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ABSTRACT

Despite significant advancements, the creation of functional proteins de novo re-
mains a fundamental challenge. Although deep learning has revolutionized appli-
cations such as protein folding, a critical gap persists in integrating design objec-
tives across structure and function. Here, we present MP4, a transformer-based AI
model that generates novel sequences from functional text prompts, that enables
the design of fully folded, functional proteins from minimal input specifications.
Our approach demonstrates the ability to generate entirely novel proteins with
high experimental success rates or effectively redesign existing proteins. This
transformer-based model highlights the potential of generalist AI to address com-
plex challenges in protein design, offering a versatile alternative to specialized
approaches.

1 INTRODUCTION

Protein function is determined by the interplay between sequence and structure, making it es-
sential when designing new proteins to account for both aspects. Traditional methods, such as
Rosetta (Leaver-Fay et al. (2011)), employ empirical and physics-based approaches to link sequence
with structure. More recently, deep learning based approaches, trained on extensive datasets, have
demonstrated that large protein language models can learn sufficient information to accurately pre-
dict protein structures. Further advancements have shown that these deep-learning approaches can
also capture some functional properties, such as protein-protein interactions and antibody complex
structures (Abramson et al. (2024); Wohlwend et al. (2024)).

Most protein language models are trained on highly curated datasets and are designed to predict
relatively narrow functions. For instance, some models can predict protein structures with atomic-
level accuracy given a specific sequence Tunyasuvunakool et al. (2021). Others, like ProteinMPNN,
focus on identifying sequences that will fold into a predefined backbone Dauparas et al. (2022).
These models excel at tasks where the function is well defined, but they often require a large amount
of a priori knowledge to generate meaningful results. While such approaches are highly effective
for specific design goals, they limit the flexibility of these models in more generalist settings, where
predicting novel protein functions or adapting to diverse design challenges is more complex. This
restriction underscores the need for models that can handle broader design spaces, enabling de novo
design of functional proteins across various applications.

Here, we present the molecular programming model version 4 (MP4), which utilizes broad and di-
verse datasets to generate protein sequences from minimal input. Trained on 138,000 tokens and
3.2 billion unique data points, MP4 incorporates a comprehensive range of protein-related informa-
tion to learn the complex relationships between sequence, structure, and function. To evaluate the
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models’ capabilities, we randomly generated thousands of unique protein descriptions that speci-
fied various functional characteristics, such as binding partners, catalytic activity, and subcellular
localization. These descriptions were used to design novel sequences that were evaluated for stable
structural folds and functional matches. A subset of these de novo designed proteins was then ex-
plored experimentally, with the majority stably expressing and exhibiting favorable thermodynamic
properties. Thus, MP4 not only generates novel protein sequences, but also optimizes key functional
and structural features, making it a powerful tool for protein design.

2 RESULTS

2.1 OVERVIEW OF THE MP4 MODEL

MP4 is a transformer-based text-to-protein AI model designed to translate natural language prompts
into de novo protein sequences that align with specified functions and properties. Unlike traditional
methods that often follow a conventional pipeline - first defining a backbone structure and then
generating sequences to match, MP4 utilizes a text-to-protein approach. This allows it to generate
proteins directly from functional text prompts, making it more flexible and capable of addressing
complex design objectives simultaneously.

MP4 is designed to tackle some of the primary challenges in protein science, particularly the pro-
grammability of proteins - creating proteins that can perform specific functions. One of the key inno-
vations in the MP4 model is the integration of conditional language models, such as the conditional
transformer language, which allows the model to generate sequences based on specific annotated
functions or properties Keskar et al. (2019).

Each protein sequence generated by the MP4 model undergoes evaluation for amino acid com-
position, structural confidence, and functional similarity to ensure that the proteins are not only
theoretically feasible but also practically functional. This method enables a joint sequence-function
distribution, making it easier to tailor proteins for desired characteristics.

2.2 MP4 GENERATES PROTEIN SEQUENCES WITH HIGH PREDICTED FOLDABILITY AND
FUNCTIONAL ACTIVITY

To evaluate MP4’s ability to generate novel sequences from functional descriptions, we created
over 1,000 prompts that specified diverse protein characteristics, including enzymatic activities,
intracellular localizations, and binding partners. MP4 then generated diverse and unrelated se-
quences based on these prompts (Fig 1), which were subsequently analyzed to assess their plau-
sibility and realism. This evaluation focused on key metrics such as amino acid composition, pre-
dicted foldability, and alignment with known biochemical principles, providing insights into the
model’s capacity to design biologically relevant proteins. The full repository can be explored at
https://310.ai/mp/repo.

