

000 001 002 003 004 005 LEARN TO LEARN CONSISTENTLY VIA META SELF- 006 DISTILLATION FOR FEW-SHOT CLASSIFICATION 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029

ABSTRACT

030 In few-shot learning, a model trained on disjoint base classes must solve novel
031 tasks at test time using only a few of examples. A central challenge is shortcut
032 bias: the model can overfit to spurious cues (e.g., background, noise, shape, color)
033 that separate the few support examples during rapid adaptation but fail to generalize
034 to larger query sets within novel tasks. In this paper, we first define learning
035 consistency (i.e., the degree to which the model acquires similar knowledge when
036 trained from different views of the same data), and show empirically that higher
037 consistency reduces reliance on shortcuts and improves generalization. Building
038 on this insight, we propose Learn to Learn Consistently (LLC), a simple yet effective
039 meta-learning method that maximizes learning consistency during training. In
040 the inner loop, the model is updated separately using different augmented views of
041 the same support set. In the outer loop, the same query set is used to enforce con-
042 sistency across the learned updates. Models initialized by LLC generalize better
043 in the meta-testing phase. Extensive experiments demonstrate improved general-
044 ization across diverse settings and stronger learning consistency.
045
046

1 INTRODUCTION

047 Few-shot learning aims to address novel tasks with a limited number of examples, typically through
048 fast adaptation of a model trained on a dataset with disjoint labels. Many approaches tackle this
049 issue from the perspective of meta-learning (Lee et al., 2019; Lake & Baroni, 2023; Wei et al.,
050 2024c). Methods such as Model-Agnostic meta-Learning (MAML) (Finn et al., 2017) and its vari-
051 ants (Nichol et al., 2018; Raghu et al., 2019; Kao et al., 2021; Wei et al., 2024b) aim to learn
052 initialized parameters for a model with prior knowledge for fast adaptation. Recent research has
053 explored more challenging scenarios, such as cross-domain few-shot learning (Tseng et al., 2020;
054 Guo et al., 2020; Ullah et al., 2022; Wei et al., 2024a), where the novel task belongs to a different
055 domain and label set than the training dataset.
056

057 A key challenge in various few-shot learning problems is the model’s tendency to learn biased short-
058 cut features (e.g., background, noise, shape, color) from limited examples (Shah et al., 2020; Lyu
059 et al., 2021; Le et al., 2021; Teney et al., 2022). These shortcut features may suffice to distin-
060 guish the few classes during fast adaptation but result in poor generalization. Several solutions
061 have been proposed to address these issues. Although these approaches partially mitigate the prob-
062 lem, they often require additional resources or learn generalized features only within the meta-train
063 dataset (Snell et al., 2017; Liu et al., 2020; Le et al., 2021; Zhou et al., 2023). From the perspective
064 of meta-learning, we ask the following question: *Can we bias the initialization toward learning
065 generalizable rather than shortcut features on novel tasks?*

066 This problem is challenging to address directly, as identifying generalized versus shortcut features
067 in the data is difficult. In our study, we generate different views of the same data through data aug-
068 mentation, which gives these views different shortcut features but similar generalized features. We
069 use these views to update the model and observe that when model learning with better consistency
070 tends to exhibit better generalization. This implies that when a model learned with higher consis-
071 tency, it would be less influenced by the shortcut features and reaches higher accuracy. At this point,
072 if we can enhance the model’s learning consistency across all tasks, we can make the model less
073 influenced by the shortcut feature and more inclined to learn generalized features.
074

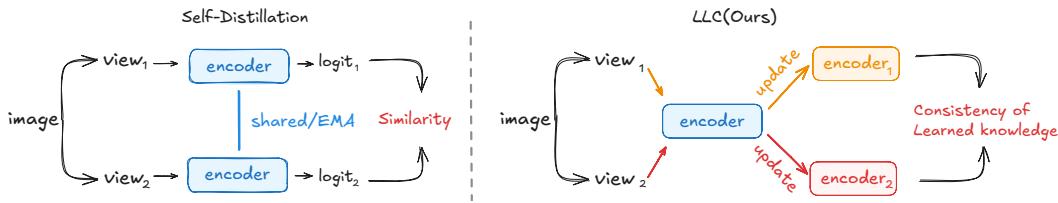


Figure 1: **The core idea between self-distillation and meta self-distillation.** Self-distillation aims to make the deep representation of different views closer, while LLC aims to learn consistent knowledge from the different views of the same image.

Based on this observation, we introduce an optimization-based meta-learning framework, termed Learn to Learn Consistently (LLC), which is designed to maximize the learning consistency of the meta-initialized model. The core idea is to encourage the model to produce stable and coherent predictions across different learning trajectories derived from the same tasks. Concretely, in the inner loop, we apply data augmentation to generate multiple variants of the same tasks, and use these augmented tasks to independently update the initialized model parameters. This process simulates diverse learning paths while preserving the underlying task semantics. In the outer loop, we explicitly optimize for output consistency by minimizing the discrepancy between the predictions on identical query samples, obtained from the differently updated models in the inner loop. By aligning the outputs across these independent updates, LLC strengthens the model’s capability to learn in a stable and reliable manner, even when faced with variations in task presentation. This consistency-driven optimization not only enhances the robustness of the meta-initialized model but also improves its generalization ability to unseen tasks. We conduct extensive evaluations of LLC under three distinct few-shot learning scenarios, covering both classification and regression settings. The experimental results consistently demonstrate that LLC outperforms baseline meta-learning methods, validating its effectiveness in promoting stable learning dynamics and superior generalization performance.

In summary, our contributions are as follows:

- We first propose the concept of *learning consistency* and observed that the learning consistency could serve as an indicator of the model’s inclination towards learning shortcut features that lead to overfitting.
- Moreover, we propose LLC, which maximizes the consistency of learned knowledge during meta-training, biasing the initialization toward generalizable features.
- Extensive experiments demonstrate that our method achieves remarkable performance across various few-shot scenarios and significantly enhances the model’s ability to learn consistently in unseen tasks.

2 RELATED WORK

2.1 FEW-SHOT LEARNING AND META-LEARNING

Few-shot learning is a compelling paradigm for recognizing novel classes from a limited number of examples. In the conventional setting, a model is first pre-trained on a set of base classes and then rapidly adapted to novel tasks, whose classes are disjoint from those in the pre-training phase. Two main strategies have been pursued in recent studies: transfer learning and meta-learning. Transfer learning methods focus on developing a robust feature extractor from the base classes that can generalize to novel tasks (Tian et al., 2020; Liu et al., 2021; Wei & Wei, 2024), whereas meta-learning—often referred to as learning to learn—aims to endow the model with prior knowledge that enables fast adaptation (Antoniou et al., 2018; Ye & Chao, 2021; Hu et al., 2025).

Meta-learning methods can be generally categorized into metric-based and optimization-based approaches. Metric-based methods, such as ProtoNet (Snell et al., 2017), enhance the feature space by minimizing the distance between support and query examples of the same class, thereby reducing or even obviating the need for fine-tuning at test time. Optimization-based approaches, including MAML (Finn et al., 2017) and its extensions such as Unicorn-MAML (Ye & Chao, 2021), MAML++(Antoniou et al., 2018), and ANIL(Raghuram et al., 2019), aim to learn initialization param-

108 eters that enable efficient adaptation to novel tasks. However, these variants primarily focus on
 109 improving the optimization stability of MAML rather than further enhancing the learning ability of
 110 the initialized model.

111 A common challenge in few-shot learning is the tendency of models to latch onto shortcut fea-
 112 tures during fast adaptation, which leads to overfitting and reduced generalization performance (Lyu
 113 et al., 2021; Le et al., 2021; Teney et al., 2022; Wei et al., 2025a). This issue is exacerbated in
 114 cross-domain few-shot learning scenarios, where base and novel classes originate from different
 115 domains (Triantafillou et al., 2019; Tseng et al., 2020; Ullah et al., 2022). Several remedies have
 116 been proposed to solve the problem. For example, Poodle (Le et al., 2021) leverages additional
 117 data to penalize out-of-distribution samples, while LDP-net (Zhou et al., 2023) employs both local
 118 and global knowledge distillation to encourage the learning of diverse features. However, these ap-
 119 proaches typically require extra data or increased model complexity. In this work, we solve the issue
 120 by explicitly biasing the initialized model toward learning generalized features.

121 2.2 SELF-DISTILLATION

122 Self-distillation (Zhang et al., 2021; Wei et al., 2025b) has recently gained attention as a variant
 123 of contrastive learning, aiming to refine feature representations by aligning the outputs of positive
 124 instance pairs without relying on explicit negative pairs. Methods such as BYOL (Grill et al., 2020)
 125 utilize an exponential moving average of the network to generate targets for an online network, while
 126 SimSiam (Chen & He, 2021) investigates the mechanisms that prevent representational collapse in
 127 the absence of negative examples. Additionally, work by (Allen-Zhu & Li, 2020) suggests that
 128 self-distillation can act as an implicit ensemble mechanism, enhancing the discrimination of subtle
 129 feature variations. Different from self-distillation that directly aligns representations, our approach
 130 focuses on aligning the models differently updated by different augmented Samples. In other words,
 131 we focus on learning consistency instead of representation consistency, which aims to reduce the
 132 influence of shortcut features during adaptation to novel tasks.

