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ABSTRACT

The transformer architecture and variants presented a remarkable success across
many machine learning tasks in recent years. This success is intrinsically re-
lated to the capability of handling long sequences and the presence of context-
dependent weights from the attention mechanism. We argue that these capabilities
suit the central role of a Meta-Reinforcement Learning algorithm. Indeed, a meta-
RL agent needs to infer the task from a sequence of trajectories. Furthermore, it
requires a fast adaptation strategy to adapt its policy for a new task - which can
be achieved using the self-attention mechanism. In this work, we present TrMRL
(Transformers for Meta-Reinforcement Learning), a meta-RL agent that mim-
ics the memory reinstatement mechanism using the transformer architecture. It
associates the recent past of working memories to build an episodic memory re-
cursively through the transformer layers. This memory works as a proxy to the
current task, and we condition a policy head on it. We conducted experiments
in high-dimensional continuous control environments for locomotion and dexter-
ous manipulation. Results show that TrMRL achieves or surpasses state-of-the-art
performance, sample efficiency, and out-of-distribution generalization in these en-
vironments.

1 INTRODUCTION

In recent years, the Transformer architecture (Vaswani et al., 2017) achieved exceptional perfor-
mance on many machine learning applications, especially for text (Devlin et al., 2019; Raffel et al.,
2020) and image processing (Dosovitskiy et al., 2021b; Caron et al., 2021; Yuan et al., 2021). This
intrinsically relates to its few-shot learning nature Brown et al. (2020a): the attention weights work
as context-dependent parameters, inducing better generalization. Furthermore, this architecture par-
allelizes token processing by design. This capability avoids the vanishing gradients problem, very
common for recurrent models. As a result, they can handle longer sequences more efficiently.

This work argues that these two capabilities are essential for a Meta-Reinforcement Learning (meta-
RL) agent. We propose TrMRL (Transformers for Meta-Reinforcement Learning), a memory-
based meta-Reinforcement Learner which uses the transformer architecture to formulate the learning
process. It works as a memory reinstatement mechanism (Rovee-Collier, 2012) during learning,
associating recent working memories to create an episodic memory which is used to contextualize
the policy.

Figure 1 illustrates the process. We formulated each task as a distribution over working memories.
TrMRL associates these memories using self-attention blocks to create a task representation in each
head. These task representations are combined in the position-wise MLP to create an episodic
output (which we identify as episodic memory). We recursively apply this procedure through layers
to refine the episodic memory. In the end, we select the memory associated with the current timestep
and feed it into the policy head.

Nonetheless, transformer optimization is often unstable, especially in the RL setting. Past attempts
either fail to stabilize (Mishra et al., 2018) or required architectural additions (Parisotto et al., 2019)
or restrictions on the observations space (Loynd et al., 2020). We argue that this challenge can
be mitigated through a proper weight initialization scheme. For this matter, we applied T-Fixup
initialization (Huang et al., 2020).
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Figure 1: Illustration of the TrMRL agent. At each timestep, it associates the recent past of working
memories to build an episodic memory through transformer layers recursively. We argue that the
self-attention works as a fast adaptation strategy since it provides context-dependent parameters.

We conducted a series of experiments to evaluate meta-training, fast adaptation, and out-of-
distribution generalization in continuous control environments for locomotion and robotic manip-
ulation. Results show that TrMRL consistently achieves or surpasses the current state-of-the-art
meta-RL agents in performance and sample efficiency. It presents online adaptation, requiring as
few as 20 timesteps to identify and achieve the desired performance on test tasks. We also con-
ducted an ablation study to show the effectiveness of the T-Fixup initialization, and the sensibility
to network depth, sequence size, and the number of attention heads.

2 RELATED WORK

Meta-Learning is an established Machine Learning (ML) principle to learn inductive biases from
the distribution of tasks to produce a data-efficient learning system (Bengio et al., 1991; Schmidhu-
ber et al., 1996; Thrun & Pratt, 1998). This principle spanned in a variety of methods in recent years,
learning different components of an ML system, such as the optimizer (Andrychowicz et al., 2016;
Li & Malik, 2016; Chen et al., 2017), neural architectures (Hutter et al., 2019; Zoph & Le, 2017),
metric spaces (Vinyals et al., 2016), weight initializations (Finn et al., 2017; Nichol et al., 2018;
Finn et al., 2018), and conditional distributions (Zintgraf et al., 2019; Melo et al., 2019). Another
branch of methods learns the entire system using memory-based architectures (Ortega et al., 2019;
Wang et al., 2017; Duan et al., 2016; Ritter et al., 2018a) or generating update rules by discovery
(Oh et al., 2020) or evolution (Co-Reyes et al., 2021).