We began by examining the amino acid composition of the de novo sequences generated by MP4,
comparing their distributions to verified sequences from the non-redundant protein (NR) databases

Figure 1: Computational metrics of 1000+ AI designed proteins generated by MP4 model. A)
Frequency of 20 canonical amino acids. B) Amino acid composition per sequence, normalized to
UniProt database proteins. C) Sequence comparison to NR/NT database proteins. D) Averaged
ESMFold confidence pLDDT. E) Structure comparison to Protein Data Bank database proteins. F)
Functional similarity based on prompt and predicted sequence function using ProtNLM model.
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(Boratyn et al. (2013)). All amino acids were represented across the generated sequences, and their
frequencies closely matched those observed in native UniProt sequences (Fig 1A,Bateman et al.
(2024)). MP4 ensures the natural-like distribution of amino acids in the generated sequences, with
amino acid composition (AAcomp) scores ranging from 80 to 100 (Fig1B). This metric identifies
repetitive sequences, flagging potentially biologically implausible proteins.

A defining feature of the MP4 model is its ability to generate de novo protein sequences that signif-
icantly differ from natural sequences. Sequence novelty is assessed using the seqdif score, which
quantifies how distinct a generated protein sequence is from known reference in the NR database.
Seqdif scores range from 0 to 100, with higher values indicating greater novelty. According to the
observed seqdif score distribution, the majority of the generated sequences cluster in the 50-60 score
range, signifying sequences at least 50% different from any natural sequence (Fig1C). A smaller
subset of proteins exhibits seqdif scores approaching 70-80 score, representing sequences that are
highly divergent from natural proteins (Fig 1C), highlighting MP4’s capacity to explore novel se-
quence space while maintaining a balance between sequence novelty and biological feasibility.

Next, we evaluated the structural stability of the generated sequences by predicting their folded
structures using ESMFold (Lin et al. (2023)). For each sequence, we calculated the average pre-
dicted local distance difference test (pLDDT) as a measure of structural confidence (Mariani et al.
(2013)). Similar to the amino acid distribution, most sequences were predicted to fold into stable
protein structures (Fig 1D), with an average pLDDT of 82.6, indicating high local confidence in the
predicted folds. Structural similarity was further evaluated using FoldSeek and the reported TM-
score to compare the generated structures to those in the Protein Data Bank, reported as structdif
(Fig 1E, van Kempen et al. (2023)). Despite their sequence novelty, most generated proteins adopted
folds that are well-established in nature, consistent with the principle that structure is often tightly
linked to function. These findings demonstrate that MP4 not only interprets intended functional
descriptions but also designs novel sequences that adopt the necessary structural folds to perform
those functions.

We evaluated how well the generated sequences aligned with their input prompts using ProtNLM,
a UniProt-supported method that predicts protein functions from amino acid sequences (Gane et al.
(2022)). Nlmsim, a ChatGPT-based similarity score, compares the input prompt with ProtNLM’s
output (OpenAI (2024)). Scores of 80–100 indicate exact or subset matches, while 60–80 suggests
similar words, though synonyms or broader categories may score poorly. Many sequences showed
keyword matches in ProtNLM outputs (Fig 1F), highlighting MP4’s ability to translate functional
descriptions into protein designs.

2.3 PROTEINS GENERATED BY MP4 HAVE DESIRABLE EXPERIMENTAL PROPERTIES

To validate the experimental properties of the sequences generated by MP4, we characterized a sub-
set of these designs to assess whether they possessed favorable traits beyond computational predic-
tions. Specifically, we cloned a representative subset of 94 sequences, emphasizing those with stable
predicted structural and diverse functional properties. This selected subset maintained sequence di-
versity (Fig 2A), highlighting that MP4 is not converging onto a single solution, nor replicating
natural proteins. Each protein was expressed in a prokaryotic cell-free system using a split-GFP
tag, and relative protein levels were quantified through a split-GFP assay (Bignon et al. (2022)).
Notably, a significant proportion of the cloned sequences successfully translated into measurable
protein yields, with 79 out of 94 sequences (84%) yielding detectable protein levels (Fig 2B). Full
results can be explored at https://310.ai/mp/lab/1.