135 3 PRELIMINARY

136 **Problem Definition For Few-shot Classification** We define the few-shot classification problem
 137 (FSL) as an \mathcal{N} -way \mathcal{K} -shot task, where there are \mathcal{N} classes, each containing \mathcal{K} -labeled support
 138 samples. Typically, \mathcal{K} is small, such as 1 or 5. The data used to attempt to update the model
 139 is defined as the support data $\mathcal{S} = \{x_s, y_s\}$, where each x_s represents the model’s input, and y_s
 140 denotes the corresponding label for x_s . The data used to evaluate the effectiveness of the model
 141 updates is defined as the query data $\mathcal{Q} = \{x_Q, y_Q\}$, which has the same class as the support data,
 142 but the samples contained in the query set are different from those in the support set. The FSL task
 143 is defined as the problem of learning to correctly classify the query data \mathcal{Q} with the support data \mathcal{S} ,
 144 which can be written as follows:

$$\arg \min_{\theta} \mathbb{E}_{\mathcal{S}, \mathcal{Q} \sim \mathcal{D}_{\text{meta-test}}} [\mathcal{L}_{\text{FSL}}(\theta, \mathcal{S}, \mathcal{Q})] \quad (1)$$

145 If the model is randomly initialized and directly fine-tuned on the limited support data, the model
 146 will overfit. To address that, we need to transfer knowledge from seen data to the unseen data. The
 147 seen data used in FSL is referred to as the meta-train set, and the unseen data is referred to as the
 148 meta-test set. The labels in the two sets are disjoint, and in the cross-domain few-shot learning, the
 149 domains of the two sets are also different.

150 **Model-Agnostic Meta-Learning** The objective of MAML is to learn initialized parameters θ with
 151 prior knowledge, such that after a few steps of standard training on the support data, the model can
 152 generalize well on the query data:

$$\arg \min_{\theta} \mathbb{E}_{\mathcal{S}, \mathcal{Q} \sim \mathcal{D}_{\text{meta-train}}} [\mathcal{L}(\mathcal{U}^k(\theta, \mathcal{S}), \mathcal{Q})], \quad (2)$$

153 where \mathcal{U}^k denotes k updates of the parameter θ using tasks sampled from the task distribution, which
 154 corresponds to adding a sequence of gradient vectors to the initialized parameters:

$$\mathcal{U}^k(\theta, \mathcal{S}) = \theta - \sum_{i=1}^k \alpha \cdot \frac{\partial \mathcal{L}(\mathcal{U}^{i-1}(\theta, \mathcal{S}), \mathcal{S})}{\partial \theta}, \quad (3)$$

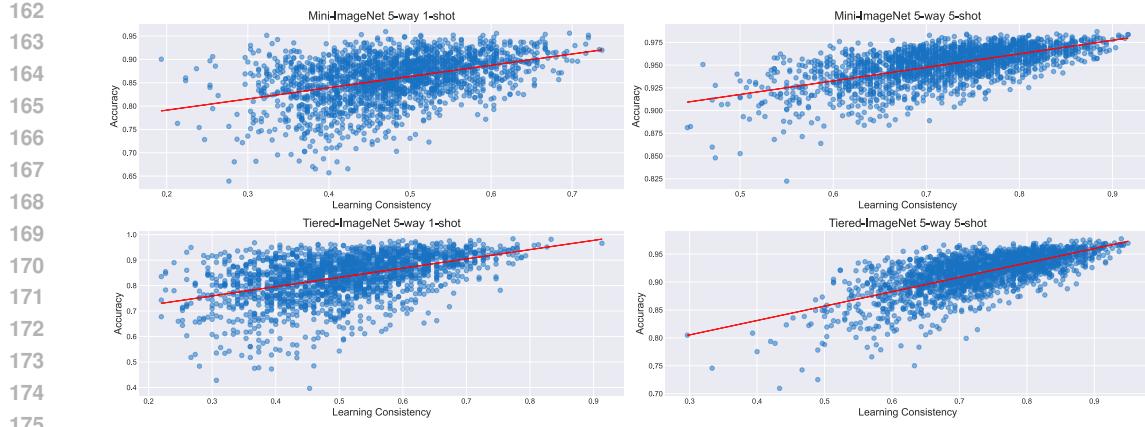


Figure 2: **The learning consistency versus accuracy of the model initialized by MAML across different tasks.** The results demonstrate a clear trend: as the model’s consistency learned from the task increases, the average accuracy in predicting query data improves. The algorithm flow to get the result is shown in Supplementary Material Algorithm 1

where $\mathcal{U}^0(\theta, \mathcal{S}) = \theta$. The process of updating the parameters with support data is referred to as *inner loop process*, where α is the stepsize of the inner loop. Subsequently, the query data \mathcal{Q} is used to evaluate $\mathcal{U}^k(\theta, \mathcal{S})$, and directly updating the initial parameters θ , which known as the *outer loop process*. The outer loop commonly employs SGD for updates, and the update process can be computed as follows:

$$\theta' = \theta - \beta \cdot \frac{\partial \mathcal{L}(\mathcal{U}^k(\theta, \mathcal{Q}), \mathcal{S})}{\partial \theta}, \quad (4)$$

where β is the learning rate of the outer loop. By minimizing the loss across sampled tasks, MAML enables the parameters to learn prior knowledge from the meta-train set.

4 LEARN TO LEARN CONSISTENTLY

4.1 WHY LEARN CONSISTENTLY IN FSL

Previous studies have indicated that in few-shot learning (FSL) scenarios, models tend to learn shortcut features (e.g., background, noise, shape, color) from limited examples (Shah et al., 2020; Teney et al., 2022; Lyu et al., 2021; Le et al., 2021). These shortcut features may suffice to distinguish the few classes during rapid adaptation but often lead to poor generalization. From the perspective of meta-learning, we aim for the initialized model to learn more generalized features, avoiding the reliance on shortcut features. However, it’s hard to distinguish these features directly in practice. To solve that, We introduced the concept of learning consistency and proposed that the learning consistency can serve as an indicator of the model’s inclination towards learning shortcut features.

Definition 1 (Learning Consistency). *Let \mathcal{S} be a given support sample set and θ be an initial model. Consider two random data augmentation operators Aug_i and Aug_j that generate two augmented versions of the source data: $\text{Aug}_i(\mathcal{S}), \text{Aug}_j(\mathcal{S})$. These augmented data are then used to update the initial model θ to yield two updated models θ^i and θ^j :*

$$\theta^i \leftarrow \mathcal{U}^k(\theta, \text{Aug}^i(\mathcal{S})), \quad \theta^j \leftarrow \mathcal{U}^k(\theta, \text{Aug}^j(\mathcal{S})).$$

Given a query sample set $x_{\mathcal{Q}} \sim p(x_{\mathcal{Q}})$, let $f_{\theta^i}(x)$ and $f_{\theta^j}(x)$ denote the outputs of the two models, respectively. Define a discrepancy metric \mathcal{F}_{sim} to measure the difference between these outputs. The learning consistency of initialized model θ is defined as:

$$\text{LC}(\theta) = \mathbb{E}_{x_{\mathcal{Q}} \sim p(x_{\mathcal{Q}}), \mathcal{S} \sim p(\mathcal{S})} [\mathcal{F}_{\text{sim}}(f_{\theta^i}(x_{\mathcal{Q}}), f_{\theta^j}(x_{\mathcal{Q}}))].$$

Since the support data are differently augmented from the same data, they would contain different shortcut features and similar generalized features. Therefore, the inconsistency of the differently updated models is mainly caused by different shortcut features. If the model tends to learn shortcut features, which results in overfitting, the inconsistency in these features leads to greater output

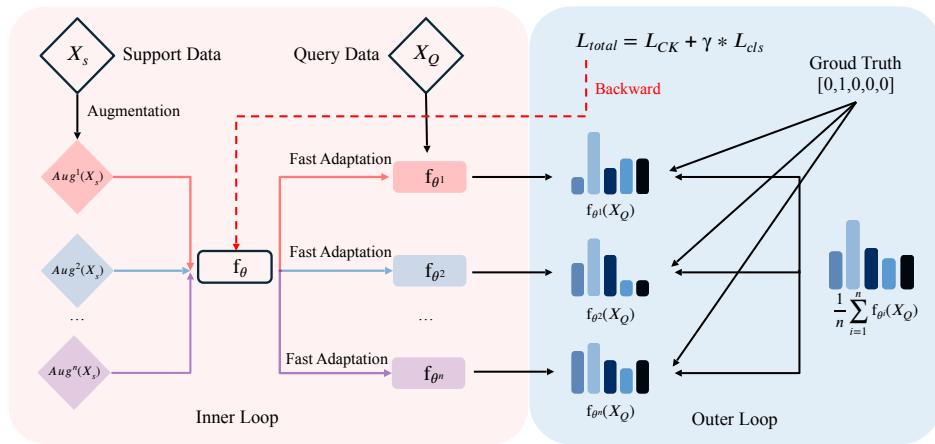


Figure 3: **An overview of the proposed LLC.** In the inner loop, LLC first uses different augmented support data to update the f_θ . In the outer loop, then maximizes the consistency among the outputs of the same query data with different update versions of the initial model

variance for the same query data. To further validate the point, we evaluate the learning consistency and accuracy of the parameters initialized by MAML. The results are illustrated in Figure 2: lower consistency corresponds to lower average prediction accuracy. Additionally, as the amount of support data increases, the model is less influenced by shortcut features, and both consistency and accuracy are improved consistently. These empirical findings indicate a strong alignment between learning consistency and model generalization, thereby substantiating the claim that learning consistency reflects the model’s inclination toward shortcut feature learning. We then define the learning consistency property as follows:

