arXiv:2405.04776v2 [cs.Al] 6 Jun 2024

Chain of Thoughtlessness?
An Analysis of CoT in Planning

Kaya Stechly* Karthik Valmeekam*
SCALI, Arizona State University SCALI, Arizona State University
kstechl@asu.edu kvalmeek@asu.edu
Subbarao Kambhampati

SCALI, Arizona State University
rao@asu.edu

Abstract

Large language model (LLM) performance on reasoning problems typically does
not generalize out of distribution. Previous work has claimed that this can be
mitigated with chain of thought prompting—a method of demonstrating solution
procedures—with the intuition that it is possible to in-context teach an LLM an
algorithm for solving the problem. This paper presents a case study of chain
of thought on problems from Blocksworld, a classical planning domain, and
examines the performance of two state-of-the-art LLMs across two axes: generality
of examples given in prompt, and complexity of problems queried with each
prompt. While our problems are very simple, we only find meaningful performance
improvements from chain of thought prompts when those prompts are exceedingly
specific to their problem class, and that those improvements quickly deteriorate as
the size n of the query-specified stack grows past the size of stacks shown in the
examples. We also create scalable variants of three domains commonly studied in
previous CoT papers and demonstrate the existence of similar failure modes. Our
results hint that, contrary to previous claims in the literature, CoT’s performance
improvements do not stem from the model learning general algorithmic procedures
via demonstrations but depend on carefully engineering highly problem specific
prompts. This spotlights drawbacks of chain of thought, especially the sharp
tradeoff between possible performance gains and the amount of human labor
necessary to generate examples with correct reasoning traces.

1 Introduction

While originally designed for text completion, Large Language Models (LLMs) have shown promise
on a diverse set of unrelated tasks. While initial anecdotal results were unexpectedly impressive [8],
followup systematic studies showed that—outside of limited, non-generalizable classes of problems—
these models generally perform poorly on basic, multi-hop reasoning tasks [17] ranging from
arithmetic [35] and logic puzzles [14] to constraint satisfaction [42, 2] and classical planning [47].

At the same time, the subfield of prompt engineering [36] has grown rapidly, promising improvements
in performance without retraining. A core tenet of this subfield is that LLMs are capable of powerful
in-context learning [12, 56], that is, capable of intelligently using additional context provided in a
prompt to correctly respond to queries that would otherwise be answered incorrectly. Generally, this

*equal contribution

Preprint. Under review.

requires operationalizing algorithmic/procedural advice, and, in principle, learning such procedures
includes being able to effectively apply them beyond syntactically similar instances.

The foundational method for inducing in-context learning is the chain of thought approach, which
has been claimed to "unlock the reasoning abilities of LLMs" [50]. To create a chain of thought
(CoT) prompt, a user annotates similar problems with intermediate reasoning steps and prepends
them to the standard prompt. These annotations are meant as demonstrations, intended to teach a
procedure applicable to both the examples and the new query. When prompted like this, the LLM is
expected to output a similar series of reasoning steps prior to the new answer. Numerous studies have
claimed that this procedure significantly enhances LLM performance in complex reasoning tasks
[49, 54, 39, 56, 52, 43]. However, in general it is unclear how "similar" the examples need to be to
the problem, how broadly any given chain of thought prompt will apply, and—most importantly—how
much human effort is necessary to craft prompts specific to each problem subclasses. Followup
work has claimed that merely adding magic phrases ("let’s think step by step") to every prompt is
sufficient for some improvement [26]. While in some domains, this technique has proven to be even
more brittle than manual CoT, it has achieved the same performance increases in others, hinting that
improvements observed with CoT may not indicate as much about LLMs’ general in-context learning
abilities as previously thought.

We are interested in the tradeoff between possible performance gains from chain of thought prompt
engineering and the amount of human labor necessary to generate examples with useful reasoning
traces. Ideally, a properly constructed prompt should teach the LLM how to robustly generalize a
basic algorithmic procedure in order to increase performance on a large class of problems, thereby
converting a modest amount of human teaching effort into a significant capability boost. Unfortunately,
this only seems to be possible to a very limited extent [14].

In the current work, we examine the limits of chain of thought in solving classical planning problems.
Test domains commonly used in previous chain of thought studies (e.g. GSMS8K [10], CommonSense
QA [44]) present two significant issues: (a) they lack a systematic method to scale instances, which
is essential for evaluating whether LLMs can extend provided procedures to larger instances of the
same type, and (b) due to their static nature, are more likely to be well-represented on the web[51],
increasing the chance that they were part of LLM training data, a factor which could obscure the true
reasoning capabilities of LLMs. Planning is a well-studied kind of sequential decision-making which
tasks an agent with devising a plan that takes a given initial state to a pre-specified goal state. New,
diverse, and unique problem instances are easy to generate, but potentially hard to solve.

We focus on Blocksworld, a simple commonsense domain widely recognized and utilized in Interna-
tional Planning Competitions [23], where a set of blocks in an initial configuration must be rearranged
step-by-step into a goal configuration. For a subset of our results, we simplify even further, and only
consider problem instances where every block starts on the table and the goal is a single stack of
blocks. These instances require very minimal reasoning: one need only figure out which block is
on the bottom, and then stack the remaining blocks in the sequence directly defined in the goal. For
3 < n < 20, we generate a variety of instances where the goal requires a specific n height stack,
while providing examples of how to solve 2 and 3 height instances.

We consider different chain of thought prompts, where each is more specific-and provides more
problem-specific knowledge—than the last: a zero-shot variant, a PDDL-general progression proof, a
suboptimal algorithm specific to Blocksworld, a table-to-stack specific simplification of that algorithm,
and a lexicographic version of the simplification. The most general could be applied to any problem,
while the least is specific to an easier version of the stacking problem. The three human-crafted
prompts all teach algorithms which could, in principle, solve any of the instances they are tested on.
We test on three state of the art models: GPT-4 [3], Claude-3-Opus, [5] and GPT-4-Turbo.

Our results reconfirm that LLMs are generally incapable of solving simple planning problems [47],
and demonstrate that chain of thought approaches only improve performance when the hand-annotated
examples and the query are sufficiently similar to the current query. As goal stack size increases,
accuracy drops drastically, regardless of the specificity of the chain of thought prompt. As generality
of the prompt increases, performance on even the smallest goal stacks also decreases, and often falls
short of standard prompting. Even state of the art extensions of CoT (like self-consistency [49]),
show similar or sometimes even worse performance. Overall, this case study calls into question
assumptions about the generalizable effectiveness of chain of thought, and suggests that LLMs do
not learn new, general algorithms in context, but instead rely on some form of pattern matching to

achieve prompt-design-specific performance increases. This in turn increases the burden on humans
giving advice.

To better compare to previous work, we construct scalable versions of three previously studied
synthetic problems—Coin Flip, Last Letter Concatenation, and multi-step arithmetic [49, 50, 26, 48]—
and replicate reported chain of thought prompts. While these domains do not have a corresponding
notion of prompt granularity, they do cover a range of difficulties. When testing on GPT-4-Turbo, We
see a similar lack of generalization on these problem sets as we saw in Blocksworld.

In the rest of this paper, we first review related work, then describe the chain of thought approaches
we have developed in the context of planning, analyze the overall effectiveness of chain of thought
prompting on Blocksworld problems, and extend our results to three synthetic tasks well-represented
in the CoT literature.

2 Related Work

Modifying text prompts to elicit intermediate problem-solving steps from LLMs originally took
the form of scratchpads [33]. [50] proposed a similar prompt style in natural language, dubbing
this approach chain of thought (CoT), and claiming that-with some human hand-annotation of
examples—this not only boosts performance without retraining, but "allows reasoning abilities to
emerge naturally". They argued that by merely interspersing intermediate reasoning steps in natural
language into examples, they were inducing the LLM to "learn via a few examples", motivating this
idea with anthropomorphizations ("Consider one’s own thought process when solving a complicated
reasoning task such as a multi-step math word problem"). [26] argued that some of the performance
of CoT could be retained without providing any examples, and instead just appending the magic
phrase "let’s think step by step" to the end of a prompt. This has been called zero-shot CoT.

However, CoT has long been known to be imperfect and incomplete. Previous work has investigated
improving the consistency of CoT through self-consistency [49], multi-agent debate [13], least-to-
most prompting [55], deductive verification [28], and other approaches. Unfortunately, many of
these involve prompting the LLM multiple times for a single problem, which can balloon the cost
of inference. Other work has examined the possibility of reducing or removing the need for human
annotation of examples by using LLMs to generate their own examples automatically [54, 9]. To avoid
well-known issues with the brittleness of LLM self-verification and self-teaching [42, 22, 20, 19, 24],
we restrict this paper’s scope to manually written chains of thought.

Previous papers have analyzed CoT from multiple perspectives [15, 37], finding that there is only a
loose relationship between the presented chain and the final answer [6], and that the correctness of
provided annotations has little effect on resultant performance [38]. LLM-produced chains of thought
are also known to be unfaithful to the underlying reasoning process [29, 25, 11]. In particular, the
way the examples are presented can bias a model into giving some answer (e.g. if all the example
answers are A, the model will be more likely to output A), but its CoT will not reflect this [45].

Motivated by claims that CoT prompts allow models to learn in context how to reason—that is, to
learn how to execute human-specified algorithms—we focus on CoT prompting’s out-of-domain
generalization. [14] previously showcased a lack of generalization in multiplication, puzzles, and a
number sequence problem, even when the model was fine-tuned on CoT examples. However, they
only examined one set of prompts, did not experiment with levels of prompt specificity, and were
much more interested in local failures of compositionality arising from cumulating error. More
broadly, previous work has examined generalization limits of LLMs in arithmetic tasks [35], formula
simplification [34], and theorem proving [4].

While early accounts claimed LLMs, despite not being trained for it, were capable of reasoning and
planning [8], later work showcased serious brittleness across these domains [47]. [50] claims that
"standard prompting only provides a lower bound on the capabilities of large language models", with
proper prompting allowing reasoning to "emerge naturally." Recent work seems to maintain this
optimism [7]. In this paper, we examine the effectiveness of CoT in the context of classical planning
problems, which have well-defined and algorithmically checkable ground truths, can be generated
with arbitrary size and difficulty, and are unlikely to be in the training data. If CoT induces more than
just pattern matching, and can in fact teach LLMs to perform generalizable, compositional reasoning,
then we should expect that to be reflected in robust and maintainable improvements on a simple

commonsense benchmark set like Blocksworld, and we should expect these results to hold for scaled
variants of the very benchmarks tested in [50] and later CoT work.

3 Background

Classical planning problems task a planner with finding a sequence of actions that, when executed,
will take an agent from a pre-specified initial state to a desired goal state. STRIPS planning is a
discrete, deterministic formalism that encompasses this class. Problems are represented using the
Planning Domain and Definition Language (PDDL) [30] and have long featured in various planning
challenges and competitions. Our main experiments are all on the Blocksworld PDDL domain.

A PDDL specification consists of three components. The domain doesn’t change between problems
and consists of a set of predicates—whose truth values describe the state of the world—and a set of
actions—defined by their preconditions and effects—that the agent is allowed to take. The initial state
is a list of predicates that are true at the outset of the specific problem (an example predicate: "Block
A is on the table"). The goal is a boolean expression of predicates (a goal: "Block A is on Block B.").