Memory-Based Meta-Learning is the particular class of methods where we focus on in this work.
In this context, Wang et al. (2017); Duan et al. (2016) concurrently proposed the RL2 framework,
which formulates the learning process as a Recurrent Neural Network (RNN) where the hidden state
works as the memory mechanism. Given the recent rise of attention-based architectures, one natural
idea is to use it as a replacement for RNNs. Mishra et al. (2018) proposed an architecture composed
of causal convolutions (to aggregate information from past experience) and soft-attention (to pin-
point specific pieces of information). In contrast, our work applies causal, multi-head self-attention
by stabilizing the complete transformer architecture with an arbitrarily large context window. Fi-
nally, Ritter et al. (2021) also applied multi-head self-attention for rapid task solving for RL envi-
ronments. However, in a different dynamic: their work applied the attention mechanism iteratively
in a pre-defined episodic memory, while ours applies it recursively through transformer layers to
build an episodic memory from the association of recent working memories.

Our work has intersections with Cognitive Neuroscience research on memory for learning systems
(Hoskin et al., 2018; Rovee-Collier, 2012; Wang et al., 2018). In this context, Ritter et al. (2018c)
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extended the RL2 framework incorporating a differentiable neural dictionary as the inductive bias
for episodic memory recall. In the same line, Ritter et al. (2018b) also extended RL2 but integrating
a different episodic memory system inspired by the reinstatement mechanism. In our work, we also
mimic reinstatement to retrieve episodic memories from working memories but using self-attention.
Lastly, Fortunato et al. (2019) studied the association between working and episodic memories for
RL agents, specifically for memory tasks, proposing separated inductive biases for these memories
based on LSTMs and auxiliary unsupervised losses. In contrast, our work studies this association for
the Meta-RL problem, using memory as a task proxy implemented by the transformer architecture.

Meta-Reinforcement Learning is a branch of Meta-Learning for RL agents. Some of the algo-
rithms described in past paragraphs extend to the Meta-RL setting by design (Finn et al., 2017;
Mishra et al., 2018; Wang et al., 2017; Duan et al., 2016). Others were explicitly designed for RL
and often aimed to create a task representation to condition the policy. PEARL (Rakelly et al., 2019)
is an off-policy method that learns a latent representation of the task and explores via posterior sam-
pling. MAESN (Gupta et al., 2018) also creates task variables but optimizes them with on-policy
gradient descent and explores by sampling from the prior. MQL (Fakoor et al., 2020) is also an
off-policy method, but it uses a deterministic context that is not permutation invariant implemented
by an RNN. Lastly, VariBAD Zintgraf et al. (2020) formulates the problem as a Bayes-Adaptive
MDP and extends the RL2 framework by incorporating a stochastic latent representation of the task
trained with a VAE objective. Our work contrasts all the previous methods in this task representa-
tion: we condition the policy in the episodic memory generated by the transformer architecture from
the association of past working memories. We show that this episodic memory works as a proxy to
the task representation.

Transformers for RL. The application of the transformer architecture in the RL setting is still an
open challenge. Mishra et al. (2018) tried to apply this architecture for simple bandit tasks and
tabular MDPs and reported unstable train and random performance. Parisotto et al. (2019) then pro-
posed some architectural changes in the vanilla transformer, reordering layer normalization modules
and replacing residual connections with expressing gating mechanisms, improving state-of-the-art
performance for a set of memory environments. Loynd et al. (2020) also studied how transformer-
based models can improve the performance of sequential decision-making agents. It stabilized the
architecture using factored observations and an intense hyperparameter tuning procedure, resulting
in improved sample efficiency. In contrast to these methods, our work stabilizes the transformer
model by improving optimization through a better weight initialization. In this way, we could use
the vanilla transformer without architectural additions or imposing restrictions on the observations.

Finally, recent work studied how to replace RL algorithms with transformer-based language models
(Janner et al., 2021; Chen et al., 2021). Using a supervised prediction loss in the offline RL setting,
they modeled the agent as a sequence problem. Our work, on the other hand, considers the standard
RL formulation in the meta-RL setting.

3 PRELIMINARIES

We define a Markov decision process (MDP) by a tuple M = (S,A,P,R,P0, γ,H), where S
is a state space, A is an action space, P : S × A × S → [0,∞) is a transition dynamics, R :
S × A → [−Rmax, Rmax] is a bounded reward function, P0 : S → [0,∞) is an initial state
distribution, γ ∈ [0, 1] is a discount factor, and H is the horizon. The standard RL objective is
to maximize the cumulative reward, i.e., maxE[

∑T
t=0 γ

tR(st, at)], with at ∼ πθ(at | st) and
st ∼ P(st | st−1, at−1), where πθ : S ×A → [0,∞) is a policy parameterized by θ.

3.1 PROBLEM SETUP: META-REINFORCEMENT LEARNING

In the meta-RL setting, we define p(M) : M → [0,∞) a distribution over a set of MDPs
M. During meta-training, we sample Mi ∼ p(M) from this distribution, where Mi =
(S,A,Pi,Ri,P0,i, γ,H). Therefore, the tasks1 share a similar structure in this setting, but re-
ward function and transition dynamics vary. The goal is to learn a policy that, during meta-testing,
can adapt to a new task sampled from the same distribution p(M). In this context, adaptation means

1We use the terms task and MDP interchangeably.
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maximizing the reward under the task in the most efficient way. To achieve this, the meta-RL agent
should learn the prior knowledge shared across the distribution of tasks. Simultaneously, it should
learn how to differentiate and identify these tasks using only a few episodes.

