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ABSTRACT

Uniformity plays a crucial role in the assessment of learned representations, con-
tributing to a deeper comprehension of self-supervised learning. The seminal
work by Wang & Isola (2020) introduced a uniformity metric that quantitatively
measures the collapse degree of learned representations. Directly optimizing this
metric together with alignment proves to be effective in preventing constant col-
lapse. However, we present both theoretical and empirical evidence revealing that
this metric lacks sensitivity to dimensional collapse, highlighting its limitations.
To address this limitation and design a more effective uniformity metric, this paper
identifies five fundamental properties, some of which the existing uniformity metric
fails to meet. We subsequently introduce a novel uniformity metric that satisfies all
of these desiderata and exhibits sensitivity to dimensional collapse. When applied
as an auxiliary loss in various established self-supervised methods, our proposed
uniformity metric consistently enhances their performance in downstream tasks.
Our code was released at WassersteinUniformityMetric.

1 INTRODUCTION

Self-supervised learning excels in acquiring invariant representations to various augmentations (Chen
et al., 2020; He et al., 2020; Caron et al., 2020; Grill et al., 2020; Zbontar et al., 2021). It has been
outstandingly successful across a wide range of domains, such as multimodality learning, object
detection, and segmentation (Radford et al., 2021; Li et al., 2022; Xie et al., 2021; Wang et al., 2021;
Yang et al., 2021; Zhao et al., 2021). To gain a deeper understanding of self-supervised learning,
thoroughly evaluating the learned representations is a pragmatic approach (Wang & Isola, 2020; Gao
et al., 2021; Tian et al., 2021; Jing et al., 2022).

Constant Collapse Dimensional Collapse

Figure 1: The left figure presents constant
collapse, and the right figure visualizes dimen-
sional collapse.

Alignment, a metric quantifying the similarities between
positive pairs, holds significant importance in the evalua-
tion of learned representations (Wang & Isola, 2020). It
ensures that samples forming positive pairs are mapped
to nearby features, thereby rendering them invariant to
irrelevant noise factors (Hadsell et al., 2006; Chen et al.,
2020). However, relying solely on alignment proves
inadequate for effectively assessing representation qual-
ity in self-supervised learning. This limitation becomes
evident in the presence of extremely small alignment
values in collapsing solutions, as observed in Siamese
networks (Hadsell et al., 2006), where all outputs collapse to a single point (Chen & He, 2021), as
illustrated in Figure 1. In such cases, the learned representations exhibit optimal alignment but fail
to provide meaningful information for any downstream tasks. This underscores the necessity of
incorporating additional factors when evaluating learned representations.
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To better evaluate the learned representations, Wang & Isola (2020) formally introduced a uniformity
metric by utilizing the logarithm of the average pairwise Gaussian potential (Cohn & Kumar, 2007).
Uniformity assesses how feature embeddings are distributed uniformly across the unit hypersphere,
and higher uniformity indicates that more information is preserved by the learned representations.
Since its invention, uniformity has played a pivotal role in comprehending self-supervised learning
and mitigating the issue of constant collapse (Arora et al., 2019; Wang & Isola, 2020; Gao et al.,
2021). Nevertheless, the validity of this particular uniformity metric warrants further examination
and scrutiny.

To examine the existing uniformity metric (Wang & Isola, 2020), we introduce five principled
properties, also known as desiderata, that a desired uniformity metric should fulfill. Guided by
these properties, we conduct a theoretical analysis that reveals certain shortcomings of the existing
metric, particularly its insensitivity to dimensional collapse (Hua et al., 2021)1. We complement our
theoretical findings with empirical evidence that underscores the metric’s limitations in addressing
dimensional collapse. We then introduce a new uniformity metric that satisfies all desiderata. In
particular, the proposed metric is sensitive to dimensional collapse and thus is superior to the existing
one. Finally, using the proposed uniformity metric as an auxiliary loss within existing self-supervised
learning methods consistently improves their performance in downstream tasks.

Our main contributions are summarized as follows. (i) We introduce five desiderata that provide
a novel perspective on the design of ideal uniformity metrics. Notably, the existing uniformity
metric (Wang & Isola, 2020) does not satisfy all of these desiderata. Specifically, we demonstrate,
both theoretically and empirically, its insensitivity to dimensional collapse. (ii) We propose a novel
uniformity metric that not only fulfills all of the desiderata but also exhibits sensitivity to dimensional
collapse, addressing a crucial limitation of the existing metric. (iii) Our newly proposed uniformity
metric can be seamlessly incorporated as an auxiliary loss in a variety of self-supervised methods,
consistently improving their performance in downstream tasks.

2 BACKGROUND

2.1 SELF-SUPERVISED REPRESENTATION LEARNING

A common practice of self-supervised learning is to maximize the similarity of representations
obtained from different augmentations of one sample. Specifically, given a set of data samples
{x1,x2, ...,xn}, the Siamese network (Hadsell et al., 2006) takes as input two randomly augmented
views xa

i and xb
i from a input sample xi. Then the two views are processed by an encoder network f

consisting of a backbone (e.g., ResNet (He et al., 2016)) and a projection MLP head (Chen et al.,
2020), denoted as g. To enforce invariability to representations of the two views zai := g(f(xa

i )) and
zbi := g(f(xb

i )), a natural solution is to maximize the cosine similarity between the representations of
two views, and mean square error (MSE) is a widely used loss function to align their ℓ2-normalized
representations on the unit hypersphere:

Lθ
align =

∥∥∥∥ zai
∥zai ∥

− zbi
∥zbi∥

∥∥∥∥2
2

= 2− 2 · ⟨zai , zbi ⟩
∥zai ∥ · ∥zbi∥

, (1)

However, a common issue with this approach is that it easily learns an undesired collapsing solution
where all representations collapse to one single point, as depicted in Figure 1.

2.2 EXISTING SOLUTIONS TO CONSTANT COLLAPSE

To prevent constant collapse, existing solutions include contrastive learning, asymmetric model
architecture, and redundancy reduction.

Contrastive Learning Contrastive learning serves as a valuable technique for mitigating constant
collapse. The key idea is to utilize negative pairs. For example, SimCLR (Chen et al., 2020)
introduced an in-batch negative sampling strategy that utilizes samples within a batch as negative

1When dimensional collapse occurs, representations occupy a lower-dimensional subspace instead of the
entire embedding space (Jing et al., 2022) and thus some dimensions are not fully utilized; see Figure 1.
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samples. However, its effectiveness is contingent on the use of a large batch size. To address this
limitation, MoCo (He et al., 2020) used a memory bank, which stores additional representations as
negative samples. Recent research endeavors have also explored clustering-based contrastive learning,
which combines a clustering objective with contrastive learning techniques (Li et al., 2021; Caron
et al., 2020).

Asymmetric Model Architecture The use of asymmetric model architecture represents another
approach to combat constant collapse. One plausible explanation for its effectiveness is that such
an asymmetric design encourages encoding more information (Grill et al., 2020). To maintain this
asymmetry, BYOL (Grill et al., 2020) introduces the concept of using an additional predictor in one
branch of the Siamese network while employing momentum updates and stop-gradient operators in
the other branch. DINO (Caron et al., 2021), takes this asymmetry a step further by applying it to two
encoders, distilling knowledge from the momentum encoder into the other one (Hinton et al., 2015).
SimSiam (Chen & He, 2021) removes the momentum update from BYOL, and illustrates that the
momentum update may not be essential in preventing collapse. In contrast, Mirror-SimSiam (Zhang
et al., 2022a) swaps the stop-gradient operator to the other branch. Its failure challenges the assertion
made in SimSiam (Chen & He, 2021) that the stop-gradient operator is the key component for
preventing constant collapse. Theoretically, Tian et al. (2021) provides an examination to elucidate
why an asymmetric model architecture can effectively avoid constant collapse.

