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Abstract

We address the challenge of optimizing meta-
parameters (hyperparameters) in machine learn-
ing, a key factor for efficient training and high
model performance. Rather than relying on ex-
pensive meta-parameter search methods, we in-
troduce MetaOptimize: a dynamic approach that
adjusts meta-parameters, particularly step sizes
(also known as learning rates), during training.
More specifically, MetaOptimize can wrap around
any first-order optimization algorithm, tuning step
sizes on the fly to minimize a specific form of re-
gret that considers the long-term impact of step
sizes on training, through a discounted sum of fu-
ture losses. We also introduce lower-complexity
variants of MetaOptimize that, in conjunction
with its adaptability to various optimization algo-
rithms, achieve performance comparable to those
of the best hand-crafted learning rate schedules
across diverse machine learning tasks.

1. Introduction
Optimization algorithms used in machine learning involve
meta-parameters (i.e., hyperparameters) that substantially
influence their performance. These meta-parameters are typ-
ically identified through a search process, such as grid search
or other trial-and-error methods, prior to training. However,
the computational cost of this meta-parameter search is
significantly larger than that of training with optimal meta-
parameters (Dahl et al., 2023; Jin, 2022). Meta-parameter
optimization seeks to streamline this process by concur-
rently adjusting meta-parameters during training, moving
away from the computationally expensive and often sub-
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optimal trial and error search methods.

Meta-parameter optimization is particularly important in
continual learning (De Lange et al., 2021), where continu-
ally changing environments or evolving loss functions ne-
cessitate adaptation of meta-parameters, such as step sizes,
to track time-varying optima rather than settling on a static
value.

In this work, we propose MetaOptimize, a general frame-
work for optimizing meta-parameters to minimize a form of
regret that explicitly accounts for the long-term influence
of step sizes on future loss. Although this framework can
handle various meta-parameters, we concentrate on step
sizes as they are ubiquitous and crucial in practice.

MetaOptimize offers additional advantages beyond reduc-
ing search overhead. First, it enables dynamic step-size
updates during training, potentially speeding the learning
process. Traditional methods typically rely on manually
designed learning rate schedules (e.g., initial increase fol-
lowed by decay (Amid et al., 2022)), whereas MetaOptimize
automatically discovers similar patterns.

Second, adapting step sizes across different network blocks
(e.g., layers or neurons) can improve performance (Singh
et al., 2015; Howard & Ruder, 2018), yet manually tuning
such blockwise step sizes is impractical for large networks.
By design, MetaOptimize handles these blockwise adjust-
ments.

The concept of meta step-size optimization dates back
to (Kesten, 1958), Delta-bar-Delta (Sutton, 1981; Jacobs,
1988), and its incremental variant, IDBD (Sutton, 1992).
Numerous methods have emerged over the years (Section
8). This work distinguishes itself from prior efforts through
the following key aspects:

• We introduce a formal approach to step-size optimiza-
tion by minimizing a specific form of regret, essentially
a discounted sum of future losses, and demonstrate how
to do this causally via the MetaOptimize framework.

• MetaOptimize is general and can wrap around any first-
order optimization algorithm (the base update), such as
SGD, RMSProp (Hinton, 2012), Adam (Kingma & Ba,
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2014), or Lion (Chen et al., 2023), while optimizing
step sizes via a separate first-order method (the meta
update), such as SGD, Adam, RMSProp, or Lion.

• We develop approximation methods (Section 6) that,
when incorporated into MetaOptimize, yield computa-
tionally efficient algorithms outperforming state-of-the-
art automatic hyperparameter optimization methods
on various stationary and continual (non-stationary)
benchmarks (see Section 7).

• We show that some existing methods (like IDBD and
its extensions, and hypergradient descent (Baydin et al.,
2017)) are specific instances or approximations within
the MetaOptimize framework (Section 5).

2. Problem Setting
We introduce a general continual optimization setting that,
for a given sequence of loss functions ft(·) : Rn → R,
t = 0, 1, 2, . . ., aims to find a sequence of weight vectors
w1,w2,w3, . . . that minimize a discounted sum of future
losses:

F γ
t

def
= (1− γ)

∑
τ>t

γτ−t−1fτ (wτ ), (1)

where γ ∈ [0, 1) is a fixed discount factor, typically close
to 1, called the discount factor. For stationary supervised
learning, ft are i.i.d. samples from the same distribution, so
minimizing F γ

t promotes rapid reduction of the expected
loss.

Consider an arbitrary first-order optimization algorithm
(e.g., SGD, RMSProp, Adam, or Lion) for updating wt.
At time t, it takes the gradient ∇ft(wt) of the current loss,
along with an m-dimensional meta-parameter vector βt, to
update wt and possibly some internal variables x̃t (e.g.,
momentum in Adam). Denoting xt

def
= Stack(wt, x̃t) and

calling this update rule Algbase, we have

xt+1 = Algbase(xt,∇ft(wt),βt). (2)

The goal of MetaOptimize is to determine a sequence βt

such that plugging them into the above base update yields a
trajectory {wt} minimizing F γ

t .

Step-size adaptation is a natural special case: at each step t,
the m-dimensional βt defines an n-dimensional step-size
vector αt via some fixed function σ : Rm → Rn, i.e.,

αt = σ(βt). (3)

A good choice for σ(·) is exponential, ensuring αt is al-
ways positive and making multiplicative changes in αt cor-
respond to additive changes in βt (Sutton, 1992). By par-
titioning the network weights into blocks, we can learn a
shared scalar step-size per block, or even a unique step-size
per weight, all handled automatically by MetaOptimize.

3. Forward and Backward Views
Because F γ

t depends on future losses, minimizing it causally
requires an alternative view. Suppose hypothetically we had
oracle access to future information (i.e., future loss values
and weights). We could update

βt+1 = βt − η
d

dβt

F γ
t

= βt − η (1− γ)
∑
τ>t

γτ−t−1 d

dβt

fτ (wτ ),
(4)

where η is a meta step-size. This forward-view update,
however, is not causal because we do not have the required
future information at time t.

To address this, we adopt an eligibility-trace-style approach
from reinforcement learning (Sutton, 1988; Sutton & Barto,
2018), introducing a backward-view update:

βτ+1 ← βτ − η (1− γ)
∑
t<τ

γτ−t−1 d

dβt

fτ (wτ ), (5)

so that terms involving fτ (and wτ ) appear at time τ (instead
of t), which is the earliest time that these quantities become
available. In the small-η limit, the backward view closely
approximates the forward view. 1

Accordingly, we define a causal gradient estimate

∇̂βF τ

def
= (1− γ)

τ−1∑
t=0

γτ−t−1 d

dβt

fτ (wτ ).

It follows from chain rule that

∇̂βF τ = HT
τ ∇fτ (wτ ), (6)

where

Hτ
def
= (1− γ)

τ−1∑
t=0

γτ−t−1 dwτ

dβt

. (7)

Hence,Hτ encodes how past βt values cumulatively affect
wτ under discounting by γ.

4. MetaOptimize
Algorithm 1 presents the general MetaOptimize frame-
work for learning the meta-parameters βt. At each step

1Formally, assuming ft(·) = 0 for t < 0 and for t > T ,
the final updates under (5) and (4) become arbitrarily close as
η → 0. More specifically, (β(5)

T − β(4)
T )/η → 0, where β(5)

T and
β(4)
T are the values of β at time T obtained from updates (5) and

(4), respectively, starting from the same initial β0. This is because
as η → 0, β remains almost constant over [0, T ] interval, and
the right hand sides of (5) and (4) match with accuracy O(η2),
when summed over [0, T ]. See Section 9 for a discussion on more
accurate approximations for large η.
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t, we replace the intractable gradient ∇βF
γ
t with the causal

surrogate ∇̂βF t to ensure the update is feasible in real
time, as discussed in Section 3. Specifically, we feed
∇̂βF t = H

T
t ∇ft(wt) (from (6)) into any first-order meta-

update rule Algmeta, just like a conventional gradient.

Formally, define yt
def
= Stack(βt, ỹt) as the stack of meta-

parameters βt and any internal states ỹt of Algmeta (e.g.,
momentum). The meta-update is then:

yt+1 = Algmeta

(
yt, HT

t ∇ft(wt)
)
. (8)

After applying the base update (2) to produce xt+1, we
compute HT

t ∇ft(wt) and plug it into (8) to update yt+1

(and thus βt+1). The remaining question is how to maintain
Ht defined in (7), through application of the chain rule.

To compute Ht incrementally, let us stack the columns of
the n×m matrixHt into a single vector ht, and let

Gt
def
=


dyt+1

dyt

dyt+1

dxt

dyt+1

dht

dxt+1

dyt

dxt+1

dxt

dxt+1

dht

dht+1

dyt

dht+1

dxt

dht+1

dht

. (9)

Applying the chain rule then implies
dyt+1

dβτ

dxt+1

dβτ

dht+1

dβτ

 = Gt


dyt

dβτ

dxt

dβτ

dht

dβτ

 ,

which, when summed over τ , turns into

t∑
τ=0

γt−τ


dyt+1

dβτ

dxt+1

dβτ

dht+1

dβτ

 = Gt


dyt

dβt

dxt

dβt

dht

dβt

+Gt

t−1∑
τ=0

γt−τ


dyt

dβτ

dxt

dβτ

dht

dβτ

 .

