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ABSTRACT

Under resource constraints, LLMs are usually fine-tuned with additional knowl-
edge using Parameter Efficient Fine-Tuning (PEFT), using Low-Rank Adaptation
(LoRA) modules. In fact, LoRA injects a new set of small trainable matrices to
adapt an LLM to a new task, while keeping the latter frozen. At deployment, LoRA
weights are subsequently merged with the LLM weights to speed up inference.
In this work, we show how to exploit the unmerged LoRA’s embedding to boost
the performance of Out-Of-Distribution (OOD) detectors, especially in the more
challenging near-OOD scenarios. Accordingly, we demonstrate how improving
OOD detection also helps in characterizing wrong predictions in downstream tasks,
a fundamental aspect to improve the reliability of LLMs. Moreover, we will present
a use-case in which the sensitivity of LoRA modules and OOD detection are em-
ployed together to alert stakeholders about new model updates. This scenario is
particularly important when LLMs are out-sourced. Indeed, test functions should
be applied as soon as the model changes the version in order to adapt prompts in the
downstream applications. In order to validate our method, we performed tests on
Multiple Choice Question Answering datasets, by focusing on the medical domain
as a fine-tuning task. Our results motivate the use of LoRA modules even after
deployment, since they provide strong features for OOD detection for fine-tuning
tasks and can be employed to improve the security of LLMs.

1 INTRODUCTION
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Figure 1: Boosting LLM security with LoRA mod-
ules. Given a fine-tuned LLM and the LoRA embed-
dings of the FT dataset, one can check: (1) if the LoRA
embeddings of a new dataset are OOD, (2) if the model
version has changed by detecting changes in LoRA em-
beddings, (3) if a prediction should be discarded due to
an OOD input sample or low-confidence output.

Large Language Models (LLMs) are gain-
ing popularity due to their general-purpose
capabilities and are increasingly integrated
into real-world applications, including
medicine (Thirunavukarasu et al., 2023)
and finance (Li et al., 2023). Their fast
developing pace and ease of integration is
alarming, since misconfiguration can be
particularly damaging (Wang et al., 2024;
Koessler & Schuett, 2023; Bickmore et al.,
2018). New government regulations are fo-
cusing on LLM-based applications. The
EU AI Act (EUA, 2023) and the White
House Executive Order on AI systems
(Whi, 2023) are setting plans for their safe
deployment, including the “robust monitor-
ing of AI systems” (EUA, 2023). Addition-
ally, new OWASP (OWA, 2023) guidelines
have been published, highlighting the secu-
rity risks of integrating LLM into applications.
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One major challenge of Machine Learning is protecting against unexpected behaviours of the
model. Indeed, real-world applications might involve data that differs from the training one due to
distributional shifts (Yang et al., 2021). Coupled with random effects in the data, these shifts can make
the model more uncertain about its predictions (Hüllermeier & Waegeman, 2021). Consequently,
detecting such Out-Of-Distribution (OOD) instances (Yang et al., 2021) is crucial to allow users to
discard untrustworthy predictions. While OOD detection has been a fast-growing field, especially
on classification tasks, these approaches have been also been recently extended to LLMs and text
generation (Ren et al., 2023). In this paper, we will study OOD detection in the context of fine-tuned
LLMs employing Low-Rank Adaptation (LoRA) modules (Hu et al., 2022).

Fine-tuning is a common practice for adapting a model to a specific domain. However, recent results
raise new concerns on the reliability of fine-tuned LLMs. Indeed, fine-tuning can deteriorate previous
safety alignments enforced during pre-training (Qi et al., 2023). Moreover, it has been shown that fine-
tuning worsens OOD robustness (Chen et al., 2023b). Low-Rank Adaptation (LoRA) modules (Hu
et al., 2022) are commonly used to allow fine-tuning LLMs under resources constraints. Given a
froze LLM, these small trainable modules are first injected for task adaptation and then merged with
the model to reduce latency at inference time. Originally designed for fine-tuning purposes, LoRA
modules are now being employed for greater control beyond their original purpose. Such applications
include task arithmetic (add, combine or remove learned properties) (Zhang et al., 2023), scaling the
influence of the fine-tuned task at inference(Shah et al., 2023), and switching tasks using dynamic
LoRA module routing (Huang et al., 2024; Sheng et al., 2023).

