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ABSTRACT

This paper targets at a new and challenging setting of knowledge transfer from
multiple source domains to a single target domain, where target data is few shot or
even one shot with label. Traditional domain generalization or adaptation methods
cannot directly work since there is no sufficient target domain distribution serving
as the transfer object. The multi-source setting further prevents the transfer task as
excessive domain gap introduced from all the source domains. To tackle this prob-
lem, we newly propose a progressive mix-up (P-Mixup) mechanism to introduce
an intermediate mix-up domain, pushing both the source domains and the few-shot
target domain aligned to this mix-up domain. Further by enforcing the mix-up do-
main to progressively move towards the source domains, we achieve the domain
transfer from multi-source domains to the single one-shot target domain. Our
P-Mixup is different from traditional mix-up that ours is with a progressive and
adaptive mix-up ratio, following the curriculum learning spirit to better align the
source and target domains. Moreover, our P-Mixup combines both pixel-level and
feature-level mix-up to better enrich the data diversity. Experiments on two bench-
marks show that our P-Mixup significantly outperforms the state-of-the-art meth-
ods, i.e., 6.0% and 8.6% improvements on Office-Home and DomainNet. Source
code is available at https://github.com/ronghangzhu/P-Mixup

1 INTRODUCTION

Deep neural networks (DNN) have gained large achievements on a wide variety of computer vision
tasks (He et al., 2016; Ren et al., 2015). As problems turn complex, the learned DNN models
consistently fall short in generalizing to test data under different distributions from the training data.
Such domain shift (Torralba & Efros, 2011) further results in performance degradation as models
are overfitting to the training distributions. Domain adaptation (DA) (Xu et al., 2021; Zhu et al.,
2021; Zhu & Li, 2021; Liu et al., 2023) has been extensively studied to address this challenge.
Due to different settings regarding the source and target domains, DA problems vary into different
categories such: unsupervised domain adaptation (UDA) (Zhu & Li, 2022a), supervised domain
adaptation (SDA) (Motiian et al., 2017), and multi-source domain adaptation (MSDA) (Zhao et al.,
2018). UDA aims to adopt knowledge from a fully labeled source domain to an unlabeled target
domain. SDA intends to transfer knowledge from a fully labeled source domain to a partially labeled
target domain. MSDA generalizes the UDA by adopting the knowledge from multiple fully labeled
source domains to an unlabeled target domain. The main difficulty in the MSDA problem is how to
achieve a meaningful alignment between the labeled source domains and the target domain that is
unlabeled. Although DA has obtained some good achievements, assuming the availability of plenty
of unlabeled/labeled target samples in real-world scenarios cannot be always guaranteed.

In this paper, we propose a challenging and realistic problem setting named Few-shot Supervised
Multi-source Domain Transfer (FSMDT), by assuming that multiple labeled source domains are
accessible but the target domain only contains few samples (i.e., one labeled sample per class),
shown in Figure 1. Different from existing domain adaptation problems such as UDA, SDA and
MSDA, the target domain in our problem does not provide any unlabeled samples to assist model
training. The most relevant problem settings to ours are SDA and MSDA. SDA (Tzeng et al., 2015;
Koniusz et al., 2017; Motiian et al., 2017; Morsing et al., 2021) seeks to transfer knowledge from a
single source domain to a partially labeled target domain. The SDA methods cannot be simply used

1

https://github.com/ronghangzhu/P-Mixup


Published as a conference paper at ICLR 2023

Lack Data Progress Mix-up

BoundarySource1 Source2 Target

Figure 1: Visual illustration on the FSMDT problem (left), traditional domain adaptation solutions
(middle) and our P-Mixup method (right).

to deal with our problem that involves multiple source domains, as the alignment among multiple
source domains should be carefully addressed. In addition, existing MSDA methods (Duan et al.,
2009; Sun et al., 2011; Zhao et al., 2018; Wang et al., 2020a; Zhou et al., 2021b; Ren et al., 2022)
aim to learn domain-invariant representations by aligning the target domain to each of the source
domains. However, these MSDA methods are not suitable for our FSMDT problem, as target domain
only contains few labeled samples for training process which cannot support the domain invariance
learning. Recently, multi-source few-shot domain adaptation (MFDA) (Yue et al., 2021) is proposed
to address the application scenario where only a few samples in each source domain are annotated
while the remaining source and target samples are unlabeled. Different from MFDA, our proposed
FSMDT assumes only few target samples are available. The methods for MFDA would fail to learn
discriminative representations on target domain in FSMDT due to insufficient target samples.

We propose a novel progressive mix-up scheme to tackle the challenges in the newly proposed
FSMDT problem. Our scheme firstly creates an intermediate mix-up domain, which is initially set
closer to the few-shot target domain. Rather than the commonly used image-level mix-up, we induce
a cross-domain bi-level mix-up, which involves both the image-level mix-up and feature-level mix-
up, to effectively enrich the data diversity. With the mix-up domain that is initially close to the target
domain, the few-shot constraint on target domain is alleviated. Then, by enforcing the mix-up ratio
to progressively favor towards the source domains, and meanwhile harnessing the target domain to
be close to the mix-up domain, we gradually transfer knowledge from the multi-source domain to
the target domain in a curriculum learning fashion. Furthermore, by optimizing over multiple source
domains in a meta-learning regime, we present a stable and robust solution to the FSMDT problem.

Our main contributions are summarized as follows:

• We introduce a practical and challenging task, namely the Few-shot Supervised Multi-
source Domain Transfer (FSMDT), which aims to transfer knowledge from multiple la-
beled source domains to a target domain with only few labeled samples.