(10)
Defining

Yt
def
= (1− γ)

t−1∑
τ=0

γt−τ−1 dyt

dβτ

(11)

Xt
def
= (1− γ)

t−1∑
τ=0

γt−τ−1 dxt

dβτ

, (12)

Qt
def
= (1− γ)

t−1∑
τ=0

γt−τ−1 dht

dβτ

, (13)

and noting that yt = Stack(βt, ỹt), one obtains a compact
update of the form Yt+1

Xt+1

Qt+1

 = Gt

(
γ

 Yt

Xt

Qt

+ (1− γ)


[
I
0

]
0
0


)
, (14)

Algorithm 1 MetaOptimize Framework (for general
meta-parameters)

Given: A base-update Algbase, a meta-update Algmeta,
and a discount-factor γ ≤ 1.
Initialize:
X0 = 0(n+ñ)×m, Y0 =

[
Im×m

0m̃×m

]
, Q0 = 0nm×m.

for t = 0, 1, 2, . . . do
xt+1 ← Algbase(xt,∇ft(wt),βt).
Ht = first n rows of Xt.
yt+1 ← Algmeta

(
yt,HT

t ∇ft(wt)
)
.

Update

Yt+1

Xt+1

Qt+1

 from (14), using Gt in (9).

end for

and then extract Ht by taking the top n rows of Xt (since
xt = Stack(wt, x̃t)). The blocks of Gt can be found for
standard algorithms (SGD, Adam, Lion, etc.) as detailed in
Appendix A. Notably, the first row of Gt blocks depends
only on Algmeta, and the rest of Gt blocks depend only on
Algbase. Algorithm 1 summarizes the procedure.

Remark 4.1. A distinction of MetaOptimize from exist-
ing meta-parameter optimization methods is that it explic-
itly captures dynamics of the meta-parameters β, and how
changes in the current β affect β in future. The term Yt in
(11) links changes in past βt to future β values, which then
influencesHt. Intuitively, if βt has been changing consis-
tently in one direction (e.g., steadily increasing), it amplifies
Yt and thusHt, accelerating ongoing updates. Conversely,
if βt stays nearly constant (indicating it may be close to
optimal), Yt shrinks and so do the subsequent updates to βt,
stabilizing around the optimum.

5. Reducing Complexity
The matrix Gt can be large and may involve Hessian terms,
increasing the computational burden. We discuss two prac-
tical approximations:

2×2 approximation. In (9), we zero out all blocks in
the last row and column, effectively removing Qt. Em-
pirically, this simplification often has negligible impact on
performance. Intuitively, Ht does not affect the base up-
date directly (dxt+1/dht = 0), so the extra blocks in Gt

involving ht often have minor influence on the final meta-
parameter trajectory.

L-approximation. We go one step further, also zeroing
out the block in the first row and second column of Gt.
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Algorithm 2 MetaOptimize with 2 × 2 approx.,
(Algbase,Algmeta)= (SGD, SGD), and scalar step-size

Initialize: H0 = 0n×1, Y0 = 1.
for t = 1, 2, . . . do

αt = eβt

Base update:
wt+1 = wt − αt∇ft(wt)
Ht+1 = γ

(
I − αt∇2ft(wt)

)
Ht − Ytαt∇ft(wt)

Yt+1 = γYt + (1− γ)− γηHT
t ∇2ft(wt)Ht

# For L-approximation let Yt+1 = 1

Meta update:
βt+1 = βt − ηHT

t ∇ft(wt)
end for

Formally,

GL
t

def
=

 dyt+1

dyt
0

dxt+1

dyt

dxt+1

dxt

, (15)

and the update in (14) simplifies to

[
Yt+1

Xt+1

]
= GL

t

γ

[
Yt

Xt

]
+ (1− γ)

 I
0
0

 . (16)

This again discards Qt, but also certain cross-terms in Yt’s
update. Empirically, L-approximation often matches the
performance and sometimes improves the stability of the
2× 2 approach.

Intuition. Algorithm 2 illustrates the 2 × 2 approxima-
tion for the case of SGD base/meta updates with a single
scalar step size. Observe how Ht effectively accumulates
(decayed) past gradients to decide whether to increase or
decrease αt. If current and past gradients align, αt is raised
for faster learning; if they oppose each other, αt shrinks.
The decay γ(I − [α]∇2ft) ofHt ensures that if past gradi-
ents poorly approximate future ones due to large∇2ft or α,
their influence fades more rapidly. Meanwhile, Yt reflects
how changing past β influences the current β; large swings
in β amplifyHt+1, while near-constant β dampens updates.
Under the L-approximation, Yt becomes constant in this
particular setup, further simplifying the algorithm.

Containing some prior methods as special cases. Under
L-approximation, and restricting both base and meta up-
dates to plain SGD, MetaOptimize reduces to IDBD (Sutton,
1982) and its extension (Xu et al., 2018); see Appendix B.1
for derivations. Another notable special case is γ = 0,
which recovers the Hypergradient-descent approach (Bay-
din et al., 2017), updating step sizes to minimize the immedi-
ate loss ft(wt) rather than the discounted sum F γ

t , ignoring
long-term effects of step size on future loss.

6. Hessian-Free MetaOptimize
The Gt matrix typically involves Hessian,∇2ft(wt), of the
loss function, e.g., in the dwt+1/dwt block where wt+1 =
wt − αt∇ft(wt). Including second-order information in
Gt can be costly. Interestingly, for certain base and meta
algorithms, we can eliminate the Hessian without much
compromising the performance.

For example, Lion (Chen et al., 2023) updates weights by
taking the sign of the gradient (plus momentum). Since the
derivative of the sign function is zero almost everywhere,
dwt+1/dwt and related partials do not involve∇2ft(wt).
Hence, if both base and meta updates use Lion, Gt becomes
Hessian-free throughout, avoiding second-order computa-
tions entirely (Appendix A.1.3, A.3.2).

For other algorithms, we may consider their Hessian-free
approximation by zeroing out any Hessian term in Gt. The
Hessian-free approximation turns out to be a good approxi-
mation, especially for base and meta algorithms that involve
gradient normalization, like RMSProp and Adam. Note that,
the sign function used in the Lion algorithm is an extreme
form of normalization that divides a vector by its absolute
value. We could instead use softer forms of normalization,
such as normalizing to square root of a trace of squared vec-
tor, vt, as in RMSProp. Such normalizations typically result
in two opposing Hessian-based terms inHt’s update (stem-
ming from dwt+1

dwt
and dwt+1

dvt
blocks of matrix Gt), aiming

to cancel out, particularly when consecutive gradients are
positively correlated.

When Hessian terms are removed in the 2 × 2 approxi-
mation, Xt and Yt become diagonal or simply vectorized,
drastically reducing matrix-multiplication overhead. The
overall complexity per step thus becomes similar to that of
regular base and meta updates, requiring only a few extra
vector operations. Algorithm 3 in Appendix A illustrates
these Hessian-free variants (SGDm, AdamW, Lion) under
2× 2 approximation.

In summary, Hessian-free and 2 × 2 or L-approximations
yield a range of practical MetaOptimize instantiations that
maintain strong performance at low additional cost.

7. Experiments
We evaluate MetaOptimize on image-classification and
language-modeling benchmarks. Out of many possible
base/meta-algorithm combinations and approximations (Al-
gorithm 3), we showcase a few Hessian-free variants that
performed well in practice. In the experiments, MetaOpti-
mize starts with step-sizes set one or two orders of magni-
tude below typical good fixed step-sizes, with no specific
tuning. We compare MetaOptimize against some popular
baselines whose meta-parameters are well-tuned for each
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task separately. See Appendix C for more details. Codes are
available at https://github.com/sabersalehk/MetaOptimize.

7.1. CIFAR10 dataset

The first set of experiments involve training ResNet-18
with batch size of 100 on the CIFAR10 (Krizhevsky et al.,
2009) dataset. Fig. 1 depicts the learning curves of four
combinations of (base, meta) algorithms for Hessian-free
MetaOptimize, along with the corresponding baselines with
well-tuned fixed step sizes. Besides using a single scalar
step-size, we also test a blockwise variant that partitions the
ResNet18 parameters into six blocks (one for each linear
layer and four blocks for the ResNet modules). In every
tested combination, MetaOptimize outperforms its corre-
sponding fixed-step-size baseline.

(Lion, Lion)(AdamW, Adam)

(RMSProp, Adam) (SGDm, Adam)

Figure 1. Learning curves for selected (base, meta) combinations
in CIFAR10.

Figure 2. Robustness to initial step-sizes, for (Lion, Lion) as (base,
meta) update in CIFAR10.

