]. Recent works
often learn a hypothesized latent human reward function from the preference signals, and combine
preference learning with deep RL to learn a policy afterwards [34–37]. Notably, a recent work
attempts to align agent representation with human representation in preference learning [61]. While
evaluative feedback targets a state-action pair, preference learning targets trajectories. Selecting
optimal query trajectory length is a challenging problem in preference learning [3], we will show that
the dual representation learning framework provides an intuitive way to segment lengthy trajectories.

Scene graph as abstract representation. In robot learning, abstract representation has been an ac-
tive research topic, exemplified by recent works in neuro-symbolic robot learning [62–65]. Human-
robot interaction tasks, such as shared autonomy [66, 67], highlight the importance of abstract rep-
resentation since humans often communicate high-level goals to the agent in this setting. Low-
dimensional, abstract representations could potentially be learned [68–72] but sample efficiency is
a major limiting factor when applying these methods to physical robot learning from real humans.

A scene graph, often specified by humans, is a form of abstract representation for state information in
which objects are represented as nodes and relations between objects are represented as edges [54–
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Figure 1: Overview of the proposed dual representation framework. The robot maintains two state
representations. The first one is for learning a fine-grained, low-level continuous control policy. The
second representation is specified by an expert human in the format of a symbolic scene graph. The
robot uses this representation to actively query human trainers for evaluation or preference during
the training process.

57]. Scene graphs can store explicitly and compactly information about object geometry, placement,
semantics, and relationships, making them suitable for tasks that require sophisticated reasoning
about these types of information. Recently, scene graphs have started to be used in robotics [73–
75] as a state representation that facilitates planning and reasoning. We explore how a symbolic
scene graph could be a useful additional representation for human-in-the-loop robot learning. We
hypothesize that it allows the learning agent to query humans more efficiently and learn with less
human guidance than using the low-level, raw state representation alone.

3 Method

Our method is designed to overcome a significant challenge in human-in-the-loop robot learning:
human feedback is expensive, and frequently asking for guidance is infeasible in real-world robotic
systems. To address this challenge, we propose a novel dual representation to facilitate human-in-
the-loop policy learning. Below we introduce the general human guidance learning problem and our
proposed dual representation setups (Sec. 3.1). Then, we propose an algorithm to learn from evalua-
tion feedback that decreases the amount of human feedback needed during policy learning (Sec. 3.2),
and a query generation algorithm to efficiently query humans for their preference (Sec. 3.3).

3.1 Dual Representation for Learning from Human Guidance

We represent the robot learning problem as a Markov Decision Process denoted by the tuple
〈S,A, P,R, γ〉, where S is the state space, A is the action space, R : S × A → R is the re-
ward function, P : S × A × S → [0, 1] is the transition function, and γ is the discount factor. A
policy π : S ×A → [0, 1] is a mapping from S to probability distribution over A.

We propose a dual representation framework for human-in-the-loop robot learning that consists of
the common low-level state information from the environment and an additional high-level symbolic
scene graph G. G is represented as a binary vector of dim(G), where each dimension represents a
unary state of an object or a pairwise semantic relation between the objects and the robot. Let g
be an instance of G, i.e., an abstract state which contains infinite low-level, continuous states. The
objects and relations in G are specified by humans based on task knowledge. The proposed dual
representation framework is shown in Fig. 1.

3.2 Learning from Evaluative Feedback with Dual Representation

Human evaluative feedback contains rich task-level knowledge that could be used to assist robot
learning. We adopt an active learning setting, in which an RL agent asks humans for their evalua-
tive feedback. Hypothetically, asking and receiving feedback in the right state could lead to better
learning results with less human effort, but it is unclear when to ask for feedback. Our key insight
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Algorithm 1 Dual Representation–based Evaluative Feedback (DREF)

1: Initialize UCB1(g), ∀g ∈ G, as 0
2: Initialize D as the replay buffer
3: Initialize network weights for actor θA, environment critic θE , and human feedback critic θH
4: for t = 1, T do
5: Select at = π(·|st; θA)
6: Infer current scene graph state gt from st
7: if rank(UCB1(gt)) ≤ k, across g ∈ G sorted by UCB1 score then
8: Query for evaluative feedback Ht(st, at)
9: end if

10: Execute a, observe reward r, and next state st+1,
11: Store transition (st, at, rt, Ht, st+1) in D
12: Sample random minibatch of transitions (st, at, rt, Ht, st+1) from D
13: Perform a gradient step according to Equations 3 4, and 5 for θH , θE , θA.
14: Update UCB1(g), ∀g ∈ G using Equations 1,2
15: end for

is that querying for human feedback can be formulated as a multi-armed bandit problem with sym-
bolic scene graph representation. This formulation brings the opportunities to use formal methods
designed for discrete state and action spaces, such as Upper Confidence Bound (UCB1). Integrating
UCB1 with continuous control enables efficient uncertainty-aware active learning from humans.

