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ABSTRACT

Reinforcement learning (RL) algorithms have achieved great success in learning
specific tasks, as evidenced by examples such as AlphaGo or fusion control. How-
ever, it is still difficult for an RL agent to learn how to solve multiple tasks. In
this paper, we propose a novel multitask learning framework, in which multiple
specialized pathways through a single network are trained simultaneously, with
each pathway focusing on a single task. We show that this approach achieves
competitive performance with existing multitask RL methods, while using only 5%
of the number of neurons per task. We demonstrate empirically the success of our
approach on several continuous control tasks, in both online and offline training.

1 INTRODUCTION

Our brain processes different languages, helps us perceive and act in a 3D world, coordinates between
organs, and performs many other tasks. The brain continuously learns new things without catastrophic
forgetting due to its plasticity (Zilles, 1992; Drubach, 2000; Sakai, 2020; Rorke, 1985), i.e., its
ability to continually strengthen more frequently used synaptic connections and eliminate synaptic
connections that are rarely used, a phenomenon called synaptic pruning (Feinberg, 1982). In this
way, the brain creates neural pathways to transmit information. Different neural pathways (Rudebeck
et al., 2006; Paus et al., 1999; Jürgens, 2002; Goodale et al., 1994) are used to complete different
tasks. For example, the visual mechanisms that create the perception of objects are functionally
and neurally distinct from those controlling the pre-shaping of the hand during grasping movements
directed at those objects (Goodale et al., 1994). In deep learning architectures, the hope is that
gradient descent, possibly augmented by attention mechanisms, will create these types of pathways
automatically. However, when performing multi-task learning, this approach can be insufficient to
prevent interference between tasks, and often leads to loss of plasticity. This problem is especially
exacerbated in reinforcement learning, where different tasks require policies which generate different
data distributions.

In this paper, we take inspiration from the presence of distinct neural pathways for different tasks in
natural brains, and propose a novel approach to implement it in deep reinforcement learning. Similarly
to synaptic pruning, we aim to identify the important connections among the neurons in a deep neural
network that allow accomplishing a specific task. However, we leverage insights from recent lottery
ticket hypothesis (Frankle & Carbin, 2019; Lee et al., 2018; Tanaka et al., 2020; Wang et al., 2020a)
literature to construct task-specific neural pathways which utilise only a very small fraction (5%) of
the parameters of the entire neural network, yet demonstrate expert-level performance in multitask
reinforcement learning in both online and offline settings. The neural pathways are allowed to overlap,
which enables leveraging information from multiple tasks in the updates of the same parameters, in
order to improve generalization.

Contributions: We propose Neural Pathway Framework (NPF), a novel multitask learning approach
that generates neural pathways through a large network that are specific to single tasks. Our approach
can be easily integrated with any online or offline algorithm without changing the learning objec-
tive1. Because the shift in data distribution during online reinforcement learning training makes it
challenging to find neural pathways by using lottery network search techniques (Frankle & Carbin,
2019; Alizadeh, 2019; Wang et al., 2020a), we propose a data adaptive pathway discovery method for

1Code: https://github.com/anomICLR2023/2904
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the online setting. We demonstrate our approach in both offline and online multitask reinforcement
learning, using Mujoco-based and MetaWorld environments.

Our method is frugal in terms of the number of neurons, and multiple tasks are trained in parallel, thus
saving significant training time. The algorithm finds neural pathways which use only 5% of the neural
network weights for each task. Since our method requires a small fraction of weights to complete
a task, it can provide fast inference (Molchanov et al., 2017; Luo et al., 2017), reducing energy
consumption (Yang et al., 2016). Thus, our method is especially suitable for real-world applications
in which large datasets need to be processed in real-time (e.g., self-driving cars, deploying bots
in games, financial data analysis) or which are deployed on low-resource devices (i.e., embedded
systems, edge devices, etc.).

Figure 1: During evaluation of a trained agent (global model), for any given task our proposed method activates
specific part of the neural network.

2 RELATED WORK

Many recent works point out that training a deep neural network for more than one task becomes
difficult due to gradient interference, i.e., gradients for different tasks pointing in very different
directions. Recent work proposes several possible solutions, such as constraining the conflicting
gradient update (Yu et al., 2020; Suteu & Guo, 2019; Du et al., 2020; Chen et al., 2017; Sener &
Koltun, 2018), constraining data sharing among irrelevant tasks (Yu et al., 2021; Fifty et al., 2021),
and learning the underlying context of relevant tasks (Sodhani et al., 2021). In all of these cases,
success depends on the assumption that there is an underlying shared structure among these tasks,
and on how well this structure can be captured during training. Many multitask learning methods
propose complex ways to modularize the neural network, which allow sharing and reusing network
components across tasks (Rusu et al., 2016; Fernando et al., 2017; Rosenbaum et al., 2017; Devin
et al., 2016; Misra et al., 2016; Yang et al., 2020). In this paper, we propose a completely new way of
tackling multitask problems, and we show that a single deep neural network is sufficient for learning
multiple complex tasks, by having multiple pathways through the network.

Recent advances in finding sparse networks have proven that there exist sub-networks which contain
a small fraction of the parameters of the dense deep neural network yet retain the same performance.
There is a range of techniques to find such sub-networks through an iterative update during training
(Frankle & Carbin, 2019; Feinberg, 1982; Gale et al., 2019; Blalock et al., 2020; Ohib et al., 2019;
Yang et al., 2019). Simpler alternatives find a sub-network single-shot (Lee et al., 2018; Wang et al.,
2020b) at weight initialization. Building upon a three-decade-old saliency criterion used for pruning
trained models (Mozer & Smolensky, 1988), a recent technique to prune models at initialization was
proposed by Lee et al. (2018). Utilizing this criterion, they are able to predict, at initialization, the
importance that each weight will have later in the training process. However, premature gradient-
based pruning at initialization can lead to layer collapse: the premature pruning of an entire layer can
render a network un-trainable. Many techniques (Wang et al., 2020b; Feinberg, 1982) try to maximize
useful gradient flow through the deep layers. In order to discover neural pathways, we can leverage
these methods in order to find task-dependent sub-networks, as long as we can avoid layer collapse.
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Figure 2: Example of learning two tasks in the offline setting. During training, the global model (purple)
communicates with the task specific local models (green). Each local model computes the gradient of the task
specific weights and sends them to the shared global model (pink arrow). Network weights are updated in the
global model and then shared (blue arrow) with the local models at every training step.