• We propose a novel progressive mix-up scheme to help address the FSMDT problem, which
creates an intermediate mix-up domain and gradually adapts the mix-up ratio to mitigate
the domain shift between target domain and source domain.

• We conduct extensive experiments and show that our method successfully tackles the new
FSMDT problem and it surpasses state-of-the-arts with large margins. In particular, it
improves the accuracy by 6.0% and 6.8% over MSDA and SDA baselines on the Office-
Home and DomainNet datasets, respectively.

2 RELATED WORK

2.1 DOMAIN ADAPTATION AND GENERALIZATION

Domain adaptation (DA) aims to transfer knowledge from a source domain to a target domain with
a strong assumption that target data are available for model training. Domain generalization (DG) is
a more challenging task in not only closing the domain gap but also addressing the absence of target
data. There are two types of DA problems related to our proposed FSMDT problem: supervised
domain adaptation (SDA) (Tzeng et al., 2015; Motiian et al., 2017; Morsing et al., 2021) and multi-
source domain adaptation (MSDA) (Sun et al., 2011; Zhao et al., 2018; Wang et al., 2020a)

Supervised Domain Adaptation trains models by exploiting a partially labeled target domain
and a single, fully labeled source domain. Seminal work such as the simultaneous deep transfer
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(SDT) (Motiian et al., 2017) jointly learns domain-invariant features and aligns semantic informa-
tion across domains by optimizing the domain confusion and distribution matching objectives. The
classification and contrastive semantic alignment (CCSA) method (Motiian et al., 2017) uses the
distribution alignment along the semantic manifold. To deal with the few-shot issue, CCSA reverts
to point-wise surrogates of distribution and similarities. Recently, (Morsing et al., 2021) exploits
graph embedding to encode intra-class and inter-class information to better align the source and
target domains. Different from SDA, we consider multi-source domain instead of a single source
domain, which is more challenging as real data is not constrained to be only from a distribution.

Multi-Source Domain Adaptation aims to learn domain-invariant feature across all domains, or
leverage auxiliary classifiers trained with multi-source domain to ensemble a robust classifier for
the target domain (Sun et al., 2011; Duan et al., 2009). ecently, the multi-source domain adversarial
network (MDAN) (Zhao et al., 2018) theoretically analyzes the average case generalization bounds
for MSDA classification and regression problems. In addition, the learning to combine for multi-
source domain adaptation (LtC-MSDA) (Wang et al., 2020a) explores interactions among domains
by building a knowledge graph of prototypes from various domains and investigates the information
propagation among semantically adjacent representations. Despite the good performance, none of
the above methods consider the practical scenario with only very few labeled target samples.

Domain Generalization aims to learn a model from multiple source domains that can generalize
well on unseen target domain. Existed DG methods can be roughly divided into three groups.
Domain alignment based methods (Muandet et al., 2013; Li et al., 2018b) aim to learn the domain
invariant features by aligning feature distributions across multiple source domains. Meta-learning
based methods (Li et al., 2018a; Shu et al., 2021) divide multiple source domains into the meta-
train and meta-test sets, and learn a model on the meta-train set with the intention of improving
its performance on the meta-test set. Data augmentation based methods (Zhou et al., 2021a; 2020;
Zhu & Li, 2022b) aim to improve the generalization of learned models by enriching the diversity
of source domains. Though domain generalization addresses the unseen target domain, which is a
harder problem than our few-shot seen target setting, it is not suitable for our FSMDT problem as it
doesn’t consider how to utilize these available few-shot samples in target domain.

2.2 DATA AUGMENTATION BY MIX-UP

Mix-up (Zhang et al., 2018) is a data augmentation technique that has been widely applied in self-
supervised learning, domain adaptation, and domain generalization. Dual mixup regularized learn-
ing (DMRL) (Wu et al., 2020) conducts class-level and domain-level mix-up strategies to learn a
domain-invariant feature space. Recently, Domain-augmented meta learning (DAML) (Shu et al.,
2021) applies multi-source mix-up strategy to augment source domains. However, most methods
interpolate samples with a pre-defined mix-up ratio distribution, e.g., beta distribution. Lately,
MetaMixup (Mai et al., 2021) proposes a meta-learning based framework to dynamically update
mix-up ratio. However, it requires a special validation setting to learn the mix-up ratio, and it does
not consider the mix-up problems across multiple domains. In contrast, we consider the cross-
domain mix-up and propose a progressive mix-up scheme based on the cross-domain Wasserstein
distance, which does not rely on extra validation settings.

2.3 FEW-SHOT LEARNING

Few-shot learning (Wang et al., 2020b) aims to learn a model that can be easily adapted to novel
tasks with limited labeled data. To tackle this challenging problem, plenty of methods have been
proposed which can be roughly divided into metric learning based method (Snell et al., 2017; Sung
et al., 2018), meta-learning based method Finn et al. (2017); Chen et al. (2021), optimization based
method (Lee et al., 2019; Ravi & Larochelle, 2017), and data augmentation based method (Li et al.,
2020; Xu & Le, 2022). Snell et al. (2017) proposes the Prototypical Network (PTN) to learn a met-
ric space for classification. Finn et al. (2017) designs a Model-Agnostic Meta-Learning (MAML)
framework which can learn the model under various tasks, such that it can be easily adopted to novel
tasks with a few labeled data. Li et al. (2020) proposes a conditional Wasserstein generative adver-
sarial networks based adversarial feature generator to enrich the diversity of the available limited
data for novel tasks. Recently, a benchmark, namely Meta-Dataset (Triantafillou et al., 2020), is
proposed for Multi-Domain Few-Shot Learning (MDFS) problem (Dvornik et al., 2020; Liu et al.,
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2021). One of the state-of-the-art methods, Universal Representation Transformer (URT) (Liu et al.,
2021) is designed to transfer the learned universal representation to task-specific representation.
Even though MDFS is very similar to our proposed problem, there still existing significant differ-
ence between MDFS and our FSMDT, e.g., our proposed FSMDT assumes that the target label space
is contained in multi-source label space while MDFS holds the assumption that the target label space
is excluded in multi-source label space.