A plan is a sequence of actions. The solution to a PDDL problem is a plan in which the preconditions
of every action are satisfied at execution time, and which arrives at a goal-satisfying final state. To
verify a plan, follow the actions in order and check that these two desiderata are achieved. In this
work, we convert natural language responses into PDDL [46] and evaluate them with VAL [21].

4 Chain of Thought Setups for Planning

We examine the influence of prompt selection on LLM
performance within subsets of the Blocksworld domain.
A formally specified problem instance can be translated
into many possible prompts. The most basic of these is
input/output (I/O) prompting: the problem is translated
directly from PDDL into natural language and provided
to the LLM [47]. While this directly tests the LLM’s
ability to solve the problem, it is not always the most
effective strategy for maximizing performance.

Drawing on metaphors of human learning, recent liter-
ature has claimed that LLMs are capable of in-context
learning. The basic idea is that-by first presenting the
model with examples of similar problems—it is possible
to cause an LLM to acquire relevant new skills within
the current context window. n-shot prompts operational-
ize this by prepending a number of relevant examples.
Chain of thought [50] approaches take this further, pre-
senting human-crafted "thoughts" which the LLM is
intended to imitate in its response. Practitioners argue
that, intuitively, these augmented examples teach the
LLM how to solve problems in the given set.

‘
Afsllclol:

Figure 1: Target Distributions of Problems.
This figure shows the levels of expected
However, this method relies on human labor [53] to generality for each prompt.

provide task-specific knowledge and an (at least rough)

algorithmic or procedural approach to the problem. The

more general the provided knowledge is, the more problems it can be applied to, and the less
human prompt-crafting it requires. On the other hand, the more granular and specific it is, the more
performance can be expected.

In our experiments, we consider subsets of Blocksworld problems. We follow a prompt structure
similar to that described in [47], % but include "thoughts" in our n-shot prompts. These thoughts are
written to follow an algorithmic procedure for solving the example problem.

Not every procedure is applicable to every problem. From the point of view of a human hand-
crafting a chain of thought prompt, there is intuitively an expected target distribution on which the
demonstrated algorithm generally works. For instance, a prompt designer detailing how to stack C

2Prompt and response examples for each approach can be found in the Appendix.

on top of B on top of A will expect that a model that learns this procedure will also be capable of
stacking B on top of A on top of C, but may not expect it to know how to first properly dismantle an
existing tower of blocks to access a necessary block. However, this distribution often differs from
the effective target distribution—that is, the actual set of problems on which the prompt gives robust
improvements in performance. We explicitly describe the gap between these two distributions.

Zero-Shot Chain of Thought (Universal): This is the most general approach, and involves merely
appending "let’s think step by step" to the end of the prompt[26].

Progression Proof (Specific to PDDL): Versions of this CoT could, in principle, be prepended to
any PDDL problem prompt, as the generation of annotated examples is easy to automate without
knowledge of the specific PDDL domain. [47] This prompt includes (1) a meta-prompt explaining
plan correctness and (2) an example where each action is annotated with the state prior to the action,
the reason why the action is applicable in that state, and the resulting state after the action is applied.
Examples start from an arbitrary block configuration and construct a single stack of blocks from it.

Blocksworld Universal Algorithm (Specific to the Domain): In Blocksworld, it is possible to reach
any goal state from any initial state by simply unstacking all the blocks, placing them on the table,
and then reassembling them into the required stacks. Resulting plans are not only executable and
goal-reaching, but will never exceed twice the length of the optimal plan for any given instance [40].
This prompt demonstrates an annotated version of this approach, explaining and performing both
the deconstruction and reconstruction steps of the algorithm. The same examples are used as in the
previous prompt. The expected target distribution encompasses all Blocksworld problems.

Stacking Prompt (Specific to a Narrow Problem Class): Every example is a table-to-stack
problem: every block starts on the table, and the goal is to create a single specific stack of blocks.
This specificity simplifies the problem greatly, and allows near-direct pattern matching between the
examples and the LLM’s output; however, it is infeasible to specify prompts with this level of detail
for every problem class. The expected target distribution is table-to-stack Blocksworld problem, as
they are the only problems that can be solved by the described algorithm.

Lexicographic Stacking (Specific to Particular Syntactic Sequences): We simplify the problem
further by focusing on a particular syntactic form of the goal. This prompt is very similar to the
stacking prompt, but is specific to a subset of the target distribution: the goal state is always a
lexicographic prefix (e.g., A, AB, ABC, etc.).

5 Blocksworld Results

We perform two parallel studies. The first tests each chain of thought prompt on its intended
problem distribution, as explained in the previous section. Then, we focus on a specific subclass of
Blocksworld problems and test every prompt on just that subclass. Together, we expect these two
studies to give us a good picture of how effective LLMs are in applying advice beyond the specific
instances.

Prompt

GPT-4-Turbo

Claude-3-Opus

GPT-4

Zero-shot
Zero-shot CoT

4.07% (11/270)
5.55% (15/270)

9.62% (26/270)
8.51% (23/270)

3.33% (9/270)
4.44% (12/270)

Domain-Specific n-shot
Progression Proof CoT

7.4% (20/270)
3.33% (9/270)

11.4% (31/270)
1.11% (3/270)

7.4% (20/270)
4.44% (12/270)

Domain-Specific n-shot
Blocksworld Universal Algorithm

7.4% (20/270)
11.8% (32/270)

11.4% (31/270)
17.7% (48/270)

7.4% (20/270)
28.8% (78/270)

Problem Class Specific n-shot

Stacking Prompt

18% (47/261)
40.6% (106/261)

15.7% (41/261)
24.5% (64/261)

8.81% (23/261)
59.3% (155/261)

Lexicographic Specific n-shot
Lexicographic Stacking Prompt

5.88% (1/17)
76.4% (13/17)

58.8% (10/17)
100% (17/17)

5.88% (1/17)
94.1% (16/17)

Table 1: Accuracy across CoT types and prompting methods in Blocksworld.

% of correct instances by GPT-4-Turbo

5 100 \ —e— Fast Downward Planner
o | --e- Zero Shot
= 80
8 —e— Zero Shot CoT
3 60 . \/ —e-- Progression Proof CoT
g o --»- Domain Specific n-shot
% 40 3 \N\\ —e— Blocksworld Universal Algorithm
£ ‘\,\ SN T I T --=- Problem Class Specific n-shot
S 20 Y o NS o —e— Stacking Prompt
- N\ — ~ ., PrEEES WY » <. b
o SaoSl el N - - \v“ - a—Snaet” o Lo oo
3 4 5 6 7 8 9 10 1 12 13 14 15 16 17 18 19 20
of Blocks
% of correct instances by Claude-3-Opus

s 100 —e— Fast Downward Planner
[80 --=- Zero Shot
§ —e— Zero Shot CoT
8 60 —e-- Progression Proof CoT
2 --- Domain Specific n-shot
2 a0 —— Blocksworld Universal Algorithm
(2]
£ --+- Problem Class Specific n-shot
S 20 —e— Stacking Prompt
B3

0 L BN >

7 8 9 10 1 12 13
of Blocks
% of correct instances by GPT-4

5 100 —e— Fast Downward Planner
o 80 --e- Zero Shot
§ —e— Zero Shot CoT
2 60 —e-- Progression Proof CoT
2 --»- Domain Specific n-shot
8 a0 —e— Blocksworld Universal Algorithm
[
£ --=- Problem Class Specific n-shot
S 20 —e— Stacking Prompt
®

0

of Blocks

Figure 2: Accuracy of GPT-4-Turbo, Claude-3-Opus and GPT-4 across chain of thought prompting
methods in their intended problem distributions with increasing number of blocks.

5.1 Testing on Intended Problem Distributions

We evaluate the performance of GPT-4 and Claude-3-Opus on Blocksworld problems with both
standard 2-shot prompts and chain of thought prompts of varying granularity. Each prompt is tested
on its intended problem class, as discussed in the previous section.

As illustrated in Table 1, chain of thought does not meaningfully enhance performance except on the
narrowest problem distributions. While providing this chain of thought advice becomes significantly
harder as the level of specificity increases, it is necessary, as the LLM succeeds only when the
problem is reduced to a level where basic pattern matching suffices: at each stage, stack the next
letter on top; if that letter does not exist on the table, then stop.

A key advantage of planning domains is that they provide the ability to easily and systematically gen-
erate larger test sets, including arbitrarily more challenging instances. The difficulty of a Blocksworld
instance scales with the number of blocks involved, allowing us to clearly assess the out-of-domain
generalization achievable with and without chain of thought. As shown in Figure 3, chain of thought
does not generalize beyond a handful of blocks. Note that sound planning systems (such as Fast
Downward) have a 100% accuracy on all problems tested.

Prompt GPT-4-Turbo Claude-3-Opus GPT-4

zero-shot 19.1% 9.96% 3.83%
zero-shot CoT 21% 10.34% 4.98%
Domain-Specific n-shot 13.7% 16.4% 6.13%
Progression Proof CoT 15.3% 4.59% 6.89%
Domain-Specific n-shot 13.7% 16.4% 6.13%
Blocksworld Universal Algorithm 37.1% 37.1% 51.3%
Problem Class Specific n-shot 18% 15.7% 8.81%
Stacking Prompt 40.6% 24.5% 59.3%

Table 2: Accuracy across CoT and example granularities over 261 instances in table-to-stack
Blocksworld.

5.2 Testing only on Table-to-Stack

As mentioned before, a table-to-stack problem is any problem in the intended target distribution of
the stacking prompt. The initial state has every block on the table, with a goal of arranging all the
blocks into a single, pre-specified stack. While a simple problem, GPT-4’s zero-shot performance
over 261 instances is 3.8%. With the stacking CoT prompt, performance improves to 59.3%. Is
this a result of the model learning in-context how to reason correctly over this type of problem? If
so, we might expect it to perform the same when presented with a more general CoT prompt that
demonstrates the same procedure, but is applicable to a greater variety of problems.

To check this, we evaluate performance of our prompts on table-to-stack problems with prompts
of varying granularity: standard I/O prompting, general n-shot (drawn from arbitrary Blocksworld
problems), goal-specific n-shot (drawn from table-to-stack problems), and three levels of CoT
specificity. Table 3 shows the results: only the most specific and least applicable prompt retains
anywhere near this performance improvement. Figure A.1.1 in the appendix further illustrates that
none of the prompts provide robust stack-height generalizability. We also tested self-consistency[49]
on these prompts, but found that performance dropped. Details can be found in Appendix A.2.

If chain of thought is meant to replicate human thinking or learning, it should generalize beyond the
most direct pattern matches and allow for more robust reasoning across similar problems. However,
our results only show a modest improvement in performance on some domains, with specific enough
prompting strategies, which quickly deteriorates when the problems shown become slightly larger.