In the following, we show how unmerged LoRA modules can also be exploited to improve the security
and reliability of LLMs. First, we show that LoRA embeddings are more sensitive to near-OOD
samples, allowing simpler OOD detectors such as the Mahalanobis Distance (Lee et al., 2018b) to
perform well in most scenarios. Second, we will present a novel use-case of OOD detection for
model inspection. Model updates might in fact require version checking (Hao et al., 2023), to prevent
major security flaws such as backdoor attacks (Yang et al., 2023) as well as simple misconfiguration
in the LLM service supply chain (Hao et al., 2023). With LoRA embeddings, one can easily detect
model changes even under subtle updates. Last, we will test how LoRA embeddings improve
runtime prediction monitoring, also known as selective prediction (Geifman & El-Yaniv, 2017;
Lakshminarayanan et al., 2017; Tran et al., 2022), when an LLM is employed for downstream tasks
such as question answering. While OOD detection accounts for unintended inputs, a prediction might
be uncertainty also due to random effects in the data. These two sources of uncertainty are usually
referred to as epistemic, due to lack of knowledge, and aleatoric uncertainty, due to the stochastic
nature of the data-generating process (Hüllermeier & Waegeman, 2021). Similar to previous results
on vision tasks (Kaur et al., 2021), we will show how aggregating OOD detection and the entropy of
the model confidence can improve the reliability of LLMs. This combined approach, accounting for
the two sources of uncertainty, improves the detection of incorrect predictions compared to taking
each individual metric alone. We will focus on decoder-only LLMs and medical Multiple Choice
Question Answering (MCQA). However, it’s important to note that our methods are applicable to
other large pre-trained models fine-tuned with LoRA and other generation tasks.

Contributions In Section 3.1 we show that LoRA Embedding boost the detection performance
in near-OOD scenarios over the fine-tuning task. In Section 3.2 we present a novel use-case where
OOD detection is employed to detect model updates. Last, in Section 3.3 we combine OOD detection
and the output entropy to improve near-OOD runtime prediction monitoring in downstream tasks.

1.1 OOD DETECTION

Starting from the training data, a common approach to tackle OOD detection first builds a distribution
of embeddings or outputs, such as the maximum softmax probability or the perplexity. Then, samples
that significantly deviate from such distribution are rejected (Yang et al., 2021).

OOD Detection from embeddings Given the focus of this work on LoRA modules, we will
consider distance- (Sun et al., 2022) and density-based approaches (Lee et al., 2018b; Ren et al.,
2021) to detect OOD embeddings. The Deep Nearest Neighbors (Sun et al., 2022) method employs the
distance to the K-th Nearest Neighbors (KNN) as a metric to measure the deviation of an embedding
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from the training distribution. The Mahalanobis Distance (MD) (Lee et al., 2018b) measures the
OOD score of a test sample x as: MDtrain(x) := MD(x;µtrain,Σtrain) := (x− µ)TΣ−1(x− µ).

where µtrain and Σtrain are obtained by fitting a multivariate Gaussian N (µ,Σ), µ ∈ Rd,Σ ∈ Rd×d to
the training data. Since MD might struggle on near-OOD samples, the Relative Mahalanobis Distance
(RMD) (Ren et al., 2021) improves it by normalizing the training data likelihood MDtrain(x) with a
background dataset MDbg(x): RMDtrain(x) := MDtrain(x)− MDbg(x).

Crucially, while the performance of RMD and KNN might be sensitive to the choice of the background
dataset and the number of neighbors, respectively, this is not the case of MD, which has no additional
requirements.

OOD Detection in LLMs Recently, OOD detection has been investigated in the context of condi-
tional language models (Ren et al., 2023). More in detail, it has been shown that perplexity alone
is unreliable for detecting OOD samples. On the other hand, combining perplexity with RMD on
the last layer activation of both the encoder and decoder is a better performing alternative to discard
low-quality outputs given OOD inputs.