Thermostability, a key property of rationally designed proteins, was also assessed. This character-
istic is defined by a protein’s ability to maintain structural integrity under increasing temperatures
(Vihinen (1987)). Material from each expression construct was subjected to differential scanning flu-
orimetry (DSF) to determine the melting temperature (Tm), representing the temperature at which
50% of the protein remains folded (Hellman et al. (2016)). However, due to small expression vol-
umes and low tryptophan content for fluorescent detection (Wen et al. (2020)), reliable signals were
obtained from only 17 protein samples (Table 1). Despite this limitation (which could be over-
come by prioritizing buried tryptophans during design), the average thermostability measurement
exceeding 62°C, with the most stable proteins approaching 90°C (Fig 2C). In addition to character-
izing these 17 by DSF, we selected an additional 10 samples to quantify by dynamic light scattering
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Figure 2: Experimental evaluation of 94 selected de novo designed proteins. A) Pairwise sequence
similarity heatmap. B) Expression profile in a cell free expression system. C) Thermostability,
measured by DSF, of 4 diverse proteins.

(DLS) (Stetefeld et al. (2016)). These samples, although providing no measurable signal by DSF,
resulted in a uniform peak by DLS implying that stable protein characteristics were incorporated
throughout the design panel.

These findings, although limited to a representative subset of the MP4-designed proteins, suggest
that the MP4 model not only generates sequences with intended functional properties but also ac-
counts for additional attributes such as expression efficiency and thermostability. The results high-
light the model’s capacity to design proteins with a high likelihood of successful experimental trans-
lation and robust structural properties.

2.4 PROPERTY INTERROGATION OF MP4 DESIGNED PROTEINS

We next assessed how well commonly used computational metrics predict protein behavior and
expression levels.

First, we examined the relationship between predicted secondary structure composition and expres-
sion levels. While no strong correlation was observed overall, MP4-designed proteins exhibited
a broad range of alpha-helical content (20–90%, Fig 3A). Notably, well-expressing designs were
found across this spectrum, including some with minimal alpha-helical content (traditionally con-
sidered difficult for computational design) and others composed almost entirely of alpha helices.
However, the two designs with the highest predicted alpha-helical content failed to express, likely
due to prediction biases from ESMFold. These findings indicate that MP4 does not impose a strong
preference for specific protein folds and is capable of generating diverse, viable scaffolds.
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Figure 3: Structural and property analysis of designed proteins. A) Alpha-helical content vs rel-
ative expression levels. (B) Predicted hydrophobicity vs relative expression levels. (C) Predicted
developability (usability score by NetSolP) vs relative expression levels.

Hydrophobicity is another commonly used metric for ranking and evaluating protein designs, as it
is often linked to increased aggregation, which can negatively impact both expression levels and
thermostability. A hydrophobicity prediction model (Malleshappa Gowder et al. (2014)) indicated
that most MP4-designed proteins exhibited minimal hydrophobic content. However, only weak
correlation was observed between predicted hydrophobicity and measured expression levels (Fig
3B), reinforcing the notion that while hydrophobicity plays a role in protein behavior, it is not the
sole determinant of successful folding and expression.

Given the multifaceted nature of protein developability, we next evaluated a composite ‘developabil-
ity’ predictor that integrates hydrophobicity, charge, and solubility into a weighted usability score,
NetSolP (Thumuluri et al. (2021)) Unlike hydrophobicity alone, MP4-designed proteins spanned a
broad range of predicted usability, indicating that some sequences may lack optimal characteristics
for experimental expression. Despite this variation, the usability score showed only a modest im-
provement over hydrophobicity in correlating with expression levels (Fig 3C), suggesting that even
multi-parameter predictors struggle to fully capture the complexity of factors influencing experi-
mental protein expression.

3 DISCUSSION

One of the key strengths of MP4 is its ability to generate protein sequences that can be translated
into experimentally validated molecules. By optimizing multiple properties simultaneously, MP4
designs proteins that are structurally robust and stable under experimental conditions. This inte-
grated approach highlights the potential of MP4 as a powerful tool to advance protein engineering
and overcome practical challenges in the de novo protein design.

This study demonstrates the capability of MP4 to generate protein sequences that exhibit desirable
experimental properties, such as efficient expression and thermostability, while maintaining a high
success rate in translation. The findings underscore the value of generalist protein design mod-
els, which consider a range of structural and functional properties simultaneously. By achieving
measurable protein expression in 84% of the tested sequences and identifying several proteins with
thermostability exceeding 65°C, MP4 highlights its potential as a versatile tool for rational protein
design.

The thermostability of the proteins designed by MP4 further underscores its utility for applications
requiring robust protein performance under extreme conditions. Although only 17 proteins yielded
reliable thermal melting curves due to a combination of low tryptophan content and technical con-
straints, the average melting temperature was 62°C, with the most stable protein nearing 90°C. These
findings suggest that MP4 inherently considers stability as part of its design process. This is partic-
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ularly significant for industrial and therapeutic applications, where proteins must remain functional
under harsh environmental conditions.