6 Extension to Scalable Synthetic Benchmarks

Previous work on CoT mainly constrained its evaluations to static test sets ranging from commonsense
domains (Sports Understanding [41], StrategyQA [18], CommonSenseQA [44]), few-hop math word
problems (AsDiv [31], GSMS8k [10], MAWPS [27]), to a number of basic "symbolic reasoning"
tasks (CoinFlip [26], LastLetterConcatenation [26], Shuffled Objects [41]). [26, 50, 55, 6]. Many
of these benchmarks are difficult to scale, but a number of them can be modified to allow for the
generation of arbitrary new instances which nevertheless have clear ground truths. We examine
CoinFlip, LastLetterConcatenation, and a synthetic proxy for multi-step arithmetical reasoning. Exact
prompt details can be found in the appendices A.7, A.8, and A.9. When possible we used the manual
CoT prompts found in [50] and the zero-shot CoT prompt described in [26]. Number of examples
ranges from O to 3 for both CoT and direct prompts.

CoinFlip: Parity tests have a long history in machine learning[32]. CoinFlip is a natural language
version of this task introduced in [50] to showcase the performance of CoT, though that paper only
studies up to four flip problems. An example prompt is "A coin is heads up. Craig flips the coin.
Alice does not flip the coin. Is the coin still heads up?". The correct answer is "no". Note that chance
performance on this domain is 50%, as there are only two possible answers. Our extension to the
domain is detailed in A.3

LastLetterConcatenation: Also introduced in [50], the LastLetterConcatenation task is a simple
text processing task that asks for the concatenation of the last letters of a series of words. An example

CoinFlip LastLetterConcatenation One-Digit Arithmetic

100 BT 17 T 1T 7o 7 oA 100 Variant 100 Explanation
6 ‘\\ — full I‘\‘ —— Arbitrary
g 80 ‘\‘ 30 —— foom_clearer 80 ‘l‘l‘ — single-digit
o W —— vowel |“| CoT
o v A i CoT \|‘| —— Basic
8 60 iy A N 60 — Basic 60 i\ ~-=Direct
A ol & \ [N TN 3 3 (Y
Q LA W L L A TN WA --- Direct W
s WY AT T : A
\ N, ! 1N
+ 40 v = L 40 i1 40 i
j= LA s
5 20 YA A
Q20 204 20 \ A
—--- Direct ‘\‘ Ry = i
0 2 5 8 1 1417 20 23 26 0 2 4 6 8101214 16 18 20 0 2 5 8 1 14 17 20 23 26 29
of People # of Words # of Operations

Figure 3: Accuracy of GPT-4-Turbo with chain of thought prompting across variations of our synthetic
datasets. "Direct" means direct prompting without any CoT.

Prompt CF LLC LVC FLC Arithmetic AE
Zero-Shot 56.38% 10.00% 5.75% 1.81% 24.13% 45.60%
Zero-Shot CoT 95.71% 52.54% N/A N/A 56.12% 42.76%
Manual CoT 98.89% 51.06% 27.00% 26.00% 50.43% 69.31%
Incorrect Cot 96.76% 48.15% N/A N/A N/A N/A

Table 3: Accuracy across CoT types and problem variations over all instances in our synthetic
datasets. CF is CoinFlip, LLC is LastLetterConcatenation, LVC is LastVowelConcatenation, FLC is
FoomLetterConcatenation, Arithmetic is baseline single-digit Arithmetic, AE is the same problems
but with the explanation provided that all intermediate answers are single digit.

prompt is "Take the last letters of each word in ’Craig Alice’ and concatenate them." for which the
correct answer is "ge". The set of possible answers on this task is much larger than in CoinFlip, but
previous work has claimed significant performance increases on this kind of task with CoT. Modeling
something similar to our Blocksworld granularity experiments, we create two other test sets, using
the same underlying words in the same distribution, but which differ in what they ask the model to
do. LastVowelConcatenation requires using only the last vowels of words. FoomLetterConcatenation
requires using the first letter of the first word, the second letter of the second word, and so forth. If

the nth word does not have an nth letter, the problem specifies that a 0 should be concatenated to the
string instead.

Multi-step Arithmetic on Single-Digit Numbers: CoT is often tested on math word problems.
However, many of these test sets only include problems which require very small numbers of
reasoning steps. GSM8k was designed partly so that its problems would "require more steps to solve",
but its problems only range 2 to 8 steps[10], and, in fact, previous analyses have found that only 10%
of those problems require more than five steps—the majority is 2, 3, or 4. [16]

To sidestep this issue, we construct a synthetic dataset that involves linearly simplifying parenthesized
expressions that consist of repeated applications of the four basic arithmetical operations on one
digit numbers. An example prompt is "Simplify the following expression into a single number: 3
/(9 -(5+(1))).", where the correct answer is 1. We filter our problems so that no operation ever
results in a number that isn’t in the range 1 to 9. This can be seen as a deeply simplified variant
of the arithmetical expression simplification dataset presented in [34] where no modular arithmetic,
negative numbers, or non-linear nesting is required. However, we extend our maximum number of
required reasoning steps much further and we construct prompts which are more specific and spell
out every single step explicitly. More details on the dataset can be found in A.5.

6.1 Results

Length Generalization The only synthetic domain that shows any hints of generalization is
CoinFlip. Using [50]’s prompt, performance is perfect for 1 through 4 step problems, starts to show
the occasional mistake after, and only dips below 90% at 31-step problems. However, the problems
in this domain are very simple. Parallel to the lexicographic stacking case of Blocksworld, it does not
require much reasoning beyond counting up to an average of half a given problem’s step count.

LastLetterConcatenation and multi-step arithmetic show behavior almost identical to our main
experiments. While sufficiently specific CoT prompts do increase performance on small instances,
this performance increase quickly degrades as the number of steps necessary increases. Notably, the
string-based nature of the LastLetterConcatenation problem does allow us to examine what exact
improvement CoT is inducing. We examine the data with different metrics and find that the only
properties that do generalize with CoT are syntactic. In particular, while overall accuracy plummets
back to that of direct prompting, CoT consistently improves the Levenshtein distance to the correct
answer and ensures that the final response string contains exactly the right letters, just not in the
right order or number. We take this as further evidence that CoT, rather than teaching algorithms or
procedures, modifies the syntactic style of the LLM’s output, and that this pattern matching is what
leads to observed increases in performance on smaller instances.

Prompt Granularity and Problem Variation Because of the simplicity of these problems, prompt
granularity is much harder to examine than in Blocksworld. There isn’t enough variation in possible
problems. However, across the three types of letter concatenation and two types of arithmetic
expression simplification that we test, we see very similar patterns as before: CoT’s performance
improvements are maintained much longer in easier cases, and take longer to collapse back to direct
performance. There still seems to be a "sweet spot" where the problem is just barely hard enough
that CoT makes a difference, but not so hard that this difference doesn’t matter.

Examining Intermediate Reasoning The construction of our synthetic arithmetic task gives some
hints as to what part of CoT may be failing. [14] argues that compositional reasoning fails because
LLMs perform linearized subgraph matching and act as noisy estimators of intermediate functions
(see e.g. proposition 4.2 in [14]) and that performance collapses follow from the fact that repeated
application of any error-prone function estimator leads to exponentially accumulating error.

In our problem, it is possible to exhaustively check whether this is the case. There are exactly 118
possible 1-digit binary arithmetic problems which result in a 1-digit number. We tested GPT-4-Turbo,
GPT-4, GPT-3.5-Turbo, Llama3-70b, and Llama3-8b on this dataset at various temperatures and every
single model scored 100%. However, despite perfect performance on application of the required
intermediate function, CoT still does not lead to robust generalization to arbitrary length problems.
Therefore, at least on this problem set, the issue isn’t due to accumulating error. The problem must
be with the LLM’s inability to learn the correct algorithm from contextual demonstrations, rather
than with its inability to execute that algorithm.

Overall, we see that our results on planning are not a fluke. These three synthetic domains showcase
similar generalization failures, but these failures only become clear when the problems tested
on require sufficiently many reasoning steps or when the minor modifications of the domain are
studied. This illustrates the need for testing on benchmarks which can generate arbitrary new
instances of increasing difficulty. Without such testing, conclusions drawn from static test sets of
limited size are unlikely to be robust. We implore the community at large to adopt more rigorous
evaluation mechanisms, especially when making claims about the poorly-understood yet much-hyped
algorithmic reasoning abilities of black box models.

7 Conclusion

In this paper, we conducted a systematic evaluation of the effectiveness of chain of thought in large
language models on a specific classical planning problem. Our case study indicates that, contrary to
previous claims in the literature, providing examples of procedural reasoning does not induce the

3We exclude 0, since any number multiplied by zero is zero, and this would quickly lead to zero representing
around 50% of correct answers for larger numbers of reasoning steps.

general ability to apply that procedure to novel instances in current state-of-the-art large language
models. In fact, the performance improvements seen when prompting LL.Ms in this manner quickly
vanish when queries differ in generality from the examples, despite the fact that the same algorithmic
procedure applies to the larger or more general instance.

Very specific prompts are more likely to work, but they can require significantly more human labor
to craft. Our results indicate that chain of thought prompts may only work consistently within a
problem class if the problem class is narrow enough and the examples given are specific to that class.
Both of these facts show that chain of thought approaches provide less generalization than previous
claims seem to indicate, and hint that basic pattern matching rather than in context learning of general
algorithmic procedures may better explain the improvements seen from chain of thought.

References

[1] The United States Social Security Administration | SSA — ssa.gov. ssa.gov.

[2] Marah I Abdin, Suriya Gunasekar, Varun Chandrasekaran, Jerry Li, Mert Yuksekgonul, Ra-
hee Ghosh Peshawaria, Ranjita Naik, and Besmira Nushi. Kitab: Evaluating llms on constraint
satisfaction for information retrieval. arXiv preprint arXiv:2310.15511, 2023.

[3] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni
Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4
technical report. arXiv preprint arXiv:2303.08774, 2023.

[4] Cem Anil, Yuhuai Wu, Anders Andreassen, Aitor Lewkowycz, Vedant Misra, Vinay Ramasesh,
Ambrose Slone, Guy Gur-Ari, Ethan Dyer, and Behnam Neyshabur. Exploring length gen-
eralization in large language models. Advances in Neural Information Processing Systems,
35:38546-38556, 2022.

[5] Anthropic. Introducing the next generation of claude, Mar 2024.

[6] Guangsheng Bao, Hongbo Zhang, Linyi Yang, Cunxiang Wang, and Yue Zhang. Llms with
chain-of-thought are non-causal reasoners. arXiv preprint arXiv:2402.16048, 2024.

[7] Maciej Besta, Florim Memedi, Zhenyu Zhang, Robert Gerstenberger, Nils Blach, Piotr Nyczyk,
Marcin Copik, Grzegorz Kwasniewski, Jirgen Miiller, Lukas Gianinazzi, et al. Topologies of
reasoning: Demystifying chains, trees, and graphs of thoughts. arXiv preprint arXiv:2401.14295,
2024.

[8] Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece
Kamar, Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, et al. Sparks of artificial general
intelligence: Early experiments with gpt-4. arXiv preprint arXiv:2303.12712, 2023.

[9] Xiaoxue Cheng, Junyi Li, Wayne Xin Zhao, and Ji-Rong Wen. Chainlm: Empowering large
language models with improved chain-of-thought prompting. arXiv preprint arXiv:2403.14312,
2024.