2 METHODS

2.1 DATASETS AND MODEL

We integrated the previous results on OOD detection with RMD within the abstractive summarization
and translation domains (Ren et al., 2023) by focusing on multiple question answering, which limits
the number of generated token to 1. We selected three MCQA datasets and chose the medical domain
as a fine-tuning task, by considering the MedMCQA (Pal et al., 2022) and the PubMedQA (Jin et al.,
2019) datasets. Then, we employed the MMLU (Hendrycks et al., 2021) multi-domain dataset to
define both near- and far-OOD samples (refer to Appendix A.1 to get the subtasks assigned to each
category). In contrast to (Ren et al., 2023), we use a decoder only language model: Llama2-7B
(Touvron et al., 2023). Llama2-7B has a vocabulary size of 32 000, an embedding size of 4 096 and
has 32 layers. We fine-tuned the model with LoRA (Hu et al., 2022) on the MedMCQA training split,
using a batch size of 32, the Adam optimizer and a learning rate of 2e-4. Moreover, we set LoRA to
rank 16 and attached it to the query and value projections of each transformer layer. Concatenating
all LoRA embeddings leads to a final embedding of size 32× 2× 16 = 2048.

2.2 EMBEDDINGS

We compare two types of embeddings: last layer activations and LoRA embeddings. LoRA
reparametrization of the i-th layer can be expressed as li(x) = W i

0x + BiAix, where W i
0 is

the pretrained frozen weights and BiAi are two matrices of the LoRA module. Now, given an input
of N tokens, we define the last layer activation embedding as ELLA(x) :=

1
N

∑N
i=1 l

L
i (x) and LoRA

embeddings as ELORA(x) =
1
N

∑N
i=1 ||Lj=1A

jx. Where lLi is the final layer activation for token i, and
||Lj=1A

jx denotes the concatenation of all LoRA modules intermediate activation Ajx for the L layers
(see Fig. 3). Both embeddings are scaled through division by the maximum value. Importantly, we

considered multiple layer embeddings only with LoRA, due to its reduced dimensionality compared
to the full-rank layers.

2.3 OOD DETECTION AND PREDICTION MONITORING

OOD Detection In order to perform OOD detection, we will compare all the three approaches
mentioned in Section 1.1: MD (Lee et al., 2018a), RMD (Ren et al., 2021) like in Ren et al. (2023),
using PubMedQA as the background dataset, and KNN (Sun et al., 2022), with k = 100 as number
of neighbors. Both MD and RMD employed the embeddings on the fine-tuning dataset to compute
µtrain and Σtrain.

Selective Prediction Similar to (Kaur et al., 2021), we will consider a combination of aleatoric and
epistemic uncertainties (Hüllermeier & Waegeman, 2021) in order to define a stronger approach to
monitor the predictions of our model, also called selective prediction (Geifman & El-Yaniv, 2017;
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Lakshminarayanan et al., 2017; Tran et al., 2022). Likewise, in Ren et al. (2023) the perplexity of an
LLM was combined with RMD for selective generation.

By detecting the embeddings that are far from the in-distribution ones, OOD detectors mostly capture
the epistemic uncertainty of a model. For this experiment, we will consider the MD approach, that,
thanks to the LoRA embeddings ELORA, is comparable with RMD and KNN while having less
requirements (see Table 1).

In order to estimate the aleatoric uncertainty, we simply compute the entropy of the token providing
the answer to the question. Given a question x, let fi(x) be the output confidence of an LLM for the
i-th answer. Then, the Shannon entropy of the output is defined as H(x) = −

∑
i fi(x) log fi(x).

While MD has no upper-bound, the entropy range is [0, 1]. Therefore, in order to combine them, it
would be convenient to rescale the former. Since the squared Mahalanobis distance MD2 follows a
Chi-square (χ2,d) distribution with d degrees of freedom (Manly, 2014), where d is the number of
dimensions of the data point, we can take the p-value of the χ2,d instead of the MD to obtain a nor-
malized value. The p-value associated with MD is calculated as pMD(x) = 1− CDFχ2,d(MD2(x))
where CDF stands for the cumulative distribution function. Then, given a question x with the
associated LLM embeddings E(x) (either ELLA or ELoRA), we can compute the p-value pMD and
the Shannon entropy H(x) of the model prediction. The final combination is simply defined as
H(x) + pMD(E(x)).