TAMER+RL [18–20] is a widely used framework for learning from evaluative feedback. For the RL
part, we use Soft Actor-Critic (SAC) [76]. In addition to the environment reward, human trainers
provide a scalar signal Ht(s, a) ∈ {−1, 0,+1} to indicate whether the observed state-action pair
is desirable or not. Our goal is to reduce the amount of total feedback while achieving the same or
better task performance.

Inspired by the standard UCB1 for value function in bandit problems, we use the following equa-
tion to estimate the upper confidence bound of human feedback prediction error (FPE), the type of
uncertainty we care about, in an abstract state gt:

UCB1(gt) = FPE(gt) + c

√
2 logNt
Nt(gt)

, (1)

where Nt is the total number of human feedback received at time t, and Nt(gt) is the number of
feedback given to the abstract state gt. The constant c weighs the exploitation and exploration terms.
FPE(gt) is the average feedback prediction error for all the low-level states encountered so far that
belongs to gt:

FPE(gt) =
1

Nt(gt)

t∑
i=0

1(si ∈ gt)‖Ĥ(si, ai)−H(si, ai)‖22. (2)

We can estimate Ĥ(s, a) using an additional critic head in SAC. Assume θH , θE , θA, parameterize
the human feedback critic, the environment critic, and the actor, respectively, the learning objectives
are:

L(θH) = E(s,a,H)∼D‖Ĥ(s, a; θH)−H(s, a)‖22 (3)

LSAC(θE) = E(s,a)∼D‖Q(s, a; θE)− Q̂(s, a)‖22 (4)

L(θA) = Es∼D

[
Ea∼π(·|s;θA)

[
α log(π(a|s; θA))− (Q(s, a; θE) + λĤ(s, a; θH))

]]
(5)

In Eq. 4, LSAC(θE) is the standard soft Bellman residual in SAC [76, 77]. In Eq. 5, α is the temper-
ature parameter in SAC [76, 77]. Note that the actor updates the policy distribution in the direction
suggested by the weighted average of both critics. The agent learns a policy to maximize expected
positive feedback from humans and environment reward simultaneously.

The full algorithm, DREF or Dual Representation–based Evaluative Feedback, is shown in Algo-
rithm 1. We first calculate the running mean of UCB value for each abstract state and rank them.
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Algorithm 2 Dual Representation–based Preference Learning (DRPL)

1: Collect a set of random trajectories T
2: Set prior of reward weights p0(θ) randomly
3: Segment all trajectories in T based on abstract state changes: Tseg = {ξ1, ξ2, ...}
4: for i = 0, dim(G) do
5: Select two segments ξ, ξ′ ∈ Tseg , with ties broken arbitrarily

s.t. their associated abstract states g[i] 6= g′[i]
and d(g, g′) = 1 or d(g, g′) = ming,g′ d(g, g

′)
6: Query for preference q(ξ, ξ′)
7: Update posterior p(i+1)(θ) ∝ P (q|θ)pi(θ), where P (q|θ) is the probability of preference

response q given θ
8: end for

Then we query for feedback at a specific state st if its abstract state gt has a high rank (determined
by a hyperparameter k). As a result, the agent actively asks for feedback in abstract states with
uncertainty in the human evaluation of actions, e.g., query for feedback when the gripper and the
ball move into the hoop for the first time, as shown in Fig. 1. With the low-level state and action
space alone, this cannot be easily done because the number of states is infinite. The abstract state
representation effectively groups these states together, and estimates the uncertainty in predicting
feedback of a new state using the average FPE of other states in its group. We hypothesize that
in this way, the dual representation could lead to efficient uncertainty-aware active learning from
human feedback, which we will demonstrate in our experiments.