3 BACKGROUND

Multitask Reinforcement Learning: We consider learning in a Markov Decision Process (MDP)
described by the tuple (S,A, P,R) consisting of states s ∈ S, actions a ∈ A, transition dynamics
P (s′|s, a), and reward function R(s, a). We use st, at and rt = R(st, at) to denote the state, action
and reward at time step t, respectively. A trajectory consists of a sequence of states st, actions at and
rewards rt: τ = (s0, a0, r0, s1, a1, r1, ..., sT , aT , rT ). For continuous control tasks, we consider an
infinite horizon, T =∞ and the goal is to learn a policy which maximizes the expected discounted
return E[

∑T
t=0 γ

trt]. In the multitask setup, we consider a finite set ofN tasks with respective reward
functions {Rn}Nn=1 and optimal policies {π∗

n(a|s)}Nn=1.

Offline Reinforcement Learning: In offline reinforcement learning, instead of obtaining data
through environment interactions, we have access to a previously collected, fixed dataset D =
{(si, ai, s′i, ri)}Li=1 with L transitions collected using a behavior policy πβ(a|s). For multitask
offline learning, we have N datasets, {Dn}Nn=1 collected for each task. Offline training does not
perform well when trained naivelt with batch data, due to extrapolation errors caused by data
distribution mismatch between the samples collected from behavior policy πβ and the current policy
πθ. In this work, we use two standard offline RL algorithms, Batch-Constrained deep Q-learning
(BCQ, Fujimoto et al. (2018)) and Implicit Q-learning (IQL, Kostrikov et al. (2021)) to build our
offline experiments.

Online Reinforcement Learning: In the online RL setting,. the agent is expected to interact with
the environment and leverage the collected experience to learn how to maximize its expected return.
Neural pathways can be integrated into any online RL algorithm and trained for multitask objectives.
To demonstrate the effectiveness of our method in the online setting, we use Soft-Actor-Critic
(SAC) (Haarnoja et al., 2018) in our experiments. SAC optimizes an entropy-regularized objective, in
order to drive the agent to more exploratory behavior.

4 PROPOSED APPROACH

Table 1: Comparison of pruning methods against the
neural-pathway-framework (NPF).

Important Features Pruning Methods NPF

Finding sparse sub-network ✔ ✔
Data dependency ✔/✘ ✔
Tackles data-distribution shift ✘ ✔
Multi-task learning ✘ ✔

We now introduce the Neural Pathway Frame-
work (NPF) and its practical implementation for
multitask learning in two steps: (1) finding the
neural pathway for each task and (2) training
the neural pathways for multiple tasks simultane-
ously. To discover task-specific neural pathways,
we build on the idea of finding a lottery-ticket
sub-network (Frankle & Carbin, 2019) (i.e., a
sub-network that provides similar performance
to the original network) using existing pruning methods, as detailed in Sec.4.1. We then describe how
to use NPF in both offline (Sec. 4.2) and online (Sec. 4.3) RL settings.

4.1 DISCOVERING NEURAL PATHWAYS

Similarly to the Lottery ticket hypothesis (Frankle & Carbin, 2019) in supervised learning, we assume
that a dense network contains a sub-network that can be initialized such that, when trained in isolation,
it can match the performance of the original network. We call this sub-network a Neural Pathway. In
the context of multitask training, a deep network will have multiple neural pathways, one for each
task, which can share neurons.
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Formally, we consider a feed-forward network f(x, θ) with initial parameters θ0 ∼ Dθ. A Neural
Pathway activates a sub-network f(x, θ⊙m) by using a mask m ∈ {0, 1}|θ|, where m is fixed during
training. From the lottery ticket hypothesis, there exists m which leads to better performance, less
training time, and ∥m∥0 ≪ |θ| (fewer trainable parameters). For multi-task learning, as shown in
Figure 1, multiple neural pathways are activated with n masks {m1,m2, ..mn}, one for each task.

In order to learn the neural pathways, we build on Single-shot Network Pruning (SNIP) (Lee et al.,
2018; Arnob et al., 2021b), a pruning technique which has proven to perform well in a single-task
setting, leading to up to 95% sparse network. SNIP identifies important connections by using a
sensitivity measure, defined as the influence of each weight on the loss function. Formally, the effect
of weight θq on the loss is: S(θq) = limϵ→0

∣∣∣L(θ0)−L(θ0+ϵδq)
ϵ

∣∣∣ =
∣∣∣θq ∂L∂θq ∣∣∣, where δq is a vector

whose qth element equals θq and all other elements are 0.

We note that, while we build our approach by leveraging pruning methods, our goal is not to prune
weights, but to flexibly use the capacity of the network to learn many tasks. Therefore, our approach
needs to be data-dependent. Moreover, in the online RL case, NPF needs to be robust to shifts in the
data distribution due to a changing policy. Thus, for nth task, we use the following objective:

mn = S(θq;Dn) = limϵ→0

∣∣∣L(θ0;Dn)−L(θ0+ϵδq ;Dn)
ϵ

∣∣∣ = ∣∣∣θq ∂L∂θq ∣∣∣ . (1)

Table 1 summarizes the differences between NPF and pruning methods.

4.2 OFFLINE MULTITASK LEARNING WITH NPF

Training a Neural Pathway: First, we identify the top 5% most important weights for each task
independently using Equation (1), which will be remembered using binary masks, one for each
task, in which 1 marks trainable weights. We never set any weights to zero. But, due to masking,
only the subset of the weights contained in the neural pathway participate in task-specific inference
and updates. Thus, for any given task, the mask mn activates a pathway of neurons for forward
propagation and backward propagation.

Simultaneous Multitask Training: In order to train multiple tasks using offline RL, we must have
corresponding training datasets for all the tasks {Dn}Nn=1. We run simultaneous parallel training
processes, one for each task, which use only the task-specific expert data. A local model L(θ ∗mn)
is initialized for task n with the shared-model/global-model L(θ) parameters. As shown in Figure 2,
the task-specific mask mn is applied to get the local model L(θ ∗mn).

For each task n, at each training step, we synchronize the local L(θ ∗mn) model weights with the
global model and sample a random batch of data from dataset Dn. The local model computes the
gradient ∇θ∗mnJ(Dn) of the objective function and sends the gradients to the global model (see
Fig. 2). Due to masking, gradients of the weights that are irrelevant for the task appear to have
the value 0 to the local-model at all times. We run all the process on a single GPU and compute
synchronous parameter updates (Niu et al., 2011; Mnih et al., 2016). The pseudocode is given in
Algorithm 1.