Redundancy Reduction The fundamental principle behind redundancy reduction to mitigate
constant collapse is to maximize the information preserved by the representations. The key idea
is to decorrelate the learned representations. Barlow Twins (Zbontar et al., 2021) aims to achieve
decorrelation by focusing on the cross-correlation matrix, while VICReg (Bardes et al., 2022) focuses
on the covariance matrix. Zero-CL (Zhang et al., 2022b) takes a hybrid approach, combining
instance-wise and feature-wise whitening techniques to achieve decorrelation.

2.3 COLLAPSE ANALYSIS

While the aforementioned solutions could effectively prevent constant collapse, they are not effective
in preventing dimensional collapse, where representations occupy a lower-dimensional subspace
instead of the whole space. This phenomenon was observed in contrastive learning by visualizing
the singular value spectrum of representations (Jing et al., 2022; Tian et al., 2021). Visualization
provides a qualitative assessment but not a quantitive one.

To achieve a quantifiable analysis of collapse degree, To quantitively measure the collapse degree,
Wang & Isola (2020) proposed a uniformity metric by utilizing the logarithm of the average pairwise
Gaussian potential. Specifically, for a set of representations {z1, z2, ..., zn}, their uniformity metric
is defined as:

LU := log
1

n(n− 1)/2

n∑
i=2

i−1∑
j=1

e
−t

∥∥∥∥ zi
∥zi∥

−
zj

∥zj∥

∥∥∥∥2

2 , (2)

Where t > 0 is a fixed parameter and is often taken as 2. In this work, we show that this met-
ric is insensitive to dimensional collapse, both theoretically (in Section 3.2) and empirically (in
Section 5.2).

3 WHAT MAKES A GOOD UNIFORMITY METRIC?

In this section, we first introduce five desiderata of a good uniformity metric, and then conduct
theoretical analysis on the existing uniformity metric −LU by Wang & Isola (2020).

3.1 DESIDERATA OF UNIFORMITY

A uniformity metric is a function that maps a set of learned representations in Rm to a uniformity
indicator in R.

U : {Rm}n → R, (3)
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D ∈ {Rm}n is a set of learned vectors (D = {z1, z2, ..., zn}), each vector is the feature representation
of an instance, zi ∈ Rm. We first assume that the maximum uniformity metric over the representations
should be invariant to the dimensions, which is also satisfied by the metric in (Wang & Isola, 2020).
Assumption 1. Suppose D1, D2 are two sets of learned vectors from Euclidean spaces of different
dimensions. Then the maximal uniformity over data is invariant to dimensions:

sup
D1∈{Rm}n1

(U(D1)) = sup
D2∈{Rk}n2

(U(D2)), m ̸= k,∀n1, n2,m, k ∈ R+, (4)

We then formally propose the five desiderata for an ideal uniformity metric. Intuitively,
uniformity should be invariant to the permutation of instances, as the distribution of representations
is not affected by permutations.
Property 1 (Instance Permutation Constraint (IPC)). The U satisfies

U(π(D)) = U(D), (5)

where π is an instance permutation.

The uniformity should be invariant to the scalings of representations. This copes with modern ma-
chine learning practice where scalings are not important in representation learning. For example,
recent self-supervised learning methods often learn representations under an ℓ2 norm constraint (Zbon-
tar et al., 2021; Wang & Isola, 2020; Grill et al., 2020; Chen et al., 2020), and produce embeddings in
the form of Ds = {s1, s2, ..., sn}, where si = zi/∥zi∥2 ∈ Sm−1 is on the unit hypersphere2.
Property 2 (Instance Scaling Constraint (ISC)). The U satisfies

U({λ1z1, λ2z2, ..., λnzn}) = U(D), ∀λi ∈ R+. (6)

The uniformity metric should be invariant to instance clones, as cloning does not vary the distribu-
tion of embeddings3.
Property 3 (Instance Cloning Constraint (ICC)). The U satisfies

U(D ∪D) = U(D), (7)
where ∪ indicates the union operator.

The uniformity metric should decrease when cloning features for each instance, as the feature-level
cloning will bring redundancy, leading to dimensional collapse (Zbontar et al., 2021; Bardes et al.,
2022)4.
Property 4 (Feature Cloning Constraint (FCC)). The U satisfies

U(D ⊕D) ≤ U(D), (8)
where ⊕ is a feature-level concatenation operator defined as D⊕D = {z1⊕z1, z2⊕z2, ..., zn⊕zn},
and zi ⊕ zi = [zi1, · · · , zim, zi1, · · · , zim]T ∈ R2m.

The uniformity metric should decrease when adding constant features for each instance, since it in-
troduces uninformative features and results in additional collapsed dimensions5.
Property 5 (Feature Baby Constraint (FBC)). The U satisfies

U(D ⊕ 0k) ≤ U(D), k ∈ N+, (9)

D ⊕ 0k = {z1 ⊕ 0k, z2 ⊕ 0k, ..., zn ⊕ 0k}, and zi ⊕ 0k = [zi1, zi2, ..., zim, 0, 0, ..., 0]T ∈ Rm+k.
U(D ⊕ 0k) ≤ U(D) if and only if z1 = z2 = ... = zn = 0m.

These five properties are five intuitive yet fundamental properties of an ideal uniformity metric.
2The vector λz(λ > 0) is located at the same point as the z on the unit hypersphere.
3Although instance cloning enlarges the size of the set D by repeatedly adding the all the vectors, the

probability density function over the entire unit hypersphere is invariant, thus the equality.
4Suppose two sets D ∈ Rm and D2 ∈ R2m have the maximum uniformity. According to the Assumption 1,

we have U(D) = U(D2). D ⊕D contains redundant information, thus the smaller uniformity than D2. Then,
U(D ⊕D) ≤ U(D2) = U(D).

5Suppose two sets D ∈ Rm and D2 ∈ Rm+k have the maximum uniformity. According to the Assumption 1,
we have U(D) = U(D2). D ⊕ 0k contains collapsed dimensions, thus smaller uniformity than D2. Then,
U(D) = U(D2) > U(D ⊕ 0k). See Appendix O for the more detailed explanation.
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3.2 EXAMINING THE UNIFORMITY METRIC −LU BY WANG & ISOLA (2020)

We use the desiderata proposed in Section 3.1 to examine the uniformity metric −LU in 2. The
following claim summarizes the conclusion.
Claim 1. The uniformity metric −LU satisfies Properties 1 and 2, but violates Properties 3, 4, and 5.

For Properties 1 and 2, we can directly use their definitions to prove. To check the other three
properties, see Appendix C.1. The violation of the three properties in particular the Properties 4 and
5 indicates the uniformity metric −LU is insensitive to feature redundancy and dimensional collapse.
Therefore, we need a new uniformity metric.

4 A NEW UNIFORMITY METRIC

In this section, we introduce a novel uniformity metric designed to capture dimensional collapse.

4.1 THE DISTRIBUTION WITH MAXIMAL UNIFORMITY AND AN APPROXIMATION

Intuitively, the uniform distribution on the unit hypersphere, aka Unif(Sm−1), achieves maximal
uniformity. Nevertheless, any distance involving this distribution is hard to calculate. We need the
following Fact 1 which establishes an equivalence between the uniform spherical distribution and the
normalized isotropic Gaussian distribution.
Fact 1. If Z ∼ N (0, σ2Im), then Y := Z/∥Z∥2 is uniformly distributed on the unit hypersphere
Sm−1.