Interestingly, as demonstrated in Fig. 2, the MetaOptimize
algorithms show remarkable robustness to initial step-size
choices, even for initial step sizes that are several orders of
magnitude smaller than the optimal fixed step-size.

7.2. Non-stationary CIFAR100

We evaluated MetaOptimize in a non-stationary setting with
10 sequential tasks, each containing 10 classes from CI-
FAR100. After training for one epoch on a task, it abruptly
switches without explicit notification to the optimizer, and
without resetting weights. We use a batch size of one, mean-
ing each data point is seen exactly once. The model is based
on a simple CNN network consisting of two convolution
(and max pooling) layers followed by a fully connected
layer. Each curve is averaged over 5 random seeds.

Figure 3. Learning curves for non-stationary CIFAR100.

Figure 4. Blockwise stepsizes learned by MetaOptimize
(AdamW,Adam) on non-stationary CIFAR100. Note that the scale
of the y-axis for the two curves differ by an order of magnitude.
Step-sizes of both blocks are initialized at α0 = 10−4.

Figure 3 presents cumulative top-1 accuracy—averaged over
all past training times—for AdamW (with the best fixed step-
size), MetaOptimize with a scalar step-size, and MetaOp-
timize with blockwise step-sizes (two blocks: one for the
first three layers and one for the last layer). MetaOptimize
consistently outperforms the baseline. See Appendix D for
additional plots.

The learned step-sizes reveal an interesting pattern (Fig. 4):

• Task adaptation: MetaOptimize increases step-sizes
immediately after task switches to enhance adaptation.

• Layer-wise behavior: In blockwise case, early-layer
step-sizes decrease over time, indicating convergence
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Algorithm 3 Hessian-free MetaOptimize algorithms with 2×2 approximation used in experiments
Parameters: η > 0 (default 10−3), γ ∈ [0, 1] (default ≃ 1)
Initialize: h0 = 0n×1.
for t = 1, 2, . . . do

B
as

e
up

da
te



αt = σ(βt) # exponential scalar/blockwise

mt+1 = ρmt + (1− ρ)∇ft(wt)
if Algbase is SGDm then ∆w = −αtmt − καtwt

if Algbase is Lion then ∆w = −αt Sign
(
cmt + (1− c)∇ft

)
− καtwt

if Algbase is AdamW then vt+1 = λvt + (1− λ)∇ft(wt)
2

∆w = −αtµtmt/
√
vt − καtwt # where µt =

√
1− λt/(1− ρt)

wt+1 = wt +∆w
ht+1 = γ(1− καt)ht +∆w

M
et

a
up

da
te



z = h⊤
t ∇ft(wt) # This is for scalar step-sizes.

# For blockwise, should compute sum of ht∇ft(wt) over each block.

m̄t+1 = ρ̄ m̄t + (1− ρ̄) z
if Algmeta is Lion then βt+1 = βt − η Sign

(
c̄ m̄t + (1− c̄)z

)
if Algmeta is Adam then v̄t+1 = λ̄ v̄t + (1− λ̄) z2

βt+1 = βt − η µ̄tm̄t/
√
v̄t # where µ̄t =

√
1− λ̄t/(1− ρ̄t)

end for

to globally useful features, while last-layer step-sizes
increase, reflecting the need to adapt to changing la-
bels.

7.3. ImageNet dataset

We trained ResNet-18 with batch-size 256 on ImageNet
(Deng et al., 2009). We compared MetaOptimize with
scalar step-size against four state-of-the-art hyperparamter
optimization algorithms, namely DoG (Ivgi et al., 2023),
gdtuo (Chandra et al., 2022), Prodigy (Mishchenko & De-
fazio, 2023), and mechanic (Cutkosky et al., 2024), as well
as AdamW and Lion baselines with fixed step-sizes, and
AdamW with a well-tuned cosine decay learning rate sched-
uler with a 10k iterations warmup. Learning curves and
complexity overheads are shown respectively in Fig. 5 and
Table 1, showcasing the advantage of MetaOptimize algo-
rithms (learning curve of DoG is not depicted due to its
relatively poor performance). Unlike CIFAR10, here the
blockwise versions of MetaOptimize showed no improve-
ment over the scalar versions. Refer to Appendix D for
further details.

7.4. Language modeling

For language model experiments, we used the TinyStories
dataset (Eldan & Li, 2023), a synthetic collection of brief
stories designed for children aged 3 to 4. This dataset proves
effective for training and evaluating language models that
are significantly smaller than the current state-of-the-art,
and capable of crafting stories that are not only fluent and
coherent but also diverse.

We used the implementation in (Karpathy, 2024) for training

15M parameter model with a batch size of 128 on the TinyS-
tories dataset. Two combinations of Hessian-free MetaOp-
timize with scalar step sizes were tested against Lion and
AdamW with well-tuned fixed step sizes, AdamW with a
well-tuned cosine decay learning rate scheduler with 1k
warmup iterations, and the four state-of-the-art step-size
adaptation algorithms mentioned in the previous subsection.
According to the learning curves, shown in Fig. 6, MetaOp-
timize outperforms all baselines (with an initial delay due to
small initial step-sizes), except for the well-tuned learning
rate scheduler within 30k iterations.

7.5. Sensitivity analysis

Here, we briefly discussion the sensitivity of MetaOptimize
to its meta-meta-parameters.

For the meta-stepsize η in MetaOptimize, there is generally
no need for tuning, and the default value η = 10−3 works
universally well in stationary supervised learning. All exper-
iments in this section used this default value with no sweep-
ing required. The rationale for this choice is that when using
Adam, Lion, or RMSProp for meta-updates, the absolute
change in β per iteration is approximately η×O(1) ≃ 10−3.
Unless the current stepsize α is already near its optimal
value, most β updates will consistently move toward the op-
timal β. Within 1,000 steps, β can change by O(1), nearly
doubling or halving α = exp(β). Over 10,000 iterations, α
can adjust to stepsizes that are e10 > 20, 000 times larger
or smaller, allowing η ≃ 10−3 to efficiently track optimal
stepsizes while minimizing unnecessary fluctuations in α.

Regarding the discount factor γ, we used the γ = 1 in all
stationary experiments and observed minimal sensitivity to
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Table 1. Per-iteration wall-clock-time and GPU-memory overhead (compared to AdamW).
Algorithm ImageNet TinyStories

Time Space Time Space
AdamW (fixed stepsize) 0% 0% 0% 0%

DoG (Ivgi et al., 2023) +45% 1.4% +268% 0%
gdtuo (Chandra et al., 2022) +85% 64% +150% 21%

mechanic (Cutkosky et al., 2024) +42% 88% +9% 0%
Prodigy (Mishchenko & Defazio, 2023) +42% 13% +9% 0%

MetaOptimize (AdamW, Lion) +44% 33% +13% 0%

Figure 5. ImageNet learning curves.

Figure 6. TinyStories (language model) learning curves.

γ for values γ ≥ 0.999 in a series of preliminary tests. How-
ever, performance begins to degrade with smaller values of
γ. In the non-stationary CIFAR100, γ = 0.999 performed
slightly better than 1.

8. Related Works
Automatic adaptation of step sizes, has been an important
research topic in the literature of stochastic optimization.
Several works aimed to remove the manual tuning of learn-

ing rates via adaptations of classical line search (Rolinek
& Martius, 2018; Vaswani et al., 2019; Paquette & Schein-
berg, 2020; Kunstner et al., 2023) and Polyak step size
(Berrada et al., 2020; Loizou et al., 2021), stochastic prox-
imal methods (Asi & Duchi, 2019), stochastic quadratic
approximation (Schaul et al., 2013), hyper-gradient descent
(Baydin et al., 2017), nested hyper-gradient descent (Chan-
dra et al., 2022), distance to a solution adaptation (Ivgi et al.,
2023; Defazio & Mishchenko, 2023; Mishchenko & De-
fazio, 2023), and online convex learning (Cutkosky et al.,
2024). A limitation of most of these methods is their po-
tential underperformance when their meta-parameters are
not optimally configured for specific problems (Ivgi et al.,
2023). Moreover, the primary focus of most of these meth-
ods is on minimizing immediate loss rather than considering
the long-term effects of step sizes on future loss.

Normalization techniques proposed over past few years,
such as AdaGrad (Duchi et al., 2011), RMSProp, and Adam
have significantly enhanced the training process. While
these algorithms show promise in the stationary problems,
these normalization techniques do not optimize effective
step sizes and are prone to have sub-optimal performance
especially in the continual learning settings (Degris et al.,
2024).