Property 1(Learning consistency property.) *Given a support sample set \mathcal{S} , inner step k , input domain \mathcal{D} , random augmentation $\mathcal{A}ug^i$ and similarity function \mathcal{F}_{sim} . We say initialized parameters θ satisfy the learning consistency property if:*

$$\forall i, j, \forall \mathcal{S} \in \mathcal{D}_\mathcal{S}, x_Q \in \mathcal{D}_Q, \mathcal{F}_{sim}(f_{\theta^i}(x_Q), f_{\theta^j}(x_Q)) = \mathcal{M} \quad (5)$$

where $\theta^i = \mathcal{U}^k(\theta, \mathcal{A}ug^i(\mathcal{S}))$ and \mathcal{M} is the upper bound of \mathcal{F}_{sim} . In short, if the initialized parameters satisfy the learning consistency property, the parameters will learn consistent knowledge from different augmented views of the same image, thus less influenced by the shortcut features.

4.2 LEARN TO LEARN CONSISTENTLY

Motivated by the property in Eq. 5, we propose Learn to Learn Consistently (LLC) to enhance the learning consistency of the model initialization. An overview of LLC is provided in Fig. 3.

Meta-Train Phase. Specifically, we sample tasks from the meta-train set to obtain support and query data. Unlike MAML, which samples multiple tasks, we sample a single task and create multiple augmented versions as substitutes. Only the support data is augmented in the different augmented tasks, and the tasks share the same query data. The rationale behind this is to have the same standard when assessing the knowledge learned by the model. In the inner loop, the model is updated with different augmented views of the support data to obtain varied parameters: $\theta_i = \mathcal{U}^k(\theta, \mathcal{A}ug^i(\mathcal{S}))$. In the outer loop, we test the query with different updated parameters. The consistency of the query outputs is used to assess the consistency of learned knowledge, considering there are more than two tasks, we use the average of the output to align the learning consistency of the initialized model. The learning consistency loss can be formulated as follows:

$$\mathcal{L}_{CK} = -\frac{1}{n} \sum_i^n \mathcal{F}_{sim}(f_{\theta^i}(x_Q), \frac{1}{n} \sum_j^n f_{\theta^j}(x_Q)) \quad (6)$$

We use the cosine similarity as the similarity function in practice. Furthermore, to ensure the model fully utilizes label information, we also compute the classification loss for each updated parameter

270 by query data. The model’s total loss is expressed as:
 271

$$\mathcal{L}_{\text{total}} = \mathcal{L}_{\text{cls}} + \gamma \cdot \mathcal{L}_{\text{CK}} \quad (7)$$

273 Where γ represents the coefficient of consistency loss. The process of updating the initial parameters
 274 is $\theta' = \theta - \beta \cdot \nabla_{\theta} \mathcal{L}_{\text{total}}$. Where β represents the learning rate in the outer loop. The detailed algorithm
 275 flow is shown in Supplementary Material Algorithm 2.

276 **Meta-Test Phase.** During the meta-test phase, LLC is consistent with MAML, which performs
 277 fast adaptation support data using SGD and classifies the query data directly with the updated model.
 278

280 5 EXPERIMENT

282 5.1 EXPERIMENT SETTING

284 **Datasets.** For standard and augmented FSL evaluation, Our method was primarily evaluated on
 285 two benchmark datasets: Mini-ImageNet (Vinyals et al., 2016) and Tiered-ImageNet (Ren et al.,
 286 2018), both widely used for few-shot learning assessments. For cross-domain FSL evaluation, we
 287 use Mini-ImageNet as the source domain and use another eight datasets as the target domain, i.e.,
 288 CUB, Cars, Places, Plantae, ChestX, ISIC, EuroSAT and CropDisease.

289 The Mini-ImageNet dataset comprises 100 classes, each containing 600 samples. Following prior
 290 work, we divided the 100 classes into training, validation, and test sets, containing 64, 16, and 20
 291 classes, respectively. The Tiered-ImageNet dataset encompasses 608 fine-grained classes, which
 292 are categorized into 34 higher-level classes. In alignment with previous studies, we divided these
 293 higher-level classes into training, validation, and test sets, comprising 20, 6, and 8 higher-level
 294 classes, respectively. CUB, Cars, Places, and Plantae proposed in (Tseng et al., 2020) contain nat-
 295 ural images of different properties. ChestX, ISIC, EuroSAT and CropDisease proposed in (Guo
 296 et al., 2020) are cross-domain datasets from the domain of medicine, agriculture, and remote sens-
 297 ing, which have significant domain shifts. All the images are resized to 84×84 pixels following
 298 common practice.

299 **Backbone Model.** For our model evaluation, following (Lee et al., 2019), we employed a ResNet-
 300 12 (He et al., 2016) architecture, noted for its broader widths and Dropblock modules as introduced
 301 by (Ghiasi et al., 2018). This backbone is broadly used across numerous few-shot learning al-
 302 gorithms. Additionally, we follow the original MAML approach, utilizing a 4-layer convolutional
 303 neural network(Conv4) (Vinyals et al., 2016). Following the recent practice (Ye et al., 2020; Qiao
 304 et al., 2018; Rusu et al., 2018), MAML, Unicorn-MAML, and our models’ weights are pre-trained
 305 on the meta-train set to initialize.

306 5.2 MAIN RESULTS

307 We evaluate our method under three settings: standard few-shot learning problems, cross-domain
 308 few-shot learning problems, and augmented few-shot learning problems.
 309

310 5.2.1 STANDARD FEW-SHOT LEARNING PROBLEMS.

312 The results in Table.1 demonstrate the performance of LLC and several mainstream few-shot algo-
 313 rithms on few-shot tasks. LLC exhibits a significant improvement over MAML in standard few-shot
 314 tasks. The results of MAML are produced by(Ye & Chao, 2021), which uses more inner steps
 315 for MAML to reach better performance. On Mini-ImageNet, our method achieved an increase of
 316 0.99% in 5way-1shot and 1.44% in 5way-5shot tasks compared with MAML, respectively. On
 317 Tiered-ImageNet, the improvements for 5way-1shot and 5way-5shot tasks were 2.79% and 2.50%
 318 compared with MAML, respectively. LLC shows excellent effectiveness in few-shot tasks, with
 319 better performance compared to the recent meta-learning algorithms and MAML’s variants.
 320

321 5.2.2 CROSS DOMAIN FEW-SHOT LEARNING PROBLEMS.

322 To explore the performance when there is a large domain gap between the meta-train set and the
 323 meta-test set, we also evaluated the performance of LLC under the cross-domain dataset setting. The
 324 results are shown in Table.2. Experimental results demonstrate that our method achieves significant

324 **Table 1: 5way-1shot and 5way-5shot classification accuracy in standard few-shot classification task and**
 325 **95% confidence interval on Mini-ImageNet, Tiered-ImageNet (over 2000 tasks), using ResNet-12 as the back-**
 326 **bone. NIW-Meta used ResNet-18 as the backbone.**

328 329 330 331 332 333 334 335 336 337	Methods	338 339 340 341 342 343 344 345 346 347 348 349 350 351		341 342 343 344 345 346 347 348 349 350 351		341 342 343 344 345 346 347 348 349 350 351	
		1-Shot	5-Shot	1-Shot	5-Shot	1-Shot	5-Shot
ProtoNet (Snell et al., 2017)	62.39 \pm 0.20	80.53 \pm 0.20	68.23 \pm 0.23	84.03 \pm 0.16			
MAML (Finn et al., 2017)	64.42 \pm 0.20	83.44 \pm 0.14	65.72 \pm 0.20	84.37 \pm 0.16			
MetaOptNet (Lee et al., 2019)	62.64 \pm 0.35	78.63 \pm 0.68	65.99 \pm 0.72	81.56 \pm 0.53			
ProtoMAML (Triantafillou et al., 2019)	64.12 \pm 0.20	81.24 \pm 0.20	68.46 \pm 0.23	84.67 \pm 0.16			
DSN-MR (Simon et al., 2020)	64.60 \pm 0.72	79.51 \pm 0.50	67.39 \pm 0.82	82.85 \pm 0.56			
Meta-AdaM (Sun & Gao, 2024)	59.89 \pm 0.49	77.92 \pm 0.43	65.31 \pm 0.48	85.24 \pm 0.35			
LA-PID (Yu et al., 2024)	63.29 \pm 0.48	79.18 \pm 0.43	64.77 \pm 0.47	82.59 \pm 0.37			
NIW-Meta [†] (Kim & Hospedales, 2024)	65.49 \pm 0.56	81.71 \pm 0.17	70.52 \pm 0.19	85.83 \pm 0.17			
LLC	65.41 \pm 0.47	84.88 \pm 0.29	68.51 \pm 0.53	86.87 \pm 0.34			

338 **Table 2: 5way-5shot classification accuracy in cross-domain few-shot classification task** (over 2000 tasks),
 339 using ResNet-12 as the backbone. Only the train set of Mini-ImageNet is used during the meta-train phase.