Offline RL algorithms utilise multiple deep neural networks with different objective functions. For
example, IQL has an actor network π(θ), a critic network Q(ϕ) and a value network V (ψ), each
having their own objective function (see Appendix A.1). Thus for the nth task, we use the scoring
function 1 to find masks (mθ

n,m
ϕ
n,m

ψ
n ) for each network. The global model π(θ), Q(ϕ), V (ψ) is

shared with all N processes, where each process is trained to optimize for a single task using the
local models π(θ ∗mθ

n), Q(ϕ ∗mϕ
n), V (ψ ∗mψ

n). The global model stores all the trained pathways.
As shown in Figure 1, during evaluation we use the task-specific mask to activate each task-specific
pathway.

4.3 ONLINE MULTITASK LEARNING WITH NPF

In this section, we discuss the compatibility of NPF with online RL. We empirically show that due to
distribution shift in online training, single-shot sub-network discovery techniques fail to maintain
good performance. We propose a novel approach to address the data distribution shift and show its
ability to perform multitasking using neural pathways.

The lottery ticket hypothesis work in supervised learning (Lee et al., 2018; Wang et al., 2020b; Tanaka
et al., 2020) and offline RL (Arnob et al., 2021b) only considers the case of static datasets, without
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Algorithm 1 Multitask Offline Training

# Find the Task Specific Weight Masks:
▷ m1, m2 .. mN = FindNeuralPathways

(
D1, D2, ...DN

)
; using Equation 1.

#Initialize a model for each task and consider synchronous gradient update:
▷ Initialize local-model, global-model

#Training loop:
for Training steps do

#sync-weight
▷ local-model = mask

(
global-model

)
# L(θ ∗mn); mask the nth task-specific weights

▷ Sample (s, a, s′) ∼ Dn

▷ local-model.loss()
▷ local-model.backward() #∇θ⊙mn

J(Dn) ; compute gradient of masked weights
▷ sync-gradient

(
local-model, global-model

)
▷ global-model.optimizer.step()

end for

#Evaluation loop:
▷ local-model = mask

(
global-model

)
# sync-weight

▷ Evaluate( local-model)

focusing on the effects of out-of-distribution data shifts. However, in online RL, the agent’s policy is
always changing, which leads to significant changes in the data distribution.

(a) (b)

Figure 3: Performance comparison of (a) Single-Shot and
Data Adaptive Pathway Discovery (DAPD) (with and with-
out Threshold Stopping Criterion) on HalfCheetah run for-
ward,(b) DAPD with Different Moving Average (M=1, 5, 10) on
HalfCheetah run forward.

To illustrate the impact of nonstationar-
itym we train Soft Actor Critic (SAC,
Haarnoja et al. (2018)) using NPF on
the HalfCheetah forward-run task
and compare its performance with the
final performance of the fully dense
SAC baseline. Unlike in offline set-
ting, we do not have access to a prior
collected dataset. Thus, to configure
neural-pathway, we collect samples us-
ing a randomly parameterized policy
and use those samples to find a sub-
network which optimizes Equation (1).
The learning curve in Fig. 3 plots the
episodic return over 1M gradient up-
dates. We see a large gap in perfor-

mance between the baseline and single-shot pathway discovery (blue). Four more experiments,
discussed in the Appendix (Figures 13), display similar results.

We hypothesize the observed performance drop is due to the fact that the changes in behavior policy
cause a data distribution shift, and the pathway discovery depends strongly on the data. To tackle this
problem, we propose a dynamic iterative pruning approach, where pathways are continually updated
using the most recently collected training samples.

Data Adaptive Pathway Discovery Under Data Distribution Shift: To handle changing data
distribution in online RL, we propose Data Adaptive Pathway Discovery (DAPD), where we continue
to re-configure the pathway as the policy improves and the data distribution consequently changes
during the training. We use a separate temporary replay buffer TDn, one for each task, that only
contains immediate episodic data collected by the agent. Only the most recent dataset stored in
TDn is used to re-configure the pathway. Once we reach a minimum threshold TH on the episodic
return, we stop this process. In our experiment in Fig 3(a) we use episodic return TH = 2000 as the
threshold value – a hyper-parameter that can be easily tuned to stabilize training.

During the initial training phase, we observe high variation in the pathway. Thus, to slow down
variations and stabilize to a suitable pathway, we keep re-configuring using the average of the previous
M iteration scores (calculated using Eq. (1):

mn = Savg(θq;TDn) =
∑M
m=1 limϵ→0

∣∣∣L(θ0;TDn)−L(θ0+ϵδq ;TDn)
ϵ

∣∣∣ = ∑M
m=1

∣∣∣θq ∂L∂θq ∣∣∣ . (2)
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(a) Batch Mean Gradient Norm (b) Success Rate

Figure 4: When we try to configure pathways for all the tasks at the same time (orange), (a) parameters of the
harder tasks do not change from the values at initialization due to small changes in gradients. This results in
unsuccessful task learning and can be seen in (b). We find an improvement in performance when pathways are
pre-configured separately before multitask training (blue).

Table 2: Normalized score of offline RL algorithms. We
compare NPF performance with the single task experts
on HalfCheetah and Quadrupod multitasks.

Experiment NPF

BCQ IQL

HalfCheetah multitask 87.20 ± 2.34 89.67 ± 12.44

HalfCheetah constrained speed 100 ± 0.038 99.88 ± 0.40

Quadrupod multitask 115.35 ± 0.70 116.71 ± 0.57 Figure 5: We compare the sample complexity anal-
ysis of BCQ+NPF with BCQ-MT (Multitask) and
BCQ-MHMT (Multihead Multitask) baselines on
HalfCheetah multitask.

In Fig. 3(b), we perform a hyper-parameter sweep and observe that M = 10 leads to stable learning
curves and better performance. Further experiments in the Appendix (Fig. 14) support this claim.
Our procedure is summarised in Algorithm 2 (see Appendix) and can be easily integrated with any
online RL method.