An early practical step-size optimization method was the
Incremental-Delta-Bar-Delta (IDBD) algorithm, introduced
in (Sutton, 1992), which aimed to optimize the step-size vec-
tor to minimize a specific form of quadratic loss functions
in a continual setting. This algorithm was later extended
for neural networks in (Xu et al., 2018; Donini et al., 2019),
and further adapted in (Mahmood et al., 2012; Javed, 2020;
Micaelli & Storkey, 2021) for different meta or base up-
dates beyond SGD. However, the development of IDBD and
its extensions included some implicit assumptions, notably
overlooking the impact of step-size dynamics on the formu-
lation of step-size update rules. These extensions are, in
essence, special cases of the L-approximation within the
MetaOptimize framework. The current work extends the
IDBD research, significantly broadening the framework and
establishing a solid basis for the derivations. IDBD and its
extensions have been used in various machine learning tasks
including independent component analysis (Schraudolph &

7



MetaOptimize

Giannakopoulos, 1999), human motion tracking (Kehl &
Van Gool, 2006), classification (Koop, 2007), and reinforce-
ment learning (Xu et al., 2018; Young et al., 2018; Javed
et al., 2024). Refer to (Sutton, 2022) for a comprehensive
history of step-size optimization.

Hypergradient Descent (HD) (Baydin et al., 2017) adapts
learning rates using immediate loss gradients. MADA
(Ozkara et al., 2024) extends HD by parameterizing a space
of optimizers and navigating it via hypergradient descent.
Both focus on short-term effects, whereas MetaOptimize in-
troduces a discount factor γ to model long-term influences,
generalizing HD as a special case when γ = 0.

A related line of work is gradient-based bilevel optimization,
initially introduced by (Bengio, 2000) and later expanded in
(Maclaurin et al., 2015; Pedregosa, 2016; Franceschi et al.,
2018; Gao et al., 2022). Recent advances, such as (Lor-
raine et al., 2020), enable the optimization of millions of
hyperparameters. While bilevel optimization focuses on
tuning hyperparameters to minimize validation loss through
repeated full training runs of the base algorithm, MetaOpti-
mize diverges significantly. Designed for continual learning,
MetaOptimize optimizes meta-parameters on-the-fly during
a single streaming run, without relying on validation loss.
Instead, it minimizes online loss (or regret) directly, aligning
with the continual learning framework where no validation
or test sets exist, and data arrives sequentially.

Another relevant literature is learn to optimize (L2O), which
aim to learn optimization strategies from data. Classical
L2O methods such as (Andrychowicz et al., 2016) train op-
timizers offline and deploy them unchanged. Later works,
including (Metz et al., 2020; 2022), develop more effective
or scalable architectures, often using neural networks to
modulate optimizer behavior. While powerful, these meth-
ods typically lack the ability to adapt online. In contrast,
MetaOptimize updates its meta-parameters continuously
during training, which is advantageous in nonstationary or
continual learning scenarios.

There is also a line of research on the so-called parameter-
free optimization that aims to remove the need for step-size
tuning with almost no knowledge of the problem properties.
Most of these methods are primarily designed for stochastic
convex optimization (Luo & Schapire, 2015; Orabona &
Pál, 2016), while more recent ones (Orabona & Tommasi,
2017; Ivgi et al., 2023) were applied to supervised learning
tasks with small or moderate sample sizes.

9. Limitations and Future Works
Our work represents a step toward unlocking the potential
of meta-parameter optimization, with substantial room for
further exploration, some of which we outline here:

Hessian: We confined our experiments to Hessian-free
methods for practicality, though Hessian-based algorithms
could offer superior performance. These methods, however,
face challenges requiring additional research. The Hessian
matrix is notably noisy, impacting Ht+1 multiplicatively,
necessitating smoothing and clipping techniques. Addition-
ally, the Hessian approximates the loss landscape’s curva-
ture but fails to account for non-differentiable curvatures,
such as those from ReLU unit breakpoints, significant at
training’s end. From a computational perspective, devel-
oping low-complexity methods for approximate Hessian
matrix products, especially for adjusting step-sizes at the
layer and weight levels, is essential.

More accurate traces: As discussed in Section 3, accuracy
of the backward approximation (5) may degrade for larger
values of the meta-stepsize η. Eligibility traces in RL suffer
from a similar problem, to resolve which more-sophisticated
traces (e.g., Dutch traces) have been developed (see Chapter
11 of (Sutton & Barto, 2018)). Developing more accurate
backward approximations for meta-parameter optimization
can result in considerable improvements in performance and
stability.

Blockwise step-sizes: While step sizes can vary much in
granularity, our experiments focused on scalar and block-
wise step-sizes. While increasing the number of step sizes
is anticipated to enhance performance, our experimental
findings in Section 7 reveal that this improvement is not con-
sistent across the MetaOptimize approximations evaluated.
Further investigation is needed in future research.

Other approximations: We explored a limited set of
MetaOptimize’s possible approximations, leaving a com-
prehensive analysis of various approximations for future
research.

Other meta-parameters: Our study was limited to differen-
tiable meta-parameters, not covering discrete ones like batch
size or network layer count. We also did not investigate
several significant differentiable meta-parameters beyond
step-sizes, deferring such exploration to future work.

Automatic Differentiation: While certain versions of
MetaOptimize, such as the L-Approximation, could be im-
plemented using standard automatic differentiation software,
its applicability to the general case of MetaOptimize remains
unclear. Unlike updates for w and β (base and meta param-
eters), the H matrix lacks an explicit incremental formula
that can be easily handled by automatic differentiation. For
some versions of MetaOptimize, including the Hessian-free
approximations used in our experiments, automatic differen-
tiation is unnecessary, as meta updates do not require addi-
tional differentiation. Exploring the scope and applicability
of automatic differentiation across different MetaOptimize
instances is an interesting direction for future research.

8



MetaOptimize

Discount factor γ = 1: Our backward formulation
(Eq. (14)) formally assumes γ < 1 due to a normaliza-
tion factor used in the definition of the surrogate gradi-
ent. For γ = 1, a simple workaround is to remove this
scaling factor, which makes the derivation fully valid and
consistent—matching our actual implementation and exper-
iments. That said, the case γ = 1 presents subtle theoretical
differences, much like in reinforcement learning and dy-
namic programming where additional centering is often
helpful. Adapting similar techniques for meta-optimization
may yield benefits and is a promising direction for future
work.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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Appendices

A. Step-size Optimization for Different Choices of Base and Meta updates
In this appendix, we derive Gt defined in (9) for different choices of algorithms for base and meta updates, and propose
corresponding step-size optimization algorithms.

Consider the following partitions of Gt,

Gmeta
t

def
=
[

dyt+1

dyt

dyt+1

dxt

dyt+1

dht

]
, (17)

Gbase
t

def
=

 dxt+1

dyt

dxt+1

dxt

dxt+1

dht

dht+1

dyt

dht+1

dxt

dht+1

dht

 . (18)

Then,

Gt =


dyt+1

dyt

dyt+1

dxt

dyt+1

dht

dxt+1

dyt

dxt+1

dxt

dxt+1

dht

dht+1

dyt

dht+1

dxt

dht+1

dht

 =

[
Gmeta

t

Gbase
t

]
. (19)

In the sequel, we study base and meta updates separately, because Algbase and Algmeta impact disjoint sets of blocks in Gt.
In particular, as we will see, the choice of Algbase only affects Gbase while the choice of Algmeta only affects Gmeta.

Notation conventions in all Appendices: For any vector v, we denote by [v] a diagonal matrix with diagonal entries
derived from v. We denote by σ′(βt) the Jacobian of αt with respect to βt.

Before delving into computing Gbase
t and Gmeta

t for different base and meta algorithms, we further simplify these matrices.

A.1. Derivation of Gmeta for Different Meta Updates

We start by simplifying Gmeta, and introducing some notations.

Note that the meta update has no dependence on internal variables, x̃, of the base algorithm. As a result,

dyt+1

d x̃t
= 0. (20)

Then,

Gmeta
t =

[
dyt+1

dyt

dyt+1

dxt

dyt+1

dht

]
=
[

dyt+1

dyt

dyt+1

dwt

dyt+1

d x̃t

dyt+1

dht

]
=
[

dyt+1

dyt

dyt+1

dwt
0

dyt+1

dht

]
, (21)

where the third equality is due to (20). Let

Lt
def
=



∇ft(wt)
T 0 0 0

0 ∇ft(wt)
T 0 0

0 0 . . . 0

0 0 0 ∇ft(wt)
T



← 1

← 2

...

← m

(22)

and recall that ht is a vectorization ofHt. Then,

Ht∇ft(wt) = Ltht. (23)

We now proceed to derivation of Gmeta for different choices of Algmeta.
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A.1.1. Meta SGD

Here, we consider SGD for the meta update (8),

βt+1 = βt − η∇̂βF t = βt − ηHT
t ∇ft(wt), (24)

where η is a scalar, called the meta step size. In this case, yt = βt. It then follows from (24) that

dβt+1

dht
= −η d

dht

(
HT

t ∇ft(wt)
)
= −η d

dht

(
Ltht

)
= −ηLt, (25)

where the second equality is due to (23). Consequently, from (21), we obtain

Gmeta
t =

[
dyt+1

dyt

dyt+1

dwt
0

dyt+1

dht

]
=
[

dβt+1

dβt

dβt+1

dwt
0

dβt+1

dht

]
=
[
I −ηHT

t ∇2ft(wt) 0 −ηLt

]
,

(26)

where the last equality follows from (25) and simple differentiations of (24). Here,∇2ft(wt) denotes the Hessian of ft at
wt.