	CUB	Cars	Places	Plantae	Euro	ISIC	CropD	ChestX
GNN (Garcia & Bruna, 2017)	62.87	43.70	70.91	48.51	78.69	42.54	83.12	23.87
GNN+FT (Tseng et al., 2020)	64.97	46.19	70.70	49.66	78.02	40.87	87.07	24.28
TPN+ATA (Wang & Deng, 2021)	70.14	55.23	73.87	59.02	85.47	49.83	93.56	24.74
GNN+ATA (Wang & Deng, 2021)	66.22	49.14	75.48	52.69	83.75	44.91	90.59	24.32
MatchingNet+AFA (Hu & Ma, 2022)	59.46	46.13	68.87	52.43	69.63	39.88	80.07	23.18
GNN+AFA (Hu & Ma, 2022)	68.25	49.28	76.21	54.26	85.58	46.01	88.06	25.02
LDP-net (Zhou et al., 2023)	70.39	52.84	72.90	58.49	82.01	48.06	89.40	26.67
GNN +FAP (Zhang et al., 2024)	67.66	50.20	74.98	54.54	82.52	47.60	91.79	25.31
RFS+MLP (Bai et al., 2024)	-	-	-	-	83.14	46.02	66.87	29.09
LLC	70.22	58.55	75.59	60.81	85.65	51.54	95.12	28.26

352 **Table 3: 5way-1shot and 5way-5shot classifica-**
 353 **354**
 355 **356**
 357 **358**
 359 **360**
 361 **362**
 363 **364**
 365 **366**
 367 **368**
 369 **370**
 371 **372**
 373 **374**
 375 **376**
 377 **378**
 379 **380**
 381 **382**
 383 **384**
 385 **386**
 387 **388**
 389 **390**
 391 **392**
 393 **394**
 395 **396**
 397 **398**
 399 **399**
 400 **400**
 401 **401**
 402 **402**
 403 **403**
 404 **404**
 405 **405**
 406 **406**
 407 **407**
 408 **408**
 409 **409**
 410 **410**
 411 **411**
 412 **412**
 413 **413**
 414 **414**
 415 **415**
 416 **416**
 417 **417**
 418 **418**
 419 **419**
 420 **420**
 421 **421**
 422 **422**
 423 **423**
 424 **424**
 425 **425**
 426 **426**
 427 **427**
 428 **428**
 429 **429**
 430 **430**
 431 **431**
 432 **432**
 433 **433**
 434 **434**
 435 **435**
 436 **436**
 437 **437**
 438 **438**
 439 **439**
 440 **440**
 441 **441**
 442 **442**
 443 **443**
 444 **444**
 445 **445**
 446 **446**
 447 **447**
 448 **448**
 449 **449**
 450 **450**
 451 **451**
 452 **452**
 453 **453**
 454 **454**
 455 **455**
 456 **456**
 457 **457**
 458 **458**
 459 **459**
 460 **460**
 461 **461**
 462 **462**
 463 **463**
 464 **464**
 465 **465**
 466 **466**
 467 **467**
 468 **468**
 469 **469**
 470 **470**
 471 **471**
 472 **472**
 473 **473**
 474 **474**
 475 **475**
 476 **476**
 477 **477**
 478 **478**
 479 **479**
 480 **480**
 481 **481**
 482 **482**
 483 **483**
 484 **484**
 485 **485**
 486 **486**
 487 **487**
 488 **488**
 489 **489**
 490 **490**
 491 **491**
 492 **492**
 493 **493**
 494 **494**
 495 **495**
 496 **496**
 497 **497**
 498 **498**
 499 **499**
 500 **500**
 501 **501**
 502 **502**
 503 **503**
 504 **504**
 505 **505**
 506 **506**
 507 **507**
 508 **508**
 509 **509**
 510 **510**
 511 **511**
 512 **512**
 513 **513**
 514 **514**
 515 **515**
 516 **516**
 517 **517**
 518 **518**
 519 **519**
 520 **520**
 521 **521**
 522 **522**
 523 **523**
 524 **524**
 525 **525**
 526 **526**
 527 **527**
 528 **528**
 529 **529**
 530 **530**
 531 **531**
 532 **532**
 533 **533**
 534 **534**
 535 **535**
 536 **536**
 537 **537**
 538 **538**
 539 **539**
 540 **540**
 541 **541**
 542 **542**
 543 **543**
 544 **544**
 545 **545**
 546 **546**
 547 **547**
 548 **548**
 549 **549**
 550 **550**
 551 **551**
 552 **552**
 553 **553**
 554 **554**
 555 **555**
 556 **556**
 557 **557**
 558 **558**
 559 **559**
 560 **560**
 561 **561**
 562 **562**
 563 **563**
 564 **564**
 565 **565**
 566 **566**
 567 **567**
 568 **568**
 569 **569**
 570 **570**
 571 **571**
 572 **572**
 573 **573**
 574 **574**
 575 **575**
 576 **576**
 577 **577**
 578 **578**
 579 **579**
 580 **580**
 581 **581**
 582 **582**
 583 **583**
 584 **584**
 585 **585**
 586 **586**
 587 **587**
 588 **588**
 589 **589**
 590 **590**
 591 **591**
 592 **592**
 593 **593**
 594 **594**
 595 **595**
 596 **596**
 597 **597**
 598 **598**
 599 **599**
 600 **600**
 601 **601**
 602 **602**
 603 **603**
 604 **604**
 605 **605**
 606 **606**
 607 **607**
 608 **608**
 609 **609**
 610 **610**
 611 **611**
 612 **612**
 613 **613**
 614 **614**
 615 **615**
 616 **616**
 617 **617**
 618 **618**
 619 **619**
 620 **620**
 621 **621**
 622 **622**
 623 **623**
 624 **624**
 625 **625**
 626 **626**
 627 **627**
 628 **628**
 629 **629**
 630 **630**
 631 **631**
 632 **632**
 633 **633**
 634 **634**
 635 **635**
 636 **636**
 637 **637**
 638 **638**
 639 **639**
 640 **640**
 641 **641**
 642 **642**
 643 **643**
 644 **644**
 645 **645**
 646 **646**
 647 **647**
 648 **648**
 649 **649**
 650 **650**
 651 **651**
 652 **652**
 653 **653**
 654 **654**
 655 **655**
 656 **656**
 657 **657**
 658 **658**
 659 **659**
 660 **660**
 661 **661**
 662 **662**
 663 **663**
 664 **664**
 665 **665**
 666 **666**
 667 **667**
 668 **668**
 669 **669**
 670 **670**
 671 **671**
 672 **672**
 673 **673**
 674 **674**
 675 **675**
 676 **676**
 677 **677**
 678 **678**
 679 **679**
 680 **680**
 681 **681**
 682 **682**
 683 **683**
 684 **684**
 685 **685**
 686 **686**
 687 **687**
 688 **688**
 689 **689**
 690 **690**
 691 **691**
 692 **692**
 693 **693**
 694 **694**
 695 **695**
 696 **696**
 697 **697**
 698 **698**
 699 **699**
 700 **700**
 701 **701**
 702 **702**
 703 **703**
 704 **704**
 705 **705**
 706 **706**
 707 **707**
 708 **708**
 709 **709**
 710 **710**
 711 **711**
 712 **712**
 713 **713**
 714 **714**
 715 **715**
 716 **716**
 717 **717**
 718 **718**
 719 **719**
 720 **720**
 721 **721**
 722 **722**
 723 **723**
 724 **724**
 725 **725**
 726 **726**
 727 **727**
 728 **728**
 729 **729**
 730 **730**
 731 **731**
 732 **732**
 733 **733**
 734 **734**
 735 **735**
 736 **736**
 737 **737**
 738 **738**
 739 **739**
 740 **740**
 741 **741**
 742 **742**
 743 **743**
 744 **744**
 745 **745**
 746 **746**
 747 **747**
 748 **748**
 749 **749**
 750 **750**
 751 **751**
 752 **752**
 753 **753**
 754 **754**
 755 **755**
 756 **756**
 757 **757**
 758 **758**
 759 **759**
 760 **760**
 761 **761**
 762 **762**
 763 **763**
 764 **764**
 765 **765**
 766 **766**
 767 **767**
 768 **768**
 769 **769**
 770 **770**
 771 **771**
 772 **772**
 773 **773**
 774 **774**
 775 **775**
 776 **776**
 777 **777**
 778 **778**
 779 **779**
 780 **780**
 781 **781**
 782 **782**
 783 **783**
 784 **784**
 785 **785**
 786 **786**
 787 **787**
 788 **788**
 789 **789**
 790 **790**
 791 **791**
 792 **792**
 793 **793**
 794 **794**
 795 **795**
 796 **796**
 797 **797**
 798 **798**
 799 **799**
 800 **800**
 801 **801**
 802 **802**
 803 **803**
 804 **804**
 805 **805**
 806 **806**
 807 **807**
 808 **808**
 809 **809**
 810 **810**
 811 **811**
 812 **812**
 813 **813**
 814 **814**
 815 **815**
 816 **816**
 817 **817**
 818 **818**
 819 **819**
 820 **820**
 821 **821**
 822 **822**
 823 **823**
 824 **824**
 825 **825**
 826 **826**
 827 **827**
 828 **828**
 829 **829**
 830 **830**
 831 **831**
 832 **832**
 833 **833**
 834 **834**
 835 **835**
 836 **836**
 837 **837**
 838 **838**
 839 **839**
 840 **840**
 841 **841**
 842 **842**
 843 **843**
 844 **844**
 845 **845**
 846 **846**
 847 **847**
 848 **848**
 849 **849**
 850 <

Table 5: **Learning consistency in strong augmented few-shot classification task** on Mini-ImageNet and Tiered-ImageNet.