Due to the diversity of functions in this set, it would be difficult to test each protein experimentally
to verify its function. Instead, a separate set of designs was created focused on the function of ATP
binding. These will be tested experimentally.

While the current vocabulary understood by MP4 is constrained, future iterations will incorpo-
rate an expanded, precise, and technically sophisticated lexicon. This advancement will enable
true molecular programming, where users can specify target protein properties—function, stabil-
ity, binding affinity, and more—with fine-grained control. The model will then generate optimized
protein sequences in a single inference step, transforming biological design into a deterministic,
programmable process.
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A APPENDIX A: MP4 ARCHITECTURE

This appendix provides a high-level overview of the MP4 model architecture and its training regime.
Due to proprietary considerations, specific implementation details—including internal layer config-
urations, precise hyperparameters, and optimization strategies—are not disclosed. The following
sections outline the key design choices that enable MP4 to translate natural language prompts into
functional, de novo protein sequences.

A.1 HIGH-LEVEL OVERVIEW

MP4 is a transformer-based model specifically designed for de novo protein design. It accepts natu-
ral language prompts that encode comprehensive protein information—such as fitness criteria, phys-
ical properties, source organism, and sequence-related properties—and generates protein sequences
that meet the desired functional and structural constraints. The model emphasizes molecule pro-
grammability by integrating data from diverse sources and synchronizing multiple design objectives
during training. This capability enables MP4 to deliver state-of-the-art performance in generating
novel proteins that are both experimentally feasible and functionally robust.
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Figure A.1: An overview of the MP4 architecture.

A.2 INPUT AND OUTPUT REPRESENTATIONS

Input Representation: The input to MP4 is a detailed textual prompt. These prompts include
various descriptors such as:

• Fitness: Desired functional and performance metrics.

• Organism: Source organism or related biological context.

• Sequence Properties: Attributes that might include partial sequences, motifs, or structural
hints.

Before being processed by the core model, these textual inputs pass through a text2feature prepro-
cessing unit, which tokenizes the prompt and converts it into a structured feature representation.
This conversion ensures that all pertinent information is captured and made accessible to subsequent
layers.

Output Representation: The final output of MP4 is a protein sequence composed of amino acids.
The sequence is generated in a way that reflects the functional and structural requirements encoded
in the input prompt. By balancing multiple design tasks, MP4 ensures that the generated sequence
is consistent with both the raw input and the underlying biochemical principles.

A.3 TRANSFORMER BACKBONE AND CONDITIONAL GENERATION

At the core of MP4 lies a multi-layer transformer architecture that has been adapted for the com-
plexities of protein design. The architecture comprises several key components:

• Multi-Context Sub Models: These sub-models are designed to process different aspects
of the input features. Each sub-model focuses on distinct information—derived from the
prompt—ensuring that the model can attend to diverse functional, structural, and contextual
cues.

• Encoder: After the multi-context sub models process the input, an encoder aggregates the
information. It captures long-range dependencies and builds a rich, context-aware repre-
sentation that summarizes the key aspects of the protein prompt.

• Decoder: The decoder translates the encoder’s latent representation into a form that is
directly amenable to sequence generation. In this phase, the model transforms abstract
feature representations into sequential data.

• Multi-Task Head: The output from the decoder is routed through a set of task-specific
heads. MP4 is trained to perform 70 synchronized tasks, where each head is responsible
for interpreting the decoder vector with respect to a particular design objective. These
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tasks include aspects such as structural fold determination, functional site prediction, and
sequence novelty assessment. The collaborative output from these heads is then integrated
to construct the final protein sequence.

Figure A.1 schematically illustrates the end-to-end architecture of MP4, highlighting the sequential
processing from prompt to final protein sequence.

A.4 TRAINING AND INFERENCE OVERVIEW

Training Data and Regime: MP4 has been trained on a highly diverse and extensive dataset,
comprising over 1.8 billion datapoints which were collected from various repositories, including
UniProt. The training process involved processing 138K tokens and was carried out across 70 syn-
chronized tasks, with each task emphasizing a distinct aspect of protein design—from structural
features to functional specificity. Overall, the training was carried out with approximately 3,800
AMD-Instinct GPU-days.

A.5 PROPRIETARY CONSIDERATIONS AND FUTURE DIRECTIONS

While this appendix outlines the overarching design and training strategy of MP4, many technical
details remain confidential. In particular, specific modifications to the standard transformer frame-
work, internal layer configurations, and fine-tuning strategies are proprietary. Future research will
focus on:

• Refining the multi-context sub models to enhance the model’s sensitivity to nuanced protein
features.

• Expanding the range of synchronized tasks to capture an even broader spectrum of protein
functionalities.