3 RESULTS

3.1 LORA MODULES IMPROVE NEAR-OOD DETECTION

In Table 1 we compare the AUROC score for OOD detection of different embeddings (ELLA,
ELoRA) on both near- and far-OOD datasets, as defined in Appendix A.1, against the test dataset
of MedMCQA (our in-distribution fine-tuning domain). In accordance with the results reported
in (Ren et al., 2023), the perplexity proves to be a poor choice as an OOD score, as it struggles to
distinguish even far-OOD datasets. When employing the last layer embeddings, all the methods
perfectly discriminate far-OOD datasets. However, in near-OOD scenarios only RMD demonstrates
positive performance, while KNN and MD fail completely. On the other hand, LoRA embeddings
allow KNN and MD to perform on par with RMD on the near-OOD datasets, while keeping the same
high performance on the far-OOD ones. As clearly emerges from Fig. 4, LoRA embeddings boost the
performance of the simpler MD approach, that neither requires hyperparameter tuning nor additional
datasets like KNN and RMD, respectively. Indeed, RMD heavily depends on the goodness of the
background dataset to perform well in the near-OOD dataset.

Near OOD Far OOD

Method clinical
knowledge anatomy college

biology
computer
science

professional
law

Perplexity 0.651 0.383 0.654 0.587 0.712

Last Layer Activation (ELLA)

KNN 0.387 0.296 0.786 0.997 0.999
MD 0.428 0.312 0.774 0.997 0.999
RMD* (baseline) 0.688 0.730 0.998 0.997 0.999

LoRA (ELoRA)

KNN 0.819 0.729 0.890 0.997 0.998
MD 0.814 0.733 0.890 0.996 0.994
RMD* 0.828 0.762 0.998 0.993 0.999

500 Steps

(Version 0)

Table 1: OOD detection AUROCs. AUROCs
distinguishing MMLU tasks from the MedM-
CQA dataset.
* RMD requires a background dataset.
(baseline) The approach of (Ren et al., 2023).

Figure 2: AUROCs distinguishing the em-
beddings at different fine-tuning steps. AU-
ROCs of the Mahalanobis Distance distinguish-
ing MedMCQA embeddings after 500 fine-
tuning steps (model version 0) from the ones
after > 500 steps (next model versions).
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3.2 DETECTING MODEL UPDATES

Given the good performance of the simple MD approach on LoRA embeddings, even in near-OOD
scenarios, we investigate an interesting use-case to improve the security of fine-tuned LLMs: detecting
the degree of change of a model version update. This time, instead of checking if an external dataset
is OOD, we aim to detect whether the embeddings of the in-distribution data have changed due to
a (possibly unexpected) model update. OpenAI’s models endpoint degradation over time on some
specific tasks (Chen et al., 2023a) underlines the practical significance of this issue. Existing methods,
such as verifying model weights hashes (Hao et al., 2023) or using zero-knowledge proofs (South
et al., 2024), offer only a binary indication of model change. Given a dataset of interest and a model
version, our approach is instead able to quantify model change. Such a scenario is relevant when
a stakeholder out-sources LLM for a specific fine-tuning task, where a model update might trigger
a testing cascade on downstream tasks (Hao et al., 2023). Indeed, prompts may be invalidated on
a different model version and malicious updates might inject backdoors in the model (Yang et al.,
2023). In Fig. 2, we present the MD AUROCs for discriminating between the embeddings of our
LLM fine-tuned for 500 steps on the MedMCQA training set (model version 0) and those obtained
after fine-tuning for > 500 steps (next versions). Clearly, LoRA embeddings are much more sensitive
to model updates than the last layer ones: while the latter has an AUROC > .8 1000 fine-tuning steps
after version 0 at 500 steps, the former after only 100.

3.3 RUNTIME MONITORING PREDICTIONS

MedMCQA Near OOD Far OOD

Entropy 0.554 0.541 0.547

MD LLA 0.528 0.509 0.510
MD LLA + Entropy 0.582 0.550 0.549
MD LORA 0.531 0.523 0.509
MD LORA + Entropy 0.589 0.576 0.543

Table 2: AUROCs scores when differentiating
correct and incorrect predictions. We considered
the MedMCQA validation dataset, and the near-
and far-OOD datasets defined in Appendix A.1.