3 METHOD

Unlike SDA, we target at jointly leveraging multi-source domain other than single source domain,
together with few-shot labeled target samples, to adapt the multi-source domain knowledge to the
target domain. The main challenge is the extremely limited target data points, which cannot pro-
vide sufficient and stable target distribution and thus difficult to conduct transfer. Inspired by Mix-
up (Zhang et al., 2018), we propose a progressive mix-up (P-Mix) scheme to introduce an inter-
mediate mix-up domain, and enforce the distribution alignment of “source to mix-up” and “target
to mix-up”. Our scheme starts with a mix-up distribution close to the target domain, and gradu-
ally drifts towards source domains. In this way, the large domain gap is surrogated by a milder
intermediate gap and the target to source alignment is indirectly achieved. Firstly, we introduce the
preliminary. Then, we give details of the bi-level mix-up. Last, we illustrate our newly proposed
progressive mix-up scheme and summarize the overall pipeline of our algorithm.

3.1 PRELIMINARIES

In Few-shot Supervised multi-source domain Transfer (FSMDT) problem, we have M full labeled
source domains and a target domain with few-shot labeled data. The i-th source domain Ds,i =

{(xj
s,i, y

j
s,i)}

Ns,i

j=1 contains Ns,i labeled samples drawn from the source distribution Ps,i(x, y), and
the target domain Dt = {(xj

t , y
j
t )}

Nt
j=1 includes Nt labeled samples selected from the target distri-

bution Pt(x, y). Here, Nt ≪ Ns,i, i.e., Nt can be as few as 1-shot per class. Pt(x, y) ̸= Ps,i(x, y),
and Ps,i(x, y) ̸= Ps,j(x, y) where i ̸= j. The multiple source domains and target domain have the
same label space Y = {1, 2, . . . ,K} with K categories. We aim to learn an adaptive model H on
{Ds,i}Mi=1 and Dt, that can generalize well on unseen samples from target domain. In general, H
consists of two functions, i.e., H = F ◦ G. Here G : x → g represents the feature extractor that
maps the input sample x into an embedding space, and F : g → f is the classifier with input the
embedding to predict the category.

3.1.1 RECAP OF MIX-UP

Mix-up (Zhang et al., 2018) is one of the most popular data augmentation strategies to improve the
generalization of the learned model by enriching the diversity of the original domain. The core idea
of mix-up is to create virtual samples by randomly interpolating two samples in a convex fashion.
Specifically, given two samples (xi, yi) and (xj , yj), the virtual sample (x̃, ỹ) is defined as:

x̃ = λxi + (1− λ)xj , (1)
ỹ = λyi + (1− λ)yj , (2)

where label y is the one-hot label encoding and λ is randomly sampled from a predefined distribu-
tion, e.g., beta distribution.

3.2 CROSS-DOMAIN BI-LEVEL MIX-UP

Traditional mix-up is originally designed for self-supervised learning, i.e., introducing a new class
data by interpolating from two known classes’ data, which can increase the training data diversity.
When considering the domain transfer problem, such mix-up will be cross-domain, i.e., a data point
from source domain and a data point from target domain. Meanwhile, besides the pixel-level mix-
up, recent manifold based mix-up (Verma et al., 2019; Shu et al., 2021; Xu et al., 2020) shows
that feature-level interpolation can also improve the generalization and model robustness. We thus
investigate both the pixel-level and feature-level mix-ups.
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Figure 2: The flowchart of the proposed progressive mix-up. A mix-up domain (red) is introduced as
initially closer to the target domain. By enforcing the mix-up ratio λ to be progressively increasing
based on the wasserstein distance of source-to-mixup and target-to-mixup, we push the mix-up
domain gradually to be closer to source domains, and thus achieving the alignment of multi-source
domain to the few-shot target domain.

Cross-Domain Image-Level Mix-up. Motivated by the success of mix-up in self-supervised learn-
ing, we apply it to our domain transfer task, which can create new samples with new labels. We
utilize it to largely enrich the target domain distribution as there are overly limited target samples.
The source and target samples are linearly interpolated as:

x̃img = λxs,i + (1− λ)xt, (3)
ỹimg = λys,i + (1− λ)yt, (4)

where λ is the mix-up ratio. Notice that during training, such mix-up ratio can be adjusted, e.g., a
larger λ generates closer-to-source samples and a smaller λ generates closer-to-target samples.

Cross-Domain Feature-Level Mix-up. On the learned feature representation manifold, mix-up at
the feature level enables more intermediate virtual features to increase the feature diversity and can
directly interact with the classifier F learning. Here, given a pair of source and target features and
their corresponding labels: (gs,i, ysi) and (gt, yt), we have

g̃feat = λgs,i + (1− λ)gt, (5)
ỹfeat = λys,i + (1− λ)yt, (6)

where λ is the mix-up ratio same as the one used in image-level mix-up. With exactly the same
λ, we argue that the image-level mix-up samples lie in the same feature space as the feature-level
mix-up samples. Thus, we can jointly utilize the two for penalty, i.e., the same class image-level
mix-up and feature-level mix-up should go for the same classification result.