• Exploring alternative decoding strategies to further improve sequence fidelity and novelty.

• Integrating all-atom protein structure generation to enable the direct production of detailed,
three-dimensional protein models.

This continued evolution aims to push the boundaries of molecule programmability in protein de-
sign.

B APPENDIX B: EXPERIMENTAL METHODS

B.1 CONSTRUCT DESIGN

Constructs were designed with C-terminal tags (GFP11 for split-GFP solubility and Twin-Strep for
purification) and sourced from Twist Bioscience. The DNA constructs were subsequently assem-
bled into the appropriate expression vector using the NEBuilder HiFi DNA Assembly Kit (New
England Biolabs) according to the manufacturer’s protocol, with assembly reactions performed in
3µL volumes.

B.2 PROTEIN EXPRESSION AND PURIFICATION

Protein expression was carried out in a prokaryotic cell-free system at Adaptyv Bio. Briefly, expres-
sion reactions were prepared in a total volume of 60µL and incubated at 37°C for 12 hours to ensure
robust protein synthesis. Expression was detected by the flourescent coexpression of the GFP11 tag
and GFP1-10 marker as determined by a split-GFP solubility assay (Cabantous & Waldo (2006)).
For protein purification, an affinity capture approach was employed using magnetic beads. Protein
samples were mixed with the beads and incubated for 10 minutes at room temperature with gentle
agitation to allow binding. Following binding, the beads were washed three times with a washing
buffer composed of 1M Tris-Cl, 1.5M NaCl, and 10mM EDTA (pH 8) to remove unbound proteins.
The concentration and yield of the purified proteins were quantified using an affinity-based assay,
with normalization performed via a Qubit fluorometer assay.
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B.3 BIOPHYSICAL EVALUATION

Protein thermostability was assessed using nano differential scanning fluorimetry (NanoDSF). Pro-
tein samples were diluted to a concentration of 100µg/mL in assay buffer (20mM sodium phos-
phate, 150mM NaCl, pH 7.0), and 10µL aliquots were pipetted into NanoDSF capillaries. The assay
was performed with a temperature ramp of 1°C per minute while monitoring intrinsic fluorescence,
specifically by tracking the ratio of fluorescence intensities at 350nm and 330nm. Fluorescence
changes were recorded continuously during the temperature increase, and the melting temperature
(Tm) was determined as the inflection point on the fluorescence change curve. Tm values obtained
for different constructs were compared to evaluate relative thermostability. Dynamic light scattering
(DLS) was used to evaluate the hydrodynamic radius and aggregation state of the expressed pro-
teins. Prior to measurement, purified protein samples were allowed to equilibrate to room tempera-
ture. Approximately 20µL of each sample was loaded into a disposable cuvette, and measurements
were performed at 25°C using the Unchained Labs Uncle instrument. A series of at least 10 runs
per sample was acquired to ensure statistical reliability. The size distribution data were analyzed to
determine the hydrodynamic radius and to assess the presence of protein aggregates.

C APPENDIX C: SUPPLEMENTAL DATA

Figure A.2: Diversity of 1052 generated sequences

Figure A.3: SDS-PAGE gel characterization of select proteins.
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Figure A.4: Dynamic light scattering (DLS) characterization of select proteins.

Table 1: Measured thermostability

Repo ID Prompt (snippet) Length Tm (°C)

M1X0B ...controlling gene expression after transcription... 119 86.2
MQLYM ...glycerol metabolism...in sperm cells 207 83.36
MJFIU ...kinase that binds ATP... 202 81.94
MW51C ...detection of external stimulus and a PAS fold. 490 79.89
M54FQ ...Periplasmic binding protein/LacI sugar binding... 296 76.8
MV2G8 ...potassium ion transport across cell membranes... 214 75.64
M7PN6 ...binds ferric iron...breakdown of carboxylic acids. 159 71.05
MTXPM ...FKBP-type peptidyl-prolyl cis-trans isomerase... 260 68.51
MT47E ...binding cations and DNA, regulates toxin... 127 67.05
MLFIT ...metal and iron binding... 157 65.18
MWG7X ...ACT-like domain...aromatic amino acid family... 277 62.22
MPCII ...hemerythrin-like and cation homeostasis... 133 55.97
MR1UH ...Aconitase A/isopropylmalate dehydratase... 234 47.97
M5CZB ...dephosphorylation and regulates metabolic processes... 252 45.43
MMUJG ...localization and transport within cells... 245 41.2
MJY78 DNA polymerase lambda lyase... 258 36.48
M7S72 ...glycosyltransferase activity... 296 31.32
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