3.2 TRANSFORMER ARCHITECTURE

The transformer architecture (Vaswani et al., 2017) was first proposed as an encoder-decoder ar-
chitecture for neural machine translation. Since then, many variants have emerged, proposing sim-
plifications or architectural changes across many ML problems (Dosovitskiy et al., 2021a; Brown
et al., 2020b; Parisotto et al., 2019). Here, we describe the encoder architecture as it composes our
memory-based meta-learner.

The transformer encoder is a stack of multiple equivalent layers. There are two main components
in each layer: a multi-head self-attention block, followed by a position-wise feed-forward network.
Each component contains a residual connection (He et al., 2015) around them, followed by layer
normalization (Ba et al., 2016). The multi-head self-attention (MHSA) block computes the self-
attention operation across many different heads, whose outputs are concatenated to serve as input to
a linear projection module, as in Equation 1:

MHSA(K,Q, V ) = Concat(h1, h2, . . . , hω)Wo,

hi = softmax(
QKT

√
d
·M)V, (1)

where K,Q, V are the keys, queries, and values for the sequence input, respectively. Additionally,
d represents the dimension size of keys and queries representation and ω the number of attention
heads. M represents the attention masking operation. Wo represents a linear projection operation.

The position-wise feed-forward block is a 2-layer dense network with a ReLU activation between
these layers. All positions in the sequence input share the parameters of this network, equivalently
to a 1× 1 temporal convolution over every step in the sequence. Finally, we describe the positional
encoding. It injects the relative position information among the elements in the sequence input since
the transformer architecture fully parallelizes the input processing. The standard positional encoding
is a sinusoidal function added to the sequence input (Vaswani et al., 2017).

3.3 T-FIXUP INITIALIZATION

The training of transformer models is notoriously difficult, especially in the RL setting (Parisotto
et al., 2019). Indeed, gradient optimization with attention layers often requires complex learning
rate warmup schedules to prevent divergence (Huang et al., 2020). Recent work suggests two main
reasons for this requirement. First, the Adam optimizer (Kingma & Ba, 2017) presents high vari-
ance in the inverse second moment for initial updates, proportional to a divergent integral (Liu et al.,
2020). It leads to problematic updates and significantly affects optimization. Second, the backprop-
agation through layer normalization can also destabilize optimization because the associated error
depends on the magnitude of the input (Xiong et al., 2020).

Given these challenges, Huang et al. (2020) proposed a weight initialization scheme (T-Fixup) to
eliminate the need for learning rate warmup and layer normalization. This is particularly important
to the RL setting once current RL algorithms are very sensitive to the learning rate for learning and
exploration.

T-Fixup appropriately bounds the original Adam update to make variance finite and reduce instabil-
ity, regardless of model depth. We refer to Huang et al. (2020) for the mathematical derivation. We
apply the T-Fixup for the transformer encoder as follows:

• Apply Xavier initialization (Glorot & Bengio, 2010) for all parameters excluding input
embeddings. Use Gaussian initialization N (0, d−

1
2 ), for input embeddings, where d is the

embedding dimension;
• Scale the linear projection matrices in each encoder attention block and position-wise feed-

forward block by 0.67N−
1
4 .
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4 TRANSFORMERS ARE META-REINFORCEMENT LEARNERS

In this work, we argue that two critical capabilities of transformers compose the central role of a
Meta-Reinforcement Learner. First, transformers can handle long sequences and reason over long-
term dependencies, which is essential to the meta-RL agent to identify the MDP from a sequence
of trajectories. Second, transformers present context-dependent weights from self-attention. This
mechanism serves as a fast adaptation strategy and provides necessary adaptability to the meta-RL
agent for new tasks.

4.1 TASK REPRESENTATION

Figure 2: The illustration of two tasks (T1
and T2) as distributions over working memo-
ries. The intersection of both densities repre-
sents the ambiguity between T1 and T2.

We represent a working memory at the timestep t
as a parameterized function φt(st,at, rt, ηt), where
st is the MDP state, at ∼ π(at | st) is an action,
rt ∼ R(st,at) is the reward, and ηt is a boolean
flag to identify whether this is a terminal state. Our
first hypothesis is that we can define a task T as a
distribution over working memories, as in Equation
2:

T (φ) : Φ→ [0,∞), (2)

where Φ is the working memory embedding space.
In this context, one goal of a meta-RL agent is to
learn φ to make a distinction among the tasks in the
embedding space Φ. Furthermore, the learned em-
bedding space should also approximate the distribu-
tions of similar tasks so that they can share knowledge. Figure 2 illustrates this concept for a one-
dimensional representation.