A.1.2. Meta Adam

The meta update based on the Adam algorithm is as follows,

m̄t+1 = ρ̄ m̄t + HT
t ∇ft(wt),

v̄t+1 = λ̄vt +
(
HT

t ∇ft(wt)
)2
,

µ̄t =

(
1− ρ̄

1− ρ̄t

)
/

√
1− λ̄

1− λ̄t
,

βt+1 = βt − η µ̄t
m̄t√
v̄t

(27)

where m̄t is the momentum vector, v̄t is the trace of squared surrogate-meta-gradient. Since Adam algorithm needs to keep
track of βt, m̄t, and v̄t, we have

yt =

 βt

m̄t

v̄t

 . (28)

Recall the following notation convention at the end of the Introduction section: for any k ≥ 1, and any k-dimensional vector
v = [v1, . . . , vk], we denote the the corresponding diagonal matrix by [v]:

[v]
def
=

 v1 · · · 0
...

. . .
...

0 · · · vk

 . (29)
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Consequently, from (21), we obtain

Gmeta
t =

[
dyt+1

dyt

dyt+1

dwt
0

dyt+1

dht

]

=


dβt+1

dβt

dβt+1

d m̄t

dβt+1

d v̄t

dβt+1

dwt
0

dβt+1

dht

d m̄t+1

dβt

d m̄t+1

d m̄t

d m̄t+1

d v̄t

d m̄t+1

dwt
0 d m̄t+1

dht

d v̄t+1
dβt

d v̄t+1
d m̄t

d v̄t+1

d v̄t

d v̄t+1
dwt

0 d v̄t+1
dht



=


I −ηµ̄t

[
1√
v̄t

]
ηµ̄t

2

[
m̄t

v̄1.5
t

]
0 0 0

0 ρ̄I 0 HT
t ∇2ft 0 d m̄t+1

dht

0 0 λ̄I 2
[
HT

t ∇ft
]
HT

t ∇2ft 0 d v̄t+1

dht

 ,

(30)

where the last equality follows by calculating derivatives of (27). For the two remaining terms in the last column of Gt, we
have

d m̄t+1

dht
=

d

dht

(
HT

t ∇ft(wt)
)
= η

d

dht

(
Ltht

)
= η Lt. (31)

where the first equality follows from the update of m̄t+1 in (27), and the second equality is due to (23). In the same vein,

d v̄t+1

dht
=

d

dht

(
HT

t ∇ft(wt)
)2

=
d

dht

(
Ltht

)2
= 2

[
Ltht

] d

dht

(
Ltht

)
= 2

[
Ltht

]
Lt = 2

[
HT

t ∇ft(wt)
]
Lt, (32)

where the first equality follows from the update of v̄t+1 in (27), the second equality is due to (23), and the last equality is
again from (23).

Plugging (31) and (32) into (30), we obtain

Gmeta
t =

 I −ηµ̄t

[
1√
v̄t

]
ηµ̄t

2

[
m̄t

v̄1.5
t

]
0 0 0

0 ρ̄I 0 HT
t ∇2ft 0 η Lt

0 0 λ̄I 2
[
HT

t ∇ft
]
HT

t ∇2ft 0 2
[
HT

t ∇ft
]
Lt

 . (33)

A.1.3. Meta Lion

The meta update based on the lion algorithm is as follows

m̄t+1 = ρ m̄t + (1− ρ) ∇̂βF t, (34)

βt+1 = βt − η Sign
(
c m̄t + (1− c)∇̂βF t

)
, (35)

where η is a scalar, called the meta step size, and ρ, c ∈ [0, 1). Note that the meta algorithm operates on a low dimensional
space. Therefore, we drop the regularizers like weight-decay in the meta updates, as they are primarily aimed to resolve
the overfitting problem in high dimensional problems. Substituting ∇̂βF t withHT

t ∇ft(wt) we obtain the following meta
updates

m̄t+1 = ρ m̄t + (1− ρ)HT
t ∇ft(wt), (36)

βt+1 = βt − η Sign
(
c m̄t + (1− c)HT

t ∇ft(wt)
)
. (37)

In this case,

yt =

[
βt

m̄t

]
,
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and

Gmeta
t =

[
dyt+1

dyt

dyt+1

dwt
0

dyt+1

dht

]
=

 dβt+1

dβt

dβt+1

d m̄t

dβt+1

dwt
0

dβt+1

dht

d m̄t+1

dβt

d m̄t+1

d m̄t

d m̄t+1

dwt
0 d m̄t+1

dht


=

 I 0 0 0 0
d m̄t+1

dβt

d m̄t+1

d m̄t

d m̄t+1

dwt
0 d m̄t+1

dht

 ,

(38)

where the last equality follows from (37). Consider the following block representation of Yt:

Yt =

[
Bt

Y m̄
t

]
. (39)

Since the base algorithm, does not take m̄ as input, as we will see in (41) and (42) of next subsection (Appendix A.2), d m̄t+1

d m̄t

is the only non-zero block of Gt in its column of blocks (i.e., d st+1

d m̄t
= 0 for every variable s other than m̄). Consequently,

it follows from (14) that Y m̄
t as defined in (39), has no impact on the update of Xt+1, Bt+1, and Qt+1. Therefore, we can

zero-out the rows and columns of Gmeta that correspond to derivative of m̄. As such we obtain the following equivalent of
Gmeta in (38) from an algorithmic perspective:

Gmeta
t ≡

[
Im×m 0

0 0

]
. (40)

As a result, we get Bt = I for all times t.

A.2. Derivation of Gbase for Different Base Updates

We now turn our focus to computation of Gbase . Let us start by simplifying Gbase, and introducing some notations.

Note that the base update has no dependence on internal variables, ỹ, of the meta update. As a result,

dxt+1

d ỹt

= 0. (41)

Moreover, it follows from the definition ofHt in (7) that

dHt+1

d ỹt

= (1− γ)

t∑
t=0

γt−τ d

dỹt

(
dwt+1

dβτ

)
= (1− γ)

t∑
t=0

γt−τ d

dβτ

(
dwt+1

d ỹt

)
= (1− γ)

t∑
t=0

γt−τ d

dβτ

(0) = 0,

where the third equality follows from (41). Therefore,

dht+1

d ỹt

= 0. (42)

Note also that Algbase does not takeHt as input, and therefore,

dxt+1

dht
= 0. (43)

Consequently, we can simplify Gbase
t as follows,

Gbase
t =

 dxt+1

dyt

dxt+1

dxt

dxt+1

dht

dht+1

dyt

dht+1

dxt

dht+1

dht

 =

 dxt+1

dβt

dxt+1

d ỹt

dxt+1

dxt

dxt+1

dht

dht+1

dβt

dht+1

d ỹt

dht+1

dxt

dht+1

dht

 =

 dxt+1

dβt
0 dxt+1

dxt
0

dht+1

dβt
0 dht+1

dxt

dht+1

dht

 , (44)
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where the last equality is due to (41), (42), and (43).

On an independent note, consider the following block representation of Yt,

Yt =

[
Bt − 1−γ

γ I

Ỹt

]
, (45)

Therefore,

γYt + (1− γ)

[
I
0

]
= γ

[
Bt

Ỹt

]
It then follows from (19) and (14) that

[
Xt+1

Qt+1

]
= γ Gbase

t


[

Bt

Ỹt

]
Xt

Qt

 . (46)

Moreover, from the definition of Yt in (11), we have

dBt

dxt
= (1− γ)

d

dxt

t∑
τ=0

γt−τ dβt

dβτ

= (1− γ)

t∑
τ=0

γt−τ d

dβτ

(
dβt

dxt

)
= (1− γ)

t∑
τ=0

γt−τ d

dβτ

(
0
)
= 0,

dBt

dβt

= (1− γ)
d

dβt

t∑
τ=0

γt−τ dβt

dβτ

= (1− γ)

t∑
τ=0

γt−τ d

dβτ

(
dβt

dβt

)
= (1− γ)

t∑
τ=0

γt−τ d

dβτ

(
I
)
= 0,

dBt

dht
= (1− γ)

d

dht

t∑
τ=0

γt−τ dβt

dβτ

= (1− γ)

t∑
τ=0

γt−τ d

dβτ

(
dβt

dht

)
= (1− γ)

t∑
τ=0

γt−τ d

dβτ

(
0
)
= 0.

(47)

Finally, recall the definition

σ′(βt)
def
=

dαt

dβt

(48)

as the Jacobian of αt with respect to βt.

We now proceed to derivation of Gbase for different choices of Algbase.