3.3 Preference Learning with Dual Representation

Preference learning is an important method to define the objective for learning agents. While
evaluative feedback targets a state-action pair, in preference learning human trainers indicate their
preference over a pair of trajectories, from which the agent learns a reward function R. For sim-
plicity, we assume that reward function R is a linear combination of state-action features [78]:
r(st, at) = θTφ(st, at), hence the goal is to infer θ. Our goal is to reduce the amount of human
guidance: the algorithm should accurately estimate θ with a minimum number of queries.

Here we address two issues in preference learning: generating and selecting meaningful queries.
For query generation, selecting trajectory length is challenging [3]. Indicating preference over
longer trajectories requires cognitive effort (e.g., summing all the rewards in each trajectory).
Short trajectories (e.g., random 1-2 seconds clips [34]) allow humans to provide feedback of high
granularity, but these clips may not be meaningful or comparable. After trajectories are segmented,
selecting meaningful pairs to query humans is yet another challenge: apples-to-apples comparisons
are more meaningful.

We propose a simple solution to these challenges: scene graph–based trajectory segmentation and
selection. The abstract state dimensions in the scene graphs naturally overlap with the reward fea-
tures, since these scene graphs are designed to contain information that is critical to task success.
The key observation is that in long-horizon tasks, a trajectory consists of multiple abstract state tran-
sitions, and two consecutive abstract state transitions naturally define the starting and ending points
of a segment, i.e., a segment corresponds to only one abstract state g. Then, for query selection, we
select a pair of segments with two abstract states g and g′, such that d(g, g′) = 1 where d denotes
the hamming distance (recall that g is a binary vector). In other words, g and g′ are two abstract
states that only differ in one dimension. Hence the remaining dimensions are held constant, leading
to a controlled comparison. If we cannot find a pair of segments such that d(g, g′) = 1, we choose
the pair that has the minimum hamming distance. The algorithm, DRPL, or Dual Representation
based Preference Learning, is shown in Algorithm 2. We use a standard reward weight estima-
tion algorithm (a Bayesian inverse reinforcement learning algorithm) that is based on the low-level
representation [41, 78], the only difference is how we segment and select trajectories for a query.

4 Experiments

We test our algorithms in five continuous control tasks (Fig. 2) for both evaluative feedback and pref-
erence learning. The following describes the dual representation (low and high level) of each task.
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Figure 2: Five continuous control tasks in our experiments: Lunar-Lander, Reaching-Sim,
Placing-Sim, Reaching-Real, and Placing-Real.

Low-level representation. In Lunar-Lander-Continuous-v2 [79], we control a spaceship to
land in the middle of two flags without crashing. The state, s ∈ R8, includes position, velocity, and
leg-contact information, and the action signals, a ∈ R2 control the engines. In Reaching-Sim and
Reaching-Real, the robot’s goal is to move its gripper, to the center area marked on the table from
a random starting location. The state, s ∈ R2, specifies the position of the gripper in the xy-plane
and the actions, a ∈ R2, are delta movements on that plane. In Placing-Sim and Placing-Real,
the robot must move an initially grasped ball from a random location into a hoop and drop it there.
The state, s ∈ R4, includes the gripper position in 3D space and the gripper state (close/open). The
actions, a ∈ R4, are delta movements in 3D Cartesian space and the gripper control. The simulation
tasks are implemented in the Robosuite [80]. Further details can be found in Appendix 1.

High-level representation. Fig. 1 depicts the symbolic scene graph for Placing- tasks, where
nodes correspond to task-relevant objects, and edges encode binary relations between them. Ap-
pendix 1 includes further details about the tasks and their symbolic scene graphs.

4.1 Results: Evaluative Feedback

We use synthetic humans in simulated environments and real humans in real-world environments.
For synthetic humans (a fully trained SAC agent, more details in Appendix 2), the learning agent
chooses an action a in state s, and the oracle chooses an action a∗. The oracle SAC computes
the Q values for these actions: Q(s, a) and Q(s, a∗). If the learning agent chooses an action
that has a Q-value close enough to Q(s, a∗), it is a good action and the agent should receive
positive feedback. Otherwise, it should receive negative feedback: H(s, a) = +1, if Q(s, a) ≥
αQ(s, a∗);−1 otherwise. The α increases over time (see Appendix 2) to encourage the agent to
learn to choose better actions during training.