We aim to find a representation for the task given its distribution to contextualize our policy. In-
tuitively, we can represent each task as a linear combination of working memories sampled by the
policy interacting with it:

µT =

N∑
t=0

αt · W(φt(st,at, rt, ηt)),

with
N∑
t=0

αt = 1 (3)

where N represents the length of a segment of sampled trajectories during the policy and task inter-
action. W represents an arbitrary linear transformation. Furthermore, αt is a coefficient to compute
how relevant a particular working memory t is to the task representation, given the set of sampled
working memories. Next, we show how the self-attention computes these coefficients, which we use
to output an episodic memory from the transformer architecture.

4.2 SELF-ATTENTION AS A FAST ADAPTATION STRATEGY

In this work, our central argument is that self-attention works as a fast adaptation strategy. The
context-dependent weights dynamically compute the working memories coefficients to implement
Equation 3. We now derive how we compute these coefficients. Figure 3 illustrates this mechanism.

Let us define φkt , φqt , and φvt as a representation2 of the working memory at timestep t in the keys,
queries, and values spaces, respectively. The dimension of the queries and keys spaces is d. We aim
to compute the attention operation in Equation 1 for a sequence of T timesteps, resulting in Equation
4:

2we slightly abuse the notation by omitting the function arguments – st, at, rt, and ηt – for the sake of
conciseness.
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Figure 3: Illustration of causal self-attention as a fast adaptation strategy. In this simplified scenario
(2 working memories), the attention weights αi,j drives the association between the current work-
ing memory and the past ones to compute a task representation µt. Self-attention computes this
association by relative similarity.

softmax(
QKT

√
d
·M)V =

1√
d

α1,1 α1,2 . . .
...

. . .
αT,1 αT,T


φ

v
1
...
φvT

 =

µ1

...
µT

 ,
where

{
αi,j =

exp 〈φq
i ,φ

k
j 〉∑i

n=1 exp 〈φq
1,φ

k
n〉

if i ≤ j
0 otherwise.

(4)

where 〈ai, bj〉 =
∑d
n=0 ai,n · bj,n is the dot product between the working memories ai and bj .

Therefore, for a particular timestep t, the self-attention output is:

µt =
1√
d
· φ

v
1 · exp 〈φqt , φk1〉+ · · ·+ φvt · exp 〈φqt , φkt 〉∑i

n=1 exp 〈φq1, φkn〉

=
1√
d

t∑
n=1

αt,nWv(φt). (5)

Equation 5 shows that the self-attention mechanism implements the task representation in Equation
3 by associating past working memories given that the current one is φt. It computes this association
with relative similarity through the dot product normalized by the softmax operation. This induc-
tive bias helps the working memory representation learning to approximate the density of the task
distribution T (φ).

4.3 TRANSFORMERS AND MEMORY REINSTATEMENT

We now argue that the transformer model implements a memory reinstatement mechanism for
episodic memory retrieval. An episodic memory system is a long-lasting memory that allows an
agent to recall and re-experience personal events (Tulving, 2002). It complements the working
memory system, which is active and relevant for short periods (Baddeley, 2010) and works as a
buffer for episodic memory retrieval (Zilli & Hasselmo, 2008). Adopting this memory interaction
model, we model an episodic memory as a transformation over a collection of past memories. More
concretely, we consider that a transformer layer implements this transformation:

elt = f(el−10 , . . . , el−1t ), (6)

where elt represents the episodic memory retrieved from the last layer l for the timestamp t and f
represents the transformer layer. Equation 6 provides a recursive definition, and e0t (the base case)
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corresponds to the working memories φt In this way, the transformer architecture recursively refines
the episodic memory interacting memories retrieved from the past layer. We show the pseudocode
for this process in Algorithm 1. This refinement is guaranteed by a crucial property of the self-
attention mechanism: it computes a consensus representation across the input memories associated
to the sub-trajectory, as stated by Theorem 1 (Proof in Appendix E). Here, we define consensus
representation as the memory representation that is closest on average to all likely representations
(Kumar & Byrne, 2004), i.e., minimizes the Bayes risk considering the set of episodic memories.
Theorem 1. Let Sl = (el0, . . . , e

l
N ) ∼ p(e|Sl,θl) be a set of normalized episodic memory rep-

resentations sampled from the posterior distribution p(e|Sl,θl) induced by the transformer layer
l, parameterized by θl. Let K, Q, V be the Key, Query, and Value vector spaces in the self-
attention mechanism. Then, the self-attention in the layer l+1 computes a consensus representation

el+1
N =

∑N
t=1 e

l,V
t ·exp 〈el,Qt ,el,Ki 〉∑N

t=1 exp 〈el,Qt ,el,Ki 〉
whose associated Bayes risk (in terms of negative cosine similar-

ity) lower bounds the Minimum Bayes Risk (MBR) predicted from the set of candidate samples Sl
projected onto the V space.