Because the average length of ∥Z∥2 is roughly σ
√
m (Chandrasekaran et al., 2012), that is,

m√
m+ 1

≤ ∥Z∥2/σ ≤
√
m,

we expect Z/(σ
√
m) ∼ N (0,m−1Im) to be a reasonably good approximation to Z/∥Z∥2, and thus

to the uniform spherical distribution. This is rigorously justified in the following theorem.
Theorem 2. Let Yi be the i-th coordinate of Y = Z/∥Z∥2 ∈ Rm, where Z ∼ N (0, σ2Im). Then
the quadratic Wasserstein distance between Yi and Ŷi ∼ N (0,m−1) converges to zero as m → ∞:

lim
m→∞

W2(Yi, Ŷi) = 0.

The theorem above can be proved by directly utilizing the probability density functions of Yi and Ŷi.
The detailed proof is deferred to Appendix B. Theorem 2 shows N (0,m−1Im) approximates the
best uniformity metric as m → ∞. We will show empirically that such an approximation is good
when m is only moderately large.

4.2 AN EMPIRICAL COMPARISON

In this section, we compare the uniform spherical distribution Y ∼ Unif(Sm−1) and the scaled
Gaussian distribution Ŷ ∼ N (0, Im/m) with various m’s. Without loss of generality, we compare
these two distributions coordinately. The distribution for Yi is visualized in Figure 7 by binning
200,000 sampled data points, aka samples, into 51 groups. Figure 7 compares the distributions of
Yi and Ŷi when m ∈ {2, 4, 8, 16, 32, 64, 128, 256}. The quality of the approximation is reasonably
good when m is moderately large, e.g., m ≥ 8 or m ≥ 16. Figure 8(b) further plots the Wasserstein
distance (see definition in Appendix G) between Yi and Ŷi versus increasing m. We observe that
the distance converges to zero when m increases, see more details in Appendix E. We also visualize
the joint distributions of Yi and Yj (i ̸= j) in Figure 9(a), Ŷi and Ŷj (i ̸= j) in Figure 9(b), and two
distributions could resemble with each other, see more details in Appendix F.

4.3 A NEW METRIC FOR UNIFORMITY

This section proposes to use the distance between the distribution of learned representations
and N (0, Im/m) as a uniformity metric. Specifically, for a set of learned representations
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{z1, z2, ..., zn} ⊂ Rm, we first normalize them, and then calculate the mean and covariance matrix:

µ =
1

n

n∑
i=1

zi
∥zi∥2

, Σ =
1

n

n∑
i=1

(
zi

∥zi∥2
− µ

)T (
zi

∥zi∥2
− µ

)
. (10)

To facilitate the computation, we adopt a Gaussian hypothesis to the learned representations and
assume they follow N (µ,Σ). With this assumption, we use the quadratic Wasserstein distance6

to calculate the distance between two distributions; see the definition in Appendix G. We need the
following well-known lemma.

Lemma 1 (Wasserstein Distance (Olkin & Pukelsheim, 1982)). Suppose Z1 ∼ N (µ1,Σ1) and
Z2 ∼ N (µ2,Σ2). Then the quadratic Wasserstein distance between Z1 and Z2 is√

∥µ1 − µ2∥22 + tr(Σ1+Σ2 − 2(Σ
1
2
2 Σ1Σ

1
2
2 )

1
2 ). (11)

The lemma above indicates that the quadratic Wasserstein distance bewteen two Gaussian distributions
can be easily computed. Then, we define our proposed uniformity metric as the negative quadratic
Wasserstein distance between the learned representations and N (0, Im/m):

−W2 := −

√
∥µ∥22 + 1 + tr(Σ)− 2√

m
tr(Σ

1
2 ), (12)

The −W2 can be used as a metric to evaluate the collapse degree: Smaller W2 indicates larger
uniformity of learned representations. Additionally, our proposed uniformity metric can be used as an
auxiliary loss for various existing self-supervised methods since it is differentiable which facilitates
the backward pass. In the training phase, the mean and covariance in 10 are calculated using batches.

5 COMPARISON BETWEEN TWO METRICS

5.1 THEORETICAL COMPARISON

We examine the proposed metric −W2 in terms of the proposed desiderata. The proof is similar to
that in Section 3.2 and is collected in Appendix C.2. Table 1 collects the results. Particularly, the
proposed metric −W2 satisfies Properties 3, 4, and 5, while the existing one −LU does not. Consider
D ⊕ 0k versus D. Then, a larger k indicates a more serious dimensional collapse. However, −LU
fails to identify this issue since −LU (D ⊕ 0k) = −LU (D). In sharp contrast, our proposed metric is
able to capture this dimensional collapse as −W2(D ⊕ 0k) < −W2(D).

Table 1: Theoretical analysis results on the two metrics w.r.t the five desiderata constraints.

Properties IPC ISC ICC FCC FBC
−LU " " %7 % %

−W2 " " " " "

5.2 EMPIRICAL COMPARISON VIA SYNTHETIC DATA

We further conduct synthetic experiments to investigate two uniformity metrics. An empirical study
on the correlation between these metrics reveals that data points following a standard Gaussian
distribution achieve maximum uniformity compared to those from various other distributions, as
detailed in Appendix I. Furthermore, we generate data vectors from this distribution to facilitate a
comprehensive comparison between the two metrics.

6We discuss using other distribution distances as uniformity metrics, such as Kullback-Leibler Divergence
and Bhattacharyya Distance over Gaussian distribution. See more details in Appendix H

7−LU could satisfy ICC if and only if z1 = z2 = ... = zn. However, this is a trivial case that indicates
serious constant collapse.
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(b) Collapse analysis via −W2

Figure 2: Analysis on dimensional collapse degrees. −W2 is more sensitive to collapse degrees than −LU .

On Dimensional Collapse Degrees To synthesize data exhibiting varying degrees of dimensional
collapse, we sample data vectors from the standard Gaussian distribution and mask certain dimensions
with zero vectors. This approach demonstrates that an increase in the number of masked dimensions
leads to more significant dimensional collapse. The percentage of zero-value coordinates in the
masked vectors is η while that of non-zero coordinates is 1 − η. As shown in Figure 2(a) and
Figure 2(b), −W2 is capable of capturing different collapse degrees, while −LU stays the same even
with 80% collapse (η = 80%), indicating that −LU is insensitive to dimensional collapse degrees.
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(a) Collapse analysis via −LU
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= 50%
= 25%

(b) Collapse analysis via −W2

Figure 3: Dimensional collapse w.r.t various dimensions. −LU fails to identify collapse degrees with a large
dimension, while −W2 is able to identify collapse degrees no matter how great/small m is.

On Sensitiveness of Dimensions Moreover, Figure 3 shows that −LU can not distinguish different
degrees of dimensional collapse (η = 25%, 50%, and 75%) when the dimension m becomes large
(e.g., m ≥ 28). In sharp contrast, −W2 only depends on the degree of dimensional collapse and is
independent of the dimension when the dimensional collapse degree is fixed.

To complement the theoretical comparisons between the two metrics discussed in Section 5.1, we
also conduct empirical comparisons in terms of FCC and FBC. ICC comparisons see in Appendix J.
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(a) FCC analysis via −LU
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= 25%

(b) FCC analysis via −W2

Figure 4: FCC analysis w.r.t the times of feature clone.