Online Multitask Training and Addressing Gradient Interference: Even though NPF compart-
mentalizes the parameter training of a neural network very well in offline RL, optimizing pathways
for multiple tasks becomes difficult in the online RL setting. Due to significant parameter sharing
among tasks, we cannot completely avoid gradient interference. While experimenting with Meta-
world (Yu et al., 2019), we found that DAPD optimizes pathways for easier tasks very quickly. In
comparison, we see only insignificant changes in gradient updates for the more challenging tasks. A
neural pathway is a task-specific group of parameters within a network. Thus, to observe changes in
the parameters, we compute gradient-norm ∥dwdL∥ of group the parameters for a batch of samples.
See in Figure 4(a), where our initial experiments with parallel learning (orange) show little to no
gradient-norm change in the task-specific parameters. This implies the parameters have not changed
much from their initialization. We find that the success rate (see Figure 4(b)) of the tasks correlates
with the gradient change as well.

To overcome radient interference, we run a pretraining loop to learn pathways. We initialize a
separate network, one for each task, with same weights and optimized for task-specific pathways for
10K gradient steps. At the end of this pretraining stage, we average the weights of the overlapping
parameters and keep the pathways fixed for the rest of the training. We conduct parallel online
data-collection and during training, we average the gradients of the shared parameters. For the
Metaworld multitask benchmark this method shows a significant improvement in gradient change
for the harder tasks (see Figure 4(a) (blue)). We discuss the overall performance of our method and
compare with baselines in the following section.

5 EXPERIMENTS

We evaluate our proposed method on continuous control multi-task experiments in both offline and
online RL settings. In offline RL, it is standard to compare performance with an expert (Fujimoto
et al., 2018; Fu et al., 2020; Gülçehre et al., 2020). Thus we evaluate the effectiveness of our offline
method (Section 5.1) by computing a normalized score with respect to a provided expert. Further we
use Meta-World (Yu et al., 2019) multi-task environments to compare with other baselines in both
offline (Section 5.1) and online (Section 5.2) settings.
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Table 3: Performance comparison in Meta-World offline. We compare the final success-rate (mean and std over
10 seeds) of NPF on MT10 tasks with Offline-MT and Offline-MHMT baselines on offline RL algorithms.

Experiment NPF Offline MT Offline MHMT

BCQ IQL BCQ IQL BCQ IQL

MT-10 tasks 100 ± 0.0 97.3 ± 7.17 81.5 ± 24.15 79,1 ± 26.81 95.9 ± 10.44 96.5 ± 7.10

5.1 OFFLINE MULTI-TASK PERFORMANCE EVALUATION

We train Soft-Actor-Critic (SAC) for each task to collect an expert dataset (see Section B.2). We use
BCQ (Fujimoto et al., 2018) and IQL (Kostrikov et al., 2021) for our offline training and conduct
our experiments on multiple high dimensional continuous control domains. For the offline RL
setup, when designing experiments, we focus on two criteria. First, how does our method perform
compared to the performance of single task experts and second, how does our method perform
when compared to common baseline. When comparing to an expert, we carefully select a range of
multitask benchmarks ensuring that our method (1) is tested with a diverse range tasks (Multitask
HalfCheetah) (2) can yet be performed in a controlled tasks that are similar (HalfCheetah
Constrained Velocity) in nature and (3) can master skills that can easily be transferred in real world
applications (Multitask Quadrupod). To compare to common baseline algorithms, we evaluate on
the Meta-World Multi-Task benchmark.

Multitask HalfCheetah: We train HalfCheetah for five different kinds of task (Finn et al.,
2017; Rakelly et al., 2019) where it needs to (i) run forward, (ii) run backward, (iii) jump, (iv) jump
while running forward and (v) jump while running backward. It is important to note that the gait
movements of these tasks are very divergent and snapshots are provided in the Appendix.

Constrained Velocity HalfCheetah: We consider another variation of the HalfCheetah
environment where it only needs to go forward but we constrain the velocity of the HalfCheetah
to six different target values from 0.5 to max speed 3.0 (Finn et al., 2017; Rakelly et al., 2019). The
success of multitask training at different velocities has greater impact in real-world robotic tasks,
where agents are expected to run at different speeds in different kinds of terrain (Lee et al., 2020; Fu
et al., 2021; Yang et al., 2021; Hwangbo et al., 2019).

Multitask Quadrupod: Multitask Quadrupod consists of (i) run forward, (ii) run backward, (iii)
hopturn: hop and turn to left followed by turning back to initial position and (iv) sidestep: take a step
left and take a step to right to the initial position. This simulated environment is commonly used in
simulation to real-world transfer experiments (Li et al., 2021; Peng et al., 2020; Yang et al., 2021).

Each task in a multitask experiment is trained with an equal number of gradient updates. We compute
the average episodic return over 10 episodes of the trained agent. Our results in Table 2 are reported
over seeds 0-4 of the Gym simulator and the network initialization. We run the Halfcheetah
experiments for 1M and Quadrupod for 500k gradient updates. For evaluation, we compare with
expert performance and normalize the episodic return using standard offline evaluation metric (Fu
et al., 2020), normalized score =

( score - random score
expert score - random score ∗ 100

)
, where random score is generated by

unrolling a randomly initialized policy and averaged over 100 episodes. A score of 100 represents
the average returns of a domain-specific expert. In this paper, for multitasks, we always report the
mean and standard-deviation over the normalized scores. Our proposed method achieves expert-
like performance for most of the tasks in 3 sets of experiments. Results are in Table 2. Per task
performance is in the Appendix (Table 6).

In Table 2, we find the Halfcheetah multitasks to be more challenging for NPF. To further validate
the reliability of our method, we conduct a sample complexity analysis Arnob et al. (2021a). In Figure
5, we compare NPF performance with baseline performance for different reduced training sample
size. We use two baselines: (a) multi-task algorithms (MT): where we train offline algorithms for
multiple tasks without changing the objective function or the neural architecture. (b) A multi-head
(MHMT) variant where we use independent heads for tasks. Both baselines are non-pruned (use
100% of network weights), while our method uses only 5%. The interquantile plot (Figure 5) of
normalized scores shows a consistent improvement when BCQ is trained with NPF.

Meta-World (Yu et al., 2019) is a set of robotic manipulation tasks for benchmarking multitask-
learning and meta-learning. In this experiment, we consider the MT10 benchmark (Appendix C.1.4)
from Meta-World, where we have 10 diverse tasks, evaluated with the mean success rate over 10
tasks.

We run our experiments on MT10 with 10 seeds for 100k gradient updates for each task. We evaluate
our trained agent 100 times, which gives a more accurate performance, on all MT10 tasks. We report
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Table 4: Performance comparison of Meta-World online. We compare the success-rate of NPF on MT10 online.
We also show the reduced parameter complexity of NPF comparing to other baseline methods.