Lastly, we condition the policy head in the episodic memory from the current timestep to sample an
action. This complete process resembles a memory reinstatement operation: a reminder procedure
that reintroduces past elements in advance of a long-term retention test (Rovee-Collier, 2012). In our
context, this “long-term retention test” identifies the task and acts accordingly to maximize rewards.

5 EXPERIMENTS AND ANALYSIS

In this section, we present an empirical validation of our method, comparing it with the current
state-of-the-art methods. We considered high-dimensional, continuous control tasks for locomo-
tion (MuJoCo3) and dexterous manipulation (MetaWorld). We describe them in Appendix A. For
reproducibility (source code and hyperparameters), we refer to the released source code4.

5.1 EXPERIMENTAL SETUP

Meta-Training. During meta-training, we repeatedly sampled a batch of tasks to collect experience
with the goal of learning to learn. For each task, we ran a sequence of E episodes. During the inter-
action, the agent conducted exploration with a gaussian policy. During optimization, we concatenate
these episodes to form a single trajectory and we maximize the discounted cumulative reward of this
trajectory. This is equivalent to the training setup for other on-policy meta-RL algorithms (Duan
et al., 2016; Zintgraf et al., 2020). For these experiments, we considered E = 2. We performed
this training via Proximal Policy Optimization (PPO) (Schulman et al., 2017), and the data batches
mixed different tasks. Therefore, we present here an on-policy version of the TrMRL algorithm. To
stabilize transformer training, we used the T-Fixup as a weight initialization scheme.

Meta-Testing. During meta-testing, we sampled new tasks. These are different from the tasks in
meta-training, but they come from the same distribution, except during Out-of-Distribution (OOD)
evaluation. For TrMRL, in this stage, we froze all network parameters. For each task, we ran few
episodes, performing the adaptation strategy. The goal is to identify the current MDP and maximize
the cumulative reward across the episodes.

Memory Write Logic. At each timestep, we fed the network with the sequence of working memo-
ries. This process works as follows: at the beginning of an episode (when the memory sequence is
empty), we start writing the first positions of the sequence until we fill all the slots. Then, for each
new memory, we removed the oldest memory in the sequence (in the “back” of this “queue”) and
added the most recent one (in the “front”).

Comparison Methods. For comparison, we evaluated three different state-of-the-art meta-RL al-
gorithms: RL2 Duan et al. (2016), optimized using PPO Schulman et al. (2017); PEARL (Rakelly
et al., 2019); and MAML (Finn et al., 2017), whose outer-loop used TRPO (Schulman et al., 2015).

3We highlight that both MuJoCo (Locomotion Tasks) and MetaWorld are built on the MuJoCo physics
engine. We identify the set of locomotion tasks as solely for “MuJoCo” to ensure simpler and concise writing
during analysis of the results.

4Omitted due to double-blind review. See supplementary material.
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Figure 4: Meta-Training results for MetaWorld benchmarks. The plots on top represents perfor-
mance on training tasks, while the plots on bottom represents in the test tasks.

5.2 RESULTS AND ANALYSIS

We compared TrMRL with baseline methods in terms of meta-training, episode adaptation, and
OOD performance. We also present the latent visualization for TrMRL working memories and
ablation studies. All the curves presented are averaged across three random seeds, with 95% boot-
strapped confidence intervals.

Meta-Training Evaluation. Figure 4 shows the meta-training results for all the methods in the
MetaWorld environments. All subplots show the task success rate over the training timesteps. The
plots on top represent performance on training tasks, while the plots on the bottom represent on
the test tasks. TrMRL outperformed all baseline methods. In the “Reach-v2”, TrMRL, RL2, and
MAML reached the perfect success rate, but TrMRL was more sample efficient. For more complex
scenarios, such as “Push-v2” and ML45, TrMRL still performs consistently better. Nevertheless, we
also present that all the presented methods performed poorly on ML45 for test tasks, highlighting a
big improvement room. We hypothesize that this is due to the lack of a meta-exploration strategy
and an inductive bias to improve knowledge share among different tasks. For MuJoCo locomotion
tasks, we refer to Appendix B.

Figure 5: TrMRL’s adaptation for HalfChee-
tahVel environment.

Fast Adaptation Evaluation. A critical skill for
meta-RL agents is the capability of adapting to new
tasks given a few episodes. We evaluate this by run-
ning meta-testing on 20 test tasks over 6 sequen-
tial episodes. Each agent runs its adaptation strat-
egy to identify the task and maximize the reward
across episodes. Figure 6 presents the results for the
locomotion tasks. For AntDir and HalfCheetaVel,
TrMRL outperformed all methods. For HalfChee-
tahDir, TrMRL started with better performance, but
PEARL outperformed after running its adaptation.