[10] Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

[11] Antonia Creswell and Murray Shanahan. Faithful reasoning using large language models. arXiv
preprint arXiv:2208.14271, 2022.

[12] Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Zhiyong Wu, Baobao Chang, Xu Sun, Jingjing
Xu, and Zhifang Sui. A survey on in-context learning. arXiv preprint arXiv:2301.00234, 2022.

[13] Yilun Du, Shuang Li, Antonio Torralba, Joshua B Tenenbaum, and Igor Mordatch. Improv-
ing factuality and reasoning in language models through multiagent debate. arXiv preprint
arXiv:2305.14325, 2023.

[14] Nouha Dziri, Ximing Lu, Melanie Sclar, Xiang Lorraine Li, Liwei Jiang, Bill Yuchen Lin, Sean
Welleck, Peter West, Chandra Bhagavatula, Ronan Le Bras, et al. Faith and fate: Limits of
transformers on compositionality. Advances in Neural Information Processing Systems, 36,
2024.

[15] Guhao Feng, Bohang Zhang, Yuntian Gu, Haotian Ye, Di He, and Liwei Wang. Towards
revealing the mystery behind chain of thought: a theoretical perspective. Advances in Neural
Information Processing Systems, 36, 2024.

10

[16] Silin Gao, Jane Dwivedi-Yu, Ping Yu, Xiaoqing Ellen Tan, Ramakanth Pasunuru, Olga
Golovneva, Koustuv Sinha, Asli Celikyilmaz, Antoine Bosselut, and Tianlu Wang. Efficient
tool use with chain-of-abstraction reasoning. arXiv preprint arXiv:2401.17464, 2024.

[17] Gaél Gendron, Qiming Bao, Michael Witbrock, and Gillian Dobbie. Large language models are
not abstract reasoners. arXiv preprint arXiv:2305.19555, 2023.

[18] Mor Geva, Daniel Khashabi, Elad Segal, Tushar Khot, Dan Roth, and Jonathan Berant. Did
aristotle use a laptop? a question answering benchmark with implicit reasoning strategies.
Transactions of the Association for Computational Linguistics, 9:346-361, 2021.

[19] Zhibin Gou, Zhihong Shao, Yeyun Gong, Yelong Shen, Yujiu Yang, Nan Duan, and Weizhu
Chen. Critic: Large language models can self-correct with tool-interactive critiquing. arXiv
preprint arXiv:2305.11738, 2023.

[20] Ruixin Hong, Hongming Zhang, Xinyu Pang, Dong Yu, and Changshui Zhang. A closer look
at the self-verification abilities of large language models in logical reasoning. arXiv preprint
arXiv:2311.07954, 2023.

[21] Richard Howey, Derek Long, and Maria Fox. VAL: Automatic plan validation, continuous
effects and mixed initiative planning using PDDL. In 16th IEEE International Conference on
Tools with Artificial Intelligence, pages 294-301. IEEE, 2004.

[22] Jie Huang, Xinyun Chen, Swaroop Mishra, Huaixiu Steven Zheng, Adams Wei Yu, Xinying
Song, and Denny Zhou. Large language models cannot self-correct reasoning yet. In The
Twelfth International Conference on Learning Representations, 2023.

[23] IPC. International planning competition, 1998.

[24] Dongwei Jiang, Jingyu Zhang, Orion Weller, Nathaniel Weir, Benjamin Van Durme, and Daniel
Khashabi. Self-[in] correct: Llms struggle with refining self-generated responses. arXiv preprint
arXiv:2404.04298, 2024.

[25] Yeo Wei Jie, Ranjan Satapathy, Goh Siow Mong, Erik Cambria, et al. How interpretable are rea-
soning explanations from prompting large language models? arXiv preprint arXiv:2402.11863,
2024.

[26] Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. Advances in neural information processing systems,
35:22199-22213, 2022.

[27] Rik Koncel-Kedziorski, Subhro Roy, Aida Amini, Nate Kushman, and Hannaneh Hajishirzi.
Mawps: A math word problem repository. In Proceedings of the 2016 conference of the
north american chapter of the association for computational linguistics: human language
technologies, pages 1152-1157, 2016.

[28] Zhan Ling, Yunhao Fang, Xuanlin Li, Zhiao Huang, Mingu Lee, Roland Memisevic, and Hao
Su. Deductive verification of chain-of-thought reasoning. Advances in Neural Information
Processing Systems, 36, 2024.

[29] Qing Lyu, Shreya Havaldar, Adam Stein, Li Zhang, Delip Rao, Eric Wong, Marianna Apid-
ianaki, and Chris Callison-Burch. Faithful chain-of-thought reasoning. arXiv preprint
arXiv:2301.13379, 2023.

[30] Drew McDermott, Malik Ghallab, Adele E. Howe, Craig A. Knoblock, Ashwin Ram,
Manuela M. Veloso, Daniel S. Weld, and David E. Wilkins. Pddl-the planning domain definition
language. 1998.

[31] Shen-Yun Miao, Chao-Chun Liang, and Keh-Yih Su. A diverse corpus for evaluating and
developing english math word problem solvers. arXiv preprint arXiv:2106.15772, 2021.

[32] Marvin Minsky and Seymour Papert. An introduction to computational geometry. Cambridge
tiass., HIT, 479(480):104, 19609.

[33] Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari, Henryk Michalewski, Jacob Austin,
David Bieber, David Dohan, Aitor Lewkowycz, Maarten Bosma, David Luan, et al. Show
your work: Scratchpads for intermediate computation with language models. arXiv preprint
arXiv:2112.00114, 2021.

[34] Flavio Petruzzellis, Alberto Testolin, and Alessandro Sperduti. Benchmarking gpt-4 on
algorithmic problems: A systematic evaluation of prompting strategies. arXiv preprint
arXiv:2402.17396, 2024.

11

[35] Jing Qian, Hong Wang, Zekun Li, Shiyang Li, and Xifeng Yan. Limitations of language models
in arithmetic and symbolic induction. arXiv preprint arXiv:2208.05051, 2022.

[36] Shuofei Qiao, Yixin Ou, Ningyu Zhang, Xiang Chen, Yunzhi Yao, Shumin Deng, Chuanqi Tan,
Fei Huang, and Huajun Chen. Reasoning with language model prompting: A survey. arXiv
preprint arXiv:2212.09597, 2022.

[37] Abulhair Saparov and He He. Language models are greedy reasoners: A systematic formal
analysis of chain-of-thought. arXiv preprint arXiv:2210.01240, 2022.

[38] Rylan Schaeffer, Kateryna Pistunova, Samar Khanna, Sarthak Consul, and Sanmi Koyejo.
Invalid logic, equivalent gains: The bizarreness of reasoning in language model prompting.
arXiv preprint arXiv:2307.10573, 2023.

[39] Freda Shi, Mirac Suzgun, Markus Freitag, Xuezhi Wang, Suraj Srivats, Soroush Vosoughi,
Hyung Won Chung, Yi Tay, Sebastian Ruder, Denny Zhou, et al. Language models are
multilingual chain-of-thought reasoners. In The Eleventh International Conference on Learning
Representations, 2022.

[40] John Slaney and Sylvie Thiébaux. Linear time near-optimal planning in the blocks world. In
Proceedings of the National Conference on Artificial Intelligence, pages 1208—1214, 1996.

[41] Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Md Shoeb, Abubakar Abid,
Adam Fisch, Adam R Brown, Adam Santoro, Aditya Gupta, Adria Garriga-Alonso, et al.
Beyond the imitation game: Quantifying and extrapolating the capabilities of language models.
arXiv preprint arXiv:2206.04615, 2022.

[42] Kaya Stechly, Karthik Valmeekam, and Subbarao Kambhampati. On the self-verification

limitations of large language models on reasoning and planning tasks. arXiv preprint
arXiv:2402.08115, 2024.

[43] Mirac Suzgun, Nathan Scales, Nathanael Schirli, Sebastian Gehrmann, Yi Tay, Hyung Won
Chung, Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny Zhou, et al. Challenging big-
bench tasks and whether chain-of-thought can solve them. arXiv preprint arXiv:2210.09261,
2022.

[44] Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. Commonsenseqa: A
question answering challenge targeting commonsense knowledge. In Proceedings of NAACL-
HLT, pages 4149-4158, 2019.

[45] Miles Turpin, Julian Michael, Ethan Perez, and Samuel Bowman. Language models don’t
always say what they think: unfaithful explanations in chain-of-thought prompting. Advances
in Neural Information Processing Systems, 36, 2024.

[46] Karthik Valmeekam, Matthew Marquez, Alberto Olmo, Sarath Sreedharan, and Subbarao
Kambhampati. Planbench: An extensible benchmark for evaluating large language models on
planning and reasoning about change. Advances in Neural Information Processing Systems, 36,
2024.

[47] Karthik Valmeekam, Matthew Marquez, Sarath Sreedharan, and Subbarao Kambhampati. On
the planning abilities of large language models-a critical investigation. Advances in Neural
Information Processing Systems, 36, 2024.

[48] Jianing Wang, Qiushi Sun, Nuo Chen, Xiang Li, and Ming Gao. Boosting language models
reasoning with chain-of-knowledge prompting. arXiv preprint arXiv:2306.06427, 2023.

[49] Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
models. In The Eleventh International Conference on Learning Representations, 2022.

[50] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le,
Denny Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models.
Advances in neural information processing systems, 35:24824-24837, 2022.

[51] Yiran Wu, Feiran Jia, Shaokun Zhang, Qingyun Wu, Hangyu Li, Erkang Zhu, Yue Wang,
Yin Tat Lee, Richard Peng, and Chi Wang. An empirical study on challenging math problem
solving with gpt-4. arXiv preprint arXiv:2306.01337, 2023.

[52] Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik R Narasimhan, and
Yuan Cao. React: Synergizing reasoning and acting in language models. In The Eleventh
International Conference on Learning Representations, 2022.

12

[53] JD Zamfirescu-Pereira, Richmond Y Wong, Bjoern Hartmann, and Qian Yang. Why johnny
can’t prompt: how non-ai experts try (and fail) to design llm prompts. In Proceedings of the
2023 CHI Conference on Human Factors in Computing Systems, pages 1-21, 2023.

[54] Zhuosheng Zhang, Aston Zhang, Mu Li, and Alex Smola. Automatic chain of thought prompting
in large language models. In The Eleventh International Conference on Learning Representa-
tions, 2022.

[55] Denny Zhou, Nathanael Schirli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale
Schuurmans, Claire Cui, Olivier Bousquet, Quoc Le, et al. Least-to-most prompting enables
complex reasoning in large language models. arXiv preprint arXiv:2205.10625, 2022.

[56] Hattie Zhou, Azade Nova, Hugo Larochelle, Aaron Courville, Behnam Neyshabur, and
Hanie Sedghi. Teaching algorithmic reasoning via in-context learning. arXiv preprint
arXiv:2211.09066, 2022.