We compare our method to the following baselines in simulated environments: (a) the SAC baseline
without any human feedback (b) EF-100%, EF-50%, and EF-25%: the agent asks for feedback with
a probability of 100%, 50%, or 25% at every timestep. Hyperparameters of all the algorithms can
be found in Appendix 2.

Results for simulation (averaged across 5 seeds) are shown in Fig. 3. Our algorithm DREF (shown
in blue) achieves comparable performance to EF-100% with only 6.2%, 1.6%, and 8.4% feedback in
Lunar-Lander, Reaching-Sim, and Placing-Sim, respectively, corresponding to approximately
16×, 62×, and 11× improvement in feedback sample efficiency.

For real robot experiments with six humans per task, we omit the EF-100% baseline since it requires
step-by-step feedback from humans for a very long period of time. Humans are also allowed to
choose “no feedback” if they prefer. The order of the three methods is randomized to counterbalance
the ordering effect (see Appendix 4). Fig. 4 shows the results. In Reaching-Real, DREF achieves
comparable performance to EF-50% with 13.8% feedback, leading to a 3× improvement in human
feedback sample efficiency. Placing-Real is extremely challenging due to the long task horizon
and sparsity in reward signals. DREF achieves a better performance than all baselines, by a large
margin, with only 17% human feedback.

The human experiments are followed by a survey (details in Appendix 4.1) asking humans about
their overall experience training the robots (E), perceived intelligence level (I), and cognitive ease
(C) (see Fig. 4). It is evident that our algorithm leads to a better user experience and reported effort
(additional analyses are in Appendix 4.2). These results are supported by the observation that the
total training time and no feedback count are lower for DREF. This may also explain why EF-50%
performs poorly in the challenging Placing-Real task: the training is laborious and cognitively
demanding with this amount of guidance, and humans are prone to errors in this process.
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Figure 3: Cumulative rewards gained during training for Lunar-Lander, Reaching-Sim, and
Placing-Sim. The percentage corresponds to the percentage of feedback provided by the oracle
during training. The proposed algorithm, DREF, achieves comparable performance with EF-100%
with much less feedback and outperforms all other baselines. Error bars indicate the standard error
of the means (n = 5).
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Reaching EF-25% EF-50% DREF

T↓ 20.2±1.6 26.6±1.0 16.1±0.7
NFC↓ 54.5±13.5 89.8±26.8 22.2±8.8

E↑ 2.7±0.3 2.2±0.3 4.2±0.3
I↑ 2.3±0.4 3.0±0.6 4.2±0.5
C↑ 3.0±0.3 3.6±0.5 4.0±0.4

Placing EF-25% EF-50% DREF

T↓ 36.9±4.0 46.1±7.5 25.0±10.2
NFC↓ 156.7±43.6 421.5±93.0 119.7±25.4

E↑ 2.7±0.4 2.5±0.3 4.2±0.2
I↑ 2.7±0.3 2.7±0.5 4.7±0.2
C↑ 2.7±0.6 2.7±0.7 4.2±0.3

Figure 4: Cumulative rewards gained during training for Reaching-Real, and Placing-Real. The
proposed algorithm, DREF, achieves comparable or better performance with 50% feedback with
much less feedback and outperforms all other baselines. Error bars indicate the standard error of the
means (n = 6). Post-completion user survey (5-point Likert scale) results indicate that DREF leads
to better user experience, perceived intelligence, and less reported effort (n = 6). T: total training
time, NFC: number of “no feedback” responses, E: overall experience, I: perceived intelligence, C:
cognitive ease. See Appendix 4.1 and 4.2 for survey design and additional analyses.

To conclude, the results strongly support our hypothesis about evaluative feedback: asking for hu-
man feedback sensibly leads to a better learning outcome. DREF achieves this by implementing
uncertainty-aware active learning within the dual representation framework.