A.3. Base SGD

Base SGD algorithm makes the following base update in each iteration:

wt+1 = wt −αt∇ft(wt). (49)

In this case, xt = wt and Xt = Ht. Then, Gbase
t in (44) can be simplified to

Gbase
t =

 dxt+1

dβt
0 dxt+1

dxt
0

dht+1

dβt
0 dht+1

dxt

dht+1

dht


=

 dwt+1

dβt
0 dwt+1

dwt
0

dht+1

dβt
0 dht+1

dwt

dht+1

dht


=

[
− [∇ft(wt)]σ

′(βt) 0 I − [αt]∇2ft(wt) 0
dht+1

dβt
0 dht+1

dwt

dht+1

dht

]
,

(50)

where the last equality follows by computing simple derivatives of wt+1 in (49).
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We proceed to compute the three remaining entries of Gbase
t , i.e., dht+1/dβt, dht+1/dwt, and dht+1/dht. Note that by

plugging the first row of Gbase
t , given in (50), into (46), and noting thatHt = Xt, we obtain

Ht+1 = γ
(
I − [αt]∇2ft(wt)

)
Ht − γ [∇ft(wt)]σ

′(βt)Bt, (51)

for all t ≥ 0. By vectorizing both sides of (51) we obtain

ht+1 = γ



(
I − [αt]∇2ft

)
H[1]

t − [∇ft] σ′(βt)B
[1]
t(

I − [αt]∇2ft
)
H[2]

t − [∇ft] σ′(βt)B
[2]
t

...(
I − [αt]∇2ft

)
H[m]

t − [∇ft] σ′(βt)B
[m]
t


. (52)

Note that for any pair of same-size vectors a and b, we have [a] b = [b]a where [a] and [b] are diagonal matrices of a and
b, respectively. Therefore, (52) can be equivalently written in the following form

ht+1 = γ


(
I − [αt]∇2ft

)
H[1]

t −
[
σ′(βt)B

[1]
t

]
∇ft

...(
I − [αt]∇2ft

)
H[m]

t −
[
σ′(βt)B

[m]
t

]
∇ft

 . (53)

By taking the derivative of (52) with respect to ht, we obtain

dht+1

dht
= γ



I − [αt] ∇2ft(wt) 0 0 0

0 I − [αt] ∇2ft(wt) 0 0

0 0 . . . 0

0 0 0 I − [αt] ∇2ft(wt)



← 1st

← 2nd

...

← mth

. (54)

In the above equation, note that dBt/dht = 0 due to (47). Let βt[i] and wt[j] denote the ith and jth entries of βt and wt,
for i = 1, . . . ,m and j = 1, . . . , n, respectively. It then follows from (52) and (47) that

dht+1

dβt

= −γ



[
dαt

d βt[1]

]
∇2ftH[1]

t + [∇ft] ∂ σ′(βt)
∂ βt[1]

B
[1]
t · · ·

[
dαt

d βt[m]

]
∇2ftH[1]

t + [∇ft] ∂ σ′(βt)
∂ βt[m] B

[1]
t

...
. . .

...[
dαt

d βt[1]

]
∇2ftH[m]

t + [∇ft] ∂ σ′(βt)
∂ βt[1]

B
[m]
t · · ·

[
dαt

d βt[m]

]
∇2ftH[m]

t + [∇ft] ∂ σ′(βt)
∂ βt[m] B

[m]
t

 , (55)

where ∂
∂β stands for the entry-wise partial derivative of a matrix with respect to a scalar variable β. In the same vein, (53)

and (47) imply that

dht+1

dwt
= −γ


[αt]

d (∇2ft(wt)H[1]
t )

dwt
+
[
σ′(βt)B

[1]
t

]
∇2ft(wt)

...

[αt]
d (∇2ft(wt)H[m]

t )
dwt

+
[
σ′(βt)B

[m]
t

]
∇2ft(wt)

 . (56)

Finally, Gbase
t is obtained by plugging (54), (55), and (56) into (50).
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In the special case that β is a scalar (equivalently m = 1), and furthermore α = σ(β) = eβ , matrix Gbase
t would be

simplified to

Gbase (scalar)
t =


1 −η hT

t ∇2ft(wt) −η∇ft(wt)
T

−α∇ft(wt) I − α∇2ft(wt) 0

−γα∇2ft(wt)ht −Bt α∇ft(wt) −γαd (∇2ft(wt)ht)
dwt

−Bt α∇2ft(wt) γ
(
I − α∇2ft(wt)

)
 .

A.3.1. Base AdamW

The base update according to the AdamW algorithm (Loizou et al., 2021) is as follows,

mt+1 = ρmt + ∇ft(wt),

vt+1 = λvt + ∇ft(wt)
2,

µt =

(
1− ρ

1− ρt

)
/

√
1− λ

1− λt
,

wt+1 = wt − αtµt
mt√
vt
− καtwt,

(57)

where mt is the momentum vector, vt is the trace of gradient square used for normalization, and κ > 0 is a weight-decay
parameter. Therefore the base algorithm needs to keep track of wt,mt,vt, i.e.,

xt =

 wt

mt

vt

 . (58)

It then follows from (44) that

Gbase
t =

 dxt+1

dβt
0 dxt+1

dxt
0

dht+1

dβt
0 dht+1

dxt

dht+1

dht



=


dwt+1

dβt
0 dwt+1

dwt

dwt+1

dmt

dwt+1

dvt
0

dmt+1

dβt
0 dmt+1

dwt

dmt+1

dmt

dmt+1

dvt
0

dvt+1

dβt
0 dvt+1

dwt

dvt+1

dmt

dvt+1

dvt
0

dht+1

dβt
0 dht+1

dwt

dht+1

dmt

dht+1

dvt

dht+1

dht



=


−µt

[
mt√
vt

+ κwt

]
σ′(βt) 0 I − κ [αt] −µt

[
αt√
vt

]
µt

2

[
αtmt

v1.5
t

]
0

0 0 ∇2ft ρI 0 0
0 0 2 [∇ft] ∇2ft 0 λI 0

dht+1

dβt
0 dht+1

dwt

dht+1

dmt

dht+1

dvt

dht+1

dht



(59)

where the last equality follows from simple derivative computations in (57).

We proceed to compute the terms in the last row of the Gbase
t above. Consider the following block representation of Xt,

Xt =

 Ht

Xm
t

Xv
t

 , (60)

Plugging the first row of Gbase
t , given in (59), into (46), implies that

Ht+1 = −γµt

[ mt√
vt

+ κwt

]
σ′(βt)Bt + γ

(
I − κ [αt]

)
Ht − γµt

[ αt√
vt

]
Xm

t + γ
µt

2

[αtmt

v1.5
t

]
Xv

t . (61)
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for all t ≥ 0. Note that for any pair of same-size vectors a and b, we have [a] b = [b]a where [a] and [b] are diagonal
matrices of a and b, respectively. Therefore, the ith column in the matrix equation (61) can be equivalently written as

H[i]
t+1 = −γµt

[
σ′(βt)B

[i]
t

] mt√
vt

+ κwt + γ
(
I − κ [αt]

)
H[i]

t − γµt

[
X

m [i]
t

] αt√
vt

+ γ
µt

2

[
X

v [i]
t

] αtmt

v1.5
t

, (62)

where B
[i]
t , H[i]

t , Xm [i]
t , and X

v [i]
t stand for the ith columns of Bt, Ht, Xm

t , and Xv
t , respectively. Following similar

arguments as in (47), it is easy to show that

dXm
t

dβt

=
dXv

t

dβt

= 0,

dXm
t

dwt
=

dXv
t

dwt
= 0,

dXm
t

dmt
=

dXv
t

dmt
= 0,

dXm
t

dvt
=

dXv
t

dvt
= 0,

dXm
t

dht
=

dXv
t

dht
= 0.

(63)

Note that ht is an nm-dimensional vector derived from stacking the columns of Ht. Therefore, we consider a block
representation of ht consisting of m blocks, each of which corresponds to a column ofHt. By taking the derivative of (61)
with respect to ht, and using (63), we obtain

dht+1

dht
= γ



I − κ [αt] 0 0 0

0 I − κ [αt] 0 0

0 0 . . . 0

0 0 0 I − κ [αt]



← 1st

← 2nd

...

← mth

. (64)

Let βt[i] and wt[j] denote the ith and jth entries of βt and wt, for i = 1, . . . ,m and j = 1, . . . , n, respectively. Note that

dht+1/dβt is a block matrix, in the form of an m×m array of n× 1 blocks, dht+1

dβt
[i, j]

def
=

dH[i]
t+1

d βt[j]
, for i, j = 1, . . . ,m. It

then follows from (61) and (63) that, for i, j = 1, . . . ,m,

dht+1

dβt

[i, j] =
dH[i]

t+1

dβt[j]

=− γµt

[ mt√
vt

+ κwt

](∂ σ′(βt)

∂ βt[j]

)
B

[i]
t + γ

(
I − κ

[ dαt

dβt[j]

])
H[i]

t

− γµt

[ 1
√
vt

][ dαt

dβt[j]

]
X

m [i]
t + γ

µt

2

[mt

v1.5
t

] [ dαt

dβt[j]

]
X

v [i]
t ,

(65)

where ∂
∂β stands for the entry-wise partial derivative of a matrix with respect to a scalar variable β.