We highlight that TrMRL presented high perfor-
mance since the first episode. In fact, it only requires
a few timesteps to achieve high performance in test
tasks. In the HalfCheetahVel, for example, it only
requires around 20 timesteps to achieve the best per-
formance (Figure 5). Therefore, it presents a nice
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Figure 6: Fast adaptation results on MuJoCo locomotion tasks. Each curve represents the average
performance over 20 test tasks. TrMRL presented high performance since the first episode due to
the online adaptation nature from attention weights.

property for online adaptation. This is because the
self-attention mechanism is lightweight and only re-
quires a few working memories to achieve good performance. Hence, we can run it efficiently at
each timestep. Other methods, such as PEARL and MAML, do not present such property, and they
need a few episodes before executing adaptation efficiently.
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Figure 7: OOD Evaluation in HalfChee-
tahVel environment.

OOD Evaluation. Another critical scenario is how the
fast adaptation strategies perform for out-of-distribution
tasks. For this case, we change the HalfCheetahVel en-
vironment to sample OOD tasks during the meta-test. In
the standard setting, both training and testing target ve-
locities are sampled from a uniform distribution in the in-
terval [0.0, 3.0]. In the OOD setting, we sampled 20 tasks
in the interval [3.0, 4.0] and assessed adaptation through-
out the episodes. Figure 7 presents the results. TrMRL
surpasses all the baselines methods with a good margin,
suggesting that the context-dependent weights learned a
robust adaptation strategy, while other methods memo-
rized some aspects of the standard distribution of tasks.
We especially highlight PEARL, which achieved the best
performance among the methods but performed poorly in
this setting, suggesting that it does not generate useful la-
tent representations for OOD tasks.

6 CONCLUSION AND FUTURE WORK

In this work, we presented TrMRL, a memory-based
meta-RL algorithm built upon a transformer, where the
multi-head self-attention mechanism works as a fast adaptation strategy. We designed this network
to resemble a memory reinstatement mechanism, associating past working memories to dynamically
represent a task and recursively build an episode memory through layers.

TrMRL demonstrated a valuable capability of learning from reward signals. On the other side, recent
Language Models presented substantial improvements by designing self-supervised tasks (Devlin
et al., 2019; Raffel et al., 2020) or even automating their generation (Shin et al., 2020). As future
work, we aim to investigate how to enable these forms of self-supervision to leverage off-policy data
collected during the training and further improve sample efficiency in transformers for the meta-RL
scenario.
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7 REPRODUCIBILITY STATEMENT

Code Release. To ensure the reproducibility of our research, we released all the source code as-
sociated with our models and experimental pipeline. We refer to the supplementary material of
this submission. It also includes the hyperparameters and the scripts to execute all the scenarios
presented in this paper.

Baselines Reproducibility. We strictly reproduced the results from prior work implementations for
baselines, and we provide their open-source repositories for reference.

Proof of Theoretical Results and Pseudocode. We provide a detailed proof of Theorem 1 in
Appendix E, containing all assumptions considered. We also provide pseudocode from TrMRL’s
agent to improve clarity on the proposed method.

Availability of all simulation environments. All environments used in this work are freely avail-
able and open-source.
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A METAL-RL ENVIRONMENTS DESCRIPTION

In this Appendix, we detail the environments considered in this work.

A.1 MUJOCO – LOCOMOTION TASKS

This benchmark is a set of locomotion tasks on the MuJoCo (Todorov et al., 2012) environment.
It comprises different bodies, and each environment provides different tasks with different learning
goals. These locomotion tasks are previously introduced by Finn et al. (2017) and Rothfuss et al.
(2018). We considered 3 different environments.

• AntDir: This environment has an ant body, and the goal is to move forward or backward.
Hence, it presents these 2 tasks.

• HalfCheetahDir: This environment has a half cheetah body, and the goal is to move for-
ward or backward. Hence, it presents these 2 tasks.

• HalfCheetalVel: This environment also has a half cheetah body, and the goal is to achieve
a target velocity running forward. This target velocity comes from a continuous uniform
distribution.

These locomotion task families require adaptation across reward functions.

A.2 METAWORLD

The MetaWorld (Yu et al., 2021) benchmark contains a diverse set of manipulation tasks designed
for multi-task RL and meta-RL settings. MetaWorld presents a variety of evaluation modes. Here,
we describe the two modes used in this work. For more detailed description of the benchmark, we
refer to Yu et al. (2021).

• ML1: This scenario considers a single robotic manipulation task but varies the goal. The
meta-training “tasks” corresponds to 50 random initial object and goal positions, and meta-
testing on 50 heldout positions.

• ML45: With the objective of testing generalization to new manipulation tasks, the bench-
mark provides 45 training tasks and holds out 5 meta-testing tasks.