On Feature Cloning Constraint (FCC) We further investigate the impact of feature cloning by
creating multiple feature clones of the dataset, e.g., D⊕D and D⊕D⊕D, corresponding to one and
two times cloning, respectively. Figure 4(a) demonstrates that the value of −LU remains constant as
the number of clones increases, which violates the inequality constraint in Equation 8. In contrast, in
Figure 4(b), our proposed metric −W2 decreases, satisfying the constraint.
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(a) FBC analysis via −LU
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(b) FBC analysis via −W2

Figure 5: FBC analysis w.r.t the times of feature baby.

On Feature Baby Constraint (FBC) We finally analyze the effect of feature baby, where we insert
k dimension zero-value vectors into the dataset D. This created dataset is denoted as D⊕ 0k, and we
examine the impact of k in both metrics. Figure 5(a) shows that the value of −LU remains constant
as k increases, violating the inequality constraint in Equation 9. In contrast, Figure 5(b) illustrates
that our proposed metric −W2 decreases, satisfying the constraint.

In summary, our empirical results align with our theoretical analysis, confirming that our proposed
metric −W2 performs better than the existing metric −LU in capturing feature redundancy and
dimensional collapse.

6 EXPERIMENTS

In this section, we impose the proposed uniformity metric as an auxiliary loss term for various
existing self-supervised methods, and conduct experiments on CIFAR-10 and CIFAR-100 datasets to
demonstrate its effectiveness.

Models We conduct experiments on a series of self-supervised representation learning models: (i)
AlignUniform (Wang & Isola, 2020), whose loss objective consists of an alignment objective and
a uniform objective. (ii) three contrastive methods, i.e., SimCLR (Chen et al., 2020), MoCo (He
et al., 2020), and NNCLR (Dwibedi et al., 2021). (iii) two asymmetric models, i.e., BYOL (Grill
et al., 2020) and SimSiam (Chen & He, 2021). (iv) two methods via redundancy reduction, i.e.,
BarlowTwins (Zbontar et al., 2021) and Zero-CL (Zhang et al., 2022b). To study the behavior of
proposed Wasserstein distance in the self-supervised representation learning, we impose it as an
auxiliary loss term to the following models: MoCo v2, BYOL, BarlowTwins, and Zero-CL. To
facilitate better use of Wasserstein distance, we also design a linear decay for weighting Wasserstein
distance during the training phase, i.e., αt = αmax − t (αmax − αmin)/T , where t, T , αmax , αmin,
αt are current epoch, maximum epochs, maximum weight, minimum weight, and current weight,
respectively. More detailed experiments setting see in Appendix K.

Metrics We evaluate the above methods from two perspectives: one is linear evaluation accuracy
measured by Top-1 accuracy (Acc@1) and Top-5 accuracy (Acc@5); another is representation
capacity. According to (Arora et al., 2019; Wang & Isola, 2020), alignment and uniformity are the
two most important properties to evaluate self-supervised representation learning. We use two metrics
LU and W2 to measure the uniformity, and a metric A to measure the alignment between the positive
pairs (Wang & Isola, 2020). More details about the alignment metric see in Appendix L.

Main Results As shown in Table 2, we could observe that by imposing W2 as an additional loss
it consistently outperforms the performance than that without the loss or that imposes U as the
additional loss. Interestingly, although it slightly harms alignment, it usually results in improvement
in uniformity and finally leads to better accuracy. This demonstrates the effectiveness of W2 as a
uniformity metric. Note imposing an additional loss during training does not affect the training or
inference efficiency; therefore, adding W2 as loss is beneficial without any tangible costs.

Convergence Analysis We test the Top-1 accuracy of these models on CIFAR-10 and CIFAR-100
via linear evaluation protocol (as described in Appendix K) when training them in different epochs. As
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Table 2: Main comparison on CIFAR-10 and CIFAR-100 datasets. Proj. and Pred. are the hidden dimension in
projector and predictor. ↑ and ↓ mean gains and losses, respectively.

Methods Proj. Pred. CIFAR-10 CIFAR-100
Acc@1↑ Acc@5↑ W2 ↓ LU ↓ A ↓ Acc@1↑ Acc@5↑ W2 ↓ LU ↓ A ↓

SimCLR 256 % 89.85 99.78 1.04 -3.75 0.47 63.43 88.97 1.05 -3.75 0.50
NNCLR 256 256 87.46 99.63 1.23 -3.12 0.38 54.90 83.81 1.23 -3.18 0.43
SimSiam 256 256 86.71 99.67 1.19 -3.33 0.39 56.10 84.34 1.21 -3.29 0.42
AlignUniform 256 % 90.37 99.76 0.94 -3.82 0.51 65.08 90.15 0.95 -3.82 0.53
MoCo v2 256 % 90.65 99.81 1.06 -3.75 0.51 60.27 86.29 1.07 -3.60 0.46
MoCo v2 + LU 256 % 90.98 ↑0.33 99.67 0.98 ↑0.08 -3.82 0.53 ↓0.02 61.21 ↑0.94 87.32 0.98 ↑0.09 -3.81 0.52 ↓0.06
MoCo v2 + W2 256 % 91.41 ↑0.76 99.68 0.33 ↑0.73 -3.84 0.63 ↓0.12 63.68 ↑3.41 88.48 0.28 ↑0.79 -3.86 0.66 ↓0.20
BYOL 256 256 89.53 99.71 1.21 -2.99 0.31 63.66 88.81 1.20 -2.87 0.33
BYOL + LU 256 % 90.09 ↑0.56 99.75 1.09 ↑0.12 -3.66 0.40 ↓0.09 62.68 ↓0.98 88.44 1.08 ↑0.12 -3.70 0.51 ↓0.18
BYOL + W2 256 256 90.31 ↑0.78 99.77 0.38 ↑0.83 -3.90 0.65 ↓0.34 65.16 ↑1.50 89.25 0.36 ↑0.84 -3.91 0.69 ↓0.36
BarlowTwins 256 % 91.16 99.80 0.22 -3.91 0.75 68.19 90.64 0.23 -3.91 0.75
BarlowTwins + LU 256 % 91.38 ↑0.22 99.77 0.21 ↑0.01 -3.92 0.76 ↓0.01 68.41 ↑0.22 90.99 0.22 ↑0.01 -3.91 0.76 ↓0.01
BarlowTwins + W2 256 % 91.43 ↑0.27 99.78 0.19 ↑0.03 -3.92 0.76 ↓0.01 68.47 ↑0.28 90.64 0.19 ↑0.04 -3.91 0.79 ↓0.04
Zero-CL 256 % 91.35 99.74 0.15 -3.94 0.70 68.50 90.97 0.15 -3.93 0.75
Zero-CL + LU 256 % 91.28 ↓0.07 99.74 0.15 -3.94 0.72 ↓0.02 68.44 ↓0.06 90.91 0.15 -3.93 0.74 ↑0.01
Zero-CL + W2 256 % 91.42 ↑0.07 99.82 0.14 ↑0.01 -3.94 0.71 ↓0.01 68.55 ↑0.05 91.02 0.14 ↑0.01 -3.94 0.76 ↓0.01

shown in Figure 12. By imposing W2 as an additional loss for these models, it converges faster than
the raw models, especially for MoCo v2 and BYOL with serious collapse problem. Our experiments
show that imposing the proposed uniformity metric as an auxiliary penalty loss could largely improve
uniformity but damage alignment. We further conduct uniformity and alignment analyses through all
the training epochs in Figure 13 and Figure 14 respectively, see Appendix N.
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Figure 6: Dimensional collapse analysis on CIFAR-100 dataset.