	Mini-ImageNet		Tiered-ImageNet	
Methods	1-Shot	5-Shot	1-Shot	5-Shot
MAML	85.88	94.03	84.93	93.87
Finn et al. (2017)	98.58	99.00	99.70	99.99
LLC + MAML				
Unicorn-MAML	87.55	94.60	86.67	95.41
Ye & Chao (2021)	99.91	99.92	99.94	99.96
LLC + Unicorn-MAML				

Table 7: The result of accuracy and learning consistency for different γ .

γ	0.1	0.3	0.5	0.8	1.0	2.0	3.0
Accuracy	83.71	84.05	84.31	84.55	84.88	84.86	84.76
Consistency	95.13	97.66	98.25	98.87	99.00	99.09	99.10

Table 8: **Ablation study on different augmentation strategies.** RR denotes Random Crop, CJ denotes Color Jitter, GC denotes Grayscale Conversion, GB denotes Gaussian Blur, and RHF denotes Random Horizontal Flip. All models are trained on the meta-train set of Mini-ImageNet.

RR	CJ	GC	GB	RHF	Mini-ImageNet 1-shot	5-shot
✗	✓	✓	✓	✓	65.13	84.50
✓	✗	✓	✓	✓	65.21	84.63
✓	✓	✗	✓	✓	65.18	84.67
✓	✓	✓	✗	✓	65.02	84.53
✓	✓	✓	✓	✗	65.32	84.71
✓	✓	✓	✓	✓	65.41	84.88

Learning consistency. Table.5 presents the learning consistency of different initialized models, as quantified by Eq.6. It is observed that both MAML and its variant, MAML-Unicorn, tend to learn inconsistent knowledge in both 5way-1shot and 5way-5shot scenarios. This implies that the model initialized by MAML and Unicorn-MAML is easily influenced by the different shortcut features produced by different augmentations, while our method achieves around 99% consistency in knowledge across both datasets for 5way-1shot and 5way-5shot problems. The result shows that our method significantly enhances the model’s ability to learn consistently.

5.3 ABLATION STUDY

To further explore the effectiveness of LLC, we conducted some ablation studies on LLC. We focus on the affection of data augmentation, the number of inner steps, and the similarity function.

Impact of γ . We further investigate the effect of different values of γ , with results presented in Table 7. As γ increases, we observe a consistent improvement in both learning consistency and accuracy. However, excessively large values of γ can hinder model convergence, leading to a slight degradation in performance. Based on these observations, we set $\gamma = 1$ as the optimal choice.

The impact of data augmentation and \mathcal{L}_{CK} . Table.6 illustrates the impact of data augmentation and \mathcal{L}_{CK} . The first row presents the results of LLC without data augmentation and \mathcal{L}_{CK} , which is equivalent to MAML. The second row shows the results of LLC without \mathcal{L}_{CK} , which is equivalent to MAML with augmentation. The third row displays the results of LLC. The results indicate that augmentation is not the primary factor in LLC's improvement. The main improvement is attributed to \mathcal{L}_{CK} , which enables the initialized model to learn consistently. This result further underscores the motivation to learn consistently. We further investigate how different augmentation strategies influence the performance in Table.8. The results indicate that LLC exhibits robustness across different augmentation methods.

The impact of the inner step. We further investigated the impact of different inner steps during the meta-test phase on the model’s few-shot classification accuracy and precise learning capabilities. Fig.4 illustrates the impact of the number of inner steps during the meta-test phase on the performance of the LLC algorithm. The results indicate that for any given number of inner steps,

Table 6: Ablation study on Mini-ImageNet. All models are trained on the meta-train set of Mini-ImageNet (over 2000 tasks).

Aug	\mathcal{L}_{CK}	Mini-ImageNet	
		1-shot	5-shot
✗	✗	64.43 \pm 0.46	83.90 \pm 0.29
✓	✗	64.31 \pm 0.48	84.14 \pm 0.28
✓	✓	65.41 \pm 0.47	84.88 \pm 0.29

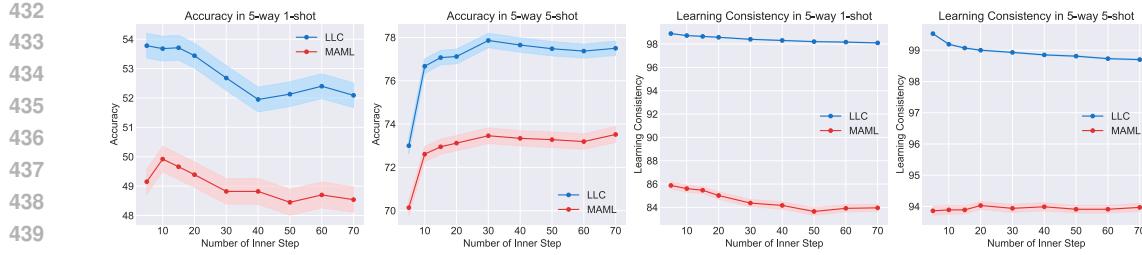


Figure 4: The 5way-1shot and 5way-5shot classification accuracy and the consistency of learned knowledge with different numbers of inner steps with 95% confidence interval, averaged over 2000 tasks

Table 9: The result with different \mathcal{F}_{sim} in standard few-shot classification task on Mini-ImageNet, using ResNet-12 as the backbone.

L_{ck}	Cosine	KL	JS	NMSE
1-shot	65.41	65.10	64.77	65.02
5-shot	84.88	84.73	84.29	84.49

the models trained using LLC consistently outperformed those trained with MAML. Specifically, in the 5way-1shot and 5way-5shot tasks, LLC achieved an accuracy of approximately 7% and 4% higher than MAML, respectively. Concerning the consistency of the knowledge learned, there was a trend of decreasing consistency for both MAML and LLC as the number of inner steps increased. This suggests that an excessive number of inner steps during the meta-test phase may lead to the model learning shortcut features. However, LLC still maintained approximately 99% consistency in different settings of the inner step, which shows the robustness and generalization of LLC.

The impact of \mathcal{F}_{sim} . Table.9 demonstrates the effect of different similarity functions on the performance of LLC. All the similarity function yield strong results, while cosine reach the highest result. This suggests that overly strict constraints, as imposed by NMSE, may adversely affect classification performance. Therefore, cosine similarity is recommended for use in LLC.

5.4 FURTHER ANALYSIS

Compute consumption. Compared to MAML, LLC achieves parity in algorithmic complexity by substituting different tasks with varied versions of the same task. Consequently, the computational overhead of LLC aligns with that of MAML.

Visualization. To gain deeper insights into the impact of LLC on the learning capabilities of models, we visualized the models updated with augmented data, as shown in Fig.5 in the Appendix. Specifically, during the meta-test phase, we visualized models trained with MAML and LLC. The model was first fine-tuned with support data, with the number of inner steps set to 20. Then, query data was employed as the visualized data. Grad-CAM++(Chattopadhyay et al., 2018) was utilized to visualize the critical regions that the models focused on for understanding the query data. The visualizations reveal that the model trained with MAML is more likely influenced by the environment, whereas model trained with LLC concentrate more on the objects pertinent to classification.

6 CONCLUSION

A key challenge in few-shot learning lies in the tendency of models to rely on shortcut features. In this work, we observe that models trained with higher learning consistency are less susceptible to such shortcuts. Motivated by this observation, we propose a meta-learning framework termed Learn to Learn Consistently (LLC). LLC updates the model in the inner loop using different augmented views of the support set, and subsequently maximizes the consistency of the outputs for the same query across these differently updated models. We evaluate LLC on three few-shot learning benchmarks and show that it consistently delivers substantial performance gains across diverse scenarios. By encouraging consistency in the learning process, LLC offers a novel perspective in meta-learning and represents a step forward in enhancing the generalization ability of few-shot learners.

486 REFERENCES
487

488 Zeyuan Allen-Zhu and Yuanzhi Li. Towards understanding ensemble, knowledge distillation and
489 self-distillation in deep learning. *arXiv preprint arXiv:2012.09816*, 2020.