In the same vein, it follows from (62) and (63) that

dht+1

dwt
= −γµtκ



[
σ′(βt)B

[1]
t

]
...[

σ′(βt)B
[m]
t

]

 , (66)
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dht+1

dmt
= γµt



[
αtX

v [1]
t

2v1.5
t
− σ′(βt)B

[1]
t√

vt

]
...[

αtX
v [m]
t

2v1.5
t
− σ′(βt)B

[m]
t√

vt

]

 , (67)

dht+1

dvt
=

γµt

2



[
1

v1.5
t

] [(
σ′(βt)B

[1]
t

)
mt +αt X

m [1]
t − 3αtmtX

v [1]
t

2vt

]
...[

1
v1.5
t

] [(
σ′(βt)B

[m]
t

)
mt +αt X

m [m]
t − 3αtmtX

v [m]
t

2vt

]

 . (68)

Finally, Gbase
t is obtained by plugging (64), (65), (66), (67), and (68) into (59).

A.3.2. Base Lion

The lion algorithm, when used for base update, is as follows

mt+1 = ρmt + (1− ρ)∇ft(wt), (69)

wt+1 = wt −αt Sign
(
cmt + (1− c)∇ft

)
− καtwt, (70)

where mt is called the momentum, κ > 0 is the weight-decay parameter, ρ, c ∈ [0, 1) are constants, and Sign(·) is a
function that computes entry-wise sign of a vector. Let

xt =

[
wt

mt

]
. (71)

It then follows from (44) that

Gbase
t =

 dxt+1

dβt
0 dxt+1

dxt
0

dht+1

dβt
0 dht+1

dxt

dht+1

dht



=


dwt+1

dβt
0 dwt+1

dwt

dwt+1

dmt
0

dmt+1

dβt
0 dmt+1

dwt

dmt+1

dmt
0

dht+1

dβt
0 dht+1

dwt

dht+1

dmt

dht+1

dht



=


−
[
Sign

(
cmt + (1− c)∇ft

)
+ κwt

]
σ′(βt) 0 I − κ [αt] 0 0

dmt+1

dβt
0 dmt+1

dwt

dmt+1

dmt
0

dht+1

dβt
0 dht+1

dwt

dht+1

dmt

dht+1

dht



(72)

where the second equality is due to (71) and the last equality follows from (70). Consider the following block representation
of Xt,

Xt =

[
Ht

Xm
t

]
. (73)

Plugging the first row of Gbase
t , given in (72), into (46), implies that

Ht+1 = −γ
[
Sign

(
cmt + (1− c)∇ft

)
+ κwt

]
σ′(βt)Bt + γ

(
I − κ [αt]

)
Ht (74)

For simplicity of notation, we define the diagonal matrix St as

St
def
=
[
Sign

(
cmt + (1− c)∇ft

)
+ κwt

]
. (75)
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Then,

ht+1 = γ


−St σ

′(βt)B
[1]
t + γ

(
I − κ [αt]

)
H[1]

t

...

−St σ
′(βt)B

[m]
t + γ

(
I − κ [αt]

)
H[m]

t .

 (76)

It follows that
dht+1

dmt
= 0, (77)

and

dht+1

dwt
= −γ


[e1] σ

′(βt)B
[1]
t · · · [en] σ

′(βt)B
[1]
t

... . . .
...

[e1] σ
′(βt)B

[m]
t · · · [en] σ

′(βt)B
[m]
t

 , (78)

where ei is the ith unit vector (i.e., an n-dimensional vector whose ith entry is 1 and all other entries are zero). Let βt[i] and
H[i]

t be the ith entry of βt and ith column ofHt, respectively, for i = 1, . . . ,m. Then,

dht+1

dβt

= −γ


γκ
[

dαt

d βt[1]

]
H[1]

t + St
∂ σ′(βt)
∂ βt[1]

B
[1]
t · · · γκ

[
dαt

d βt[m]

]
H[1]

t + St
∂ σ′(βt)
∂ βt[m] B

[1]
t

...
. . .

...

γκ
[

dαt

d βt[1]

]
H[m]

t + St
∂ σ′(βt)
∂ βt[1]

B
[m]
t · · · γκ

[
dαt

d βt[m]

]
H[m]

t + St
∂ σ′(βt)
∂ βt[m] B

[m]
t

 , (79)

and

dht+1

dht
= γ



I − κ [αt] 0 0 0

0 I − κ [αt] 0 0

0 0 . . . 0

0 0 0 I − κ [αt]



← 1st

← 2nd

...

← mth ,

. (80)

It follows from (21), (72), and (77) that in the Gt matrix, dmt+1

dmt
is the only non-zero block in its corresponding column of

blocks. Consequently, it follows from (14) that Xm
t , as defined in (73), has no impact on the update of Ht+1, Yt+1, and

Qt+1. Therefore, the rows and columns of Gbase that correspond to derivative of m can be completely removed from Gbase.
By removing these rows and columns from Gt, the matrix update (14) simplifies to

 Yt+1

Ht+1

Qt+1

 = γ


dyt+1

dyt −[ Sign (cmt + (1− c)∇ft
)]
σ′(βt) 0

dht+1

dβt
0


dyt+1

dwt

dyt+1

dht

I − κ [αt] 0
dht+1

dwt

dht+1

dht



 Yt

Ht

Qt

+ (1− γ)


[

I
0

]
0
0


 ,

(81)
where dht+1/dβt, dht+1/dwt, and dht+1/dht are given in (79), (78), and (80), respectively; and the blocks in the first
row depend on the meta update.

B. Exiting Step-size Optimization Algorithms as Special Cases of MetaOptimize
In this appendix we show that some of the existing step-size optimization algorithms are special cases of the MetaOptimize
framework. In particular, we first consider the IDBD algorithm (Sutton, 1992) and its extension (Xu et al., 2018), and then
discuss about the HyperGradient algorithm (Baydin et al., 2017).

21



MetaOptimize

B.1. IDBD and Its Extensions

(Sutton, 1992) proposed the IDBD algorithm for step-size optimization of a class of quadratic loss functions. In particular, it
considers loss functions of the form

ft(wt) =
1

2

(
aT
t wt − bt

)2
, (82)

for a given sequence of feature vectors at and target values bt, for t = 1, 2, . . .. Moreover, Sutton (1992) assumes
weight-wise step sizes, in which case βt has the same dimension as wt. The update rule of IDBD is as follows:

gt ← (aT
t wt − bt)at, (83)

βt+1 ← βt − η ht gt, (84)

αt+1 ← exp
(
βt+1

)
, (85)

wt+1 ← wt −αt+1 gt, (86)

ht+1 ←
(
1−αt+1a

2
t

)+
ht −αt+1gt, (87)

where (·)+ clips the entries at zero to make them non-negative, aimed to improve stability. Here, gt is the gradient of ft(wt)
and a2

t in the last line is a vector that contains diagonal entries of the Hessian of ft. The updated values of β and w would
remain unchanged, if instead of the vector ht, we use a diagonal matrixHt and replace (84) and (87) by

βt+1 ← βt − ηHt gt,

Ht+1 ←
(
1−

[
αt+1a

2
])+Ht − [αt+1gt] .

(88)

Note that
[
a2
]

is a matrix that is obtained from zeroing-out all non-diagonal entries of the Hessian matrix of ft. It is easy to
see that the above formulation of IDBD, equals the L-approximation of MetaOptimize framework when we use SGD for
both base and meta updates, and further use a diagonal approximation of the Hessian matrix along with a rectifier in the
update ofHt.

An extension of IDBD beyond quadratic case has been derived in (Xu et al., 2018). Similar to IDBD, they also consider
weight-wise step sizes, i.e., m = n. The update of step sizes in this method is as follows:

βt+1 ← βt − ηHT
t ∇ft(wt)

αt+1 ← exp(βt+1),

wt+1 ← wt −αt+1∇ft(wt),

Ht+1 ←
(
I − [αt+1] ∇2ft(wt)

)
Ht −

[
αt+1∇ft(wt)

]
.

Similar to IDBD, it is straightforward to check that the above set of updates is equivalent to the L-approximation of
MetaOptimize framework that uses SGD for both base and meta updates, except for the fact that the above algorithm uses
αt+1 in wt+1 andHt+1 updates whereas MetaOptimize uses αt. This however has no considerable impact since αt varies
slowly.

B.2. Hyper-gradient Descent

HyperGradient descent was proposed in (Baydin et al., 2017) as a step-size optimization method. It considers scalar step
size with straightforward extensions to weight-wise step sizes, and at each time t, updates the step size in a direction to
minimize the immediate next loss function. In particular, they propose the following additive update for step sizes, that can
wrap around an arbitrary base update:

αt = βt 1n×1,

βt+1 = βt − η
d ft(wt)

dβt−1
= βt − η∇ft(wt)

T dwt

dβt−1
.