3.3 PROGRESSIVE MIX-UP SCHEME

Previous work apply either fixed sampling or some simple randomized sampling for the mix-up
ratio λ, e.g., beta or dirichlet distribution (Zhang et al., 2018; Wu et al., 2020; Xu et al., 2020; Shu
et al., 2021). However, we find that the sampling of mix-up ratio is crucial for the domain transfer.
The ratio directly determines the intermediate mix-up domain. If a mix-up domain is constant or
some special distribution, the alignment is either still constantly hard or likely to be under-fitting,
supported from a recent work MetaMixup (Mai et al., 2021).

To alleviate it, we dig into the Wasserstein distance of “source-to-mixup” dw(Gs,Gmix) and “target-
to-mixup” dw(Gt,Gmix), where Gs,Gt,Gmix stand for the embeddings of source, target and mix-
up domains. We observe that during the training, if the mix-up domain initially is closer to the
few-shot target domain, the alignment is relatively simple as dw(Gt,Gmix) is already small while
dw(Gs,Gmix) can be effectively minimized as there are sufficient source domain data. When grad-
ually increasing the mix-up ratio towards closer to source domains, since we already harness the
“target-to-mixup” distance to be small, we are pushing the entire mix-up domain and few-shot tar-
get domain towards the source domains, as illustrated in Figure 2. Such progressively adjusted
mix-up ratio, following the spirit of curriculum learning (Bengio et al., 2009), eases the initial large
domain gap by mildly starting close to the target, and secures the entire transfer process smoothly.

Specifically, we introduce a weighting factor q to depict the closeness to source as:

q = exp(− dw(Gs,Gmix)

(dw(Gs,Gmix) + dw(Gt,Gmix))T
), (7)
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Figure 3: The training architecture. Both image and feature level P-Mixup are applied for the cross-
entropy loss. G is the feature extractor and F is the classifier.

where T is a temperature factor defined as 0.05. During training, by initializing Gmix closer to
target domain, such q is small. To progressively adjust it, we consider to apply this closeness on
top of the previous stage λ in a moving average manner. Further, a linearly incremental component
is introduced to enforce the gradual closeness to the source domains. The progressive mix-up is
formulated as:

λn =
n(1− q)

N
+ qλn−1, (8)

where N is the total number of iterations and n is the current iteration index. Initial weighting
λ0 towards source is 0. To numerically stabilize the training procedure, we introduce a uniform
distribution U , a random perturbation on top of the current λn:

λ̃n = Clamp(U(λn − σ, λn + σ),min = 0.0,max = 1.0), (9)

where σ is a local perturbation range, i.e., we empirically set it as 0.2. λ̃n is then stochastically
sampled and clamped into range [0.0, 1.0] for each iteration n’s mix-up ratio.

3.4 ARCHITECTURE AND LEARNING OBJECTIVES

The overall architecture is shown in Figure 3, which mainly consists of a feature generator G and
a classifier F. During training, since there are multiple labeled source domain data, and a single
few-shot target domain data, we follow the canonical domain generalization frameworks such as
MAML (Finn et al., 2017), to organize our training in a meta-learning manner.

Denoting the model parameters F ◦G as θ, the objective for classification is defined as:

LTi
ce(θ) = −

∑
x,y∈Ti

K∑
k=1

yk log(θ(x)k), (10)

where Ti stands for a specific domain, e.g., one of the source domains or the target domain, x is the
input image and y is the ground truth label, and K is the number of classes. Notice that for “cross
domain image-level mix-up”, the input is the mix-up image x̃img and the label is the mix-up label
ỹimg . For “cross domain feature-level mix-up”, the mix-up feature g̃feat is fed into the classifier
and computes the Lce loss. Meanwhile, the label y is the mix-up label ỹfeat.

Following MAML, we conduct a meta-optimization to pseudo-update the model parameters for the
first time by minimizing

∑
Ti∈p(T ) LTi

ce :

θ′ = θ − α∇θ

∑
Ti∈p(T )

LTi
ce(θ). (11)

p(T ) is a sampling distribution among the meta-train domains, e.g., each of the three benchmarks in
our experiments contains four domains, we uniformly sample two out of three source domains. The
remaining source, target and the mix-up domains are used for meta-test to update the model as:

θ = θ − β∇θ

∑
Tj /∈p(T )

LTj
ce (θ

′), (12)

where α and β are the update step size for meta-train and meta-test respectively. To simplify the
parameters, we set α = β = 0.001. Notice that the mix-up domain contains two sub-domains, the
image-level mix-up and the feature-level mix-up. Both of them are used in meta-test.
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Table 1: mAP(%) on Office-Home. Named in row is the target domain which contains 10 classes
randomly selected from label space. (A: Art, C: Clipart, P: Product, R: Real world)

D10
t ERM-w/o ERM-w CCSA MDAN Mix-up DAML URT Ours

A 60.48 60.83 64.52 58.49 59.50 60.30 59.48 72.23
C 44.06 46.35 56.32 44.17 51.03 49.88 52.41 59.97
P 72.55 72.75 75.89 70.43 73.03 72.96 82.11 82.69
R 79.32 76.40 79.17 74.28 76.91 76.17 81.52 85.05

Ave. 63.83 64.08 68.97 61.84 65.12 64.83 68.88 74.99

4 EXPERIMENT

4.1 EXPERIMENTAL SETTINGS

Datasets: We adopt two standard domain adaptation and generalization benchmarks: (1) Office-
Home (Venkateswara et al., 2017) which consists of four domains (Art, Clipart, Produce, and
Real world) with 65 classes. (2) DomainNet (Peng et al., 2019) contains 345 classes. We con-
duct experiments on four domains (Clipart, Painting, Real, and Sketch) from it.