These robotic manipulation task families require adaptation across reward functions and dynamics.
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B MUJOCO: META-TRAINING EVALUATION

In this Appendix, we supplement the meta-training evaluation with the results on MuJoCo locomo-
tion tasks. Figure 8 shows the average return over train tasks (on top) and test tasks (on bottom)
for AntDir, HalfCheetahVel, and HalfCheetahDir, respectively. While PEARL failed to explore and
learn in robotic manipulation tasks, it presented better results on locomotion tasks, especially in
sample efficiency. This is because of its off-policy nature: it efficiently reuses trajectories sampled
from previous policy versions, reducing the number of training steps needed. TrMRL achieved the
same test task performance in AntDir and HalfCheetahVel as PEARL, also keeping the metric stable
over the training. When comparing with other on-policy methods, TrMRL significantly improved
performance and sample efficiency.
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Figure 8: Meta-Training results for MuJoCo locomotion benchmarks. The plots on top represent
performance on training tasks, while the plots on bottom represent the test tasks.
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C WORKING MEMORIES LATENT VISUALIZATION

Figure 9 presents a 3-D view of the working memories from the HalfCheetahVel environment. We
sampled some tasks (target velocities) and collected working memories during the meta-test setting.
We observe that this embedding space learns a representation of each MDP as a distribution over
the working memories, as suggested in Section 4. In this visualization, we can draw planes that
approximately distinguish these tasks. Working memories that cross this boundary represent the
ambiguity between two tasks. Furthermore, this representation also learns the similarity of tasks:
for example, the cluster of working memories for target velocity v = 1.0 is between the clusters for
v = 0.5 and v = 1.5. This property induces knowledge sharing among all the tasks, which suggests
the sample efficiency behind TrMRL meta-training.

Figure 9: 3-D Latent visualization of the working memories for the HalfCheetahVel environment.
We plotted the 3 most relevant components from PCA. TrMRL learns a representation of each MDP
as a distribution over the working memories. This representation distinguishes the tasks and approx-
imates similar tasks, which helps knowledge sharing among them.
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D ABLATION STUDY

In this section, we present an ablation study regarding the main components of TrMRL to iden-
tify how they affect the performance of the learned agents. For all the scenarios, we considered
one environment for each benchmark to represent both locomotion (HalfCheetahVel) and dexterous
manipulation (MetaWorld-ML1-Reach-v2). We evaluated the meta-training phase so that we could
analyze both sample efficiency and asymptotic performance.

D.1 T-FIXUP

In this work, we employed T-Fixup to address the instability from the early stages of transformer
training, given the reasons described in Section 3.3. In RL, the early stages of training are also the
moment when the learning policies are more exploratory to cover the state and action spaces better
and discover rewards, preventing the convergence to sub-optimal policies. Hence, it is crucial for
RL that the transformer policy learns appropriately since the beginning to drive exploration.

This section evaluated how T-Fixup becomes essential for environments where the learned behav-
iors must guide exploration to prevent poor policies. For this, we present T-Fixup ablation (Figure
10) for two settings: MetaWorld-ML1-Reach-v2 and HalfCheetahVel. For the reach environment,
we compute the reward distribution using the distance between the gripper and the target location.
Hence, it is always a dense and informative signal: even a random policy can easily explore the
environment, and T-Fixup does not interfere with the learning curve. On the other side, HalfChee-
tahVel requires a functional locomotion gate to drive exploration; otherwise, it can get stuck with
low rewards (e.g., cheetah is exploring while fallen). In this scenario, T-Fixup becomes crucial to
prevent unstable learning updates that could collapse the learning policy to poor behaviors.
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D.2 WORKING MEMORY SEQUENCE LENGTH

A meta-RL agent requires a sequence of interactions to identify the running task and act accordingly.
The length of this sequence N should be large enough to address the ambiguity associated with the
set of tasks, but not too long to make the transformer optimization harder and less sample efficient.
In this ablation, we study two environments that present different levels of ambiguity and show that
they also require different lengths to achieve optimal sample efficiency.

We first analyze MetaWorld-ML1-Reach-v2. The environment defines each target location in the
3D space as a task. The associated reward is the distance between the gripper and this target. Hence,
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at each timestep, the reward is ambiguous for all the tasks located on the sphere’s surface with the
center in the gripper position. This suggests that the agent will benefit from long sequences. Figure
11 (left) confirms this hypothesis, as the sample efficiency improves until sequences with several
timesteps (N = 50).

The HalfCheetahVel environment defines each forward velocity as a different task. The associated
reward depends on the difference between the current cheetah velocity and this target. Hence, at
each timestep, the emitted reward is ambiguous only for two possible tasks. To identify the current
task, the agent needs to estimate its velocity (which requires a few timesteps) and then disambiguate
between these two tasks. This suggests that the agent will not benefit from very long sequences.
Figure 11 (right) confirms this hypothesis: there is an improvement from N = 1 to N = 5, but the
performance decreases for longer sequences as the training becomes harder.
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Figure 11: Ablation results for the working memory sequence length.