In Table 2 we report the AUROCs when de-
tecting incorrect model predictions, i.e., wrong
answer choices. We tested the output entropy,
MD on the two types of embeddings and a com-
bination of the two. The results show again
how LoRA helps to improve MD in the near-
OOD scenario, even if the setting is differ-
ent than Section 3.1. Moreover, aggregating
MD and entropy achieves the best performance,
due to the different sources of uncertainty cap-
tured by the two metrics, i.e. epistemic and
aleatoric (Hüllermeier & Waegeman, 2021).

4 CONCLUSION

In our experiments, we found compelling evidence supporting the hypothesis that LoRA embeddings
possess stronger near-OOD properties compared to last layer activations and perplexity in fine-tuning
tasks, integrating previous research on OOD detection in LLMs (Ren et al., 2023). This enables
LLM-based applications to better monitor whether the model is being used for the intended task,
to quantify model version changes when the LLM is out-sourced, and to halt the model when the
uncertainty about its predictions in a downstream task is too high. Importantly, LoRA modules
allow us to employ simpler approaches for OOD detection, such as the Mahalanobis distance, that
neither rely on additional data nor require hyperparameter tuning. Our findings suggest that LoRA
weights should be kept also at deployment time to keep fine-grained control over the fine-tuning
task for security purposes. Note that our work relies on the LoRA embedding being served from the
LLM API endpoint, a technique not commonly employed on platforms such as HuggingFace which
currently limits its adoption. While LoRA is a now widely adopted approach, future work could
explore other PEFT methods and their sensitivity to OOD data. Moreover, our approach doesn’t
cover full fine-tuning, but studies on task vectors show promise for task-specific adaptation in large
models (Ortiz-Jimenez et al., 2023; Ilharco et al., 2023). Preliminary results combining LoRA with
task vectors (Zhang et al., 2023) hint at new ways to enhance OOD detection for full fine-tuning.
Last, recently proposed uncertainty estimation approaches could be investigated as an alternative
to the simple predictive entropy Lin et al. (2023); Kuhn et al. (2023) in our aggregated metric for
runtime prediction monitoring.
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lach, Hugo Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and Roman Garnett (eds.), Ad-
vances in Neural Information Processing Systems 31: Annual Conference on Neural Informa-
tion Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada, pp.
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Figure 3: Embedding generation. For each N input token, we collect a concatenation of the LoRA
embeddings and the last layer activation. The final LoRA embeddings are an average of all the
concatenations. For Last Layer Activation embeddings, the same averaging process is applied.
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Figure 4: OOD scores distributions. Distribution of the OOD scores of MedMCQA validation
set (in-distribution, in orange), compared to the MMLU medical subjects (near-OOD, in blue) and
non-medical topics (far-OOD, in green) defined in Appendix A.1. From left to right: perplexity
scores, Mahalanobis Distance (MD) on the last layer activation and on the LoRA embeddings.

A APPENDIX

A.1 DATASETS (EXTENDED VERSION)

We selected three Multiple Choice Question Answering (MCQA) datasets and chose the medical
domain as a fine-tuning task, by considering the MedMCQA (Pal et al., 2022) and the PubMedQA (Jin
et al., 2019) datasets. Then, we employed the MMLU (Hendrycks et al., 2021) multi-domain dataset
to define both near- and far-OOD samples.

The MedMCQA dataset (Pal et al., 2022) contains around 194 000 multiple-choice questions, each
with four options, derived from the Indian medical entrance exams (AIIMS and NEET). It includes
21 medical subjects and around 2 400 healthcare related topics.

The PubMedQA dataset (Jin et al., 2019) contains 1 000 expert-annotated and 211 300 artificially
generated labelled Question Answering (QA) instances. The task involves generating a yes/no/maybe
answers based on a context provided in the form of a PubMed abstract.

The MMLU dataset (Hendrycks et al., 2021) includes questions from 57 different domains. As near-
OOD, we selected subtasks related to the medical domain such as “anatomy”, “clinical knowledge”,
“college medicine”, “medical genetics”, “professional medicine”, and “college biology”. Conversely,
as far-OOD we picked: “professional law”, “international law”, “business ethics”, “computer secu-
rity”, “college computer science”, “astronomy”, “abstract algebra” and “college chemistry”. These
subtasks feature multiple-choice questions with four options and a known correct answer.
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