Protocols: To highlight the challenging few-shot target domain setting, we cannot anymore use
the original protocols from the above two datasets. We observe that even with one-shot, since the
number of classes are many, e.g., 345 classes from DomainNet, utilizing all the classes can provide
a sufficient diversified target domain distribution. To exactly constrain the target distribution to be
few-shot, for Office-Home, we randomly select 10 out of 65 classes each with one sample as the
target. Similarly, we randomly select 15 out of 345 classes for DomainNet. The remaining samples
in these selected classes are used as the test data. Such random sampling is conducted for 5 times
and the averaged result is reported.

Baselines: We compare with four main streams of methods: (1) Multi-Source Few Shot Learn-
ing method, namely Universal Representation Transformer (URT) (Liu et al., 2021).(2) Super-
vised Domain Adaptation method, namely Classification and Contrastive Semantic Alignment
(CCSA) (Motiian et al., 2017). (3) Multi-Source Domain Adaptation, namely Multisource Domain
Adversarial Networks (MDAN) (Zhao et al., 2018). (4) Domain Generalization method, namely
Domain-Augmented Meta Learning (DAML) (Shu et al., 2021). (5) Data Augmentation method,
namely Mix-up (Zhang et al., 2018). Besides, we consider another general baseline, i.e., Empirical
Risk Minimization (Koltchinskii, 2011) with/without labeled target domain (ERM-w, ERM-w/o).

Evaluation Metrics: For each of the benchmarks, each domain is in turn regarded as the target
domain while the remaining are considered as source domains. For each experiment, we report the
mean average precision (mAP) by averaging over 5 times of all the class’ average precision. We fix
the random seed to 1-5 when self-constructing the new domain and sampling target samples so the
results of different methods can be fairly compared.

Implementation Details: Our implementation is based on Pytorch (Paszke et al., 2019). We use
ResNet-18 (He et al., 2016) pretrained on ImageNet (Deng et al., 2009) as the backbone network.
We optimize the model using SGD with momentum of 0.9 and weight decay of 5×10−4. The batch
size is set to 50. The initial learning rate is set to 0.001. For all the compared methods and Ours, we
use the same basic data preprocessing on the image and the same backbone.

4.2 MAIN RESULTS

Office-Home: In Table 1, comparing ERM-w to ERM-w/o, we observe that the labeled target do-
main containing 10 images cannot directly improve the performance, which verifies the setting is in-
deed challenging. Third column is the representative supervised domain adaptation method, CCSA,
clearly outperforms the baseline ERM-W. There is also MDAN in the fourth column whose perfor-
mance is worse than ERM-W, as there is no sufficient target distribution to support the adaptation.
Across all the methods, our approach demonstrates clear advantages, i.e., when compared to the
second best, CCSA, the gain is as significant as 6.02% on “Ave.”

DomainNet: As shown in Table 2, our method’s performance in both 10 labeled target samples
and 15 labeled target samples scenarios show a clear advantage over all the baselines. Compared
to the most competitive opponent URT, our method gets the best performance on three out of four
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Table 2: mAP(%) on DomainNet. Named in column is the target domain contains 10/15 classes
randomly selected from label space. (C: Clipart, P: Painting, R: Real, S: Sketch)

Method D10
t D15

t

C P R S Avg. C P R S Avg.

ERM-w/o 53.58 48.03 57.70 45.57 51.22 51.90 45.68 57.11 43.51 49.55
ERM-w 54.91 48.39 58.27 48.27 52.46 54.50 47.51 58.23 45.17 51.35
CCSA 58.78 54.40 61.32 56.74 57.81 53.51 50.90 58.63 52.11 53.79
MDAN 56.07 48.50 59.32 47.40 52.82 54.98 46.95 59.24 45.36 51.63
Mix-up 61.81 59.49 66.41 56.17 60.97 56.85 53.98 64.51 50.25 56.40
DAML 58.26 49.33 55.53 47.15 52.57 56.56 47.63 57.39 46.45 52.01
URT 67.18 56.87 84.20 55.08 65.83 53.07 47.99 72.53 41.00 53.65

Ours 79.32 70.18 82.63 69.88 75.50 72.46 64.37 76.88 60.41 68.53

Table 3: Ablation study on Office-Home. Named in column is the target domain which contains 10
classes randomly selected from the label space.

Mix-up Ratio λ Method Art Clipart Product Real world Ave.

N/A ERM-w (no mix-up) 60.48 44.06 72.55 79.32 63.83

Random Sampling
Feat-Mix 60.06 48.21 69.06 73.56 62.72
Img-Mix 59.50 51.03 73.03 76.91 65.12

Feat-Mix + Img-Mix 66.40 56.18 76.51 78.98 69.52

Progressive Update
Feat-Mix 64.89 55.08 75.41 77.52 68.22
Img-Mix 68.45 57.55 81.26 83.89 72.79

Feat-Mix + Img-Mix 72.23 59.97 82.69 85.05 74.99

tasks and surpasses by 9.67% on 10 labeled target samples “Ave.” and 14.88% on 15 labeled target
samples “Ave.”. In this dataset, we find that ERM-w obtains the same level performance as most
of baselines, e.g., supervised domain adaptation method CCSA, partially showing that this bench-
mark is more challenging as the domain gap becomes more challenging compared to the other two
datasets. Overall, these results strongly demonstrate the effectiveness of our proposed progressive
mix-up for improving domain transfer with extremely few labeled target domain samples.