(89)

The last update can be equivalently written as

βt+1 = βt − ηHT
t ∇ft(wt),

Ht+1 = 0×Ht +
dwt+1

dβt
.

(90)
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The step-size update in (90) can be perceived as a special case of MetaOptimize in two different ways. First, as a
MetaOptimize algorithm that uses SGD as its meta update and approximate the Gt matrix in (9) by zeroing out all of its
blocks except for the top two blocks in the first column. From another perspective, the additive HyperGradient descent in
(90) is also equivalent to a MetaOptimize algorithm that uses SGD as its meta update and sets γ = 0. Note that setting γ
equal to zero would eliminate the dependence ofHt+1 on Xt and Qt, as can be verified from (14). This would also render
the β updates ignorant about the long-term impact of step size on future losses.

C. Experiment Details
In the appendix, we describe the details of experiments performed throughout the paper. In our experiments on CIFAR10,
non-stationary CIFAR100, and ImageNet dataset, we used a machine with four Intel Xeon Gold 5120 Skylake @ 2.2GHz
CPUs and a single NVIDIA V100 Volta (16GB HBM2 memory) GPU. For TinyStories dataset, we used a machine with
four AMD Milan 7413 @ 2.65 GHz 128M cache L3 CPUs and a single NVIDIA A100SXM4 (40 GB memory) GPU. In all
experiments, the meta step size η is set to 10−3. The meta-parameters used in the considered optimization algorithm for
CIFAR10, non-stationary CIFAR100, ImageNet, and TinyStories are given in Table 2, Table 4, and Table 5, respectively.
In the experiments, we performed a grid search for ρ, ρ̄ ∈ {0.9, 0.99, 0.999}, λ, λ̄ ∈ {0.99, 0.999}, and c, c̄ ∈ {0.9, 0.99}.
Regarding baselines with fixed step sizes, we did a grid search for the learning rate in the set {10−5, 10−4, 10−3, 10−2, 10−1}.
We set γ equal to one in all experiments. Moreover, in ImageNet (respectively TinyStories) dataset, for AdamW with the
learning rate scheduler, we considered a cosine decay with 10k (respectively 1k) steps warmup (according to extensive
experimental studies in (Chen et al., 2023) (respectively (Karpathy, 2024))) and did a grid search for the maximum learning
rate in the set {10−5, 10−4, 10−3}.

Regarding other baseline algorithms, for DoG, although it is a parameter-free algorithm, its performance is still sensitive
to the initial step movement. We did a grid search for the initial step movement in the set {10−9, 10−8, 10−7, 10−6} and
reported the performance for the best value. In all experiments of DoG, we considered the polynomial decay averaging. For
Prodigy, we used the default values of parameters as suggested by the authors in github repository. For gdtuo, we considered
the following (base, meta) combinations: (RMSprop, Adam), (Adam, Adam), and (SGD with momentum, Adam) and chose
the best combination. For mechanic, we did experiments for the base updates of SGDm, Lion, and Adam and considered the
best update. In order to have a fair comparison, in mechanic and gdtuo, we used the same initial step size as MetaOptimize.

Regarding the complexity overheads reported in Table 1, for AdamW with fixed step-size we used the Pytroch implementation
of AdamW. For all other baselines, we used the implementation from the Github repository provided along with (and
cited in) the corresponding paper. For MetaOptimize, we used the implementation in (Anonymous, 2024). Note that
the implementation of MetaOptimize in (Anonymous, 2024) is not optimized for time or space efficiency, and smaller
complexity overheads might be achieved with more efficient codes. For each algorithm, the wall-clock time overhead and
GPU space overhead are computed by (TAlg − TAdamW)/TAdamW and

(
Bmax

AdamW/Bmax
Alg

)
− 1, respectively; where TAlg

and TAdamW are per-iteration runtimes of the algorithm and AdamW, and Bmax
Alg and Bmax

AdamW are the maximum batch-sizes
that did not cause GPU-memory outage for the algorithm and AdamW.

Base Update Meta Update (if any) ρ λ κ c ρ̄ λ̄ c̄ α0 η γ

AdamW
Fixed step size 0.9 0.999 0.1 - - - - 10−5 - 1
Adam, Scalar 0.9 0.999 0.1 - 0.9 0.999 - 10−6 10−3 1

Adam, Blockwise 0.9 0.999 0.1 - 0.9 0.999 - 10−6 10−3 1

Lion
Fixed step size 0.99 - 0.1 0.9 - - - 10−4 - 1

Lion, Scalar 0.99 - 0.1 0.9 0.99 - 0.9 10−6 10−3 1
Lion, Blockwise 0.99 - 0.1 0.9 0.99 - 0.9 10−6 10−3 1

RMSprop
Fixed step size - 0.999 0.1 - - - - 10−5 - 1
Adam, Scalar - 0.999 0.1 - 0.9 0.999 - 10−6 10−3 1

Adam, Blockwise - 0.999 0.1 - 0.9 0.999 - 10−6 10−3 1

SGDm
Fixed step size 0.9 - 0.1 - - - - 10−3 - 1
Adam, Scalar 0.9 - 0.1 - - - - 10−6 10−3 1

Adam, Blockwise 0.9 - 0.1 - - - - 10−6 10−3 1

Table 2. The values of meta-parameters used in CIFAR10 dataset.
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Base Update Meta Update (if any) ρ λ κ ρ̄ λ̄ α0 η γ

AdamW
Fixed step size 0.9 0.999 0.1 - - 10−4 - -
Adam, Scalar 0.9 0.999 0.1 0.9 0.999 10−4 10−3 0.999

Adam, Blockwise 0.9 0.999 0.1 0.9 0.999 10−4 10−3 0.999

Table 3. The values of meta-parameters used in non-stationary CIFAR100 experiment.

Base Update Meta Update ρ λ κ c ρ̄ λ̄ c̄ α0 η γ

AdamW
Fixed step size 0.9 0.999 0.1 - - - - 10−5 - 1

Lion, Scalar 0.9 0.999 0.1 - 0.99 - 0.9 10−6 10−3 1
Lion, Blockwise 0.9 0.999 0.1 - 0.99 - 0.9 10−6 10−3 1

Lion
Fixed step size 0.99 - 0.1 0.9 - - - 10−5 - 1

Lion, Scalar 0.99 - 0.1 0.9 0.99 - 0.9 10−6 10−3 1
Lion, Blockwise 0.99 - 0.1 0.9 0.99 - 0.9 10−6 10−3 1

SGDm Lion, Scalar 0.9 - 0.1 0.9 - - - 10−5 10−3 1

Table 4. The values of meta-parameters used in ImageNet dataset.

D. Further Experimental Results
Continual CIFAR100 experiment: In Figure 3, we plotted the average top-1 accuracy—averaged over all past training
times. This metric is used in continual learning mainly because it summarizes algorithmic performance across multiple
tasks, avoiding difficult/misleading interpretations from task-specific accuracy variations. Here, we also include the accuracy
curves to reveal such variations. Figure 7 depicts test accuracy at the end of each task.

Figure 7. Top 1 test accuracy of each task in the non-stationary CIFAR100 experiment, computed at the end of the task.
.

ImageNet dataset: In Figure 8, we depict the train accuracy (top 1) and test accuracy (top 1) of the considered algorithms in
ImageNet dataset. As can be seen, in the train accuracy (top 1), MetaOptimize (SGDm, Lion) and MetaOptimize (AdamW,
Lion) have the best performance. Moreover, in the test accuracy (top1), these two combinations of MetaOptimze outperform
other hyperparameter optimization methods and only AdamW with a handcrafted learning rate scheduler has a slightly
better performance at the end of the training process.

Figure 9 shows the results for the blockwise version of MetaOptimize for two combinations of (AdamW, Lion) and (Lion,
Lion). As can be seen, they showed no improvement over the scalar version.
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Base Update Meta Update (if any) ρ λ κ c ρ̄ λ̄ c̄ α0 η γ

AdamW Fixed stepsize 0.9 0.999 0.1 - - - - 10−5 - 1
Adam, Scalar 0.9 0.999 0.1 - 0.9 0.999 - 10−6 10−3 1

Lion
Fixed stepsize 0.99 - 0.1 0.9 - - - 10−4 - 1
Lion, Scalar 0.99 - 0.1 0.9 0.99 - 0.9 10−6 10−3 1

Table 5. The values of meta-parameters used in TinyStories dataset.

(a) Train Accuracy (Top 1) (b) Test Accuracy (Top 1)

Figure 8. ImageNet learning curves.

TinyStories experiment: In Figure 10, we provide the test loss of considered algorithms for the TinyStories datasets. As
can be seen, the learning curves have the same trends as the training loss in Figure 6.
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Figure 9. Comparison of blockwise version of MetaOptimize with the scalar version in ImageNet dataset.

Figure 10. TinyStories learning curves.
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