Experiments SAC+NPF PCGrad SM CARE SAC+ME
Yu et al. (2020) Yang et al. (2020) Sodhani et al. (2021) Sodhani et al. (2021)

MT10 tasks 77.4 ± 13.12 72.0 ± 2.2 73 ± 4.3 84 ± 5.1 74 ± 4.3
Parameter Counts 17k 340k 135k 486k 344k
Parameter Reduction - 20x 8x 28x 20x

the mean performance with 95% confidence interval in Table 3 (see individual task performance in
Table 7 in Appendix). We collect 1k expert trajectory (150k samples) per task using SAC (Haarnoja
et al., 2018) expert trained on a single task. Using only 5% of the network weights, neural-pathways
is able to exceed other baselines. Whereas other baselines suffer from high variance in performance,
with BCQ, we get a perfect score on all MT10 tasks.

5.2 ONLINE MULTITASK PERFORMANCE EVALUATION

Figure 6: The % of trainable weights the IQL
policy shares across MT10 tasks with NPF.
The diagonal is the % of weights unique to
each task.

A recent work (Sodhani et al., 2021) benchmarks state-of-
the-art online multitask RL algorithms in the Meta-World
environments, shown in Table 4. The benchmark is re-
ported after 2M gradient updates (for each environment)
over seeds 0-9. We follow their evaluation criterion to re-
port success rate of our algorithm. Sodhani et al. (2021) fo-
cuses on the importance of contextual information and pro-
poses Contextual Attention-based Representation (CARE),
using a pretrained language model (Liu et al., 2019) to en-
code meta-data and retrieve contextual information about
the task. The contextual information added with the envi-
ronment observation is used to train SAC with Mixture of
encoders (SAC+ME). As seen in Table 4, the success of
CARE largely depends on metadata which is not always
available in all multitask settings. Soft-modularization
(SM) proposes effective sharing and reusing network com-
ponents across tasks. As reported in Sodhani et al. (2021), the performance of SM (Yang et al., 2020)
varies largely when evaluated over 10 different sub-tasks. We also include Projecting Conflicting
Gradient (PCGrad, Yu et al. (2020)), which focuses on tackling gradient interference. If gradients
for different tasks point away from one another, PCGrad alters gradient direction to mitigate these
interference.

Compared to these baseline methods, we propose a simpler alternative that achieves competitive
performance while not requiring additional task information, complicated network architecture such
as routing through modular networks, or a complex gradient update procedure. We train each task
with a fraction of the parameters (see Table 4) and which potentially leads to higher inference
(Molchanov et al., 2017; Luo et al., 2017) and reduces the energy consumption (Yang et al., 2016),
which makes it more suitable than any other multitask methods to apply in real-world applications.

5.3 OVERLAPPING NEURAL PATHWAYS

In this work, we consider choosing the neural pathways for each task independently from one another.
We find a large % of the pathways overlap, reducing the number of trainable parameters. The pathway
configuration is dictated by three factors: (1) different learning objectives (i.e. offline, online), (2)
scoring function (i.e. equation 1, 2), and (3) training samples used to optimize the scoring function. In
Figure 6 we see the % of active weights (5% of the actual network) in the policy that are shared with
other tasks for IQL multitask-offline training. The diagonal of these symmetric matrices represent the
number of unique weights that are optimized only for one task, and the columns represent the % of
weights each task shares with others. As we see in Figure 6, for all tasks the % of weights that are
optimized for just one task is very low. For push, only 5.5% of the active weights are uniquely trained
for the task. We also show similar matrices for other experiments in Appendix (Figure 15), where
we found the percentage of overlapping weights does not correlate with the task similarity. This
disproves a conventional class of thinking that the success of multitask in neural networks depends on
relevant data sharing (Yu et al., 2021; Fifty et al., 2021) or similar task training (Sodhani et al., 2021;
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Yang et al., 2020). Rather, neural networks are capable of learning multiple tasks simultaneously as
long as the neurons are wired properly.

Overlapping Pathways Lead to Fewer Parameters: For each task we only use 5% of the total
weights of the actual network while maintaining expert-like performance for all tasks. For N tasks it
has a upper bound of N

20x parameters when all the pathways are unique, but we find the pathways
to overlap significantly (Figure 6 and Figure 15, Appendix), further reducing the number of active
weights. This reduces the energy consumption (Yang et al., 2016) of the trained network and makes
inference more efficient (Molchanov et al., 2017; Luo et al., 2017). To understand how NPF compacts
multiple experts into single network, we look at the number of policy parameters IQL requires
compared to SAC with and without pruning on the individual MT10 tasks. In our experiments, the
total number of network parameters for SAC and IQL are identical with 1, 092, 608 parameters in
the policy network. With MT10 the number increases 10×. Due to the inherent shared structure of
neural pathways, our method requires only 1.82% (averaged over 10 seeds) of the original network.
To get equivalent utility we have to train ten SAC agents with 98.18% pruned networks, which is not
possible using any existing pruning techniques without losing performance (Frankle & Carbin, 2019;
Lee et al., 2018; Wang et al., 2020a; Tanaka et al., 2020). As seen in Wang et al. (2020a) at 98%
reduction of the network weights pruning techniques suffers from significant performance drop due
to layer collapse. NPF reduces the energy consumption (Yang et al., 2016) of the trained network,
making inference more efficient (Molchanov et al., 2017; Luo et al., 2017). See the comparison in
Appendix (Table 8).

6 CONCLUSION

We propose a novel multitask learning approach in which we train task-specific neural pathways
within a single deep neural network. We extend the idea of finding sub-networks from the pruning
literature (Frankle & Carbin, 2019; Wang et al., 2020a; Feinberg, 1982) and show our proposed
method can achieve expert-like performance on many high dimensional continuous control tasks in
both online and offline settings. Unlike conventional approaches, where multitask methods mostly
rely on task similarity, modular network training, or underlying context learning, we propose a
new way to tackle multitask problems and show function approximation with a single deep neural
network is sufficient. We empirically show that the single-shot lottery network search fails under data
distribution shift We overcome this by proposing data adaptive pathway discovery, which continues to
reconfigure neural pathways as the RL agent gets more training updates and continues to collect better
training samples. Leveraging offline and online RL algorithms, we train task-specific neural pathways
in parallel, consisting of only 5% of the total neural network weights, leading to significant reductions
in training time while still achieving competitive performance on Meta-World. Due to significant
neural-pathway overlap, we get a further reduction in network parameters. Compared to single-task
experts, we get ≥ 98% pruned parameters in the Meta-World experiments, a significant decrease in
parameters which is not possible for single-task training with any existing pruning techniques without
a performance drop. Thus, NPF can provide a high inference rate while reducing energy consumption
(Yang et al., 2016), making it more very suitable for real-world applications.