Dimensional Collapse Analysis We visualize singular value spectrum of the representations (Jing
et al., 2022) of various models, where the spectrum contains the singular values of the covariance
matrix of representations from CIFAR-100 dataset in sorted order and logarithmic scale. As shown
in Figure 6(a), most singular values collapse to zero in most models (exclude BarlowTwins and
Zero-CL), indicating a large number of collapsed dimensions occur in most models. To further
understand how the additional loss W2 benefits the alleviation of the dimensional collapse, we impose
W2 as an additional loss for Moco v2 and BYOL models, as shown in Figure 6(b) and Figure 6(c),
the number of collapsed dimensions almost decrease to zero, indicating W2 can effectively address
the dimensional collapse issue. In contrast, the additional loss LU has a minimal effect in preventing
dimensional collapse.

7 CONCLUSION

In this paper, we have identified five fundamental properties that an ideal uniformity metric should
adhere to. However, the existing uniformity metric introduced by Wang & Isola (2020) falls short of
satisfying three of these properties, underscoring its inability to account for dimensional collapse.
Empirical studies further support this finding. To address this limitation, we have introduced a novel
uniformity metric that successfully satisfies all of these desiderata, with a notable capability to capture
dimensional collapse. When integrated as an auxiliary loss in various well-established self-supervised
methods, our proposed uniformity metric consistently enhances their performance in downstream
tasks. A possible limitation of our work is that the five identified desiderata may not provide a
complete characterization of an ideal uniformity metric. A pursuit of complete characterization of an
ideal uniformity metric is in order.
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A PROBABILITY DENSITY FUNCTION OF Yi

Lemma 2. For a random variable Z ∼ N (0, σ2Im), and Z ∈ Rm, for the ℓ2-normalized form
Y = Z/∥Z∥2, the probability density function (pdf) of a variable Yi in the i-th coordinate is:

fYi
(yi) =

Γ(m/2)√
πΓ((m− 1)/2)

(1− y2i )
(m−3)/2, ∀ yi ∈ [−1, 1].

Proof. Z = [Z1, Z2, · · · , Zm] ∼ N (0, σ2Im), then Zi ∼ N (0, σ2),∀i ∈ [1,m]. We denote the
variable U = Zi/σ ∼ N (0, 1), V =

∑m
j ̸=i(Zj/σ)

2 ∼ X 2(m− 1), then U and V are independent
with each other. For the variable T = U√

V/(m−1)
, it obeys the Student’s t-distribution with m− 1

degrees of freedom, and its probability density function (pdf) is:

fT (t) =
Γ(m/2)√

(m− 1)πΓ((m− 1)/2)
(1 +

t2

m− 1
)−m/2.

For the variable Yi = Zi√∑m
i=1 Z2

i

= Zi√
Z2

i +
∑m

j ̸=i Z
2
j

= Zi/σ√
(Zi/σ)2+

∑m
j ̸=i(Zj/σ)2

= U√
U2+V

, then

T = U√
V/(m−1)

=
√
m−1Yi√
1−Y 2

i

and Yi =
T√

T 2+m−1
, the relation between the cumulative distribution

function (cdf) of T and that of Yi can be formulated as follows:

FYi
(yi) = P ({Yi ≤ yi}) =

{
P ({Yi ≤ yi}) yi ≤ 0

P ({Yi ≤ 0}) + P ({0 < Yi ≤ yi}) yi > 0

=

{
P ({ T√

T 2+m−1
≤ yi}) yi ≤ 0

P ({ T√
T 2+m−1

≤ 0}) + P ({0 < T√
T 2+m−1

≤ yi}) yi > 0

=

{
P ({ T 2

T 2+m−1 ≥ y2i , T ≤ 0}) yi ≤ 0

P ({T ≤ 0}+ P ({ T 2

T 2+m−1 ≤ y2i , T > 0}) yi > 0

=

P ({T ≤
√
m−1yi√
1−y2

i

}) yi ≤ 0

P ({T ≤ 0}+ P ({0 < T ≤
√
m−1yi√
1−y2

i

}) yi > 0

= P ({T ≤
√
m− 1yi√
1− y2i

}) = FT (

√
m− 1yi√
1− y2i

).

Therefore, the pdf of Yi can be derived as follows:

fYi
(yi) =

d

dyi
FYi(yi) =

d

dyi
FT (

√
m− 1yi√
1− y2i

)

= fT (

√
m− 1yi√
1− y2i

)
d

dyi
(

√
m− 1yi√
1− y2i

)

= [
Γ(m/2)√

(m− 1)πΓ((m− 1)/2)
(1− y2i )

m/2][
√
m− 1(1− y2i )

−3/2]

=
Γ(m/2)√

πΓ((m− 1)/2)
(1− y2i )

(m−3)/2.

B PROOF OF THE THEOREM 2

Proof. According to the Lemma 2, the pdf of Yi and Ŷi ∼ N (0, 1
m ) are:

fYi
(y) =

Γ(m/2)√
πΓ((m− 1)/2)

(1− y2)(m−3)/2, fŶi
(y) =

√
m

2π
exp{−my2

2
}.
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Then the Kullback-Leibler divergence between Yi and Ŷi can be formulated as:

DKL(Yi∥Ŷi) =

∫ 1

−1

fYi
(y)[log fYi

(y)− log fŶi
(y)]dy

=

∫ 1

−1

fYi
(y)[log

Γ(m/2)√
πΓ((m− 1)/2)

+
m− 3

2
log(1− y2)− log

√
m

2π
+

my2

2
]dy

= log

√
2

m

Γ(m/2)

Γ((m− 1)/2)
+

∫ 1

−1

fYi
(y)[

m− 3

2
log(1− y2) +

my2

2
]dy.

We set µ = y2, we have y =
√
µ, and dy = 1

2µ
− 1

2 du. Then:

A :=

∫ 1

−1

fYi
(y)[

m− 3

2
log(1− y2) +

my2

2
]dy

= 2

∫ 1

0

Γ(m/2)√
πΓ((m− 1)/2)

(1− y2)
m−3

2 [
m− 3

2
log(1− y2) +

my2

2
]dy

=
Γ(m/2)√

πΓ((m− 1)/2)

∫ 1

0

(1− µ)
m−3

2 [
m− 3

2
log(1− µ) +

m

2
µ]µ− 1

2 dµ

=
Γ(m/2)√

πΓ((m− 1)/2)

m− 3

2

∫ 1

0

(1− µ)
m−3

2 µ− 1
2 log(1− µ)dµ

+
Γ(m/2)√

πΓ((m− 1)/2)

m

2

∫ 1

0

(1− µ)
m−3

2 µ
1
2 dµ.

By using the property of Beta distribution, and the inequality −µ
1−µ ≤ log(1− µ) ≤ −µ, we have:

A1 :=
Γ(m/2)√

πΓ((m− 1)/2)

m− 3

2

∫ 1

0

(1− µ)
m−3

2 µ− 1
2 log(1− µ)dµ

≤ − Γ(m/2)√
πΓ((m− 1)/2)

m− 3

2

∫ 1

0

(1− µ)
m−3

2 µ
1
2 dµ

= − Γ(m/2)√
πΓ((m− 1)/2)

m− 3

2
B(

3

2
,
m− 1

2
)

A2 :=
Γ(m/2)√

πΓ((m− 1)/2)

m

2

∫ 1

0

(1− µ)
m−3

2 µ
1
2 dµ

=
Γ(m/2)√

πΓ((m− 1)/2)

m

2
B(

3

2
,
m− 1

2
).