490 Antreas Antoniou, Harrison Edwards, and Amos Storkey. How to train your maml. In *International*
491 *conference on learning representations*, 2018.

492 Shuanghao Bai, Wanqi Zhou, Zhirong Luan, Donglin Wang, and Badong Chen. Improving cross-
493 domain few-shot classification with multilayer perceptron. In *ICASSP 2024-2024 IEEE Interna-
494 tional Conference on Acoustics, Speech and Signal Processing (ICASSP)*, pp. 5250–5254. IEEE,
495 2024.

496 Aditya Chattpadhyay, Anirban Sarkar, Prantik Howlader, and Vineeth N Balasubramanian. Grad-
497 cam++: Generalized gradient-based visual explanations for deep convolutional networks. In *2018*
498 *IEEE winter conference on applications of computer vision (WACV)*, pp. 839–847. IEEE, 2018.

499 Xinlei Chen and Kaiming He. Exploring simple siamese representation learning. In *Proceedings of*
500 *the IEEE/CVF conference on computer vision and pattern recognition*, pp. 15750–15758, 2021.

501 Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation
502 of deep networks. In *International conference on machine learning*, pp. 1126–1135. PMLR, 2017.

503 Victor Garcia and Joan Bruna. Few-shot learning with graph neural networks. *arXiv preprint*
504 *arXiv:1711.04043*, 2017.

505 Golnaz Ghiasi, Tsung-Yi Lin, and Quoc V Le. Dropblock: A regularization method for convolu-
506 tional networks. *Advances in neural information processing systems*, 31, 2018.

507 Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre Richemond, Elena
508 Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Guo, Mohammad Gheshlaghi Azar,
509 et al. Bootstrap your own latent-a new approach to self-supervised learning. *Advances in neural*
510 *information processing systems*, 33:21271–21284, 2020.

511 Yunhui Guo, Noel C Codella, Leonid Karlinsky, James V Codella, John R Smith, Kate Saenko, Ta-
512 jana Rosing, and Rogerio Feris. A broader study of cross-domain few-shot learning. In *Computer*
513 *Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceed-
514 ings, Part XXVII 16*, pp. 124–141. Springer, 2020.

515 Fusheng Hao, Fengxiang He, Liu Liu, Fuxiang Wu, Dacheng Tao, and Jun Cheng. Class-aware
516 patch embedding adaptation for few-shot image classification. In *Proceedings of the IEEE/CVF*
517 *international conference on computer vision*, pp. 18905–18915, 2023.

518 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
519 nition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp.
520 770–778, 2016.

521 Markus Hiller, Rongkai Ma, Mehrtash Harandi, and Tom Drummond. Rethinking generalization in
522 few-shot classification. *Advances in neural information processing systems*, 35:3582–3595, 2022.

523 Yanxu Hu and Andy J Ma. Adversarial feature augmentation for cross-domain few-shot classifica-
524 tion. In *European conference on computer vision*, pp. 20–37. Springer, 2022.

525 Zixuan Hu, Yongxian Wei, Li Shen, Zhenyi Wang, Baoyuan Wu, Chun Yuan, and Dacheng Tao.
526 Task-distributionally robust data-free meta-learning. *IEEE Transactions on Pattern Analysis and*
527 *Machine Intelligence*, 2025.

528 Chia-Hsiang Kao, Wei-Chen Chiu, and Pin-Yu Chen. Maml is a noisy contrastive learner in classi-
529 fication. *arXiv preprint arXiv:2106.15367*, 2021.

530 Minyoung Kim and Timothy Hospedales. A hierarchical bayesian model for few-shot meta learning.
531 In *The Twelfth International Conference on Learning Representations*, 2024.

532 Brenden M Lake and Marco Baroni. Human-like systematic generalization through a meta-learning
533 neural network. *Nature*, 623(7985):115–121, 2023.

540 Duong Le, Khoi Duc Nguyen, Khoi Nguyen, Quoc-Huy Tran, Rang Nguyen, and Binh-Son Hua.
 541 Poodle: Improving few-shot learning via penalizing out-of-distribution samples. *Advances in*
 542 *Neural Information Processing Systems*, 34:23942–23955, 2021.

543

544 Kwonjoon Lee, Subhransu Maji, Avinash Ravichandran, and Stefano Soatto. Meta-learning with
 545 differentiable convex optimization. In *Proceedings of the IEEE/CVF conference on computer*
 546 *vision and pattern recognition*, pp. 10657–10665, 2019.

547

548 Chen Liu, Yanwei Fu, Chengming Xu, Siqian Yang, Jilin Li, Chengjie Wang, and Li Zhang. Learn-
 549 ing a few-shot embedding model with contrastive learning. In *Proceedings of the AAAI conference*
 550 *on artificial intelligence*, volume 35, pp. 8635–8643, 2021.

551

552 Lu Liu, William Hamilton, Guodong Long, Jing Jiang, and Hugo Larochelle. A universal repre-
 553 sentation transformer layer for few-shot image classification. *arXiv preprint arXiv:2006.11702*,
 554 2020.

555

556 Kaifeng Lyu, Zhiyuan Li, Runzhe Wang, and Sanjeev Arora. Gradient descent on two-layer nets:
 557 Margin maximization and simplicity bias. *Advances in Neural Information Processing Systems*,
 558 34:12978–12991, 2021.

559

560 Alex Nichol, Joshua Achiam, and John Schulman. On first-order meta-learning algorithms. *arXiv*
 561 *preprint arXiv:1803.02999*, 2018.

562

563 Siyuan Qiao, Chenxi Liu, Wei Shen, and Alan L Yuille. Few-shot image recognition by predicting
 564 parameters from activations. In *Proceedings of the IEEE conference on computer vision and*
 565 *pattern recognition*, pp. 7229–7238, 2018.

566

567 Aniruddh Raghu, Maithra Raghu, Samy Bengio, and Oriol Vinyals. Rapid learning or feature reuse?
 568 towards understanding the effectiveness of maml. *arXiv preprint arXiv:1909.09157*, 2019.

569

570 Mengye Ren, Eleni Triantafillou, Sachin Ravi, Jake Snell, Kevin Swersky, Joshua B Tenenbaum,
 571 Hugo Larochelle, and Richard S Zemel. Meta-learning for semi-supervised few-shot classifica-
 572 tion. *arXiv preprint arXiv:1803.00676*, 2018.

573

574 Andrei A Rusu, Dushyant Rao, Jakub Sygnowski, Oriol Vinyals, Razvan Pascanu, Simon Osin-
 575 dero, and Raia Hadsell. Meta-learning with latent embedding optimization. *arXiv preprint*
 576 *arXiv:1807.05960*, 2018.

577

578 Harshay Shah, Kaustav Tamuly, Aditi Raghunathan, Prateek Jain, and Praneeth Netrapalli. The
 579 pitfalls of simplicity bias in neural networks. *Advances in Neural Information Processing Systems*,
 580 33:9573–9585, 2020.

581

582 Christian Simon, Piotr Koniusz, Richard Nock, and Mehrtash Harandi. Adaptive subspaces for
 583 few-shot learning. In *Proceedings of the IEEE/CVF conference on computer vision and pattern*
 584 *recognition*, pp. 4136–4145, 2020.

585

586 Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-shot learning. *Ad-*
 587 *vances in neural information processing systems*, 30, 2017.

588

589 Siyuan Sun and Hongyang Gao. Meta-adam: An meta-learned adaptive optimizer with momentum
 590 for few-shot learning. *Advances in Neural Information Processing Systems*, 36, 2024.

591

592 Damien Teney, Ehsan Abbasnejad, Simon Lucey, and Anton Van den Hengel. Evading the simplicity
 593 bias: Training a diverse set of models discovers solutions with superior ood generalization. In
 594 *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 16761–
 595 16772, 2022.

596

597 Yonglong Tian, Yue Wang, Dilip Krishnan, Joshua B Tenenbaum, and Phillip Isola. Rethinking
 598 few-shot image classification: a good embedding is all you need? In *Computer Vision–ECCV*
 599 *2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XIV 16*,
 600 pp. 266–282. Springer, 2020.

594 Eleni Triantafillou, Tyler Zhu, Vincent Dumoulin, Pascal Lamblin, Utku Evci, Kelvin Xu, Ross
 595 Goroshin, Carles Gelada, Kevin Swersky, Pierre-Antoine Manzagol, et al. Meta-dataset: A dataset
 596 of datasets for learning to learn from few examples. *arXiv preprint arXiv:1903.03096*, 2019.

597

598 Hung-Yu Tseng, Hsin-Ying Lee, Jia-Bin Huang, and Ming-Hsuan Yang. Cross-domain few-shot
 599 classification via learned feature-wise transformation. *arXiv preprint arXiv:2001.08735*, 2020.

600 Ihsan Ullah, Dustin Carrión-Ojeda, Sergio Escalera, Isabelle Guyon, Mike Huisman, Felix Mohr,
 601 Jan N van Rijn, Haozhe Sun, Joaquin Vanschoren, and Phan Anh Vu. Meta-album: Multi-domain
 602 meta-dataset for few-shot image classification. *Advances in Neural Information Processing Sys-
 603 tems*, 35:3232–3247, 2022.