This work opens up a new avenue of inquiry into the possibility of a single neural network being
trained for multiple purposes (i.e. learning different features, multiple value functions) through
targeted parameter training while providing better efficiency of utilizing the parameter space of neural
networks. Our method can be integrated into other selective data-sharing and gradient update methods
but this requires further research. Expanding the scope of the experiments to include more tasks
would also be informative.

9
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7 REPRODUCIBILITY:
With this work we provide an open-source implementation of our framework at
https://github.com/anomICLR2023/2904. Users can run NPF and reproduce the experiments utilizing
the code in the anonymous github repo.
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A ADDITIONAL THEORETICAL BACKGROUND

A.1 OFFLINE AND ONLINE THEORY

Fujimoto et al. (2018) highlight the fact that, since value estimation is trained with fixed dataset, it
provides an erroneous estimation when the policy takes an action which is out of distribution from
the dataset on which the value function is trained. To overcome extrapolation error, BCQ proposes
a batch-constrained learning, where agents are trained to maximize reward while minimizing the
mismatch between the state-action visitation of the policy and the state-action pairs contained in the
batch. For a given state, BCQ uses a generative modelGw, e.g. a Variational Auto-encoder Kingma &
Welling (2014a), to generate n actions with high similarity to the batch dataset, and then it selects the
action for which it gets the highest value: π(s) = argmaxAi

Qϕ(s, ai), where Ai ∼ {Gw(s)}ni=1.
Gw is trained to minimize the KL divergence with the actions sampled from batch dataset Kingma &
Welling (2014b). The action-value function or Q-function, Qϕ learned through minimizing TD-error
is J(Qϕ) = E{s,a,s′}∼D,a′∼πθ

[(r(s, a) + γQ̂ϕ(s
′, a′)) − Qϕ(s, a)2]. In our experiments, we also

consider a variation of BCQ (denoted as BCQ-v2) in which we sample actions only using a VAE
(π(s) = Gw(s)).

Since Offline RL faces distribution shift in its value estimation due to the different distribution of
he policy and expert sample, Implicit Q-learning (IQL) Kostrikov et al. (2021) proposes to avoid
estimating the value for policy distribution. Instead, it trains the action-value function Qϕ using a
SARSA-style update, thus enabling multi-step dynamic programming updates. IQL uses expectile
regression to predict an upper expectile of TD target that approximates the maximum of r(s, a) +
γ[Q̂ϕ(s

′, a′)]. IQL uses a separate value function by fitting upper expectile Vψ using objective
function: J(Vψ) = Es,a∼D[Lτ2(Q̂ϕ(s′, a′) − Vψ(s))], where Lτ2 is asymmetric least squares. This
value is used to update Q function using: J(Qϕ) = Es,a,s′,a′∼D[(r(s, a) + γV̂ψ(s

′)−Qϕ(s, a))2].
The corresponding policy is extracted using advantage weighted behavior cloning, which also avoids
querying out-of-sample actions:J(πθ) = Es,a,s′,a′∼D[(Qϕ(s, a)− Vψ(s)) log πθ(a|s)].
We consider no prior knowledge about the task in the online RL setting. An RL agent is expected to
interact with a simulated environment and leverage the collected experience to learn the task through
maximizing a hand-designed reward function. Neural pathways can be integrated into any online
RL algorithm and trained for divergent multitask objectives. To demonstrate the effectiveness of our
method in the online setting, we use Soft-Actor-Critic (SAC) Haarnoja et al. (2018) algorithm in
our experiment. SAC optimizes entropy-regularized policy objectives to drive an agent to a more
exploratory behavior while optimizing its policy. Entropy is used to encourage policy to do more
exploratory behavior and ensure that it does not collapse into repeatedly selecting a particular action.
The entropy regularized objective function is as follows:J(θ) =

∑T
t=0 Est∼dπ,at∼πθ

[r(st, at) +
αH(πθ(.|s))], here α is temperature parameter, which controls the entropy, H parameter, hence
the stochasticity of the policy. It determines the relative importance of the entropy term against
the reward. The conventional objective for policy gradient is recovered when α → 0. SAC learns
a Q-function using an entropy regularized objective called soft Q-function. The soft Q-function
parameters are trained to minimize the following objective:J(ϕ) = E(s,a)∼D[(Qϕ(st, at)−r(st, at)+
γEs∼ρπ,a∼πθ

[Qϕ′(st+1, at+1)− α log πθ(at+1|st+1)])
2].

B ADDITIONAL IMPLEMENTATION DETAILS

B.1 LIBRARIES

We run our algorithm in PyTorch-1.9.0 Paszke et al. (2019) and use following libraries: Soft-Actor-
Critic (SAC) Yarats & Kostrikov (2020), Implicit Q-learning (IQL) Thomas (2021), Single-shot
pruning (SNIP) Alizadeh (2019) and official BCQ Fujimoto et al. (2018) implementation.

B.2 OFFLINE DATA COLLECTION

We use the Halfcheetah control environment available from Thomas (2020) and train Soft-Actor-Critic
(SAC) Haarnoja et al. (2018) online for 1 million time steps for each task and collect 1000 expert
trajectory.

For Quadrupod tasks we use the quadrupod environment and trained agents from Smith et al. (2021)
and collected 1000 trajectories for each task. During data collection we find it important to use
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stochastic policy to add data diversity, otherwise every trajectory follows the exact consecutive
states,actions and rewards sequence due to the deterministic nature of the environment transition
function.

We train Soft-Actor-Critic (SAC) Haarnoja et al. (2018) on Meta-World Yu et al. (2019) environments
for 3 million steps, where sample a batch of 1024 sample and the hidden dimension is 1024. Similar
to Sodhani et al. (2021) we truncate the episode for 150 steps. We collected 1k trajectories for each
environment, where we take sample action of the normal distribution rather than the mean to have
diversity in the training sample. We keep the environment seed fixed at 0, since Meta-World Yu et al.
(2019) goal position is different for different seeds. Since we are not learning a goal-conditioned
algorithm, we need to keep this seed fixed other wise for each seed we have to train and collect expert
data for offline training.

B.3 HYPER-PARAMETER

In table 5 we present the network hyper-parameters of different algorithms that are used in this
work. We make exception in MetaWorld online experiments, where we use mini-batch size 128 and
optimizer AdamW.