Then, we have:

A = A1 +A2 ≤ − Γ(m/2)√
πΓ((m− 1)/2)

m− 3

2
B(

3

2
,
m− 1

2
) +

Γ(m/2)√
πΓ((m− 1)/2)

m

2
B(

3

2
,
m− 1

2
)

=
3

2

Γ(m/2)√
πΓ((m− 1)/2)

B(
3

2
,
m− 1

2
) =

3

2

Γ(m/2)√
πΓ((m− 1)/2)

Γ(3/2)Γ((m− 1)/2)

Γ((m+ 2)/2)

=
3

2

Γ(3/2)Γ(m/2)√
πΓ((m+ 2)/2)

=
3

2

(
√
π/2)Γ(m/2)√

πΓ((m+ 2)/2)
=

3

4

Γ(m/2)

Γ((m+ 2)/2)
.

According to the Stirling formula, we have Γ(x+ α) → Γ(x)xα as x → ∞, therefore:

lim
m→∞

DKL(Yi∥Ŷi) = lim
m→∞

log

√
2

m

Γ(m/2)

Γ((m− 1)/2)
+ lim

m→∞
A

≤ lim
m→∞

log

√
2

m

Γ((m− 1)/2)(m−1
2 )1/2

Γ((m− 1)/2)
+ lim

m→∞

3

4

Γ(m/2)

Γ((m+ 2)/2)

= lim
m→∞

log

√
2

m

√
m− 1

2
+

3

4

Γ(m/2)

Γ(m/2)m
= lim

m→∞
log

√
m− 1

m
+

3

4m
= 0.
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We further use T2 inequality (Van Handel, 2016, Theorem 4.31) to derive the quadratic Wasserstein
metric (Van Handel, 2016, Definition 4.29) as:

lim
m→∞

W2(Yi, Ŷi) ≤ lim
m→∞

√
2

m
DKL(Yi∥Ŷi) = 0.

C EXAMINING THE DESIDERATA FOR TWO UNIFORMITY METRICS

C.1 PROOF FOR −LU ON DESIDERATA

The first two properties (Property 1 and 2) could be easily proved using the definition. We here
examine the rest three properties one by one for the existing uniformity metric −LU .

Proof. Firstly, we prove that the baseline metric −LU cannot satisfy the Property 3. According to
the definition of LU in Equation 2, we have:

LU (D ∪D) := log
1

2n(2n− 1)/2
(4

n∑
i=2

i−1∑
j=1

e
−t∥ zi

∥zi∥
−

zj
∥zj∥

∥2
2 +

n∑
i=1

e
−t∥ zi

∥zi∥
− zi

∥zi∥
∥2
2)

= log
1

2n(2n− 1)/2
(4

n∑
i=2

i−1∑
j=1

e
−t∥ zi

∥zi∥
−

zj
∥zj∥

∥2
2 + n).

We set G =
∑n

i=2

∑i−1
j=1 e

−t∥ zi
∥zi∥

−
zj

∥zj∥
∥2
2 , and then, we have:

G =

n∑
i=2

i−1∑
j=1

e
−t∥ zi

∥zi∥
−

zj
∥zj∥

∥2
2 ≤

n∑
i=2

i−1∑
j=1

e
−t∥ zi

∥zi∥
− zi

∥zi∥
∥2
2 = n(n− 1)/2.

G = n(n− 1)/2 if and only if z1 = z2 = ... = zn.

LU (D ∪D)− LU (D) = log
4G+ n

2n(2n− 1)/2
− log

G

n(n− 1)/2

= log
(4G+ n)n(n− 1)/2

2nG(2n− 1)/2
= log

(4G+ n)(n− 1)

4nG− 2G

= log
4nG− 4G+ n2 − n

4nG− 2G
≥ log 1 = 0.

LU (D ∪D) = LU (D) if and only if G = n(n− 1)/2, which requires z1 = z2 = ... = zn (a trivial
case that all representations collapse to a constant point. We exclude this trivial case for consideration
in the paper, and we have −LU (D ∪ D) < −LU (D). Therefore, the baseline metric −LU cannot
satisfy the Property 3.
Then, we prove that the baseline metric −LU cannot satisfy the Property 4. Given zi =

[zi1, zi2, ..., zim]T , and zj = [zj1, zj2, ..., zjm]T , and we set ẑi = zi ⊕ zi and ẑj = zj ⊕ zj , we
have:

LU (D ⊕D) := log
1

n(n− 1)/2

n∑
i=2

i−1∑
j=1

e
−t∥ ẑi

∥ẑi∥
−

ẑj
∥ẑj∥

∥2
2 .

As ẑi = [zi1, zi2, ..., zim, zi1, zi2, ..., zim]T and ẑj = [zj1, zj2, ..., zjm, zj1, zj2, ..., zjm]T , then
∥ẑi∥ =

√
2∥zi∥, ∥ẑj∥ =

√
2∥zj∥, and ⟨ẑi, ẑj⟩ = 2⟨zi, zj⟩, we have:

∥ ẑi
∥ẑi∥

− ẑj
∥ẑj∥

∥22 = 2− 2
⟨ẑi, ẑj⟩
∥ẑi∥∥ẑj∥

= 2− 2
2⟨zi, zj⟩√

2∥zi∥
√
2∥zj∥

= ∥ zi
∥zi∥

− zj
∥zj∥

∥22.

Therefore, −LU (D ⊕ D) = −LU (D), indicating that the baseline metric −LU cannot satisfy the
Property 4.
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Finally, we prove that the baseline metric −LU cannot satisfy the Property 5. Given zi =

[zi1, zi2, ..., zim]T , and zj = [zj1, zj2, ..., zjm]T , and we set ẑi = zi ⊕ 0k and ẑj = zj ⊕ 0k, we
have:

LU (D ⊕ 0k) := log
1

n(n− 1)/2

n∑
i=2

i−1∑
j=1

e
−t∥ ẑi

∥ẑi∥
−

ẑj
∥ẑj∥

∥2
2 .

As ẑi = [zi1, zi2, ..., zim, 0, 0, ..., 0]T , and ẑj = [zj1, zj2, ..., zjm, 0, 0, ..., 0]T , then ∥ẑi∥ = ∥zi∥,
∥ẑj∥ = ∥zj∥, and ⟨ẑi, ẑj⟩ = ⟨zi, zj⟩, therefore:

∥ ẑi
∥ẑi∥

− ẑj
∥ẑj∥

∥22 = 2− 2
⟨ẑi, ẑj⟩
∥ẑi∥∥ẑj∥

= 2− 2
⟨zi, zj⟩
∥zi∥∥zj∥

= ∥ zi
∥zi∥

− zj
∥zj∥

∥22.

Therefore, −LU (D ⊕ 0k) = −LU (D), indicating that the baseline metric −LU cannot satisfy the
Property 5.

C.2 PROOF FOR −W2 ON DESIDERATA

The first two properties (Property 1 and 2) could be easily proved using the definition. We here to
examine the rest three properties one by one for the proposed uniformity metric −W2.

Proof. Firstly, we prove that our proposed metric −W2 could satisfy the Property 3. As D ∪ D =

{z1, z2, ..., zn, z1, z2, ..., zn}, then its mean vector and covariance matrix can be formulated as
follows:

µ̂ =
1

2n

n∑
i=1

2zi/∥zi∥ = µ, Σ̂ =
1

2n

n∑
i=1

2(zi/∥zi∥ − µ̂)T (zi/∥zi∥ − µ̂) = Σ.