4.3 ABLATION STUDY

We conduct a comprehensive ablation study to examine the effectiveness of our proposed core com-
ponents in Table 3. The baseline of ERM-w utilizing the target domain data but without mix-up is
shown in the first row. Feat-Mix denotes the cross-domain feature-level mix-up and Img-Mix indi-
cates the cross-domain image-level mix-up. We introduce the general mix-up ratio sampling strategy
(λ ∼ Beta(0, 1)) used in Mix-up (Zhang et al., 2018), as a major comparison. Firstly, We observe
that the bottom row methods consistently outperform the middle row by a large margin, highlighting
the superiority of the proposed progressive mix-up strategy. Then, we look into the combination of
modules within each sampling method. We observe that cross-domain image-level mix-up (Img-
Mix) shows better result over cross-domain feature-level mix-up (Feat-Mix) with more than 4.0%
“Ave.” improvement. If going for one module, image-level mix-up would be a better choice. If with
no restriction, a combination of both image and feature level mix-ups can further boost the accuracy,
because a combined mix-up enriches the data diversity more than each of the single choices.

4.4 EFFECT OF TARGET SAMPLE SHOTS

We investigate the effect of the number of target sample shots on our proposed P-Mixup with Do-
mainNet where ”Clipart” is selected as the target domain. We increase the number of selected classes
from 10 to 345. Corresponding, the number of available target samples range from 10 to 345. As
shown in Table 4, our method’s performance across different numbers of selected classes settings
show a clear advantage over all the baselines. Specifically, even when we reach the full classes, i.e.,
345, our method still surpasses the most competitive opponent DAML, by 3.27%. As the size of
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Table 4: mAP(%) on DomainNet “Clipart” setting where “Clipart” is the target domain. n indicates
the number of classes randomly selected from the label space.

Dn
t ERM-w/o ERM-w CCSA MDAN Mix-up DAML URT Ours

10 53.58 54.91 58.78 56.07 61.81 58.26 67.18 79.32
15 51.90 54.50 53.51 54.98 56.85 56.56 53.07 72.46
20 57.57 59.23 56.48 58.50 60.16 58.22 53.67 70.16
25 54.45 55.71 45.43 54.55 50.54 57.82 59.03 68.74
100 55.68 57.16 51.98 58.74 46.69 59.25 28.27 63.48
345 55.94 57.86 48.73 57.47 46.19 60.36 20.48 63.63
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Figure 4: As shown from left to right, the first two figures illustrate the Mix-up ratio λ and the q
value introduced in Equation 7. The lower 1− q, the closer the target is to the sources. The last two
figures describe the P-Mixup training behavior compared to baselines and standard deviation (STD)
values for all methods.

available labeled target samples decreases, our method still holds an obvious advantage, which fur-
ther confirms that our method is more advantageous when target sample shots are extremely fewer.

4.5 MIX-UP RATIO AND COMPUTATION ANALYSIS

As shown the first subfigure in Figure 4, we validate the P-Mixup scheme by showing the mix-up
ratio and the q value introduced in Equation 7 on Office-Home. The subfigure shows the trend
of the proposed mix-up ratio λ along the training iterations. Generally it is an increasing tread
as we gradually push the mix-up domain to be closer to source domains. The second subfigure
in Figure 4 shows 1 − q over iterations, which indicates the distance change between source and
target domains. As q depicts the closeness to source, we use 1 − q to present the closeness to
target. During the first 4000 iteration, the mix-up distribution is closer to target than source, and
the model gradually handles the“target-to-mixup” distance to be small. As a result, we observe
that the 1 − q value gently turns small. After the model harnesses the “target-to-mixup” distance,
the mix-up distribution gradually moves close to source domains as λ goes up. Afterwards, the
”target-to-mixup” distance continually decreases, showing that the source domains are continuously
transferred onto the target domain and our P-Mixup is indeed effective in mitigating the domain shift
in FSMDT. The last two subfigures in Figure 4 show the training behavior and standard deviation
(STD) values for all methods on Office-Home. We observe that our proposed method P-Mixup
consistently and significantly outperforms all the baselines in terms of training behavior and STD,
which verify the effectiveness of our P-Mixup.

5 CONCLUSIONS

In this work, we propose to address a new and challenging problem, namely Few-shot Supervised
multi-source domain Transfer (FSMDT), where multiple fully labeled source domain samples and
extremely limited target samples are accessible. A progressive mix-up (P-Mixup) scheme is newly
introduced to effectively mitigate the source and target domain gap especially when the target do-
main is with extremely few-shot samples. We jointly consider the image-level and feature-level
cross-domain mix-up to sufficiently enrich the data diversity. A meta-learning optimization strategy
is applied to support the multi-domain joint training with stable and robust convergence. Extensive
experiments show that our method achieves significant performance gain over the state-of-the-art
methods across two main domain adaptation benchmarks.
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A APPENDIX

The appendix provides additional experiments and justifications of the proposed progressive mix-up
(P-Mixup) method. In the following sections, we firstly introduce details of benchmark datasets.
Then, we show the specific process of implementation and present the analysis of the hyper-
parameter sensitivity study on σ used in our method. Next, we investigate the influence of moving
direction of mix-up distribution on proposed P-Mixup. Furthermore, we provide the standard de-
viation (STD) values and training behavior for all the methods across all the benchmark datasets.
Finally, we analyse the limitation of our method and provide insights on potential directions for
furture research.