D.3 NUMBER OF LAYERS

Another important component is the network depth. In Section 4, we hypothesized that more layers
would help to recursively build a more meaningful version of the episodic memory since we interact
with output memories from the past layer and mitigates the bias effect from the task representations.
Figure 12 shows how TrMRL behaves according to the number of layers. We observe a similar
pattern to the previous ablation case. For Reach-v2, more layers improved the performance by
reducing the effect of ambiguity and biased task representations. For HalfCheetaVel, we can see
an improvement from a single layer to 4 or 8 layers, but for 12 layers, sample efficiency starts to
decrease. On the other hand, we highlight that even for a deep network with 12 layers, we have a
stable optimization procedure, showing the effectiveness of the T-Fixup initialization.

D.4 NUMBER OF ATTENTION HEADS

The last ablation case relates to the number of attention heads in each MHSA block. We hypoth-
esized that multiples heads would diversify working memory representation and improve network
expressivity. Nevertheless, Figure 13 shows that more heads slightly increased the performance in
HalfCheetahVel and did not interfere in Reach-v2 significantly.
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Figure 12: Ablation study for the number of transformer layers.
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Figure 13: Ablation study for the number of attention heads.
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E PROOF OF THEOREM 1

Theorem 1. Let Sl = (el0, . . . , e
l
N ) ∼ p(e|Sl,θl) be a set of normalized episodic memory rep-

resentations sampled from the posterior distribution p(e|Sl,θl) induced by the transformer layer
l, parameterized by θl. Let K, Q, V be the Key, Query, and Value vector spaces in the self-
attention mechanism. Then, the self-attention in the layer l+1 computes a consensus representation

el+1
N =

∑N
t=1 e

l,V
t ·exp 〈el,Qt ,el,Ki 〉∑N

t=1 exp 〈el,Qt ,el,Ki 〉
whose associated Bayes risk (in terms of negative cosine similar-

ity) lower bounds the Minimum Bayes Risk (MBR) predicted from the set of candidate samples Sl
projected onto the V space.

Proof. Let us define SlV as the set containing the projection of the elements in Sl onto the V space:
SlV = (el,V0 , . . . , el,VN ), where el,V = WV · el (WV is the projection matrix). The Bayes risk of
selecting êl,V as representation, BR(êl,V ), under a loss function L, is defined by:

BR(êl,V ) = Ep(e|Sl
V ,θl)

[L(e, ê)] (7)

The MBR predictor selects the episodic memory êl,V ∈ SlV that minimizes the Bayes Risk among
the set of candidates: el,VMBR = arg minê∈Sl

V
BR(ê). Employing negative cosine similarity as loss

function, we can represent MBR prediction as:

el,VMBR = arg max
ê∈Sl

V

Ep(e|Sl
V ,θl)

[〈e, ê〉] (8)

The memory representation outputted from a self-attention operation in layer l + 1 is given by:

el+1
N =

∑N
t=1 e

l,V
t · exp 〈el,Qt , el,Ki 〉∑N

t=1 exp 〈el,Qt , el,Ki 〉
=

N∑
t=1

αN,t · el,Vt (9)

The attention weights αN,t define a probability distribution over the samples in SlV , which approxi-
mates the posterior distribution p(e|SlV ,θl). Hence, we can represent Equation 9 as an expectation:
el+1
N = Ep(e|Sl

V ,θl)
[e]. Finally, we compute the Bayer risk for it:

BR(el+1
N ) = Ep(e|Sl

V ,θl)
[〈e, êl+1

N 〉]
= Ep(e|Sl

V ,θl)
[〈e,Ep(e|Sl

V ,θl)
[e]〉]

=

〈
Ep(e|Sl

V ,θl)
[e],Ep(e|Sl

V ,θl)
[e]

〉
≥
〈
Ep(e|Sl

V ,θl)
[〈e, ê〉], ê

〉
= Ep(e|Sl

V ,θl)
[〈e, ê〉],∀ê ∈ SlV . (10)
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F PSEUDOCODE

In this section, we present a pseudocode for TrMRL’s agent during its interaction with an arbitrary
MDP.

Algorithm 1 TrMRL – Forward Pass
Require: MDPM∼ p(M)
Require: Working Memory Sequence Length N
Require: Parameterized function φ(s,a, r, η)
Require: Transformer network with L layers {f1, . . . , fL}
Require: Policy Head π

Initialize Buffer with N − 1 PAD transitions: B = {(sPAD,aPAD, rPAD, ηPAD)i}, i ∈
{1, . . . , N − 1}
t← 0
snext ← s0
while episode not done do

Retrieve the N − 1 most recent transitions (s,a, r, η) from B to create the ordered subset D
D ← D

⋃
(snext,aPAD, rPAD, ηPAD)

Compute working memories:
φi = φ(si,ai, ri, ηi),∀{si,ai, ri, ηi} ∈ D

Set e01, . . . , e
0
N ← φ1, . . . , φN

for each l ∈ 1, . . . , L do
Refine episodic memories:

el1, . . . , e
l
N ← fl(e

l−1
1 , . . . , el−1N )

end for
Sample at ∼ π(·|eLN )
Collect (st+1, rt, ηt) interacting withM applying action at
snext ← st+1

B ← B
⋃

(st,at, rt, ηt)
t← t+ 1

end while
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