604 Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan Wierstra, et al. Matching networks for one
 605 shot learning. *Advances in neural information processing systems*, 29, 2016.

606

607 Haoqing Wang and Zhi-Hong Deng. Cross-domain few-shot classification via adversarial task aug-
 608 mentation. *arXiv preprint arXiv:2104.14385*, 2021.

609

610 Yongxian Wei and Xiu-Shen Wei. Task-specific part discovery for fine-grained few-shot classifica-
 611 tion. *Machine Intelligence Research*, 21(5):954–965, 2024.

612

613 Yongxian Wei, Zixuan Hu, Li Shen, Zhenyi Wang, Lei Li, Yu Li, and Chun Yuan. Meta-learning
 614 without data via unconditional diffusion models. *IEEE Transactions on Circuits and Systems for
 Video Technology*, 2024a.

615

616 Yongxian Wei, Zixuan Hu, Li Shen, Zhenyi Wang, Yu Li, Chun Yuan, and Dacheng Tao. Task
 617 groupings regularization: Data-free meta-learning with heterogeneous pre-trained models. *arXiv
 618 preprint arXiv:2405.16560*, 2024b.

619

620 Yongxian Wei, Zixuan Hu, Zhenyi Wang, Li Shen, Chun Yuan, and Dacheng Tao. Free: Faster and
 621 better data-free meta-learning. In *Proceedings of the IEEE/CVF conference on computer vision
 and pattern recognition*, pp. 23273–23282, 2024c.

622

623 Yongxian Wei, Runxi Cheng, Weike Jin, Enneng Yang, Li Shen, Lu Hou, Sinan Du, Chun Yuan,
 624 Xiaochun Cao, and Dacheng Tao. Optmerge: Unifying multimodal llm capabilities and modalities
 625 via model merging. *arXiv preprint arXiv:2505.19892*, 2025a.

626

627 Yongxian Wei, Zixuan Hu, Li Shen, Zhenyi Wang, Chun Yuan, and Dacheng Tao. Open-vocabulary
 628 customization from clip via data-free knowledge distillation. In *The Thirteenth International
 Conference on Learning Representations*, 2025b.

629

630 Han-Jia Ye and Wei-Lun Chao. How to train your maml to excel in few-shot classification. *arXiv
 631 preprint arXiv:2106.16245*, 2021.

632

633 Han-Jia Ye, Hexiang Hu, De-Chuan Zhan, and Fei Sha. Few-shot learning via embedding adaptation
 634 with set-to-set functions. In *Proceedings of the IEEE/CVF conference on computer vision and
 pattern recognition*, pp. 8808–8817, 2020.

635

636 Le Yu, Xinde Li, Pengfei Zhang, Fir Dunkin, et al. Enabling few-shot learning with pid control: A
 637 layer adaptive optimizer. In *Forty-first International Conference on Machine Learning*, 2024.

638

639 Linfeng Zhang, Chenglong Bao, and Kaisheng Ma. Self-distillation: Towards efficient and compact
 640 neural networks. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 44(8):4388–
 4403, 2021.

641

642 Tiange Zhang, Qing Cai, Feng Gao, Lin Qi, and Junyu Dong. Exploring cross-domain few-shot
 643 classification via frequency-aware prompting. *arXiv preprint arXiv:2406.16422*, 2024.

644

645 Fei Zhou, Peng Wang, Lei Zhang, Wei Wei, and Yanning Zhang. Revisiting prototypical network
 646 for cross domain few-shot learning. In *Proceedings of the IEEE/CVF Conference on Computer
 Vision and Pattern Recognition*, pp. 20061–20070, 2023.

647

648 A MORE EXPERIMENTAL RESULTS
649650 A.1 RESULT OF APPLYING L_{ck} TO LATENT
651652 Table.10 reports the results when the consistency loss L_{ck} is applied to the latent representations.
653 The result shows that applying to logits is better than to latent representation. Since our objective is
654 to learn consistent knowledge—defined in terms of the distribution of the logits—it is preferable to
655 apply L_{ck} directly to the logits.
656657 Table 10: Apply L_{ck} to latents
658

L_{ck}	Logits	Latents
Accuracy (%)	84.88	84.29

661 A.2 RESULTS OF ViT
662663 We compare our approach with those proposed in Hiller et al. (2022); Hao et al. (2023). Although
664 CPEA Hao et al. (2023) is specifically designed for ViT architectures, our method achieves compa-
665 rable performance while outperforming FewTURE Hiller et al. (2022). These results further validate
666 the effectiveness and generalizability of our approach.
667668 Table 11: More results compared with SOTA
669

Methods	Model	Mini-ImageNet		Tiered-ImageNet	
		1-Shot	5-Shot	1-Shot	5-Shot
FewTUREHiller et al. (2022)	ViT-S/16	68.02	84.51	72.96	86.43
CPEAHao et al. (2023)	ViT-S/16	71.97	87.06	76.93	90.12
LLC (Ours)	Res-12	65.41	84.88	68.51	86.87
LLC (Ours)	ViT-S/16	<u>70.69</u>	88.43	<u>75.86</u>	90.97

670 B HYPERPARAMETERS AND CODE ENVIRONMENT OF THE EXPERIMENT
671672 **Hyperparameters.** The hyperparameters has shown in the Table.12, Table.13, Table.14.
673674 **Calculation resources and Environment.** Our experiment is conducted on NVIDIA A800 80GB
675 PCIe and NVIDIA A100 40GB PCIe. We use Python version 3.10.14, PyTorch version 2.3.0, and
676 CUDA toolkit 12.1 on A800 80GB, and use Python version 3.11.9, PyTorch version 2.3.0, and
677 CUDA toolkit 11.8 on A100 40GB.
678679 Table 12: Experimental Setup
680

Parameter	Value
task batch Size	4
inner loop learning rate	0.05
outer loop learning rate	0.001
outer data points	15
outer loop learning rate decay coefficient γ	1/10 every 10 epochs 1

698 C ALGORITHM
699700 The specific algorithm flow of LLC is shown in Algo.2
701

702
703
704 Table 13: Augmentations for Strong-Augmented Few-Shot Scenario
705
706
707
708
709

Augmentation	Parameters	Probability
Random Resize	scale: 0.5–1	-
Color Jitter	(0.8, 0.8, 0.8, 0.2)	0.8
Grayscale Conversion	-	0.2
Gaussian Blur	$\mathbb{E}: 0.1, \sigma^2: 2$	0.5
Random Horizontal Flip	-	0.5

710
711
712 Table 14: Augmentations for Weak-Augmented Few-Shot Scenario
713
714
715
716
717

Augmentation	Parameters	Probability
Center Crop	84×84	-
Color Jitter	(0.4, 0.4, 0.4, 0.1)	0.8
Grayscale Conversion	-	0.2
Gaussian Blur	$\mathbb{E}: 0, \sigma^2: 1$	0.5
Random Horizontal Flip	-	0.5

718
719
720 D COMPUTE COMSUMPTION
721
722
723

We counted the training time of LLC and MAML during the meta-train phase. Specifically, one epoch includes the optimization of 100 batches, where MAML uses 4 tasks for each batch for optimization, while LLC uses 1 task and enhances each batch 4 times for optimization. LLC has the same complexity as maml and thus has similar optimization times.

724
725
726 Table 15: The training time of LLC and MAML during the meta-train phase
727
728
729
730
731

	Time(Min)	Mini-ImageNet	Tiered-ImageNet
MAML	2.61	2.67	
LLC (Ours)	2.76	2.85	

732
733 E FURTHER VISUALIZATION
734
735
736
737

In Figures 5, we present visualizations of our method using Grad-CAM++. These visualizations indicate that the model trained with MAML exhibits a greater susceptibility to environmental influences. In contrast, the model trained with LLC demonstrates a focused attention on classification-relevant objects and exhibits an enhanced ability to recognize a broader range of features.