The mix-up ratio update formula in our method is defined as:

λ̃n = Clamp(U(λn − σ, λn + σ),min = 0.0,max = 1.0), (13)

where λn is the progressive mix-up ratio at n-th iteration. U is a uniform distribution with a local
perturbation range σ.

A.1 DATASETS

Table 5 shows the overall descriptions of benchmark datasets, i.e., PACS (Li et al., 2017), Office-
Home (Venkateswara et al., 2017) and DomainNet (Peng et al., 2019). (1) PACS is a recent chal-
lenging domain adaptation/generalization benchmark. It consists of seven object categories from
four domains, namely art paintings, cartoon, sketch, and photo. (2) Office-Home is a more challeng-
ing dataset than PACS as it has a large domain gap, which includes 15,588 images from 65 categories
in office and home circumstance, consisted by four particularly dissimilar domains: Artistic images,
Clip Art, Product images, and Real-World images. (3) DomainNet is the largest domain adaptation
dataset which includes 345 classes and six domains (Clipart, Infograph, Painting, Quickdraw, Real,
and Sketch). In our setting, we conduct experiments on four domains of Clipart, Painting, Real, and
Sketch.

Table 5: Statistics of the three benchmark datasets.

Datasets Domains/Samples Classes

PACS Art painting/2,048 Cartoon/2,344 Photo/1,670 Sketch/3,929 7

Office-Home Art/2,427 Clipart/4,365 Product/4,439 Real world/4,357 65

DomainNet Clipart/48,129 Painting/72,266 Real/172,947 Sketch/69,128 345

A.2 IMPLEMENTATION DETAILS

We implement our P-Mixup in Pytorch (Paszke et al., 2019). We adopt the ImageNet pre-trained
ResNet-18 (He et al., 2016) as the feature extractor G and optimize it with SGD as the optimization
algorithm. We train the model for 10,000 iterations on Office-Home, and 30,000 iterations on Do-
mainNet. We update the mix-up ratio λn every 100 iterations. Following the idea of MAML (Finn
et al., 2017), for each 3 iterations, we randomly select 2 source domains as the meta-train domain,
and the rest source, target, and mixup domains are meta-test domain. The first 2 iterations is meta-
train, and the last iteration is meta-test that contains source, target, and their bi-level mixed samples.
The learning rates α and β are set to 0.01. For all the baselines, we use the same basic image
processing procedures and the same feature extractor as our P-Mixup.

A.3 SENSITIVITY STUDY ON σ

To analyze the sensitivity of our P-Mixup to the hyper-parameter σ, we conduct ex-
periments on Office-Home for all four protocols. The value σ is selected from
{0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40}. As shown in Table 6, we observe that the perfor-
mance of P-Mixup slightly increases in the range [0.05, 0.25] when the value of σ is increased,
and then the performance is relatively stable in the range [0.25, 0.40]. Overall, our P-Mixup is not
sensitive to the value of σ.
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Table 6: Impact of σ in our P-Mixup on Office-Home (averaged over 5 times).

σ in Eq. 13 Art Clipart Product Real world Ave.

0.05 70.06 60.19 82.14 84.57 74.24
0.10 70.42 60.55 82.62 85.18 74.69
0.15 70.63 61.04 83.45 85.72 75.21
0.20 72.23 59.97 82.69 85.05 74.99
0.25 71.83 61.50 83.91 86.42 75.92
0.30 71.71 60.69 84.35 86.62 75.84
0.35 72.07 60.75 83.83 86.19 75.71
0.40 72.46 60.61 84.04 86.52 75.91

Table 7: mAP(%) on PACS. Named in row is the target domain which contains 4 classes randomly
selected from label space. Rest domains are source domains.

D4
t ERM-w/o ERM-w CCSA MDAN Mix-up DAML URT Ours

A 76.42 78.47 75.39 77.84 79.84 79.37 59.36 83.21
C 70.15 72.37 74.04 70.15 71.57 76.86 62.61 79.96
P 86.79 89.95 87.24 91.16 93.75 91.79 79.40 95.62
S 64.98 69.22 73.29 70.10 66.32 72.79 58.71 81.97
Ave. 74.58 77.50 77.49 77.31 77.87 80.20 65.02 85.19

A.4 RESULTS ON PACS

Evaluation on PACS is shown in Table 7. We observe that our method consistently and significantly
outperforms all the baselines. Specifically, we have 7.69% “Ave.” performance gain compared with
ERM-w and 4.99% “Ave.” improvement compared with the second best DAML. A side observation
is that all the baselines obtain relatively better performance compared to Office-Home and Doman-
Net datasets, which suggests that the PACS could be less challenging, as 4 images from target
domain could notably boost the performance, i.e., when comparing to ERM-w/o.

A.5 META-LEARNING ABLATION STUDY

We investigate the behavior of our method on different meta-train and meta-test splittings on Office-
Home with 10-shot. As the Office-Home dataset contains 4 domains, for each task, there are 3
domains are selected as the source domains and the remaining is the target domain. We also have
the mix-up domain in each task. Due to the limited target data, we simplify the splitting by treating
the target and mix-up domains as the whole denoted as Dmix−up. As shown in Table 8, we increase
the size of meta-train set from 1 source domain to 3 source domains. Corresponding, the remaining
domains are adopted as the meta-test set. We find that different meta-learning splittings achieve the
similar performance, and the meta-train set with three source domains slightly outperforms others.
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Figure 5: Illustration of our P-Mixup training behavior compared to other baselines on Office-Home
all four protocols, where the one in caption is selected as the target domain and the rest are source
domains.
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Table 8: Ablation study on Office-Home with 10-shot under different meta-learning splitting.