13

A Appendix

Contents
A Appendix 14
A.l BroaderImpacts. e 14
A.2 Self Consistency on Table to Stack problems 14
A.3 Further details on modifications to the CoinFlip domain 14
A.4 Further details on modifications to the LastLetterConcatenation domain 15
A.5 Further details on the multi-step Arithmetic dataset 15
A.6 Planning Prompts and Responses by GPT-4 16
A.6.1 Domain Information 16
A.6.2 Progression Proof Prompt 17
A.6.3 Blocksworld Universal Algorithm Prompt 19
A.6.4 Stacking Prompt 22
A.6.5 Lexicographic Stacking Prompt 23
A.7 Coinflip Prompts 25
A.8 LastLetterConcatenation Prompts 26
A.9 Single Digit Arithmetic Prompts L. 28

A.1 Broader Impacts

Chain of Thought (CoT) has become one of the most widely adopted ideas for improving planning and
reasoning abilities of LLMs. Almost every system routinely, and uncritically, uses some prompting
strategy attributed to CoT. On the flip side, whenever LLMs are shown to have limitations in
any sphere, practitioners tend to question those studies by attributing it to unskilled use of CoT
methodology. Our study, based on both in planning and other more standard tasks, calls into question
the prevalent belief that LLMs are capable of operationalizing and generalizing the CoT advice
effectively. It instead suggests that CoT is effective only when the LLM can do straightforward
pattern matching between the example and the problem. We believe that the lessons of this study will
be helpful in mitigating the applications of LLMs to tasks requring planning and reasoning with false
confidence.

A.2 Self Consistency on Table to Stack problems

We evaluated self consistency [49], a state-of-the-art extension of CoT, on table to stack problems.
We sampled 5 different reasoning paths (with temperature 0.7) and chose the most frequent plan
breaking ties randomly. As our results show (in Table 4 and Figure A.2.1), self-consistency does not
lead to a generalization breakthrough, and in fact is generally worse than the original results in Table
3. This is likely because the solution space for planning problems is much larger than that studied
in previous (often multiple choice) benchmarks. In fact, most queries led to five unique responses,
forcing us to choose the final answer from them at random.

A.3 Further details on modifications to the CoinFlip domain

Given a list of names, generating new instances is just a matter of filling in a template. We source our
list of names from the U.S. Social Security Administration [1], and only keep names with at least 50
occurrences. We scale our problems with the number of names (potentially repeated) mentioned in
the prompt. The main test set consists of 1120 instances, with 40 instances per number of names and
28 different numbers of names, ranging from 1 to 28. We also tested [50]’s prompt on an extended

14

% of correct instances by GPT-4-Turbo

5 100 —e— Fast Downward Planner
g 80 --»- Zero Shot
8 —e— Zero Shot CoT
2 60 --+- Problem Class Specific n-shot
2 —e— Stacking Prompt
% 40 —s— Blocksworld Universal Algorithm
£ —e-- Progression Proof CoT
S 20 A
2 7z —e, e
.. MR P T Tt 2
0 3 4 5 6 7 8 9 10 1 12 13 14 15 16 17 18 19 20
of Blocks
% of correct instances by Claude-3-Opus

3 100 —e— Fast Downward Planner
g 80 --»- Zero Shot
9 —e— Zero Shot CoT
2 60 --=- Problem Class Specific n-shot
2 —e— Stacking Prompt
% 40 —e— Blocksworld Universal Algorithm
£ —e-- Progression Proof CoT
S 20
B

o VA L X ~ e e \‘_,’

3 4 5 6 7 8 9 101 12 13 14 15 16 17 18 19 20
of Blocks
% of correct instances by GPT-4

8 100 —e— Fast Downward Planner
g 80 --e- Zero Shot
8 —e— Zero Shot CoT
2 60 --=- Problem Class Specific n-shot
] —e— Stacking Prompt
.g 40 —e— Blocksworld Universal Algorithm
£ —e- Progression Proof CoT
S 20
E

0

of Blocks

Figure A.1.1: (Table-to-stack) Accuracy of GPT-4-Turbo, Claude-3-Opus and GPT-4 across chain of
thought prompting methods with increasing number of blocks.

Prompt GPT-4-Turbo Claude-3-Opus
zero-shot 18.3% 9.19%
zero-shot CoT 18.3% 11.8%
Problem Class Specific n-shot 15.7% 14.9%
Stacking Prompt 24.5% 26.4%

Table 4: Accuracy of Self-consistency over 261 instances in table-to-stack Blocksworld.

set of 2960 instances, with 40 instances per number of names, but only stopping at 75 names, finding
that performance did begin to decrease more significantly past 30 names.

A.4 Further details on modifications to the LastLetterConcatenation domain

We use the same database as in CoinFlip to generate words. [1] To scale instances, we simply increase
the number of words whose last letters must be concatenated. Our problems range from 1 to 20
words, with 40 instances per word, giving a total of 800 problems.

A.5 Further details on the multi-step Arithmetic dataset

The number of reasoning steps in this domain corresponds directly to the number of operations
that need to be performed to simplify a given expression. Our test set consists of 1160 total
problems, spread 1 to 29 operations, with 40 instances per number of operations. Again mirroring

15

% of correct instances by GPT-4-Turbo

- 100 —e— Fast Downward Planner
§ 80 ---- Zero Shot
§ —e— Zero Shot CoT
2 60 --=- Problem Class Specific n-shot
2 —— Stacking Prompt
2 a0
£
S 20 = e
2 —e- & = N
© 3 4 5 6 7 8 9 10N 1213141516 17 18 19 20
of Blocks
% of correct instances by Claude-3-Opus
3 100 —e— Fast Downward Planner
[80 --e- Zero Shot
§ —e— Zero Shot CoT
2 60 --»- Problem Class Specific n-shot
2 —— Stacking Prompt
2 a0
c
e 5 2 Y
o 20 \ Py N AR
ES S | AN
0 A K

6 7 8 9 10 1 12 13 14 15 16 17 18 19 20
of Blocks

Figure A.2.1: (Table-to-stack) Accuracy of GPT-4-Turbo and Claude-3-Opus across chain of thought
prompting methods with self consistency.

our Blocksworld test cases, we experiment with two variants: prompting as if these were any
expression simplification problems, and prompting with the explicit additional information that every
intermediate step must be a single digit number.

A.6 Planning Prompts and Responses by GPT-4

A.6.1 Domain Information

Domain Information

I am playing with a set of blocks where I need to arrange the blocks into stacks. Here are the
<— actions I can do

Pick up a block

Unstack a block from on top of another block
Put down a block

Stack a block on top of another block

I have the following restrictions on my actioms:

I can only pick up or unstack one block at a time.

I can only pick up or unstack a block if my hand is empty.

I can only pick up a block if the block is on the table and the block is clear. A block is clear
<— if the block has no other blocks on top of it and if the block is not picked up.

I can only unstack a block from on top of another block if the block I am unstacking was really on
< top of the other block.

I can only unstack a block from on top of another block if the block I am unstacking is clear.
Once I pick up or unstack a block, I am holding the block.

I can only put down a block that I am holding.

I can only stack a block on top of another block if I am holding the block being stacked.

I can only stack a block on top of another block if the block onto which I am stacking the block
— 1is clear.

Once I put down or stack a block, my hand becomes empty.

Once you stack a block on top of a second block, the second block is no longer clear.

16

A.6.2 Progression Proof Prompt

Progression Proof Chain o ght Prompting and GPT-4 Response

Here is an example problem:

[STATEMENT]

As initial conditions I have that, Block A is clear, Block B is clear, Block C is clear, the hand
— is empty, Block B is on top of Block D, Block A is on the table, Block D is on the table and
< Block C is on the table.

My goal is to have that Block D is on top of Block B.

My plan is as follows:

[PLAN]
1. Current State: Block A is clear, Block B is clear, Block C is clear, the hand is empty, Block B
— is on top of Block D, Block A is on the table, Block C is on the table and Block D is on the
— table
Action: unstack Block B from on top of Block D
Reason: The above action is applicable in the current state because its preconditions; Block B
<~ 1is clear, the hand is empty and Block B is on top of Block D, are satisfied in the current
<~ state.
Resulting State: Block A is clear, Block C is clear, Block D is clear, the hand is currently
< holding Block B, Block A is on the table, Block C is on the table and Block D is on the
— table

N

. Current State: Block A is clear, Block C is clear, Block D is clear, the hand is currently

— holding Block B, Block A is on the table, Block C is on the table and Block D is on the table
Action: put down Block B

Reason: The above action is applicable in the current state because its preconditions; the hand
— is currently holding Block B, are satisfied in the current state.

Resulting State: Block A is clear, Block B is clear, Block C is clear, Block D is clear, the

< hand is empty, Block A is on the table, Block B is on the table, Block C is on the table

<— and Block D is on the table

Current State: Block A is clear, Block B is clear, Block C is clear, Block D is clear, the hand
is empty, Block A is on the table, Block B is on the table, Block C is on the table and Block
D is on the table

Action: pick up Block D

Reason: The above action is applicable in the current state because its preconditions; Block D

— is clear, the hand is empty and Block D is on the table, are satisfied in the current

< state.

Resulting State: Block A is clear, Block B is clear, Block C is clear, the hand is currently

< holding Block D, Block A is on the table, Block B is on the table and Block C is on the

— table

rre

IS

. Current State: Block A is clear, Block B is clear, Block C is clear, the hand is currently

< holding Block D, Block A is on the table, Block B is on the table and Block C is on the table
Action: stack Block D on top of Block B

Reason: The above action is applicable in the current state because its preconditions; Block B
< is clear and the hand is currently holding Block D, are satisfied in the current state.
Resulting State: Block A is clear, Block C is clear, Block D is clear, the hand is empty, Block
<~ D is on top of Block B, Block A is on the table, Block B is on the table and Block C is on
— the table

Final State: Block A is clear, Block C is clear, Block D is clear, the hand is empty, Block D is
<— on top of Block B, Block A is on the table, Block B is on the table and Block C is on the
— table

The goal conditions are satisfied in the final state. Hence, the above plan is valid.

[PLAN END]

Here is another example:

[STATEMENT]

As initial conditions I have that, Block B is clear, Block B is on top of Block C, Block C is on
— top of Block A, the hand is empty, Block A is on the table, and Block D is on the table.

My goal is to have that Block C is on top of Block B and Block D is on top of Block C.

My plan is as follows:

[PLAN]
1. Current State: the Block B is clear, the Block D is clear, the hand is empty, the Block B is on
< top of the Block C, the Block C is on top of the Block A, the Block A is on the table and the
— Block D is on the table
Action: unstack the Block B from on top of the Block C
Reason: The above action is applicable in the current state because its preconditions; the
< Block B is clear, the hand is empty and the Block B is on top of the Block C, are satisfied
— in the current state.