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802

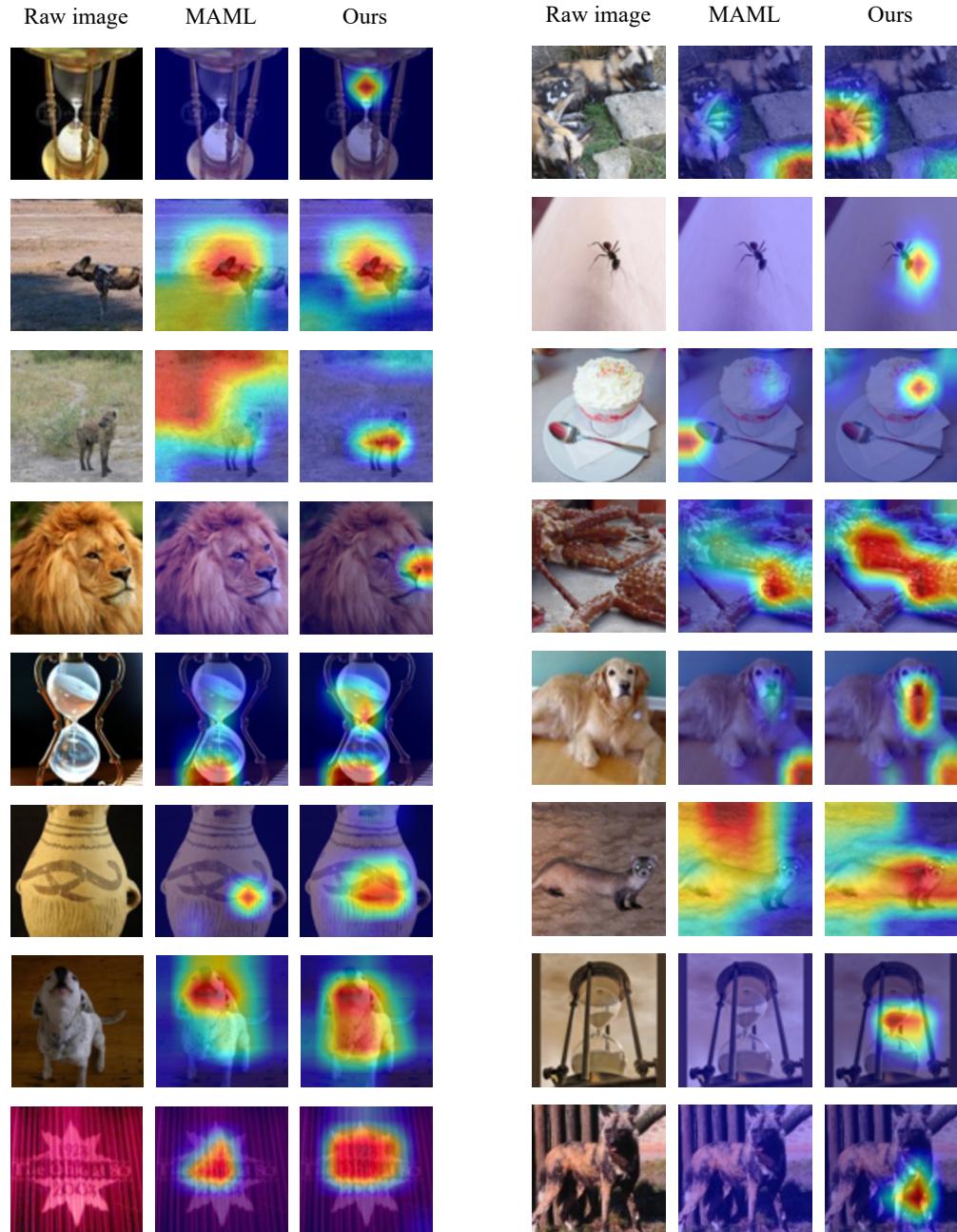
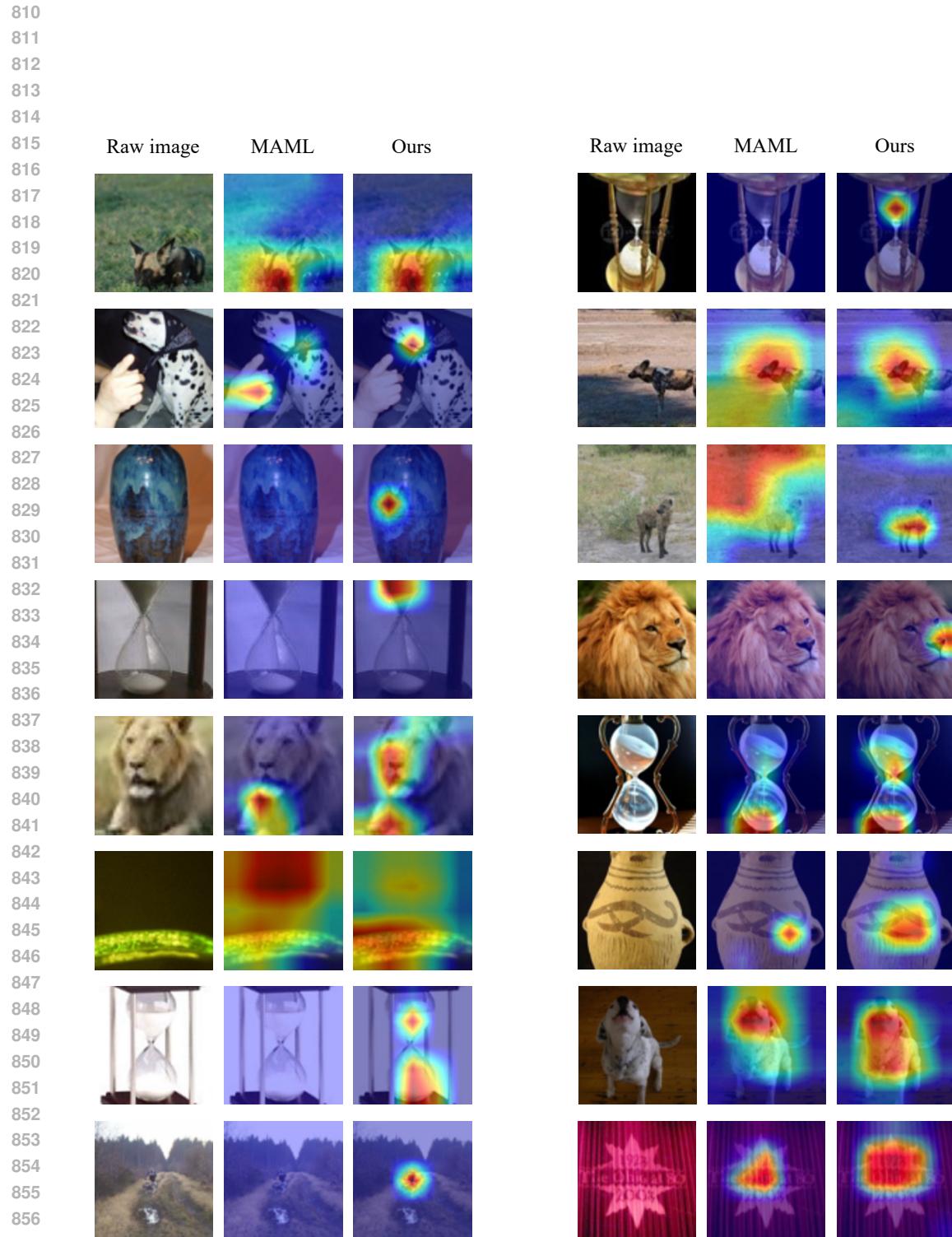


Figure 5: **The results of the visual analysis** on the test set of *MiniImageNet* with MAML and LLC. The left shows the main results, while the right presents additional results.



858 **Figure 6: The results of the visual analysis** on the test set of *MiniImageNet* with MAML and LLC.
859 The left shows the main results, while the right presents additional results.
860
861
862
863

864
865
866
867
868
869
870

Algorithm 1: Evaluate the learning consistency and accuracy of model initialized by MAML

Given the learned initialization θ by MAML
for $t \in \{1, \dots, T\}$ **do**
 Sample task $\mathcal{T} = (\mathcal{S}, \mathcal{Q}) \sim \mathcal{D}_{\text{meta-test}}$
 for $i \in \{1, \dots, n\}$ **do**
 Random Augmented the support data: *Get* $\mathcal{A}ug^i(\mathcal{S})$
 Update θ by augmented support data \mathcal{S}_i : $\theta_i = \mathcal{U}^k(\theta, \mathcal{A}ug^i(\mathcal{S}))$
 Get the output of the query data x_q by θ_i : $v_i = f_{\theta_i}(x_{\mathcal{Q}})$
 end
 Record the consistency and average accuracy of the
 output $\{v_i\}$:
 $\mathcal{C}[t] = \frac{1}{n} \sum_{i=1}^n \mathcal{F}_{\text{sim}}(v_i, \frac{1}{n} \sum_{i=j}^n v_j)$
 $\mathcal{A}[t] = \frac{1}{n} \sum_{i=1}^n \mathcal{A}cc(v_i)$
end
Return \mathcal{C}, \mathcal{A}

885
886
887
888
889
890
891
892
893
894
895
896
897
898
899

Algorithm 2: Learn to Learn Consistently

Given the learned initialization θ^0 pretrained on meta-train set
for $t \in \{1, \dots, T\}$ **do**
 Sample task $\mathcal{T} = (\mathcal{S}, \mathcal{Q}) \sim \mathcal{D}_{\text{meta-train}}$
 for $i \in \{1, \dots, n\}$ **do**
 Random Augmented the support data: *Get* $\mathcal{A}ug^i(\mathcal{S})$
 Update θ^{t-1} by augmented support data \mathcal{S}_i : Get $\theta_i^{t-1} = \mathcal{U}^k(\theta^{t-1}, \mathcal{A}ug^i(\mathcal{S}))$
 Get the output of the query data x_q by θ_i^{t-1} : Get $v_i = f_{\theta_i^{t-1}}(x_{\mathcal{Q}})$
 end
 Calculate the outer loop loss: $\mathcal{L}_{\text{total}} = \mathcal{L}_{\text{cls}} + \gamma \cdot \mathcal{L}_{\text{CK}}$
 Update the parameters by outer loop loss: $\theta^t = \theta^{t-1} - \beta \cdot \nabla_{\theta^{t-1}} \mathcal{L}_{\text{total}}$
end
Return θ^T

912
913
914
915
916
917