Table 5: Hyperparameter of the network architecture used to train and evaluate offline and online RL experiments.

Hyper-parameter BCQ IQL SAC

hyper-parameter Optimizer Adam Adam Adam
Critic learning rate 1e-3 1e-3 1e-3
Actor learning rate 1e-3 1e-3 1e-3
Mini-batch size 256 256 256
Discount factor 0.99 0.99 0.99
Target update rate 5e-3 5e-3 5e-3
Policy update frequency 2 2 2

Architecture Critic hidden dim [400, 300] [1024, 1024] [400, 400, 400]
Critic activation function ReLU ReLU ReLU
Actor hidden dim [400,300] [1024, 1024] [400, 400, 400]
Actor activation function ReLU ReLU ReLU
VAE hidden dim [750, 750] – –
Value hidden dim – [1024, 1024] –

B.4 PERFORMANCE EVALUATION

Each task in a multitask experiment is trained with an equal number of gradient updates. We evaluate
performance every 5000 gradient updates, where each evaluation reports the average episodic return
over 10 episodes. Our results are reported over multiple seeds of the simulator and the network
initialization.

We evaluate our agent on average episodic return of 10 episodes. For offline experiment, we normalize
the episodic return using standard proposed metric from Fu et al. (2020): Normalized score =( score - random score

expert score - random score ∗ 100
)
. We plot the mean normalized score of multiple seed with 100%

confidence interval for all our experiments. For MetaWorld (in both offline and online) we evaluate
the percentage of success.

For Gym environment we conduct experiments for seed 0-4 (if not stated otherwise). We run all
MetaWorld experiments for seed 10 seeds (0-10) and report the percentage of success after evaluating
for 100 episodes.

C ADDITIONAL RESULTS

C.1 OFFLINE MULTITASK EXPERIMENTS

We provide the individual task performance compared to single task expert for Halfcheetah and
Quadrupod multitask experiments in Table 6.
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Table 6: Individual task normalized score (performance compared to single task expert) HalfCheetah and
Quadrupod tasks.

Experiment Tasks NPF

BCQ IQL

HalfCheetah Forward 99.68 ± 0.04 99.98 ± 0.04
multitask Backward 96.51 ± 0.19 98.68 ± 0.83

Jump 71.38 ± 9.46 74.99 ± 20.1
Forward-Jump 85.25 ± 0.54 87.35 ± 27.0
Backward-Jump 83.3 ± 1.46 87.34 ± 14.23

HalfCheetah Velocity 0.5 100.04 ± 0.03 99.1 ± 2.18
Constrained speed Velocity 1.0 100.07 ± 0.03 100.05 ± 0.04

Velocity 1.5 100.03 ± 0.05 99.99 ± 0.06
Velocity 2.0 100.07 ± 0.01 100.07 ± 0.04
Velocity 2.5 100.02 ± 0.04 100.04 ± 0.03
Velocity 3.0 99.96 ± .07 100.01 ± 0.03

Quadrupod Forward 116.19 ± 0.14 116.92 ± 0.51
multitask Backward 110.98 ± 1.21 112.93 ± 1.05

Hopturn 122.43 ± 0.47 123.33 ± 0.29
Sidestep 111.8 ± 0.96 113.69 ± 0.43

(a) run forward (b) run backward

(c) forward jump (d) backward jump

(e) jump

Figure 7: Snapshot of trained policy for Halfcheetah multitasks.

(a) velocity 0.5 (b) velocity 1.0

(c) velocity 2.0 (d) velocity 3.0

Figure 8: Snapshot of trained policy for Halfcheetah under four different constrained velocity.

C.1.1 PERFORMANCE CURVE OF HALFCHEETAH MULTITASK

Figure 10 presents the performance of five different Halfcheetah tasks: (1) run forward, (2) jump
while run forward, (3) run backward, (4) jump while run backward and just(5) jump. Snapshots of
the different tasks are demonstraded in Figure 7.
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(a) pace forward (b) pace backward

(c) hopturn (d) sidesteps

Figure 9: Snapshot of trained policy for Quadrupod multitasks.
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Figure 10: Performance (Normalized Score) plot of BCQ and IQL on HalfCheetah multitask - (Forward,
Forward-Jump, Backward, Backward-Jump, Jump) trained with NPF.

C.1.2 PERFORMANCE CURVE OF HALFCHEETAH CONSTRAINT GOAL VELOCITY

In Figure 11 we present the performance of six (6) constrained goal velocity for Halfcheetah
running forward, where we vary the constrained from 0.5 to max speed 3.0 with a constant increase
of the speed. The tasks are trained for 500k gradient updates and evaluated every 5000 gradient
updates. Snapshots of the different tasks are demonstraded in Figure 8.

C.1.3 PERFORMANCE CURVE MULTITASK QUADRUPED ROBOT

We use the Quadruped robot to perform four (4) tasks: hopturn, pace forward, pace backward,
sidestep. We use Smith et al. (2021) as our expert to collect 500k (1000 trajectory) expert data for
each task. The environment has a deterministic transition function and thus we take sample action
from normal distribution instead of taking distribution mean to get a diverse set of training dataset.
Performance curve with NPF for individual task in shown in Figure 12. Snapshots of the different
tasks are demonstraded in Figure 9.

C.1.4 PERFORMANCE ON METAWORLD

In Table 7 we report mean performance of individual MT10 environments over 10 seeds and each
evaluated for 100 episodes. We also compare individual performance with Conservative data sharing
(CDS) Yu et al. (2021), an offline-multitask learning algorithm that focuses on training based on task
similarity, also reports it’s Meta-World experiments on 4 environments and reported performance
over 6 seeds with 95% confidence interval.
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Figure 11: Performance (Normalized Score) plot of BCQ and IQL on HalfCheetah with constrained velocity
trained with NPF.
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Figure 12: Performance (Normalized Score) plot of BCQ and IQL on Quadrupod multitasks with NPF.

Table 7: Individual task performance (success-rate) comparison of Meta-World.