17

Resulting State: the Block C is clear, the Block D is clear, the hand is currently holding
<— Block B, the Block C is on top of the Block A, the Block A is on the table and the Block D
<— 1is on the table

2. Current State: the Block C is clear, the Block D is clear, the hand is currently holding Block
< B, the Block C is on top of the Block A, the Block A is on the table and the Block D is on the
— table
Action: put down the Block B
Reason: The above action is applicable in the current state because its preconditions; the hand
< is currently holding Block B, are satisfied in the current state.
Resulting State: the Block B is clear, the Block C is clear, the Block D is clear, the hand is
— empty, the Block C is on top of the Block A, the Block A is on the table, the Block B is on
<~ the table and the Block D is on the table

Current State: the Block B is clear, the Block C is clear, the Block D is clear, the hand is
empty, the Block C is on top of the Block A, the Block A is on the table, the Block B is on
the table and the Block D is on the table

Action: unstack the Block C from on top of the Block A

Reason: The above action is applicable in the current state because its preconditions; the

< Block C is clear, the hand is empty and the Block C is on top of the Block A, are satisfied

— in the current state.

Resulting State: the Block A is clear, the Block B is clear, the Block D is clear, the hand is

— currently holding Block C, the Block A is on the table, the Block B is on the table and the

— Block D is on the table

pLe

Current State: the Block A is clear, the Block B is clear, the Block D is clear, the hand is
currently holding Block C, the Block A is on the table, the Block B is on the table and the
Block D is on the table

Action: stack the Block C on top of the Block B

Reason: The above action is applicable in the current state because its preconditions; the

<— Block B is clear and the hand is currently holding Block C, are satisfied in the current

— state.

Resulting State: the Block A is clear, the Block C is clear, the Block D is clear, the hand is

< empty, the Block C is on top of the Block B, the Block A is on the table, the Block B is on

— the table and the Block D is on the table

rre

Current State: the Block A is clear, the Block C is clear, the Block D is clear, the hand is
empty, the Block C is on top of the Block B, the Block A is on the table, the Block B is on
the table and the Block D is on the table

Action: pick up the Block D

Reason: The above action is applicable in the current state because its preconditions; the

<— Block D is clear, the hand is empty and the Block D is on the table, are satisfied in the

< current state.

Resulting State: the Block A is clear, the Block C is clear, the hand is currently holding

<~ Block D, the Block C is on top of the Block B, the Block A is on the table and the Block B

<— is on the table

rre

o

. Current State: the Block A is clear, the Block C is clear, the hand is currently holding Block

< D, the Block C is on top of the Block B, the Block A is on the table and the Block B is on the
— table

Action: stack the Block D on top of the Block C

Reason: The above action is applicable in the current state because its preconditions; the

< Block C is clear and the hand is currently holding Block D, are satisfied in the current

— state.

Resulting State: the Block A is clear, the Block D is clear, the hand is empty, the Block C is

<— on top of the Block B, the Block D is on top of the Block C, the Block A is on the table

— and the Block B is on the table

Final State: the Block A is clear, the Block D is clear, the hand is empty, the Block C is on top
— of the Block B, the Block D is on top of the Block C, the Block A is on the table and the

— Block B is on the table

The goal conditions are satisfied in the final state. Hence, the above plan is valid.

[PLAN END]

Here is the problem to solve:

[STATEMENT]

As initial conditions I have that: Block B is clear, Block C is clear, the hand is empty, Block B
— is on top of Block A, Block A is on the table and Block C is on the table.

My goal is for the following to be true: Block A is on top of Block B and Block C is on top of

— Block A.

My plan is as follows:

GPT-4 Respon:

[PLAN]
1. Current State: Block B is clear, Block C is clear, the hand is empty, Block B is on top of
< Block A, Block A is on the table and Block C is on the table

18

Action: unstack Block B from on top of Block A

Reason: The above action is applicable in the current state because its preconditions; Block B
<— is clear, the hand is empty and Block B is on top of Block A, are satisfied in the current
— state.

Resulting State: Block A is clear, Block C is clear, the hand is currently holding Block B,

— Block A is on the table and Block C is on the table

N

. Current State: Block A is clear, Block C is clear, the hand is currently holding Block B, Block
< A is on the table and Block C is on the table

Action: put down Block B

Reason: The above action is applicable in the current state because its preconditions; the hand
— is currently holding Block B, are satisfied in the current state.

Resulting State: Block A is clear, Block B is clear, Block C is clear, the hand is empty, Block
< A is on the table, Block B is on the table and Block C is on the table

w

. Current State: Block A is clear, Block B is clear, Block C is clear, the hand is empty, Block A
< is on the table, Block B is on the table and Block C is on the table

Action: pick up Block A

Reason: The above action is applicable in the current state because its preconditions; Block A
< is clear, the hand is empty and Block A is on the table, are satisfied in the current

— state.

Resulting State: Block B is clear, Block C is clear, the hand is currently holding Block A,

<— Block B is on the table and Block C is on the table

IS

. Current State: Block B is clear, Block C is clear, the hand is currently holding Block A, Block
— B is on the table and Block C is on the table

Action: stack Block A on top of Block B

Reason: The above action is applicable in the current state because its preconditions; Block B
< is clear and the hand is currently holding Block A, are satisfied in the current state.
Resulting State: Block A is clear, Block C is clear, the hand is empty, Block A is on top of

< Block B, Block B is on the table and Block C is on the table

o

. Current State: Block A is clear, Block C is clear, the hand is empty, Block A is on top of

< Block B, Block B is on the table and Block C is on the table

Action: pick up Block C

Reason: The above action is applicable in the current state because its preconditions; Block C
< is clear, the hand is empty and Block C is on the table, are satisfied in the current

— state.

Resulting State: Block A is clear, the hand is currently holding Block C, Block A is on top of
— Block B and Block B is on the table

)

. Current State: Block A is clear, the hand is currently holding Block C, Block A is on top of
— Block B and Block B is on the table

Action: stack Block C on top of Block A

Reason: The above action is applicable in the current state because its preconditions; Block A
< is clear and the hand is currently holding Block C, are satisfied in the current state.
Resulting State: Block C is clear, the hand is empty, Block A is on top of Block B, Block C is
— on top of Block A and Block B is on the table

Final State: Block C is clear, the hand is empty, Block A is on top of Block B, Block C is on top
— of Block A and Block B is on the table

The goal conditions are satisfied in the final state. Hence, the above plan is valid.

[PLAN END]

VALID PLAN

A.6.3 Blocksworld Universal Algorithm Prompt

Blocksworld Universal Algorithm Chain of Thought Prompting and GPT-4 Response

Here is an example problem:

[STATEMENT]

As initial conditions I have that, Block B is clear, Block C is clear, the hand is empty, Block C
< 1is on top of Block A, Block A is on the table, Block B is on the table.

My goal is to have that Block A is on top of Block C and Block B is on top of Block A

My plan is as follows:

[THOUGHTS]

1. I take apart all the towers, and put all the blocks on the table.

I will check every block. Any that are already on the table can be left there. Any that are on top
— of another block must be put on the table, but I can only unstack them if they are clear, so I
< will check that before trying to unstack any of them. If a block needs to be moved but isn't
< clear, I'll come back to it later once it is.

19

Block A is already on the table but is not clear.

Block B is already on the table.

Block C is on top of Block A. I can only unstack a block that is clear. C is clear according to
— the initial condition, so I can proceed. I unstack it. Then, I put it down on the table. This
< clears Block A.

All the blocks are now clear and on the table.

2. I look at the goal and stack each tower I need, starting from the bottom. I check each of the
— mentioned blocks in order to determine which of them are the bases of towers.

Block A needs to be on top of Block C, so it can't be the base of a tower.

Block B needs to be on top of Block A, so it can't be the base of a tower.

Block C needs Block A on top of it. I double check the goal: this is the only condition that must
<— hold for block C. It does not need to be on top of any other block. Therefore, I can use it as
— the base of a tower.

In summary, only Block C can be used as a base of a tower.

I build the tower that has Block C as a base. I don't need to move Block C, and I leave it be, as
— I know it is already placed correctly.

The block that goes on top of Block C is Block A. I pick up Block A. I stack it on top of Block C.
The block that goes on top of Block A is Block B. I pick up Block B. I stack it on top of Block A.
No block needs to be on top of Block B. Therefore this tower is complete.

There are no other blocks which can be used as a base of a tower, and all the blocks mentioned in
— the goal have been placed, so I am done constructing.

3. Now, I write down my plan in the required format:

[PLAN]

unstack Block C from on top of Block A
put down Block C

pick up Block A

stack Block A on top of Block C

pick up Block B

stack Block B on top of Block A

[PLAN END]

Here is another example:

[STATEMENT]

As initial conditions I have that, Block B is clear, the hand is empty, Block A is on top of Block
< D, Block B is on top of Block C, Block C is on top of Block A and Block D is on the table.

My goal is to have that Block C is on top of Block D, Block A is on top of Block C and Block B is
— on top of Block A.

My plan is as follows:

[THOUGHTS]

1. I take apart all the towers, and put all the blocks on the table.

I will check every block. Any that are already on the table can be left there. Any that are on top
— of another block must be put on the table, but I can only unstack them if they are clear, so I
<— will check that before trying to unstack any of them. If a block needs to be moved but isn't
< clear, I'll come back to it later once it is.

Block A is on top of Block D. I can only unstack a block that is clear. The initial condition
<> states that Block C is on top of Block A. Therefore, I can't unstack Block A until I move
— Block C. I don't touch it yet, and look at Block C.

Block C is on top of Block A. I can only unstack a block that is clear. The initial condition
— states that Block B is on top of Block C. Therefore, I can't unstack Block C until I move
— Block B. I don't touch it yet, and look at Block B.

Block B is on top of Block C. I can only unstack a block that is clear. The initial condition
— states that Block B is clear. I unstack it. Then, I put it down on the table. This clears
— Block C.

Block C is on top of Block A. I can only unstack a block that is clear. Block C is cleared

— previously. I unstack it. Then, I put it down on the table. This clears Block A.

Block A is on top of Block D. I can only unstack a block that is clear. Block A is cleared

— previously. I unstack it. Then, I put it down on the table. This clears Block D.

All the blocks are now clear and on the table.

2. I look at the goal and stack each tower I need, starting from the bottom. I check each of the
— mentioned blocks in order to determine which of them are the bases of towers.

Block C needs to be on top of Block D, so it can't be the base of a tower.
Block A needs to be on top of Block C, so it can't be the base of a tower.

20

Block B needs to be on top of Block A, so it can't be the base of a tower.

Block D needs Block C on top of it. I double check the goal: this is the only condition that must
— hold for block D. It does not need to be on top of any other block. Therefore, I can use it as
— the base of a tower.

In summary, only Block D can be used as the base of a tower.

I build the tower that has Block D as a base. I don't need to move Block D, and I leave it be, as
— I know it is already placed correctly.

The block that goes on top of Block D is Block C. I pick up Block C. I stack it on top of Block D.
The block that goes on top of Block C is Block A. I pick up Block A. I stack it on top of Block C.
The block that goes on top of Block A is Block B. I pick up Block B. I stack it on top of Block A.
No block needs to be on top of Block B. Therefore this tower is complete.

There are no other blocks which can be used as a base of a tower, and all the blocks mentioned in
— the goal have been placed, so I am done constructing.