Then we have:

W2(D ∪D) :=

√
∥µ̂∥22 + 1 + tr(Σ̂)− 2√

m
tr(Σ̂1/2) = W2(D).

Therefore, −W2(D ∪ D) = −W2(D), indicating that our proposed metric −W2 could satisfy the
Property 3.
Then, we prove that our proposed metric −W2 could satisfy the Property 4. Given zi =

[zi1, zi2, ..., zim]T , and ẑi = zi ⊕ zi = [zi1, zi2, ..., zim, zi1, zi2, ..., zim]T ∈ R2m, for the
set: D ⊕D, its mean vector and covariance matrix can be formulated as follows:

µ̂ =

(
µ/

√
2

µ/
√
2

)
, Σ̂ =

(
Σ/2 Σ/2
Σ/2 Σ/2

)
.

As Σ̂1/2 =

(
Σ1/2/2 Σ1/2/2
Σ1/2/2 Σ1/2/2

)
, tr(Σ̂) = tr(Σ) and tr(Σ̂1/2) = tr(Σ1/2), Then we have:

W2(D ⊕D) :=

√
∥µ̂∥22 + 1 + tr(Σ̂)− 2√

2m
tr(Σ̂1/2)

=

√
∥µ∥22 + 1 + tr(Σ)− 2√

2m
tr(Σ1/2)

>

√
∥µ∥22 + 1 + tr(Σ)− 2√

m
tr(Σ1/2) = W2(D).

Therefore, −W2(D ⊕D) < −W2(D), indicating that our proposed metric −W2 could satisfy the
Property 4.
Finally, we prove that our proposed metric −W2 could satisfy the Property 5. Given zi =

15



Published as a conference paper at ICLR 2024

[zi1, zi2, ..., zim]T , and ẑi = zi ⊕ 0k = [zi1, zi2, ..., zim, 0, 0, ..., 0]T ∈ Rm+k, for the set:
D ⊕ 0k, its mean vector and covariance matrix can be formulated as follows:

µ̂ =

(
µ
0k

)
, Σ̂ =

(
Σ 0m×k

0k×m 0k×k

)
.

Therefore, tr(Σ̂) = tr(Σ), and tr(Σ̂1/2) = tr(Σ1/2):

W2(D ⊕ 0k) :=

√
∥µ̂∥22 + 1 + tr(Σ̂)− 2√

m+ k
tr(Σ̂1/2)

=

√
∥µ∥22 + 1 + tr(Σ)− 2√

m+ k
tr(Σ1/2)

>

√
∥µ∥22 + 1 + tr(Σ)− 2√

m
tr(Σ1/2) = W2(D).

Therefore, −W2(D ⊕ 0k) < −W2(D), indicating that our proposed metric −W2 could satisfy the
Property 5.

D BINNING DENSITIES OF Yi AND Ŷi

We compare the distributions of Yi and Ŷi coordinately. To estimate the distributions of Yi and Ŷi,
we bin 200,000 sampled data points, aka samples, into 51 groups. Figure 7 compares the binning
densities of Yi and Ŷi when m ∈ {2, 4, 8, 16, 32, 64, 128, 256}. We can observe that two distributions
are highly overlapped when m is moderately large, e.g., m ≥ 8 or m ≥ 16.
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Figure 7: Comparing the binning densities of Yi and Ŷi with various dimensions. For 2d visualization, see
Figure 9 Appendix F.

E DISTANCES BETWEEN Yi AND Ŷi

We employ the KL Divergence and Wasserstein distance (see definition in Appendix G) to quantita-
tively measure the distribution distance between Yi and Ŷi. Specifically, we estimate the distributions
of Yi and Ŷi by bin 200,000 sampled data points, aka samples, into 51 groups. Then, we instantiate
Pr and Pg with the binning densities of Yi and Ŷi, and finally calculate DKL(Pr∥Pg) and W1(Pr,Pg)
(see definition in Appendix G) ten times and average them, as visualized in Figure 8.

F A TWO-DIMENSIONAL VISUALIZATION FOR Y AND Ŷ

By binning 2000000 data samples into 51× 51 groups in two-axis, we also analyze the joint binning
density and present 2D joint binning density of two arbitrary individual dimensions, Yi and Yj (i ̸= j)
in Figure 9(a), and Ŷi and Ŷj (i ̸= j) in Figure 9(b). Even if m is relatively small (i.e., 32), it looks
like the density of the two distributions is close.
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Figure 8: Two distances between Yi and Ŷi w.r.t various dimensions.
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(b) Density for Ŷi and Ŷj

Figure 9: Visualization of two arbitrary dimensions for Y and Ŷ when m = 32.

G THE DEFINITION OF WASSERSTEIN DISTANCE

Definition 1. Wasserstein Distance or Earth-Mover Distance with p norm is defined as below:

Wp(Pr,Pg) = ( inf
γ∈Π(Pr,Pg)

E(x,y)∼γ

[
∥x− y∥p

]
)1/p . (13)

where Π(Pr,Pg) denotes the set of all joint distributions γ(x, y) whose marginals are respectively
Pr and Pg. Intuitively, when viewing each distribution as a unit amount of earth/soil, Wasserstein
Distance or Earth-Mover Distance takes the minimum cost of transporting “mass” from x to y to
transform the distribution Pr into the distribution Pg .

H OTHER DISTRIBUTION DISTANCES OVER GAUSSIAN DISTRIBUTION

In this section, besides Wasserstein distance over Gaussian distribution, as shown in Lemma 1, we
also discuss using other distribution distances as uniformity metrics and make comparisons with
Wasserstein distance. As provided Kullback-Leibler Divergence and Bhattacharyya Distance over
Gaussian distribution in Lemma 3 and in Lemma 4, both calculations require the covariance matrix
to be a full rank matrix, making them hard to be used to conduct dimensional collapse analysis. On
the contrary, our proposed uniformity metric via Wasserstein distance is free from such requirements
on the covariance matrix, making it easier to be widely used in practical scenarios.
Lemma 3 (Kullback-Leibler divergence (Lindley & Kullback, 1959)). Suppose two random variables
Z1 ∼ N (µ1,Σ1) and Z2 ∼ N (µ2,Σ2) obey multivariate normal distributions, then Kullback-
Leibler divergence between Z1 and Z2 is:

DKL(Z1,Z2) =
1

2
((µ1 − µ2)

TΣ−1
2 (µ1 − µ2) + tr(Σ−1

2 Σ1 − I) + ln
detΣ2

detΣ1
).

Lemma 4 (Bhattacharyya Distance (Bhattacharyya, 1943)). Suppose two random variables Z1 ∼
N (µ1,Σ1) and Z2 ∼ N (µ2,Σ2) obey multivariate normal distributions, Σ = 1

2 (Σ1 +Σ2), then
bhattacharyya distance between Z1 and Z2 is:

DB(Z1,Z2) =
1

8
(µ1 − µ2)

TΣ−1(µ1 − µ2) +
1

2
ln

detΣ√
detΣ1 detΣ2

.
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I CORRELATION BETWEEN −LU AND −W2.
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Figure 10: Uniformity analysis on distribu-
tions via two metrics.

We employ synthetic experiments to study uniformity met-
rics across different distributions. In detail, we manually
sample 50000 data vectors from different distributions,
such as standard Gaussian distribution N (0, I), uniform
Distribution U(0,1), the mixture of Gaussian, etc. Based
on these data vectors, we estimate the uniformity of dif-
ferent distributions by two metrics. As shown in Fig. 10,
standard Gaussian distribution achieves the maximum val-
ues by both −W2 and −LU , which indicates that standard
Gaussian distribution could achieve larger uniformity than
other distributions. This empirical result is consistent with
the Fact 1 that standard Gaussian distribution achieves the maximum uniformity.