MT10 NPF

BCQ IQL CDS Yu et al. (2021)

reach 100.0 ± 0.0 93.0 ± 22.14 -
push 100.0 ± 0.0 100.0 ± 0.0 -
pick-place 100.0 ± 0.0 95.0 ± 15.81 -
door-open 100.0 ± 0.0 100.0 ± 0.0 58.4 ± 9.3
drawer-open 100.0 ± 0.0 85.0 ± 33.75 57.9 ± 16.2
drawer-close 100.0 ± 0.0 100.0 ± 0.0 98.8 ± 0.7
button-press-topdown 100.0 ± 0.0 100.0 ± 0.0 -
peg-insert-side 100.0 ± 0.0 100.0 ± 0.0 -
window-open 100.0 ± 0.0 100.0 ± 0.0 -
window-close 100.0 ± 0.0 100.0 ± 0.0 -

door-close - - 57.2 ± 16.2

Overall 100 ± 0.0 97.3 ± 7.17 72.0 ± 26.2

C.2 ONLINE MULTITASK EXPERIMENTS

We provide the pseduo-code for Data Adaptive Pathway Discovery (DAPD) proposed for online
multitask setting in Algorithm 2.
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Algorithm 2 Multitask Online Training

▷ Episodic Return nth task, RnT =
∑T
t=1 r

n
t ; Stopping threshold TH : an hyper-parameter; Tempo-

rary replay buffers nth task, TDn: only contains most recent experience; Replay buffers nth task,
Dn; Mask for nth tasks, mn.
#Training loop:
for Training steps do

# Collect Data:
for Each Task do
▷ at ∼ πθ(at|st), st+1 ∼ Tn(st+1|st, at)
▷ Dn ← Dn ∪ {st, at, r(st, at), st+1}
▷ TDn ← TDn ∪ {st, at, r(st, at), st+1}

end for
# Find the Task Specific Weight Masks:
for Each Task do
▷ If not RnT ≥ TH : mn = FindNeuralPathways

(
TDn

)
; using Equation 2.

end for
# Update Policy using Online Algorithm:
▷ Update πθ ( {m1, m2 .. mn}, {D1, D2 .. Dn}) # Follow Same Approach as Algorithm 1 for
weight and gradient share among tasks

end for
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Figure 13: Compare Performance of Single-Shot and Data adaptive Pathway Discovery (DAPD with and without
Threshold Stopping Criterion) on single Mujoco tasks.

0.0 0.2 0.4 0.6 0.8 1.0

Gradient Updates (1e6)

0

2000

4000

6000

8000

10000

12000

Ep
iso

di
c 

Re
tu

rn

Halfcheetah-backward

M 1
M 5
M 10
Baseline

(a) run backward

0.0 0.2 0.4 0.6 0.8 1.0

Gradient Updates (1e6)

2000

0

2000

4000

6000

8000

10000

Ep
iso

di
c 

Re
tu

rn

Halfcheetah-jump

(b) jump

0.0 0.2 0.4 0.6 0.8 1.0

Gradient Updates (1e6)

0

500

1000

1500

2000

2500

3000

Ep
iso

di
c 

Re
tu

rn

Halfcheetah-forward-jump

(c) forward jump

0.0 0.2 0.4 0.6 0.8 1.0

Gradient Updates (1e6)

0

2000

4000

6000

8000

10000

12000

Ep
iso

di
c 

Re
tu

rn

Halfcheetah-backward-jump

(d) backward jump

Figure 14: Compare Performance of Data adaptive Pathway Discovery (DAPD) with different moving average
on single Mujoco tasks.

C.3 OVERLAPPING NEURAL PATHWAYS

Important Distinction with Conventional Pruning Methods: Neural Pathway has a crucial
technical difference with pruning methods in the implementation. As demonstrated in Figure 2, we
mask the neural network weights, allowing forward and backward propagation only through a subset
of weights, whereas pruning methods Feinberg (1982); Wang et al. (2020a); Frankle & Carbin (2019)
set many weights to zero. This technique allows the unimportant weights to survive and be used for
other tasks. In general, pruning methods are used to reduce memory footprint, increase throughput
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Figure 15: Shows the percentage of trainable weights are being shared among different tasks. In a and b, we
compare shared weights among five Halfcheetah tasks: (1) forward (F), (2) backward(B), (3) jump(B), (4)
Forward while Jumping (FJ) (5) Backward Jumping (BJ). In c and d, we compare shared weights among six
Halfcheetah tasks where we increase forward velocity 0.5-3.0 . In e and f , we compare four Quadrupod
tasks. In g and h we show the shared weights among MetaWorld tasks.

or even enhance generalization. On the other hand, our goal is not to prune but to re-purpose the
capacity of the network to learn many tasks (to a larger extent than in other works).

In Figure 15 we demonstrate the percentage of active weights (5% of actual network) in policy
network that are shared with other tasks for different experiments and for different offline RL
algorithms. The diagonal of these symmetric matrices represent the number of unique weights that
are optimized only for one task. And the columns represents the percentage of weights the task shares
with others.

It is important to note, in Figure 15, for all our experiments the percentage of weights that are
optimized for just one task is very low. For examples, in Figure 15-a for forward task, only 26%
of the active weights are uniquely trained for the task. We only activate/allow 5% of the original
network weights for one task after pruning. Which means only 0.13% of the original network is
trained uniquely to make Halfcheetah run forward like an expert. Also we do not find the percentage
of overlapping to correlate with the tasks similarity.

In Table 8, we compare the number of policy network parameters IQL requires compared to SAC with
and without pruning when trained for MT10 environments as individual tasks. In our experiments,
the network hidden layers and depth (total number of network parameters) for SAC and IQL are
identical. Our SAC expert has 1, 092, 608 weight parameters in the policy network. For MT10 (10
tasks), the number increases 10x. On the other hand, due to the inherent shared structure of neural
pathways, our method requires only 1.82% (in average over 10 seeds) of the original network. To get
equivalent utility we have to train ten SAC agents with 98.18% pruned network, which is not possible
using any existing pruning techniques without losing performance Frankle & Carbin (2019); Lee et al.
(2018); Wang et al. (2020a); Tanaka et al. (2020). As seen in Wang et al. (2020a) at 98% reduction
of the network weights pruning techniques suffers from significant performance drop due to layer
collapse. But in our case, the more tasks we have the more space efficient our method becomes. Even
when we compare to 95% pruned SAC trained on 10 different individual tasks ((B) in table 8), we
have 36.4% reduction in actor parameters.
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Table 8: Comparison of the number of parameters required in Meta-World for different methods.

MT-10 trained as separate tasks MT-10 multitasks trained using NPF
(A) w/o pruning (B) 95% pruned (C) 95% pruned

Parameter counts
(Policy/Actor Network) 11 Million (10,926,080) 546,304 198, 956± 7, 636 ( 1.82± 0.07% of A)
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