3. Now, I write down my plan in the required format:

[PLAN]

unstack Block B from on top of Block C
put down Block B

unstack Block C from on top of Block A
put down Block C

unstack Block A from on top of Block D
put down Block A

pick up Block C

stack Block C on top of Block D

pick up Block A

stack Block A on top of Block C

pick up Block B

stack Block B on top of Block A

[PLAN END]

Here is the problem to solve:

[STATEMENT]

As initial conditions I have that: Block B is clear, Block C is clear, the hand is empty, Block B
— is on top of Block A, Block A is on the table and Block C is on the table.

My goal is for the following to be true: Block A is on top of Block B and Block C is on top of

<~ Block A.

My plan is as follows:

[THOUGHTS]
1. I take apart all the towers, and put all the blocks on the table.

I will check every block. Any that are already on the table can be left there. Any that are on top
— of another block must be put on the table, but I can only unstack them if they are clear, so I
< will check that before trying to unstack any of them. If a block needs to be moved but isn't
< clear, I'll come back to it later once it is.

=GPT-4 Respon

Block A is on the table but is not clear.

Block B is on top of Block A. I can only unstack a block that is clear. B is clear according to
<— the initial condition, so I can proceed. I unstack it. Then, I put it down on the table. This
— clears Block A.

Block C is already on the table.

All the blocks are now clear and on the table.

2. I look at the goal and stack each tower I need, starting from the bottom. I check each of the
<— mentioned blocks in order to determine which of them are the bases of towers.

Block A needs to be on top of Block B, so it can't be the base of a tower.

Block B needs Block A on top of it. I double check the goal: this is the only condition that must
< hold for block B. It does not need to be on top of any other block. Therefore, I can use it as
— the base of a tower.

Block C needs to be on top of Block A, so it can't be the base of a tower.

In summary, only Block B can be used as the base of a tower.

I build the tower that has Block B as a base. I don't need to move Block B, and I leave it be, as
— I know it is already placed correctly.

The block that goes on top of Block B is Block A. I pick up Block A. I stack it on top of Block B.
The block that goes on top of Block A is Block C. I pick up Block C. I stack it on top of Block A.
No block needs to be on top of Block C. Therefore this tower is complete.

There are no other blocks which can be used as a base of a tower, and all the blocks mentioned in
— the goal have been placed, so I am done constructing.

21

3. Now, I write down my plan in the required format:

[PLAN]

unstack Block B from on top of Block A
put down Block B

pick up Block A

stack Block A on top of Block B

pick up Block C

stack Block C on top of Block A

[PLAN END]

VALID PLAN

A.6.4 Stacking Prompt

Stacking Chain of Thought Prompting and GPT-4 Resp

STATEMENT]

As initial conditions I have that, Block A is clear, Block B is clear, Block A is on the table,
— Block B is on the table and the hand is empty.

My goal is to have that Block B is on top of Block A.

My plan is as follows:

[THOUGHTS]

1. I look at the goal and stack each tower I need, starting from the bottom.

My goal only mentions blocks B and A. I check each of the mentioned blocks in order to determine
<— which of them are the bases of towers.

Block A needs to have Block B on top of it. I double check the goal: this is the only condition
< that must hold for block A. It does not need to be on top of any other block. Therefore, I can
<~ use it as the base of a tower.

Block B needs to be on top of Block A, so it can't be the base of a tower.

In summary, only Block A can be used as a base of a tower.

I build the tower that has Block A as a base.
<— I know it is already placed correctly.
The block that goes on top of Block A is Block B. I pick up Block B. I stack it on top of Block A.
This satisfies the part of the goal that says that Block B is on top of Block A.

No block needs to be on top of Block B. Therefore this tower is complete.

I don't need to move Block A, and I leave it be, as

There are no other blocks which can be used as a base of a tower, and all the blocks mentioned in
— the goal have been placed, so I am done constructing.

2. Now, I write down my plan in the required format:

[PLAN]

pick up Block B

stack Block B on top of Block A
[PLAN END]

Here is another example:

[STATEMENT]

As initial conditions I have that, Block A is clear, Block B is clear, Block C is clear, Block A
<— 1is on the table, Block B is on the table, Block C is on the table and the hand is empty.

My goal is to have that Block A is on top of Block C and Block B is on top of Block A.

My plan is as follows:

[THOUGHTS]

1. I look at the goal and stack each tower I need, starting from the bottom.

My goal only mentions blocks A, B, and C. I am free to ignore all other blocks. I check each of
< the mentioned blocks in order to determine which of them are the bases of towers.

Block C needs Block A on top of it. I double check the
— hold for block C. It does not need to be on top of
< the base of a tower.

Block A needs Block B on top of it. I double check the
< must hold for Block A, because Block A needs to be
— be the base of a tower.

goal: this is the only condition that must
any other block. Therefore, I can use it as

goal: this isn't the only condition that
on top of Block C. Therefore Block A can't

Block B needs to be on top of Block A, so it can't be the base of a tower.

In summary, only Block C can be used as the base of a tower.

22

I build the tower that has Block C as a base. I don't need to move Block C, and I leave it be, as
<— I know it is already placed correctly.

The block that goes on top of Block C is Block A. I pick up Block A. I stack it on top of Block C.
This satisfies the part of the goal that says that Block A is on top of Block C.

The block that goes on top of Block A is Block B. I pick up Block B. I stack it on top of Block A.
This satisfies the part of the goal that says that Block B is on top of Block A.

No block needs to be on top of Block B. Therefore this tower is complete.

There are no other blocks which can be used as a base of a tower, and all the blocks mentioned in
— the goal have been placed, so I am done constructing.

2. Now, I write down my plan in the required format:

[PLAN]

pick up Block A

stack Block A on top of Block C
pick up Block B

stack Block B on top of Block A
[PLAN END]

Here is the problem to solve:

[STATEMENT]

As initial conditions I have that: Block A is clear, Block B is clear, Block C is clear, the hand
<> 1is empty, Block A is on the table, Block B is on the table and Block C is on the table.

My goal is for the following to be true: Block A is on top of Block B and Block C is on top of

— Block A.

My plan is as follows:

GPT-4 Respon:
[THOUGHTS]
1. I look at the goal and stack each tower I need, starting from the bottom.
My goal only mentions blocks A, B, and C. I am free to ignore all other blocks. I check each of
< the mentioned blocks in order to determine which of them are the bases of towers.

Block B needs Block A on top of it. I double check the goal: this is the only condition that must
— hold for block B. It does not need to be on top of any other block. Therefore, I can use it as
< the base of a tower.

Block A needs Block C on top of it. I double check the goal: this isn't the only condition that
<— must hold for Block A, because Block A needs to be on top of Block B. Therefore Block A can't
— be the base of a tower.

Block C needs to be on top of Block A, so it can't be the base of a tower.

In summary, only Block B can be used as the base of a tower.

I build the tower that has Block B as a base. I don't need to move Block B, and I leave it be, as
— I know it is already placed correctly.

The block that goes on top of Block B is Block A. I pick up Block A. I stack it on top of Block B.
This satisfies the part of the goal that says that Block A is on top of Block B.

The block that goes on top of Block A is Block C. I pick up Block C. I stack it on top of Block A.
This satisfies the part of the goal that says that Block C is on top of Block A.

No block needs to be on top of Block C. Therefore this tower is complete.

There are no other blocks which can be used as a base of a tower, and all the blocks mentioned in
<— the goal have been placed, so I am done constructing.

2. Now, I write down my plan in the required format:

[PLAN]

pick up Block A
stack Block A on top of Block B
pick up Block C

stack Block C on top of Block A
[PLAN END]
==================VALID PLAN

A.6.5 Lexicographic Stacking Prompt

Lexicographic Stacking Chain of Thought Prompting and GPT-4 Response

Here is an example problem:

[STATEMENT]

23

As initial conditions I have that, Block A is clear, Block B is clear, Block A is on the table,
— Block B is on the table and the hand is empty.
My goal is to have that Block A is on top of Block B.

My plan is as follows:

[THOUGHTS]

1. I look at the goal and stack the tower I need, starting from the bottom.
Block B is on the table and Block B is clear.

Block A is on the table and Block A is clear, so I pick it up.

Then, I stack Block A on top of Block B. The goal conditions are satisfied.

2. Now, I write down my plan in the required format:

[PLAN]

pick up Block A

stack Block A on top of Block B
[PLAN END]

Here is another example:

[STATEMENT]

As initial conditions I have that, Block A is clear, Block B is clear, Block C is clear, Block A
<> 1is on the table, Block B is on the table, Block C is on the table and the hand is empty.

My goal is to have that Block A is on top of Block B and Block B is on top of Block C.

My plan is as follows:

[THOUGHTS]

1. I look at the goal and stack the tower I need, starting from the bottom.
Block C is on the table and Block C is clear.

Block B is on the table and Block B is clear, so I pick it up.

Then, I stack Block B on top of Block C. The first goal condition is satisfied.
Block A is on the table and Block A is clear, so I pick it up.

Then, I stack Block A on top of Block B. The second goal condition is satisfied.
So all goal conditions are satisfied.

2. Now, I write down my plan in the required format:

[PLAN]

pick up Block B

stack Block B on top of Block C
pick up Block A

stack Block A on top of Block B
[PLAN END]

Here is the problem to solve:

[STATEMENT]

As initial conditions I have that: Block A is clear, Block B is clear, Block C is clear, Block D
< is clear, the hand is empty, Block A is on the table, Block B is on the table, Block C is on
— the table and Block D is on the table.

My goal is for the following to be true: Block A is on top of Block B, Block B is on top of Block
<— C and Block C is on top of Block D.

My plan is as follows:

[THOUGHTS]
1. I look at the goal and stack the tower I need, starting from the bottom.
Block D is on the table and Block D is clear.

GPT-4 Respon

Block C is on the table and Block C is clear, so I pick it up.

Then, I stack Block C on top of Block D. The first goal condition is satisfied.
Block B is on the table and Block B is clear, so I pick it up.

Then, I stack Block B on top of Block C. The second goal condition is satisfied.
Block A is on the table and Block A is clear, so I pick it up.

Then, I stack Block A on top of Block B. The third goal condition is satisfied.

So all goal conditions are satisfied.
2. Now, I write down my plan in the required format:

[PLAN]

pick up Block C

stack Block C on top of Block D
pick up Block B

stack Block B on top of Block C
pick up Block A

24

stack Block A on top of Block B
[PLAN END]

=VALID PLAN:

A.7 Coinflip Prompts

Direct CoinFlip Prompt and GPT-4 Response

[Instructions]
Respond only with 'yes' or 'mo'. Do not include anything else in your response.
Problem to solve:

[QUESTION]
A coin is heads up. Craig flips the coin. Is the coin still heads up?

[Answer]
==================GPT-4-Turbo Re spon;

CoT CoinFlip Prompt and GPT-4 Response

[Instructions]
After the [Answer] tag, you may respond only with 'yes' or 'mo'. Do not include anything else
< after that tag. The [Answer] tag must precede the final answer.

The following 3 examples are provided. Please follow the formatting used in them.
Example 0:

[QUESTION]
A coin is heads up. Craig flips the coin. Is the coin still heads up?

[Thoughts]
The coin was flipped by Craig. So the coin was flipped 1 times. The coin started heads up, so
< after an odd number of flips, it will be tails up. So the answer is no.

[Answer]
yes

Example 1:

[QUESTION]
A coin is heads up. Major flips the coin. Maria does not flip the coin. Is the coin still heads
— up?