J EMPIRICAL COMPARISON ON INSTANCE CLONING CONSTRAINT (ICC)
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Figure 11: ICC analysis.

We randomly sample 10,000 data vectors from a stan-
dard Gaussian distribution and mask 50% of their di-
mensions with zero-vectors, forming the dataset D. To
investigate the impact of instance cloning, we create
multiple clones of the dataset, denoted as D ∪ D and
D ∪ D ∪ D, which correspond to one and two times
cloning, respectively. We evaluate two metrics on the
cloned vectors. Figure 11 shows that the value of −LU
slightly decreases as the number of clone instances in-
creases, indicating that −LU violates the equality constraint in Equation 7. In contrast, our proposed
metric −W2 remains constant, satisfying the constraint.

K EXPERIMENTS SETTING IN THE EXPERIMENTS

Setting To make a fair comparison, we conduct all experiments in Sec. 6 on a single 1080 GPU.
Also, we adopt the same network architecture for all models, i.e., ResNet-18 (He et al., 2016) as the
encoder, a three-layer MLP as the projector, and a three-layer MLP as the projector, respectively.
Besides, We use LARS optimizer (You et al., 2017) with a base learning rate 0.2, along with a cosine
decay learning rate schedule (Loshchilov & Hutter, 2017) for all models. We evaluate all models
under a linear evaluation protocol. Specifically, models are pre-trained for 500 epochs and evaluated
by adding a linear classifier and training the classifier for 100 epochs while keeping the learned
representations unchanged. We also deploy the same augmentation strategy for all models, which is
the composition of a series of data augmentation operations, such as color distortion, rotation, and
cutout. Following (da Costa et al., 2022), we set temperature t = 0.2 for all contrastive methods.
As for MoCo (He et al., 2020) and NNCLR (Dwibedi et al., 2021) that require an extra queue to
save negative samples, we set the queue size to 212. For the linear decay for weighting Wasserstein
distance, detailed parameter settings are shown in Table 3.

Table 3: Parameter setting for various models in experiments.
Models MoCo v2 BYOL BarlowTwins Zero-CL
αmax 1.0 0.2 30.0 30.0
αmin 1.0 0.2 0 30.0

L ALIGNMENT METRIC FOR SELF-SUPERVISED REPRESENTATION LEARNING

As one of the important indicators to evaluate representation capacity, the alignment metric measures
the distance among semantically similar samples in the representation space, and smaller alignment
generally brings better representation capacity. Wang et al (Wang & Isola, 2020) propose a simpler
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approach by calculating the average distance between the positive pairs as alignment, and it can be
formulated as:

A := E(za
i ,z

b
i )∼ppos

z

[∥∥∥∥ zai
∥zai ∥

− zbi
∥zbi∥

∥∥∥∥β
2

]
. (14)

where (zai , zbi ) is a positive pair as discussed in Sec 2.1. We set β = 2 in the experiments.

M CONVERGENCE ANALYSIS ON TOP-1 ACCURACY

Here we show the change of Top-1 accuracy through all the training epochs in Fig 12. During training,
we take the model checkpoint after finishing each epoch to train linear classifier, and then evaluate
the Top-1 accuracy on the unseen images of the test set (in either CIFAR-10 or CIFAR-100 ). In both
CIFAR-10 and CIFAR-100, we could obverse that imposing the proposed uniformity metric as an
auxiliary penalty loss could largely improve the Top-1 accuracy, especially in the early stage.
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(f) BarlowTwins in CIFAR-100

Figure 12: Convergence analysis on Top-1 accuracy during training.

N ANALYSIS ON UNIFORMITY AND ALIGNMENT

Here we show the change of uniformity and alignment through all the training epochs in Figure 13
and Figure 14 respectively. During training, we take the model checkpoint after finishing each epoch
to evaluate the uniformity (i.e., using the proposed metric W2 ) and alignment (Wang & Isola, 2020)
on the unseen images of the test set (in either CIFAR-10 or CIFAR-100 ). In both CIFAR-10 and
CIFAR-100, we could obverse that imposing the proposed uniformity metric as an auxiliary penalty
loss could largely improve its uniformity. Consequently, it also lightly damages the alignment (the
smaller, the better-aligned) since a better uniformity usually leads to worse alignment by definition.

O THE EXPLANATION FOR PROPERTY 5

Here we explain why the Property 5 is an inequality instead of an equality by case study. Suppose a
set of data vectors (D) defined in Sec. 3.1 is with the maximum uniformity. When more dimensions
with zero-value are inserted to D, the set of new data vectors (D ⊕ 0k) cannot achieve maximum
uniformity anymore, as they only occupy a small space on the surface of the unit hypersphere.
Therefore, the uniformity would decrease significantly with large k.

To further illustrate the inequality, we visualize sampled data vectors. In Figure 15(a), we visualize
400 data vectors (D1) sampled from N (0, I2), and they almost uniformly distribute on the S1. We
insert one dimension with zero-value to D1, and denote it as D1 ⊕ 01, as shown in Figure 15(b). In
comparison with D2 where 400 data vectors are sampled from N (0, I3), as visualized in Figure 15(c),
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(f) BarlowTwins in CIFAR-100
Figure 13: Visualization on uniformity during training
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Figure 14: Visualization of alignment during training.
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(c) Three-dimensional visualization
with no collapsed dimension

Figure 15: Case study for Property 5 and blue point are data vectors.

D1 ⊕ 01 only occupy a ring on the S2, while D2 almost uniformly distribute on the S2. Therefore,
U(D2) > U(D1 ⊕ 01). According to the Assumption 1, no matter how great/small m, the maximum
uniformity over various dimensions m should be equal, then we have U(D1) = U(D2) > U(D1⊕01).
The Property 5 should be an inequality and can be used to identify the capacity that captures sensitivity
to the dimensional collapse.
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P WHY PROPERTY 5 RELATES THE DIMENSIONAL COLLPASE
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Figure 16: Singular value spectrum of D⊕0k.

Intuitively, Increasing the value of k in Property 5 would
exacerbate the degree of dimensional collapse. To illus-
trate this, suppose a set of data vectors (D) defined in
Sec. 3.1 are sampled from an isotropic Gaussian distri-
bution, N (0, Im). These data vectors are uniformly dis-
tributed on the unit hypersphere, resulting in a collapse
degree of 0%. However, when inserting m dimension
zero-value vectors to D, denoted as D ⊕ 0m, half of the
dimensions become collapsed. As a result, the collapse
degree increases to 50%. Figure 16 visualizes such col-
lapse of D ⊕ 0k by the singular value spectrum of the
representations. We can observe that a larger k would lead to a more serious dimensional collapse.

In summary, Property 5 is closely related to the dimensional collapse.

Q EXCESSIVELY LARGE MEAN CAUSE COLLAPSED REPRESENTATION
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Figure 17: Visualization ℓ2 normalized Gaussian distribution

We assume X follows a Gaussian distribution, X ∼ N (0, I2). By adding an additional vector to
change its mean, we obtain Y, where Y = X+ kI and Y ∼ N (k, I2). I is a vector of all ones, and
k is a constant. We vary k from 0 to 32 and visualize ℓ2-normalized Y in Figure 17. It is evident
that an excessively large mean will cause representations to collapse to a single point even if the
covariance matrix is an identity matrix.
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