4.2 Results: Preference Learning

We now present the results of preference learning experiments. Similar to evaluative feedback, we
use synthetic humans in simulated environments and real humans in real-world environments. The
synthetic human has access to the true reward weight θ (more details in Appendix 3). For every pair
of queries(ξ, ξ′), the oracle calculates the true reward r and r′. The oracle returns q(ξ, ξ′) = 0 if
r(ξ) > r(ξ′), and q(ξ, ξ′) = 1 otherwise. The trajectories are generated by agents starting at random
positions and taking random actions. We record such trajectories, store them, and select trajectories
or segments to query synthetic or real humans. Preference learning algorithms update the posterior
belief of the reward function after each query. We use cosine similarity as the alignment score to
measure the distance between the estimated reward weights θ̂ and true weights θ [35, 41].

We compare DRPL with three baselines: (a) full trajectory query: randomly select two full trajecto-
ries to query; (b) random fragment query: randomly select two full trajectories, and cut one fragment
out of each with a length equal to the average length of DRPL queries; (c) DRPL-SS: a version of
our algorithm that selects a pair of trajectories associated with the same abstract state, instead of two
abstract states that differ in one dimension. Further details can be found in Appendix 3.

Results for simulation (averaged across 5 seeds with 5 different true rewards) are shown in Fig. 5.
DRPL (blue) converges to an alignment score around or greater than 0.8 for all tasks and outper-
forms all other algorithms. DRPL-SS performs better than the other baselines but is worse than
DRPL, indicating that both components of our DRPL (segmentation and selection) are important.

Results for real robot experiments with humans (six for each task) are shown in Fig. 6. We omit the
full trajectory baseline due to the time required to compare long trajectories generated by the random
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Figure 5: Alignment scores [35, 41] for Lunar-Lander, Reaching-Sim, and Placing-Sim. DRPL
performs the best upon convergence. Error bars indicate the standard error of the means (n = 5).
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Reaching RF DRPL-SS DRPL

E↑ 3.2±0.2 3.2±0.2 3.3±0.2
I↑ 1.5±0.2 3.8±0.3 4.5±0.3
C↑ 3.3±0.3 3.2±0.2 4.0±0.0

Placing RF DRPL-SS DRPL

E↑ 3.0±0.0 3.2±0.2 3.3±0.2
I↑ 1.5±0.3 2.7±0.4 3.8±0.2
C↑ 3.2±0.3 3.3±0.2 3.3±0.2

Figure 6: Alignment scores [35, 41] for Reaching-Real and Placing-Real. DRPL achieves the
best performance upon convergence. Error bars indicate the standard error of the means (n = 6).
Post-completion survey (5-point Likert scale) results indicate that DRPL leads to better perceived
intelligence. E: overall experience, I: perceived intelligence, C: cognitive ease. See Appendix 4.3
and 4.4 for survey design and additional analyses.

agents. Our algorithm DRPL (shown in blue) achieves better performance than both baselines.
Similar to evaluative feedback, the user experience survey (Fig. 6) shows that DRPL leads to better
perceived intelligence (see Appendix 4.3 and 4.4). To conclude, the results support our key insight
about preference learning: abstract state–based trajectory segmentation and query lead to a better
learning outcome. DRPL is an instantiation of this idea within the dual representation framework.

5 Discussion

To summarize, we have proposed a dual representation framework for robot learning from human
guidance. In the context of robot learning, abstract representation has long been a research topic.
However, adopting it in decision learning often comes with a price: the critical information needed
to learn a good policy may be lost in the process of abstraction. Researchers typically avoid this
problem by having a hierarchical representation. The key difference is that we only use abstract
representation as an auxiliary representation.

We show that the abstract scene graph representation allows us to utilize important heuristics that
facilitate training in two popular forms of human guidance: evaluation and preference, both of which
utilize human evaluations for observed agent policies. Evaluative feedback targets state-action pairs
that are fine-grained, while preference learning targets trajectories that could be too coarse. Hence
the former needs a grouping mechanism for generalization, and the latter needs a segmentation
mechanism for efficient queries. Our proposed framework is a unified approach to provide both.

We demonstrate the effectiveness of our approaches in five challenging continuous control tasks. Our
algorithms show significant improvements in performance and reduction in human effort, compared
to algorithms without an auxiliary scene graph representation. These improvements make learning
from human guidance methods significantly more appealing for real-robot learning.

Limitations. Currently, our proposed approaches leverage expert-defined scene graphs. Although
this representation should be closer to the human representation, the actual representations are likely
to be different across human trainers. Adapting to different abstract representations may further
improve learning outcomes and user experience.
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