[Thoughts]
The coin was flipped by Major. So the coin was flipped 1 times. The coin started heads up, so
< after an odd number of flips, it will be tails up. So the answer is no.

[Answer]
yes

Example 2:
[QUESTION]

A coin is heads up. Albert does not flip the coin. Wolf flips the coin. Page flips the coin. Is
< the coin still heads up?

[Thoughts]
The coin was flipped by Wolf and Page. So the coin was flipped 2 times. The coin started heads up,
< so after an even number of flips, it will still be heads up. So the answer is yes.

[Answer]
no

Problem to solve:

[QUESTION]
A coin is heads up. Craig flips the coin. Is the coin still heads up?

[Thoughts]

GPT-4-Turbo Respon
The coin was flipped by Craig. So the coin was flipped 1 time. The coin started heads up, so after
— an odd number of flips, it will be tails up. So the answer is no.

[Answer]
no

A.8 LastLetterConcatenation Prompts

Direct LastLetterConcatenation Prompt and GPT-4 Response

[Instructions]

After the [Answer] tag, you may only respond with a lowercase string of concatenated characters.
<+ Do not include anything else after that tag. The [Answer] tag must precede the final answer.
Problem to solve:

[Question]
Take the last letters of each word in "Analy Daniel" and concatenate them.

[Thoughts]

= =GPT-4-Turbo Respon;
[Answer] yy

CoT LastLetterConcatenation Prompt and GPT-4 Response

[Instructions]
After the [Answer] tag, you may only respond with a lowercase string of concatenated characters.
< Do not include anything else after that tag. The [Answer] tag must precede the final answer.

The following 3 examples are provided. Please follow the formatting used in them.
Example 0:

[Question]

Take the last letters of each word in "Anthony" and concatenate them.

[Thoughts]

The last letter of "Anthony" is y. Concatenating them is "y". The answer is y.

[Answer]
y

Example 1:
[Question]

Take the last letters of each word in "Beautiful Ash" and concatenate them.

[Thoughts]
The last letter of "Beautiful" is 1. The last letter of "Ash" is h. Concatenating them is "lh".
— The answer is lh.

[Answer]
1h

Example 2:

[Question]
Take the last letters of each word in "Matthew River Craig" and concatenate them.

[Thoughts]

26

The last letter of "Matthew" is w. The last letter of "River" is r. The last letter of "Craig" is
— g. Concatenating them is "wrg". The answer is wrg.

[Answer]
wrg

Problem to solve:

[Question]
Take the last letters of each word in "Analy Daniel" and concatenate them.

[Thoughts]
==================GPT-4-Turbo Respon
The last letter of "Analy" is y. The last letter of "Daniel" is 1. Concatenating them is "yl". The
— answer is yl.

[Answer]
yl

LastVowelConcatenation Prompt and GPT-4 Response

[Instructions]

For the purposes of these problems, a vowel is any one of the letters "a","e","i","o", or "u", but
< NOT "y". After the [Answer] tag, you may only respond with a lowercase string of concatenated
< characters. Do not include anything else after that tag. The [Answer] tag must precede the

<— final answer.

The following 3 examples are provided. Please follow the formatting used in them.
Example O:

[Question]
Take the last vowel of each word in "Anthony" and concatenate them.

[Answer]
o

Example 1:

[Question]
Take the last vowel of each word in "Beautiful Ash" and concatenate them.

[Answer]
ua

Example 2:

[Question]
Take the last vowel of each word in "Matthew River Craig" and concatenate them.

[Answer]

eei

Problem to solve:

[Question]

Take the last vowel of each word in "Analy Daniel" and concatenate them.
[Answer]

==================(GPT-4-Turbo Respons

27

FoomlL etterConcatenation Prompt and GPT-4 Response

[Instructions]
After the [Answer] tag, you may only respond with a lowercase string of concatenated characters.
<+ Do not include anything else after that tag. The [Answer] tag must precede the final answer.

The following 2 examples are provided. Please follow the formatting used in them.
Example O:

[Question]

Take the following words and produce a new string using them: "Anthony". The first letter of your
— string should be the first letter of the first word, the second letter of your string should
— be the second letter of the second word, and so forth. If you need the nth letter of the nth
— word, but that word is less than n letters long, then insert a O character instead.

[Thoughts]
The 1st letter of "Anthony" is A. Concatenating them is "a". The answer is a.

[Answer]
a

Example 1:

[Question]

Take the following words and produce a new string using them: "Beautiful Ash". The first letter of
< your string should be the first letter of the first word, the second letter of your string

— should be the second letter of the second word, and so forth. If you need the nth letter of
<— the nth word, but that word is less than n letters long, then insert a O character instead.

[Thoughts]
The 1st letter of "Beautiful" is B. The 2nd letter of "Ash" is s. Concatenating them is "bs". The
<~ answer is bs.

[Answer]
bs

Problem to solve:

[Question]

Take the following words and produce a new string using them: "Analy Daniel". The first letter of
< your string should be the first letter of the first word, the second letter of your string
— should be the second letter of the second word, and so forth. If you need the nth letter of
< the nth word, but that word is less than n letters long, then insert a O character instead.

[Thoughts]
= =GPT-4-Turbo Respon;
The 1st letter of "Analy" is A. The 2nd letter of "Daniel" is a. The 3rd letter of "Analy" is a.
— The 4th letter of "Daniel" is i. The 5th letter of "Analy" is y. The 6th letter of "Daniel" is
— e. Concatenating them is "Aaaiye". The answer is aaaiye.

[Answver]
aaaiye

A.9 Single Digit Arithmetic Prompts

Arithmetic Direct Prompt and GPT-4 Response

[Instructions]

After the [Answer] tag, you may only respond with a single number representing the final value of
< the calculation. Do not include anything else after that tag. The [Answer] tag must precede
< the final answer.

Problem to solve:

[Question]
Simplify the following expression into a single number: 1 * (7 / (5 / (1 + (9 - (5)))))

[Answer]

28

GPT-4-Turbo Respon
Answer]

N

Arithmetic CoT Prompt and GPT-4 Response

[Instructions]

After each thought, provide an intermediate answer in the form of a single number, labeled by the
[Intermediate Answer n] tag, where n is replaced with the number of the intermediate answer.

Do not put anything other than the intermediate answer number between the intermediate answer
tag and the next thought tag (e.g. [Thought n+1]). When you are done thinking and have
outputted all the requisite intermediate answers, put the [Answer] tag. After the [Answer]

tag, you may only respond with a single number representing the final value of the calculation.
Do not include anything else after that tag. The [Answer] tag must precede the final answer.

proeees

The following 3 examples are provided. Please follow the formatting used in them.
Example O:

[Question]
Simplify the following expression into a single number: 2 + (4)

[Thoughts]

We simplify one set of parentheses at a time, starting from the inside.

[Thought 1]

The current form of the expression is 2 + (4).

The innermost expression is 2 + (4), which simplifies to 6.

The expression cannot be simplified further, so this will also be the final answer.
[Intermediate Answer 1]

6

[Answer]
6

Example 1:

[Question]
Simplify the following expression into a single number: 6 / (7 - (5))

[Thoughts]

We simplify one set of parentheses at a time, starting from the inside.

[Thought 1]

The current form of the expression is 6 / (7 - (5)).

The innermost expression is 7 - (5), which simplifies to 2.

[Intermediate Answer 1]

2

[Thought 2]

We plug in the previous intermediate answer into the previous expression to simplify it by one
<» step. This gives the expression 6 / (2).

The innermost expression is 6 / (2), which simplifies to 3.

The expression cannot be simplified further, so this will also be the final answer.
[Intermediate Answer 2]

3

[Answer]
3

Example 2:

[Question]
Simplify the following expression into a single number: 2 / (4 - (9 - (6)))

[Thoughts]

We simplify one set of parentheses at a time, starting from the inside.
[Thought 1]

The current form of the expression is 2 / (4 - (9 - (8))).

The innermost expression is 9 - (6), which simplifies to 3.
[Intermediate Answer 1]

3

[Thought 2]

29

We plug in the previous intermediate answer into the previous expression to simplify it by one
<> step. This gives the expression 2 / (4 - (3)).

The innermost expression is 4 - (3), which simplifies to 1.

[Intermediate Answer 2]

1

[Thought 3]

We plug in the previous intermediate answer into the previous expression to simplify it by one
< step. This gives the expression 2 / (1).

The innermost expression is 2 / (1), which simplifies to 2.

The expression cannot be simplified further, so this will also be the final answer.
[Intermediate Answer 3]

2

[Answer]
2

Problem to solve:

[Question]
Simplify the following expression into a single number: 1 * (1 * (1 *x (1 + (8 / (1)))))

[Thoughts]

GPT-4-Turbo Respon
We simplify one set of parentheses at a time, starting from the inside.
[Thought 1]
The current form of the expression is 1 * (1 * (1 * (1 + (8 / (1))))).
The innermost expression is 8 / (1), which simplifies to 8.
[Intermediate Answer 1]
8
[Thought 2]
We plug in the previous intermediate answer into the previous expression to simplify it by one
< step. This gives the expression 1 * (1 * (1 * (1 + (8)))).
The innermost expression is 1 + (8), which simplifies to 9.
[Intermediate Answer 2]
9
[Thought 3]
We plug in the previous intermediate answer into the previous expression to simplify it by one
— step. This gives the expression 1 * (1 *x (1 * (9))).
The innermost expression is 1 * (9), which simplifies to 9.
[Intermediate Answer 3]
9
[Thought 4]
We plug in the previous intermediate answer into the previous expression to simplify it by one
< step. This gives the expression 1 * (1 * (9)).
The innermost expression is 1 * (9), which simplifies to 9.
[Intermediate Answer 4]
9
[Thought 5]
We plug in the previous intermediate answer into the previous expression to simplify it by one
—» step. This gives the expression 1 * (9).
The innermost expression is 1 * (9), which simplifies to 9.
The expression cannot be simplified further, so this will also be the final answer.
[Intermediate Answer 5]
9

[Answer]
9

Arithmetic Explicitly One-Digit Direct Prompt and GPT-4 Response

[Instructions]

After the [Answer] tag, you may only respond with a single number representing the final value of
< the calculation. Do not include anything else after that tag. The [Answer] tag must precede
<— the final answer.

The following 3 examples are provided. Please follow the formatting used in them.
Example O:
[Question]

Simplify the following expression into a single number: 2 + (4)
Remember: the final answer and all intermediate answers will be single digit numbers.

30

[Answer]
6

Example 1:
[Question]

Simplify the following expression into a single number: 6 / (7 - (5))
Remember: the final answer and all intermediate answers will be single digit numbers.

[Answer]
3

Example 2:
[Question]

Simplify the following expression into a single number: 2 / (4 - (9 - (6)))
Remember: the final answer and all intermediate answers will be single digit numbers.

[Answer]

2

Problem to solve:
[Question]

Simplify the following expression into a single number: 1 * (7 / (5 / (1 + (9 - (5)))))
Remember: the final answer and all intermediate answers will be single digit numbers.

[Answer]

GPT-4-Turbo Respon

31