Meta-train Meta-test Art Clipart Product Real world Ave.

Ds ∗ 1 Ds ∗ 2 +Dmix−up 70.36 58.23 80.40 83.99 73.23
Ds ∗ 2 Ds ∗ 1 +Dmix−up 72.33 59.97 82.69 85.05 74.99
Ds ∗ 3 Dmix−up 71.58 60.08 83.23 85.79 75.17

Table 9: mAP(%) on Office-Home with vision transformer feature extractor. Named in row is the
target domain which contains 10 classes randomly selected from label space. (A: Art, C: Clipart, P:
Product, R: Real world)

D10
t ERM-w/o ERM-w CCSA MDAN Mix-up DAML URT Ours

A 69.58 66.97 64.23 73.02 71.74 69.07 68.81 77.70
C 60.84 62.90 61.67 63.01 63.93 64.92 58.11 69.54
P 81.48 81.28 79.82 82.40 81.23 82.02 83.10 85.26
R 82.62 84.44 81.08 84.60 83.15 82.63 80.69 85.48

Ave. 73.63 73.61 71.70 76.01 74.90 74.66 75.18 79.94

A.6 VISION TRANSFORMER FEATURE EXTRACTOR

We explore the performance of our method under different feature extractor by replacing the
ResNet18 with ViT-B-16(vit small patch 224)1 on Office-Home dataset with 10-shot. As shown
in Table 9, we can see that our method still consistently outperforms all the baselines under the
vision transformer feature extractor.

A.7 MOVING DIRECTION OF MIX-UP DISTRIBUTION

We investigate the influence of moving direction of mix-up distribution on our P-Mixup by either
moving the mix-up distribution from source to target domains (“Source-To-Target”) or from target
to source domains (“Target-To-Source”). In Table 10, we observe that the direction of “Target-To-
Source” consistently and significantly outperforms the direction of “Source-To-Target” with more
than 4.0% improvement on average accuracy. To further explore the training behavior of our P-
Mixup, we inspect the learned model from some of the intermediate training iterations, i.e., from
iteration 500 to 5,000, to fully converged 10,000 iterations. As shown in Figure 6, We find that the
direction of “Target-To-Source” continuously improves the performance of the learned model on
target domain compared with the direction of “Source-To-Target”.

A.8 STANDARD DEVIATION VALUE

We compute the standard deviation (STD) values for all the methods across all the benchmark
datasets. More details can be found in Figures 7, 8, and 9.

A.9 COMPUTATION ANALYSIS

We explore our method training behavior by investigating the learned model from some of the inter-
mediate training iterations, i.e., from iteration 2000 to 5000, to fully converged 10000 iterations. We
run the models on Office-Home four protocols. As shown in Figure 5, we observe that our proposed
method P-Mixup consistently and significantly outperforms all the baselines which verifies the ef-
fectiveness of our P-Mixup. We also notice that other baseline methods, e.g., DAML and MDAN,
obtain worse results than EMR-w which demonstrates the difficulty and challenge of our proposed
Few-shot Supervised multi-source domain Transfer (FSMDT) problem.

1https://timm.fast.ai/
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Table 10: Impact of moving direction of mixup distribution in our P-Mixup on Office-Home (aver-
aged over 5 times) all four protocols.

Moving Direction Art Clipart Product Real world Ave.

Source-To-Target 67.06 55.79 78.56 82.44 70.97
Target-To-Source 72.23 59.97 82.69 85.05 74.99
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Figure 6: Illustration of our P-Mixup training behavior under different moving strategies for mix-up
distribution on Office-Home (averaged over 5 times) all four protocols.

A.10 LIMITATION

Our method mainly relies on source-target progressive mixup (P-Mixup) data augmentation, which
progressively introduces an intermediate mix-up domain to mitigate the domain gap between source
and target. P-Mixup focuses on the proposed Few-shot Supervised Multi-source Domain Transfer
(FSMDT) problem, which provides multiple labeled source domain data and limited labeled target
data. It aims at learning to generalize to unseen target domain data. To exactly constrain the target
distribution to be few-shot, we consider one sample per class situation and limit the label space of
target domain significantly smaller than the label space of multi-source domains. We can see in
Table 4 that the performance of our method decreases as the number of target classes increases.
There are two main reasons: First, the classification task becomes more difficult as the number of
target classes increases. Second, the diversity of the augmented data is restricted by the fact that P-
Mixup is only applied between source and the limited few-shot of target data. In contrast, the domain
generalization method “DAML” conducts the mix-up across all the classes from multiple source
domains. To mitigate the gap, we can additionally introduce the mix-up amongst source domains,
e.g., source to source mix-up, into our overall framework to further enrich the data diversity.
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Figure 7: Illustration of standard deviation (STD) values for all the methods on Office-Home (aver-
aged over 5 times) all four protocols.
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Figure 8: Illustration of standard deviation (STD) values for all the methods on DomainNet (aver-
aged over 5 times) all four protocols, where target domain contains 10 classes.
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Figure 9: Illustration of standard deviation (STD) values for all the methods on DomainNet (aver-
aged over 5 times) all four protocols, where target domain contains 15 classes.
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